1
|
Bondeelle L, Clément S, Bergeron A, Tapparel C. Lung stem cells and respiratory epithelial chimerism in transplantation. Eur Respir Rev 2025; 34:240146. [PMID: 39971397 PMCID: PMC11836672 DOI: 10.1183/16000617.0146-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
Stem cells are capable of self-renewal and differentiation into specialised types. They range from totipotent cells to multipotent or somatic stem cells and ultimately to unipotent cells. Some adult multipotent stem cells can have the potential to regenerate and colonise diverse tissues. The respiratory airways and lung mucosa, exposed to ambient air, perform vital roles for all human tissues and organs. They serve as barriers against airborne threats and are essential for tissue oxygenation. Despite low steady-state turnover, lungs are vulnerable to injuries and diseases from environmental exposure. Lung stem cells are crucial due to their regenerative potential and ability to replace damaged cells. Lung repair with extrapulmonary stem cells can occur, leading to the coexistence of respiratory cells with different genetic origins, a phenomenon known as airway epithelial chimerism. The impact of such chimerism in lung repair and disease is actively studied. This review explores different stem cell types, focusing on pulmonary stem cells. It discusses airway epithelium models derived from stem cells for studying lung diseases and examines lung chimerism, particularly in lung transplantation and haematopoietic stem cell transplantation, highlighting its significance in understanding tissue repair and chimerism-mediated repair processes in lung pathology.
Collapse
Affiliation(s)
- Louise Bondeelle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, Geneva, Switzerland
- Co-last author
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Co-last author
| |
Collapse
|
2
|
Gerard L, Lecocq M, Detry B, Bouzin C, Hoton D, Pinto Pereira J, Carlier F, Plante-Bordeneuve T, Gohy S, Lacroix V, Laterre PF, Pilette C. Airway epithelium damage in acute respiratory distress syndrome. Crit Care 2024; 28:350. [PMID: 39478566 PMCID: PMC11523598 DOI: 10.1186/s13054-024-05127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The airway epithelium (AE) fulfils multiple functions to maintain pulmonary homeostasis, among which ensuring adequate barrier function, cell differentiation and polarization, and actively transporting immunoglobulin A (IgA), the predominant mucosal immunoglobulin in the airway lumen, via the polymeric immunoglobulin receptor (pIgR). Morphological changes of the airways have been reported in ARDS, while their detailed features, impact for mucosal immunity, and causative mechanisms remain unclear. Therefore, this study aimed to assess epithelial alterations in the distal airways of patients with ARDS. METHODS We retrospectively analyzed lung tissue samples from ARDS patients and controls to investigate and quantify structural and functional changes in the small airways, using multiplex fluorescence immunostaining and computer-assisted quantification on whole tissue sections. Additionally, we measured markers of mucosal immunity, IgA and pIgR, alongside with other epithelial markers, in the serum and the broncho-alveolar lavage fluid (BALF) prospectively collected from ARDS patients and controls. RESULTS Compared to controls, airways of ARDS were characterized by increased epithelial denudation (p = 0.0003) and diffuse epithelial infiltration by neutrophils (p = 0.0005). Quantitative evaluation of multiplex fluorescence immunostaining revealed a loss of ciliated cells (p = 0.0317) a trend towards decreased goblet cells (p = 0.056), and no change regarding cell progenitors (basal and club cells), indicating altered mucociliary differentiation. Increased epithelial permeability was also shown in ARDS with a significant decrease of tight (p < 0.0001) and adherens (p = 0.025) junctional proteins. Additionally, we observed a significant decrease of the expression of pIgR, (p < 0.0001), indicating impaired mucosal IgA immunity. Serum concentrations of secretory component (SC) and S-IgA were increased in ARDS (both p < 0.0001), along other lung-derived proteins (CC16, SP-D, sRAGE). However, their BALF concentrations remained unchanged, suggesting a spillover of airway and alveolar proteins through a damaged AE. CONCLUSION The airway epithelium from patients with ARDS exhibits multifaceted alterations leading to altered mucociliary differentiation, compromised defense functions and increased permeability with pneumoproteinemia.
Collapse
Affiliation(s)
- Ludovic Gerard
- Department of Critical Care Medicine, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium.
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - Marylene Lecocq
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bruno Detry
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Delphine Hoton
- Department of Pathology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Joao Pinto Pereira
- Department of Critical Care Medicine, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - François Carlier
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, CHU-UCL Namur, Yvoir, Belgium
| | - Thomas Plante-Bordeneuve
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, CHU-UCL Namur, Yvoir, Belgium
| | - Sophie Gohy
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Valérie Lacroix
- Department of Cardiovascular and Thoracic Surgery, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons, Belgium
| | - Charles Pilette
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
3
|
Spurgin S, Nguimtsop AM, Chaudhry FN, Michki SN, Salvador J, Iruela-Arispe ML, Zepp JA, Mukhopadhyay S, Cleaver O. Spatiotemporal dynamics of primary and motile cilia throughout lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620342. [PMID: 39484464 PMCID: PMC11527191 DOI: 10.1101/2024.10.25.620342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cilia are specialized structures found on a variety of mammalian cells, with variable roles in the transduction of mechanical and biological signals (by primary cilia, PC), as well as the generation of fluid flow (by motile cilia). Their critical role in the establishment of a left-right axis in early development is well described, as is the innate immune function of multiciliated upper airway epithelium. By contrast, the dynamics of ciliary status during organogenesis and postnatal development is largely unknown. In this study, we define the progression of ciliary status within the endothelium, epithelium, and mesenchyme of the lung. Remarkably, we find that endothelial cells (ECs) lack PC at all stages of development, except in low numbers in the most proximal portions of the pulmonary arteries. In the lung epithelium, a proximodistal ciliary gradient is established over time, as the uniformly mono-ciliated epithelium transitions into proximal, multiciliated cells, and the distal alveolar epithelium loses its cilia. Mesenchymal cells, interestingly, are uniformly ciliated in early development, but with restriction to PDGFRα+ fibroblasts in the adult alveoli. This dynamic process in multiple cellular populations both challenges prior assertions that PC are found on all cells, and highlights a need to understand their spatiotemporal functions.
Collapse
Affiliation(s)
- Stephen Spurgin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Ange Michelle Nguimtsop
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Fatima N. Chaudhry
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania USA 19104
| | - Sylvia N. Michki
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania USA 19104
| | - Jocelynda Salvador
- Department of Cell and Developmental Biology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA 60611
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA 60611
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania USA 19104
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
4
|
Xu L, Tan C, Barr J, Talaba N, Verheyden J, Chin JS, Gaboyan S, Kasaraneni N, Elgamal RM, Gaulton KJ, Lin G, Afshar K, Golts E, Meier A, Crotty Alexander LE, Borok Z, Shen Y, Chung WK, McCulley DJ, Sun X. Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells. Cell Stem Cell 2024; 31:1465-1483.e6. [PMID: 39181129 DOI: 10.1016/j.stem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunting Tan
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justinn Barr
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jamie Verheyden
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Sun Chin
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samvel Gaboyan
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nikita Kasaraneni
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ruth M Elgamal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle J Gaulton
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kamyar Afshar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eugene Golts
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Wong IG, Stark J, Ya V, Moye AL, Vazquez AB, Dang SM, Shehaj A, Rouhani MJ, Bronson R, Janes SM, Rowbotham SP, Paschini M, Franklin RA, Kim CF. Airway injury induces alveolar epithelial and mesenchymal responses mediated by macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587596. [PMID: 38617297 PMCID: PMC11014629 DOI: 10.1101/2024.04.02.587596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.
Collapse
|
6
|
Gutor SS, Salinas RI, Nichols DS, Bazzano JMR, Han W, Gokey JJ, Vasiukov G, West JD, Newcomb DC, Dikalova AE, Richmond BW, Dikalov SI, Blackwell TS, Polosukhin VV. Repetitive sulfur dioxide exposure in mice models post-deployment respiratory syndrome. Am J Physiol Lung Cell Mol Physiol 2024; 326:L539-L550. [PMID: 38410870 PMCID: PMC11380962 DOI: 10.1152/ajplung.00239.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.
Collapse
Affiliation(s)
- Sergey S Gutor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rodrigo I Salinas
- Department of Chemistry, Emory University, Atlanta, Georgia, United States
| | - David S Nichols
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julia M R Bazzano
- Department of Surgery, Emory University, Atlanta, Georgia, United States
| | - Wei Han
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason J Gokey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Georgii Vasiukov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - James D West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Anna E Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Bradley W Richmond
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Sergey I Dikalov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Timothy S Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Vasiliy V Polosukhin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Guild J, Juul NH, Andalon A, Taenaka H, Coffey RJ, Matthay MA, Desai TJ. Evidence for lung barrier regeneration by differentiation prior to binucleated and stem cell division. J Cell Biol 2023; 222:e202212088. [PMID: 37843535 PMCID: PMC10579698 DOI: 10.1083/jcb.202212088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
With each breath, oxygen diffuses across remarkably thin alveolar type I (AT1) cells into underlying capillaries. Interspersed cuboidal AT2 cells produce surfactant and act as stem cells. Even transient disruption of this delicate barrier can promote capillary leak. Here, we selectively ablated AT1 cells, which uncovered rapid AT2 cell flattening with near-continuous barrier preservation, culminating in AT1 differentiation. Proliferation subsequently restored depleted AT2 cells in two phases, mitosis of binucleated AT2 cells followed by replication of mononucleated AT2 cells. M phase entry of binucleated and S phase entry of mononucleated cells were both triggered by AT1-produced hbEGF signaling via EGFR to Wnt-active AT2 cells. Repeated AT1 cell killing elicited exuberant AT2 proliferation, generating aberrant daughter cells that ceased surfactant function yet failed to achieve AT1 differentiation. This hyperplasia eventually resolved, yielding normal-appearing alveoli. Overall, this specialized regenerative program confers a delicate simple epithelium with functional resiliency on par with the physical durability of thicker, pseudostratified, or stratified epithelia.
Collapse
Affiliation(s)
- Joshua Guild
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas H. Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Andalon
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Tushar J. Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
10
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Gutor SS, Salinas RI, Nichols DS, Bazzano JMR, Han W, Gokey JJ, Vasiukov G, West JD, Newcomb DC, Dikalova AE, Richmond BW, Dikalov SI, Blackwell TS, Polosukhin VV. Repetitive Sulfur Dioxide Exposure in Mice Models Post-Deployment Respiratory Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540867. [PMID: 37292948 PMCID: PMC10245576 DOI: 10.1101/2023.05.15.540867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than non-deployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the deployers in this cohort reported exposure to sulfur dioxide (SO 2 ), we developed a model of repetitive exposure to SO 2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular disease (PVD). Although abnormalities in small airways were not sufficient to alter lung mechanics, PVD was associated with the development of pulmonary hypertension and reduced exercise tolerance in SO 2 exposed mice. Further, we used pharmacologic and genetic approaches to demonstrate a critical role for oxidative stress and isolevuglandins in mediating PVD in this model. In summary, our results indicate that repetitive SO 2 exposure recapitulates many aspects of PDRS and that oxidative stress may mediate PVD in this model, which may be helpful for future mechanistic studies examining the relationship between inhaled irritants, PVD, and PDRS.
Collapse
|
12
|
Meng X, Cui G, Peng G. Lung development and regeneration: newly defined cell types and progenitor status. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:5. [PMID: 37009950 PMCID: PMC10068224 DOI: 10.1186/s13619-022-00149-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 06/19/2023]
Abstract
The lung is the most critical organ of the respiratory system supporting gas exchange. Constant interaction with the external environment makes the lung vulnerable to injury. Thus, a deeper understanding of cellular and molecular processes underlying lung development programs and evaluation of progenitor status within the lung is an essential part of lung regenerative medicine. In this review, we aim to discuss the current understanding of lung development process and regenerative capability. We highlight the advances brought by multi-omics approaches, single-cell transcriptome, in particular, that can help us further dissect the cellular player and molecular signaling underlying those processes.
Collapse
Affiliation(s)
- Xiaogao Meng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
- Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guizhong Cui
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China.
| | - Guangdun Peng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.
| |
Collapse
|
13
|
Park JW, Lee EJ, Moon E, Kim HL, Kim IB, Hodzic D, Kim N, Kweon HS, Kim JW. Orthodenticle homeobox 2 is transported to lysosomes by nuclear budding vesicles. Nat Commun 2023; 14:1111. [PMID: 36849521 PMCID: PMC9971051 DOI: 10.1038/s41467-023-36697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Transcription factors (TFs) are transported from the cytoplasm to the nucleus and disappear from the nucleus after they regulate gene expression. Here, we discover an unconventional nuclear export of the TF, orthodenticle homeobox 2 (OTX2), in nuclear budding vesicles, which transport OTX2 to the lysosome. We further find that torsin1a (Tor1a) is responsible for scission of the inner nuclear vesicle, which captures OTX2 using the LINC complex. Consistent with this, in cells expressing an ATPase-inactive Tor1aΔE mutant and the LINC (linker of nucleoskeleton and cytoskeleton) breaker KASH2, OTX2 accumulated and formed aggregates in the nucleus. Consequently, in the mice expressing Tor1aΔE and KASH2, OTX2 could not be secreted from the choroid plexus for transfer to the visual cortex, leading to failed development of parvalbumin neurons and reduced visual acuity. Together, our results suggest that unconventional nuclear egress and secretion of OTX2 are necessary not only to induce functional changes in recipient cells but also to prevent aggregation in donor cells.
Collapse
Affiliation(s)
- Jun Woo Park
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Eun Jung Lee
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Eunyoung Moon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - In-Beom Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Namsuk Kim
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.,Neurovascular Unit, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Hee-Seok Kweon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
14
|
Brislinger-Engelhardt MM, Lorenz F, Haas M, Bowden S, Tasca A, Kreutz C, Walentek P. Temporal Notch signaling regulates mucociliary cell fates through Hes-mediated competitive de-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528675. [PMID: 36824900 PMCID: PMC9949065 DOI: 10.1101/2023.02.15.528675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue functions are determined by the types and ratios of cells present, but little is known about self-organizing principles establishing correct cell type compositions. Mucociliary airway clearance relies on the correct balance between secretory and ciliated cells, which is regulated by Notch signaling across mucociliary systems. Using the airway-like Xenopus epidermis, we investigate how cell fates depend on signaling, how signaling levels are controlled, and how Hes transcription factors regulate cell fates. We show that four mucociliary cell types each require different Notch levels and that their specification is initiated sequentially by a temporal Notch gradient. We describe a novel role for Foxi1 in the generation of Delta-expressing multipotent progenitors through Hes7.1. Hes7.1 is a weak repressor of mucociliary genes and overcomes maternal repression by the strong repressor Hes2 to initiate mucociliary development. Increasing Notch signaling then inhibits Hes7.1 and activates first Hes4, then Hes5.10, which selectively repress cell fates. We have uncovered a self-organizing mechanism of mucociliary cell type composition by competitive de-repression of cell fates by a set of differentially acting repressors. Furthermore, we present an in silico model of this process with predictive abilities.
Collapse
Affiliation(s)
- Magdalena Maria Brislinger-Engelhardt
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Fabian Lorenz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Institute of Medicine and Medical Center Freiburg, Stefan-Meier Strasse 26, 79104 Freiburg, Germany
| | - Maximilian Haas
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Sarah Bowden
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Alexia Tasca
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Clemens Kreutz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Institute of Medicine and Medical Center Freiburg, Stefan-Meier Strasse 26, 79104 Freiburg, Germany
| | - Peter Walentek
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
15
|
He P, Lim K, Sun D, Pett JP, Jeng Q, Polanski K, Dong Z, Bolt L, Richardson L, Mamanova L, Dabrowska M, Wilbrey-Clark A, Madissoon E, Tuong ZK, Dann E, Suo C, Goh I, Yoshida M, Nikolić MZ, Janes SM, He X, Barker RA, Teichmann SA, Marioni JC, Meyer KB, Rawlins EL. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022; 185:4841-4860.e25. [PMID: 36493756 DOI: 10.1016/j.cell.2022.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.
Collapse
Affiliation(s)
- Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Ziqi Dong
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0 QQ, UK
| | - Isaac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Masahiro Yoshida
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Marko Z Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
16
|
Application of second-generation sequencing in congenital pulmonary airway malformations. Sci Rep 2022; 12:20459. [PMID: 36443638 PMCID: PMC9705386 DOI: 10.1038/s41598-022-24858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate the differential expression of genes in whole transcripts of congenital pulmonary airway malformation (CPAM) using second-generation sequencing (also known as next-generation sequencing, NGS) technology. Children with CPAM were strictly screened after setting the criteria, and grouped by taking CPAM parietal tissue and CPAM lesion tissue respectively, and RNA-Seq libraries were established separately using second-generation sequencing technology, followed by differential expression analysis and GO (gene ontology) functional enrichment analysis, KEGG (Kyoto encyclopedia of genes and genomes, a database) pathway analysis and GSEA (Gene Set Enrichment Analysis) analysis. Five cases were screened from 36 children with CPAM, and high-throughput sequencing was performed to obtain 10 whole transcripts of samples with acceptable sequence quality and balanced gene coverage. One aberrantly expressed sample (3b) was found by analysis of principal components, which was excluded and then subjected to differential expression analysis, and 860 up-regulated genes and 203 down-regulated genes. GO functional enrichment analysis of differentially expressed genes demonstrates the functional class and cellular localization of target genes. The whole transcript of CPAM shows obvious gene up and down-regulation, differentially expressed genes are located in specific cells and belong to different functional categories, and NGS can provide an effective means to study the transcriptional regulation of CPAM from the overall transcriptional level.
Collapse
|
17
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
18
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
19
|
Faubel RJ, Santos Canellas VS, Gaesser J, Beluk NH, Feinstein TN, Wang Y, Yankova M, Karunakaran KB, King SM, Ganapathiraju MK, Lo CW. Flow blockage disrupts cilia-driven fluid transport in the epileptic brain. Acta Neuropathol 2022; 144:691-706. [PMID: 35980457 DOI: 10.1007/s00401-022-02463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
A carpet of ependymal motile cilia lines the brain ventricular system, forming a network of flow channels and barriers that pattern cerebrospinal fluid (CSF) flow at the surface. This CSF transport system is evolutionary conserved, but its physiological function remains unknown. Here we investigated its potential role in epilepsy with studies focused on CDKL5 deficiency disorder (CDD), a neurodevelopmental disorder with early-onset epilepsy refractory to seizure medications and the most common cause of infant epilepsy. CDKL5 is a highly conserved X-linked gene suggesting its function in regulating cilia length and motion in the green alga Chlamydomonas might have implication in the etiology of CDD. Examination of the structure and function of airway motile cilia revealed both the CDD patients and the Cdkl5 knockout mice exhibit cilia lengthening and abnormal cilia motion. Similar defects were observed for brain ventricular cilia in the Cdkl5 knockout mice. Mapping ependymal cilia generated flow in the ventral third ventricle (v3V), a brain region with important physiological functions showed altered patterning of flow. Tracing of cilia-mediated inflow into v3V with fluorescent dye revealed the appearance of a flow barrier at the inlet of v3V in Cdkl5 knockout mice. Analysis of mice with a mutation in another epilepsy-associated kinase, Yes1, showed the same disturbance of cilia motion and flow patterning. The flow barrier was also observed in the Foxj1± and FOXJ1CreERT:Cdkl5y/fl mice, confirming the contribution of ventricular cilia to the flow disturbances. Importantly, mice exhibiting altered cilia-driven flow also showed increased susceptibility to anesthesia-induced seizure-like activity. The cilia-driven flow disturbance arises from altered cilia beating orientation with the disrupted polarity of the cilia anchoring rootlet meshwork. Together these findings indicate motile cilia disturbances have an essential role in CDD-associated seizures and beyond, suggesting cilia regulating kinases may be a therapeutic target for medication-resistant epilepsy.
Collapse
Affiliation(s)
- Regina J Faubel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Veronica S Santos Canellas
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Jenna Gaesser
- Division of Child Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Nancy H Beluk
- Division of Radiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tim N Feinstein
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Yong Wang
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, And Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT, 06030-3305, USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Stephen M King
- Department of Molecular Biology and Biophysics, And Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT, 06030-3305, USA
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA.
| |
Collapse
|
20
|
Doğan G, Öztürk M, Karakulak DT, Karagenç L. Altered Expression of Pulmonary Epithelial Cell Markers in Fetal and Adult Mice Generated by in vitro Embryo Culture and Embryo Transfer. Cells Tissues Organs 2022; 213:1-16. [PMID: 36103849 DOI: 10.1159/000527044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2024] Open
Abstract
Lung development is impaired in mice generated through transfer of in vitro-derived blastocysts. The main objective of the current study was to determine if the composition of epithelial cells in the fetal and adult lung tissue is altered in mice generated through transfer of in vitro-derived blastocysts. The study comprised two experimental (EGs) and two control (CGs) groups. Fetuses (18.5 d.p.c.) and adult mice (8 weeks old) of the EGs (EGfetus, n = 18; EGadult, n = 15) were produced by the transfer of day 5 F2 blastocysts to pseudo-pregnant females. F2 fetuses and adult mice derived from naturally ovulating females served as the CGs (CGfetus, n = 18; CGadult, n = 15). The expression of Tuba-1a (a marker of ciliated cells), Foxj-1 (a marker of motile ciliated cells), Uch-L1 (a marker of neuroendocrine cells), Cldn-10 (a marker of club cells), Aqp-5 (a marker of type I alveolar cells), and Sp-C (a marker of type II alveolar cells) was determined using Western blot, immunohistochemistry/immunofluorescence, and quantitative RT-PCR analyses. Weight of fetuses as well as adult mice is decreased in mice comprising the EGs. Impaired lung development observed in EGfetus was associated with altered expression of Tuba-1a, Foxj-1, Cldn-10, Uch-L1, Sp-C, and Aqp-5. Morphology of the adult lung tissue was similar between the groups except for a significant increase in the thickness of the epithelia in EGadult. The expression of Cldn-10 and Sp-C was also altered in EGadult. It remains to be determined whether altered expression of these genes has any long-term impact on epithelial cell functions in the adult lung tissue.
Collapse
Affiliation(s)
- Göksel Doğan
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Murat Öztürk
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Didar Tuğçe Karakulak
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Levent Karagenç
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
21
|
Chen Y, Toth R, Chocarro S, Weichenhan D, Hey J, Lutsik P, Sawall S, Stathopoulos GT, Plass C, Sotillo R. Club cells employ regeneration mechanisms during lung tumorigenesis. Nat Commun 2022; 13:4557. [PMID: 35931677 PMCID: PMC9356049 DOI: 10.1038/s41467-022-32052-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The high plasticity of lung epithelial cells, has for many years, confounded the correct identification of the cell-of-origin of lung adenocarcinoma (LUAD), one of the deadliest malignancies worldwide. Here, we employ lineage-tracing mouse models to investigate the cell of origin of Eml4-Alk LUAD, and show that Club and Alveolar type 2 (AT2) cells give rise to tumours. We focus on Club cell originated tumours and find that Club cells experience an epigenetic switch by which they lose their lineage fidelity and gain an AT2-like phenotype after oncogenic transformation. Single-cell transcriptomic analyses identified two trajectories of Club cell evolution which are similar to the ones used during lung regeneration, suggesting that lung epithelial cells leverage on their plasticity and intrinsic regeneration mechanisms to give rise to a tumour. Together, this study highlights the role of Club cells in LUAD initiation, identifies the mechanism of Club cell lineage infidelity, confirms the presence of these features in human tumours, and unveils key mechanisms conferring LUAD heterogeneity.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Reka Toth
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Sawall
- X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU), Max-Lebsche-Platz 31, 81377, Munich, Bavaria, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Center for Lung Research (DZL), Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany. .,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Jiang Y, Hao S, Chen X, Cheng M, Xu J, Li C, Zheng H, Volpe G, Chen A, Liao S, Liu C, Liu L, Xu X. Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions. Front Genet 2022; 13:858808. [PMID: 35391793 PMCID: PMC8982079 DOI: 10.3389/fgene.2022.858808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yujia Jiang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Shijie Hao
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Huiwen Zheng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Ao Chen
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Xun Xu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
23
|
Gokey JJ, Snowball J, Sridharan A, Sudha P, Kitzmiller JA, Xu Y, Whitsett JA. YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. iScience 2021; 24:102967. [PMID: 34466790 PMCID: PMC8383002 DOI: 10.1016/j.isci.2021.102967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/26/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.
Collapse
Affiliation(s)
- Jason J. Gokey
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Snowball
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Parvathi Sudha
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph A. Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey A. Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Release of Notch activity coordinated by IL-1β signalling confers differentiation plasticity of airway progenitors via Fosl2 during alveolar regeneration. Nat Cell Biol 2021; 23:953-966. [PMID: 34475534 PMCID: PMC7611842 DOI: 10.1038/s41556-021-00742-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
While the acquisition of cellular plasticity in adult stem cells is essential for rapid regeneration after tissue injury, little is known about the underlying mechanisms governing this process. Our data reveal the coordination of airway progenitor differentiation plasticity by inflammatory signals during alveolar regeneration. Upon damage, IL-1β signalling-dependent modulation of Jag1/2 expression in ciliated cells results in the inhibition of Notch signalling in secretory cells, which drives reprogramming and acquisition of differentiation plasticity. We identify a transcription factor Fosl2/Fra2 for secretory cell fate conversion to alveolar type 2 (AT2) cells retaining the distinct genetic and epigenetic signatures of secretory lineages. We furthermore reveal that KDR/FLK-1+ human secretory cells display a conserved capacity to generate AT2 cells via Notch inhibition. Our results demonstrate the functional role of a IL-1β-Notch-Fosl2 axis for the fate decision of secretory cells during injury repair, proposing a potential therapeutic target for human lung alveolar regeneration.
Collapse
|
25
|
Cho HJ, Ha JG, Lee SN, Kim CH, Wang DY, Yoon JH. Differences and similarities between the upper and lower airway: focusing on innate immunity. Rhinology 2021; 59:441-450. [PMID: 34339483 DOI: 10.4193/rhin21.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nose is the first respiratory barrier to external pathogens, allergens, pollutants, or cigarette smoke, and vigorous immune responses are triggered when external pathogens come in contact with the nasal epithelium. The mucosal epithelial cells of the nose are essential to the innate immune response against external pathogens and transmit signals that modulate the adaptive immune response. The upper and lower airways share many physiological and immunological features, but there are also numerous differences. It is crucial to understand these differences and their contribution to pathophysiology in order to optimize treatments for inflammatory diseases of the respiratory tract. This review summarizes important differences in the embryological development, histological features, microbiota, immune responses, and cellular subtypes of mucosal epithelial cells of the nose and lungs.
Collapse
Affiliation(s)
- H-J Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J G Ha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - S N Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea 2 Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea
| | - C-H Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - D-Y Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J-H Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Kiyokawa H, Yamaoka A, Matsuoka C, Tokuhara T, Abe T, Morimoto M. Airway basal stem cells reutilize the embryonic proliferation regulator, Tgfβ-Id2 axis, for tissue regeneration. Dev Cell 2021; 56:1917-1929.e9. [PMID: 34129836 DOI: 10.1016/j.devcel.2021.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/28/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022]
Abstract
During development, quiescent airway basal stem cells are derived from proliferative primordial progenitors through the cell-cycle slowdown. In contrast, basal cells contribute to adult tissue regeneration by shifting from slow cycling to proliferating and subsequently back to slow cycling. Although sustained proliferation results in tumorigenesis, the molecular mechanisms regulating these transitions remain unknown. Using temporal single-cell transcriptomics of developing murine airway progenitors and genetic validation experiments, we found that TGF-β signaling decelerated cell cycle by inhibiting Id2 and contributed to slow-cycling basal cell specification during development. In adult tissue regeneration, reduced TGF-β signaling restored Id2 expression and initiated regeneration. Id2 overexpression and Tgfbr2 knockout enhanced epithelial proliferation; however, persistent Id2 expression drove basal cell hyperplasia that resembled a precancerous state. Together, the TGF-β-Id2 axis commonly regulates the proliferation transitions in basal cells during development and regeneration, and its fine-tuning is critical for normal regeneration while avoiding basal cell hyperplasia.
Collapse
Affiliation(s)
- Hirofumi Kiyokawa
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Chisa Matsuoka
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tomoko Tokuhara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| |
Collapse
|
28
|
Wang X, Zhao Y, Li D, Feng Y, Xie Y, Zhou Y, Zhou M, Wang Y, Qu J, Zuo W. Intrapulmonary distal airway stem cell transplantation repairs lung injury in chronic obstructive pulmonary disease. Cell Prolif 2021; 54:e13046. [PMID: 33960563 PMCID: PMC8168420 DOI: 10.1111/cpr.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage including chronic bronchitis and emphysema, which could further develop into respiratory failure. Many studies have revealed a potential regenerative function of the distal airway stem/progenitor cells (DASCs) after lung injury. Materials and Methods Mouse and human DASCs were expanded, analysed, and engrafted into injured mouse lungs. Single‐cell analyses were performed to reveal the differentiation path of the engrafted cells. Finally, human DASCs were transplanted into COPD mice induced by porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) administration. Results We showed that isolated mouse and human DASCs could be indefinitely expanded and were able to further differentiate into mature alveolar structures in vitro. Single‐cell analysis indicated that the engrafted cells expressed typical cellular markers of type I alveolar cells as well as the specific secreted proteins. Interestingly, transplantation of human DASCs derived from COPD patients into the lungs of NOD‐SCID mice with COPD injury repaired the tissue damage and improved the pulmonary function. Conclusions The findings demonstrated that functional lung structure could be reconstituted by intrapulmonary transplantation of DASCs, suggesting a potential therapeutic role of DASCs transplantation in treatment for chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Xiaofan Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dandan Li
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yusang Xie
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yueqing Zhou
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China.,Kiangnan Stem Cell Institute, Zhejiang, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zuo
- East Hospital, School of Medicine, Tongji University, Shanghai, China.,Kiangnan Stem Cell Institute, Zhejiang, China.,Ningxia Medical University, Yinchuan, China.,The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Heinen N, Klöhn M, Steinmann E, Pfaender S. In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease. Viruses 2021; 13:792. [PMID: 33925255 PMCID: PMC8144959 DOI: 10.3390/v13050792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
| | | | | | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany; (N.H.); (M.K.); (E.S.)
| |
Collapse
|
30
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med 2021; 6:12. [PMID: 33674599 PMCID: PMC7935966 DOI: 10.1038/s41536-021-00124-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
The use of decellularized whole-organ scaffolds for bioengineering of organs is a promising avenue to circumvent the shortage of donor organs for transplantation. However, recellularization of acellular scaffolds from multicellular organs like the lung with a variety of different cell types remains a challenge. Multipotent cells could be an ideal cell source for recellularization. Here we investigated the hierarchical differentiation process of multipotent ES-derived endoderm cells into proximal airway epithelial cells on acellular lung scaffolds. The first cells to emerge on the scaffolds were TP63+ cells, followed by TP63+/KRT5+ basal cells, and finally multi-ciliated and secretory airway epithelial cells. TP63+/KRT5+ basal cells on the scaffolds simultaneously expressed KRT14, like basal cells involved in airway repair after injury. Removal of TP63 by CRISPR/Cas9 in the ES cells halted basal and airway cell differentiation on the scaffolds. These findings suggest that differentiation of ES-derived endoderm cells into airway cells on decellularized lung scaffolds proceeds via TP63+ basal cell progenitors and tracks a regenerative repair pathway. Understanding the process of differentiation is key for choosing the cell source for repopulation of a decellularized organ scaffold. Our data support the use of airway basal cells for repopulating the airway side of an acellular lung scaffold.
Collapse
|
32
|
Vazquez-Armendariz AI, Herold S. From Clones to Buds and Branches: The Use of Lung Organoids to Model Branching Morphogenesis Ex Vivo. Front Cell Dev Biol 2021; 9:631579. [PMID: 33748115 PMCID: PMC7969706 DOI: 10.3389/fcell.2021.631579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 01/03/2023] Open
Abstract
Three-dimensional (3D) organoid culture systems have rapidly emerged as powerful tools to study organ development and disease. The lung is a complex and highly specialized organ that comprises more than 40 cell types that offer several region-specific roles. During organogenesis, the lung goes through sequential and morphologically distinctive stages to assume its mature form, both structurally and functionally. As branching takes place, multipotent epithelial progenitors at the distal tips of the growing/bifurcating epithelial tubes progressively become lineage-restricted, giving rise to more differentiated and specialized cell types. Although many cellular and molecular mechanisms leading to branching morphogenesis have been explored, deeper understanding of biological processes governing cell-fate decisions and lung patterning is still needed. Given that these distinct processes cannot be easily analyzed in vivo, 3D culture systems have become a valuable platform to study organogenesis in vitro. This minireview focuses on the current lung organoid systems that recapitulate developmental events occurring before and during branching morphogenesis. In addition, we also discuss their limitations and future directions.
Collapse
Affiliation(s)
- Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine II, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| |
Collapse
|
33
|
Goh KJ, Tan EK, Lu H, Roy S, Dunn NR. An NKX2-1 GFP and TP63 tdTomato dual fluorescent reporter for the investigation of human lung basal cell biology. Sci Rep 2021; 11:4712. [PMID: 33633173 PMCID: PMC7907081 DOI: 10.1038/s41598-021-83825-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Basal cells are multipotent stem cells responsible for the repair and regeneration of all the epithelial cell types present in the proximal lung. In mice, the elusive origins of basal cells and their contribution to lung development were recently revealed by high-resolution, lineage tracing studies. It however remains unclear if human basal cells originate and participate in lung development in a similar fashion, particularly with mounting evidence for significant species-specific differences in this process. To address this outstanding question, in the last several years differentiation protocols incorporating human pluripotent stem cells (hPSC) have been developed to produce human basal cells in vitro with varying efficiencies. To facilitate this endeavour, we introduced tdTomato into the human TP63 gene, whose expression specifically labels basal cells, in the background of a previously described hPSC line harbouring an NKX2-1GFP reporter allele. The functionality and specificity of the NKX2-1GFP;TP63tdTomato hPSC line was validated by directed differentiation into lung progenitors as well as more specialised lung epithelial subtypes using an organoid platform. This dual fluorescent reporter hPSC line will be useful for tracking, isolating and expanding basal cells from heterogenous differentiation cultures for further study.
Collapse
Affiliation(s)
- Kim Jee Goh
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
- Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore, 308232, Singapore
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
- Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore, 308232, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
34
|
Huang HB, Huang JL, Xu XT, Huang KB, Lin YJ, Lin JB, Zhuang XB. Serum neuron-specific enolase: A promising biomarker of silicosis. World J Clin Cases 2021; 9:1016-1025. [PMID: 33644165 PMCID: PMC7896644 DOI: 10.12998/wjcc.v9.i5.1016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Silicosis is a type of chronic pulmonary fibrosis caused by long-term inhalation of silica dust particles. There has been no ideal biomarker for the diagnosis and differential diagnosis of silicosis until now. Studies have found that elevated neuron-specific enolase (NSE) concentration in the serum of silicosis patients is helpful for diagnosis and severity assessment of the disease. However, the number of cases in these studies was not enough to arouse attention.
AIM To investigate the clinical significance of serum NSE in the diagnosis and staging of silicosis.
METHODS From January 2017 to June 2019, 326 cases of silicosis confirmed in Quanzhou First Hospital Affiliated to Fujian Medical University were included in the silicosis group. A total of 328 healthy individuals or medical patients without silicosis were included in the control group. Serum NSE concentrations of all subjects were determined by electrochemical luminescence.
RESULTS There were no significant differences in sex, age, smoking index and complications between the silicosis and control groups. The mean serum NSE concentration was 26.57 ± 20.95 ng/mL in the silicosis group and 12.42 ± 2.68 ng/mL in the control group. The difference between the two groups was significant (U = 15187, P = 0.000). Among the 326 patients with silicosis, 103 had stage I silicosis, and the mean serum NSE concentration was 15.55 ± 6.23 ng/mL. The mean serum NSE concentration was 21.85 ± 12.05 ng/mL in 70 patients with stage II silicosis. The mean serum NSE concentration was 36.14 ± 25.72 ng/mL in 153 patients with stage III silicosis. Kruskal–Wallis H test suggested that the difference in serum NSE concentration in silicosis patients in the three groups was significant (H = 130.196, P = 0.000). Receiver operating characteristic curve analysis indicated that the area under the curve was 0.858 (95% confidence interval: 0.828-0.888; P = 0.000). When the NSE concentration was 15.82 ng/mL, the Jorden index was the largest, the sensitivity was 72%, and the specificity was 90%.
CONCLUSION Serum NSE concentration may be a promising biomarker for the diagnosis and assessment of severity of silicosis.
Collapse
Affiliation(s)
- Hong-Bo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jun-Ling Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiao-Ting Xu
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Kun-Bo Huang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yi-Jian Lin
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jie-Bin Lin
- Department of Internal Medicine, Infectious Disease Hospital of Quanzhou, Quanzhou 362000, Fujian Province, China
| | - Xi-Bin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
35
|
Moiseenko A, Vazquez-Armendariz AI, Kheirollahi V, Chu X, Tata A, Rivetti S, Günther S, Lebrigand K, Herold S, Braun T, Mari B, De Langhe S, Kwapiszewska G, Günther A, Chen C, Seeger W, Tata PR, Zhang JS, Bellusci S, El Agha E. Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial Regeneration. Cell Rep 2020; 33:108549. [PMID: 33357434 PMCID: PMC8363050 DOI: 10.1016/j.celrep.2020.108549] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα+ cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs). This cell population, which we term “repair-supportive mesenchymal cells” (RSMCs), is distinct from conventional ASMCs, which have previously been shown to contribute to epithelial repair. Gene expression analysis on sorted lineage-labeled cells shows that RSMCs express low levels of ASMC markers, but high levels of the pro-regenerative marker Fgf10. Organoid co-cultures demonstrate an enhanced ability for RSMCs in supporting club-cell growth. Our study highlights the dynamics of mesenchymal cells in the airway niche and has implications for chronic airway-injury-associated diseases. Moiseenko et al. explore the dynamics of mesenchymal cells in the peribronchial niche in response to airway injury. They identify a population of mesenchymal cells located in close proximity to airway smooth muscle cells (ASMCs). This population, termed “repair-supportive mesenchymal cells” (RSMCs), is recruited to facilitate airway epithelial regeneration.
Collapse
Affiliation(s)
- Alena Moiseenko
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Vahid Kheirollahi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Xuran Chu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Rivetti
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | | | - Susanne Herold
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, 06560 Valbonne, France
| | - Stijn De Langhe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham, Birmingham, AL 35294, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria
| | - Andreas Günther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Elie El Agha
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany.
| |
Collapse
|
36
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Tsutsumi A, Ozaki M, Chubachi S, Irie H, Sato M, Kameyama N, Sasaki M, Ishii M, Hegab AE, Betsuyaku T, Fukunaga K. Exposure to Cigarette Smoke Enhances the Stemness of Alveolar Type 2 Cells. Am J Respir Cell Mol Biol 2020; 63:293-305. [PMID: 32338993 DOI: 10.1165/rcmb.2019-0188oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic exposure to cigarette smoke (CS) causes chronic inflammation, oxidative stress, and apoptosis of epithelial cells, which results in destruction of the lung matrix. However, the mechanism by which the lung fails to repair the CS-induced damage, thereby succumbing to emphysema, remains unclear. Alveolar type 2 (AT2) cells comprise the stem cells of the alveolar compartments and are responsible for repairing and maintaining lung tissues. In this study, we examined the effect of chronic CS on AT2 stem cells. Adult mice expressing GFP in their AT2 cells were exposed to CS for > 3 months. Histological assessment showed that CS not only induced emphysematous changes but also increased the number of AT2 cells compared with that of air-exposed lungs. Assessment of sorted GFP+/AT2 cells via the stem cell three-dimensional organoid/colony-forming assay revealed that the number and size of the colonies formed by the CS-exposed AT2 stem cells were significantly higher than those of air-exposed control AT2 cells. Although CS-exposed lungs had more apoptotic cells, examination of the surviving AT2 stem cells in two-dimensional in vitro culture revealed that they developed a higher ability to resist apoptosis. Microarray analysis of CS-exposed AT2 stem cells revealed the upregulation of genes related to circadian rhythm and inflammatory pathways. In conclusion, we provide evidence that AT2 stem cells respond to chronic CS exposure by activating their stem cell function, thereby proliferating and differentiating faster and becoming more resistant to apoptosis. Disturbances in expression levels of several circadian rhythm-related genes might be involved in these changes.
Collapse
Affiliation(s)
- Akihiro Tsutsumi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidehiro Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minako Sato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naofumi Kameyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Sasaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Cell-Based Therapeutic Approaches for Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21155219. [PMID: 32718005 PMCID: PMC7432606 DOI: 10.3390/ijms21155219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cystic Fibrosis (CF) is a chronic autosomal recessive disease caused by defects in the cystic fibrosis transmembrane conductance regulator gene (CFTR). Cystic Fibrosis affects multiple organs but progressive remodeling of the airways, mucus accumulation, and chronic inflammation in the lung, result in lung disease as the major cause of morbidity and mortality. While advances in management of CF symptoms have increased the life expectancy of this devastating disease, and there is tremendous excitement about the potential of new agents targeting the CFTR molecule itself, there is still no curative treatment. With the recent advances in the identification of endogenous airway progenitor cells and in directed differentiation of pluripotent cell sources, cell-based therapeutic approaches for CF have become a plausible treatment method with the potential to ultimately cure the disease. In this review, we highlight the current state of cell therapy in the CF field focusing on the relevant autologous and allogeneic cell populations under investigation and the challenges associated with their use. In addition, we present advances in induced pluripotent stem (iPS) cell approaches and emerging new genetic engineering methods, which have the capacity to overcome the current limitations hindering cell therapy approaches.
Collapse
|
40
|
Hu Y, Ng-Blichfeldt JP, Ota C, Ciminieri C, Ren W, Hiemstra PS, Stolk J, Gosens R, Königshoff M. Wnt/β-catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells 2020; 38:1467-1478. [PMID: 32526076 PMCID: PMC7116441 DOI: 10.1002/stem.3241] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Wnt/β-catenin signaling regulates progenitor cell fate decisions during lung development and in various adult tissues. Ectopic activation of Wnt/β-catenin signaling promotes tissue repair in emphysema, a devastating lung disease with progressive loss of parenchymal lung tissue. The identity of Wnt/β-catenin responsive progenitor cells and the potential impact of Wnt/β-catenin signaling on adult distal lung epithelial progenitor cell function in emphysema are poorly understood. Here, we used TCF/ Lef:H2B/GFP reporter mice to investigate the role of Wnt/β-catenin signaling in lung organoid formation. We identified an organoid-forming adult distal lung epithelial progenitor cell population characterized by a low Wnt/β-catenin activity, which was enriched in club and alveolar epithelial type (AT)II cells. Endogenous Wnt/β-catenin activity was required for the initiation of multiple subtypes of distal lung organoids derived from the Wntlow epithelial progenitors. Further ectopic Wnt/β-catenin activation specifically led to an increase in alveolar organoid number; however, the subsequent proliferation of alveolar epithelial cells in the organoids did not require constitutive Wnt/β-catenin signaling. Distal lung epithelial progenitor cells derived from the mouse model of elastase-induced emphysema exhibited reduced organoid forming capacity. This was rescued by Wnt/β-catenin signal activation, which largely increased the number of alveolar organoids. Together, our study reveals a novel mechanism of lung epithelial progenitor cell activation in homeostasis and emphysema.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - John-Poul Ng-Blichfeldt
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Chiharu Ota
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Wenhua Ren
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
41
|
Giuranno L, Roig EM, Wansleeben C, van den Berg A, Groot AJ, Dubois L, Vooijs M. NOTCH inhibition promotes bronchial stem cell renewal and epithelial barrier integrity after irradiation. Stem Cells Transl Med 2020; 9:799-812. [PMID: 32297712 PMCID: PMC7308641 DOI: 10.1002/sctm.19-0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperactivity of the NOTCH pathway is associated with tumor growth and radiotherapy resistance in lung cancer, and NOTCH/γ-secretase inhibitors (GSIs) are a potential therapeutic target. The therapeutic outcome, however, is often restricted by the dose-limiting toxicity of combined treatments on the surrounding healthy tissue. The NOTCH signaling pathway is also crucial for homeostasis and repair of the normal airway epithelium. The effects of NOTCH/γ-secretase inhibition on the irradiation of normal lung epithelium are unknown and may counteract antitumor activity. Here we, therefore, investigated whether normal tissue toxicity to radiation is altered upon NOTCH pathway inhibition. We established air-liquid interface pseudostratified and polarized cultures from primary human bronchial epithelial cells and blocked NOTCH signaling alone or after irradiation with small-molecule NOTCH inhibitor/GSI. We found that the reduction in proliferation and viability of bronchial stem cells (TP63+) in response to irradiation is rescued with concomitant NOTCH inhibition. This correlated with reduced activation of the DNA damage response and accelerated repair by 24 hours and 3 days postirradiation. The increase in basal cell proliferation and viability in GSI-treated and irradiated cultures resulted in an improved epithelial barrier function. Comparable results were obtained after in vivo irradiation, where the combination of NOTCH inhibition and irradiation increased the percentage of stem cells and ciliated cells ex vivo. These encourage further use of normal patient tissue for toxicity screening of combination treatments and disclose novel interactions between NOTCH inhibition and radiotherapy and opportunities for tissue repair after radiotherapy.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Eloy M Roig
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Carolien Wansleeben
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Annette van den Berg
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
42
|
He M, Wu B, Ye W, Le DD, Sinclair AW, Padovano V, Chen Y, Li KX, Sit R, Tan M, Caplan MJ, Neff N, Jan YN, Darmanis S, Jan LY. Chloride channels regulate differentiation and barrier functions of the mammalian airway. eLife 2020; 9:e53085. [PMID: 32286221 PMCID: PMC7182432 DOI: 10.7554/elife.53085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
The conducting airway forms a protective mucosal barrier and is the primary target of airway disorders. The molecular events required for the formation and function of the airway mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway diseases, remain unclear. In this study, we systematically characterized the developmental landscape of the mouse airway using single-cell RNA sequencing and identified remarkably conserved cellular programs operating during human fetal development. We demonstrated that in mouse, genetic inactivation of chloride channel Ano1/Tmem16a compromises airway barrier function, results in early signs of inflammation, and alters the airway cellular landscape by depleting epithelial progenitors. Mouse Ano1-/-mutants exhibited mucus obstruction and abnormal mucociliary clearance that resemble the airway defects associated with cystic fibrosis. The data reveal critical and non-redundant roles for Ano1 in organogenesis, and show that chloride channels are essential for mammalian airway formation and function.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Bing Wu
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Wenlei Ye
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel D Le
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Adriane W Sinclair
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Division of Pediatric Urology, University of California, San Francisco, Benioff Children's HospitalSan FranciscoUnited States
| | - Valeria Padovano
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HeavenUnited States
| | - Yuzhang Chen
- Department of Anesthesia and Perioperative Care, University of California, San FranciscoSan FranciscoUnited States
| | - Ke-Xin Li
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Rene Sit
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Michelle Tan
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HeavenUnited States
| | - Norma Neff
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Yuh Nung Jan
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | | | - Lily Yeh Jan
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
43
|
Miller AJ, Yu Q, Czerwinski M, Tsai YH, Conway RF, Wu A, Holloway EM, Walker T, Glass IA, Treutlein B, Camp JG, Spence JR. In Vitro and In Vivo Development of the Human Airway at Single-Cell Resolution. Dev Cell 2020; 53:117-128.e6. [PMID: 32109386 PMCID: PMC7396815 DOI: 10.1016/j.devcel.2020.01.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Bud tip progenitor cells give rise to all murine lung epithelial lineages and have been described in the developing human lung; however, the mechanisms controlling human bud tip differentiation into specific lineages are unclear. Here, we used homogeneous human bud tip organoid cultures and identified SMAD signaling as a key regulator of the bud tip-to-airway transition. SMAD induction led to the differentiation of airway-like organoids possessing functional basal cells capable of clonal expansion and multilineage differentiation. To benchmark in vitro-derived organoids, we developed a single-cell mRNA sequencing atlas of the human lung from 11.5 to 21 weeks of development, which revealed high degrees of similarity between the in vitro-derived and in vivo airway. Together, this work sheds light on human airway differentiation in vitro and provides a single-cell atlas of the developing human lung.
Collapse
Affiliation(s)
- Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Taylor Walker
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Jason R Spence
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Roberson EC, Tran NK, Konjikusic MJ, Fitch RD, Gray RS, Wallingford JB. A comparative study of the turnover of multiciliated cells in the mouse trachea, oviduct, and brain. Dev Dyn 2020; 249:898-905. [PMID: 32133718 DOI: 10.1002/dvdy.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In mammals, multiciliated cells (MCCs) line the lumen of the trachea, oviduct, and brain ventricles, where they drive fluid flow across the epithelium. Each MCC population experiences vastly different local environments that may dictate differences in their lifetime and turnover rates. However, with the exception of MCCs in the trachea, the turnover rates of these multiciliated epithelial populations at extended time scales are not well described. RESULTS Here, using genetic lineage-labeling techniques we provide a direct comparison of turnover rates of MCCs in these three different tissues. CONCLUSION We find that oviduct turnover is similar to that in the airway (~6 months), while multiciliated ependymal cells turnover more slowly.
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Molecular Biosciences, Patterson Labs, University of Texas at Austin, Austin, Texas, USA
| | - Ngan K Tran
- Department of Molecular Biosciences, Patterson Labs, University of Texas at Austin, Austin, Texas, USA
| | - Mia J Konjikusic
- Department of Molecular Biosciences, Patterson Labs, University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - Rebecca D Fitch
- Department of Molecular Biosciences, Patterson Labs, University of Texas at Austin, Austin, Texas, USA
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA.,Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
45
|
Sivakumar A, Frank DB. Paradigms that define lung epithelial progenitor cell fate in development and regeneration. CURRENT STEM CELL REPORTS 2019; 5:133-144. [PMID: 32587809 DOI: 10.1007/s40778-019-00166-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Throughout the lifespan, lung injury impedes the primary critical function essential for life-respiration. To repair quickly and efficiently is critical and is orchestrated by a diverse repertoire of progenitor cells and their niche. This review incorporates knowledge gained from early studies in lung epithelial morphogenesis and cell fate and explores its relevance to more recent findings of lung progenitor and stem cells in development and regeneration. Recent Findings Cell fate in the lung is organized into an early specification phase and progressive differentiation phase in lung development. The advent of single cell analysis combined with lineage analysis and projections is uncovering new functional cell types in the lung providing a topographical atlas for progenitor cell lineage commitment during development, homeostasis, and regeneration. Summary Lineage commitment of lung progenitor cells is spatiotemporally regulated during development. Single cell sequencing technologies have significantly advanced our understanding of the similarities and differences between developmental and regenerative cell fate trajectories. Subsequent unraveling of the molecular mechanisms underlying these cell fate decisions will be essential to manipulating progenitor cells for regeneration.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
Sarode P, Mansouri S, Karger A, Schaefer MB, Grimminger F, Seeger W, Savai R. Epithelial cell plasticity defines heterogeneity in lung cancer. Cell Signal 2019; 65:109463. [PMID: 31693875 DOI: 10.1016/j.cellsig.2019.109463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany.
| |
Collapse
|
47
|
Cellular crosstalk in the development and regeneration of the respiratory system. Nat Rev Mol Cell Biol 2019; 20:551-566. [PMID: 31217577 DOI: 10.1038/s41580-019-0141-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.
Collapse
|
48
|
Shi Y, Dong M, Zhou Y, Li W, Gao Y, Han L, Chen M, Lin H, Zuo W, Jin F. Distal airway stem cells ameliorate bleomycin-induced pulmonary fibrosis in mice. Stem Cell Res Ther 2019; 10:161. [PMID: 31159891 PMCID: PMC6547529 DOI: 10.1186/s13287-019-1257-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is characterized by loss of lung epithelial cells and inexorable progression of fibrosis with no effective and approved treatments. The distal airway stem/progenitor cells (DASCs) have been shown to have potent regenerative capacity after lung injury. In this work, we aimed to define the role of mouse DASCs (mDASCs) in response to bleomycin-induced lung fibrosis in mice. METHODS The mDASCs were isolated, expanded in vitro, and labeled with GFP by lentiviral infection. The labeled mDASCs were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice on day 7. Pathological change, collagen content, α-SMA expression, lung function, and mortality rate were assessed at 7, 14, and 21 days after bleomycin administration. Tissue section and direct fluorescence staining was used to show the distribution and differentiation of mDASCs in lung. RESULTS The transplanted mDASCs could incorporate, proliferate, and differentiate into type I pneumocytes in bleomycin-injured lung. They also inhibited fibrogenesis by attenuating the deposition of collagen and expression of α-SMA. In addition, mDASCs improved pulmonary function and reduce mortality in bleomycin-induced pulmonary fibrosis mice. CONCLUSIONS The data strongly suggest that mDASCs could ameliorate bleomycin-induced pulmonary fibrosis by promotion of lung regeneration and inhibition of lung fibrogenesis.
Collapse
Affiliation(s)
- Yun Shi
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| | - Mingqing Dong
- Xi’an International University, Xi’an, 710077 People’s Republic of China
| | - Yueqing Zhou
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 People’s Republic of China
- Kiangnan Stem Cell Institute, Zhejiang, 311300 People’s Republic of China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| | - Luyao Han
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| | - Hongwei Lin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| | - Wei Zuo
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 People’s Republic of China
- Kiangnan Stem Cell Institute, Zhejiang, 311300 People’s Republic of China
- Ningxia Medical University, Yinchuan, 750004 People’s Republic of China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 People’s Republic of China
| |
Collapse
|
49
|
Phenotypic Analysis of BrdU Label-Retaining Cells during the Maturation of Conducting Airway Epithelium in a Porcine Lung. Stem Cells Int 2019; 2019:7043890. [PMID: 30936924 PMCID: PMC6415319 DOI: 10.1155/2019/7043890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Stem/progenitor cells have recently been demonstrated to play key roles in the maturation, injury repair, and regeneration of distinct organs or tissues. Porcine has spurred an increased interest in biomedical research models and xenotransplantation, owing to most of its organs share similarities in physiology, cellular composition and size to humans. Therefore, characterization of stem/progenitor cells in porcine organs or tissues may provide a novel avenue to better understand the biology and function of stem cells in humans. In the present study, potential stem/progenitor cells in conducting airway epithelium of a porcine lung were characterized by morphometric analysis of bromodeoxyuridine (BrdU) label-retaining cells (LRCs) during the maturation of the lung. The results showed a pseudostratified mucociliary epithelium comprised of basal, ciliated, goblet, and columnar cells in the conducting airway of a porcine lung. In addition, the majority of primary epithelial cells able to proliferate in vitro expressed keratin 5, a subpopulation of these keratin 5-positive cells, also expressed CD117 (c-Kit) or CD49f (integrin alpha 6, ITGA6), implying that they might be potential epithelial stem/progenitor cells in conducting airway of a porcine lung. Lineage tracing analysis with a BrdU-labeled neonatal piglet showed that the proportion of BrdU-labeled cells in conducting airways decreased over the 90-day period of lung maturation. The BrdU-labeled epithelial cells also expressed keratin 14, mucin 5AC, or prosurfactant protein C (ProSP-C); among them, the keratin 14-positive cells were the most frequent BrdU-labeled epithelial cell type as determined by immunohistochemical and immunofluorescence staining. This study may provide valuable information on the biology and function of epithelial stem/progenitor cells in conducting airway of pigs and humans.
Collapse
|
50
|
Marquez Loza LI, Yuen EC, McCray PB. Lentiviral Vectors for the Treatment and Prevention of Cystic Fibrosis Lung Disease. Genes (Basel) 2019; 10:genes10030218. [PMID: 30875857 PMCID: PMC6471883 DOI: 10.3390/genes10030218] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
Despite the continued development of cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs for the treatment of cystic fibrosis (CF), the need for mutation agnostic treatments remains. In a sub-group of CF individuals with mutations that may not respond to modulators, such as those with nonsense mutations, CFTR gene transfer to airway epithelia offers the potential for an effective treatment. Lentiviral vectors are well-suited for this purpose because they transduce nondividing cells, and provide long-term transgene expression. Studies in primary cultures of human CF airway epithelia and CF animal models demonstrate the long-term correction of CF phenotypes and low immunogenicity using lentiviral vectors. Further development of CF gene therapy requires the investigation of optimal CFTR expression in the airways. Lentiviral vectors with improved safety features have minimized insertional mutagenesis safety concerns raised in early clinical trials for severe combined immunodeficiency using γ-retroviral vectors. Recent clinical trials using improved lentiviral vectors support the feasibility and safety of lentiviral gene therapy for monogenetic diseases. While work remains to be done before CF gene therapy reaches the bedside, recent advances in lentiviral vector development reviewed here are encouraging and suggest it could be tested in clinical studies in the near future.
Collapse
Affiliation(s)
- Laura I Marquez Loza
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA.
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Eric C Yuen
- Talee Bio, 3001 Market Street, Suite 140, Philadelphia, PA 19104, USA.
| | - Paul B McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|