1
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
2
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025:1-17. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Alfaro T, McCarthy C, Bonella F, Bendstrup E, O'Callaghan M. Summary for clinicians: ERS guidelines on pulmonary alveolar proteinosis. Breathe (Sheff) 2025; 21:240224. [PMID: 40365091 PMCID: PMC12070199 DOI: 10.1183/20734735.0224-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/19/2025] [Indexed: 05/15/2025] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare lung disease caused by accumulation of surfactant in the alveoli, leading to debilitating respiratory symptoms and impaired gas exchange. The recent European Respiratory Society guidelines provide evidence-based recommendations for its diagnosis and management. Autoimmune PAP (aPAP) is the most common form, driven by granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies. Recommended diagnostic tools include bronchoalveolar lavage and quantitative GM-CSF antibody testing. Whole lung lavage and inhaled GM-CSF are first-line treatments for symptomatic or progressive aPAP. Rituximab, plasmapheresis, and lung transplantation are options for refractory disease. Referral to expert centres is advised for diagnostic and therapeutic guidance. This case-based summary for clinicians highlights the best clinical approach to patients with suspicion or confirmation of PAP.
Collapse
Affiliation(s)
- Tiago Alfaro
- Pneumology Unit, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Disease and Allergy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
4
|
Ataya A, Plomaritis N, Rhee M, Perinkulam Sathyanarayanan S, Robinson B. A patient journey map for people living with autoimmune pulmonary alveolar proteinosis. Respir Med 2025; 240:107990. [PMID: 39947303 DOI: 10.1016/j.rmed.2025.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 03/08/2025]
Abstract
INTRODUCTION Patients with autoimmune pulmonary alveolar proteinosis (PAP) face a complicated journey (physically, emotionally, and financially) to receive the correct diagnosis and treatment. We developed a patient journey map (PJM) to describe the experiences and needs of patients with autoimmune PAP in the USA. METHODS This PJM was developed in four stages: (1) analysis of existing literature; (2) patient advisory board meetings (n = 7); (3) an online survey (n = 19); and (4) a validation workshop (n = 6). RESULTS Four phases of the patient journey were identified: (1) symptoms and experience before diagnosis; (2) diagnosis; (3) treatment; and (4) ongoing monitoring. Patients reported heterogeneous and indirect diagnostic pathways, often waiting months or years for the correct diagnosis. The majority reported at least one misdiagnosis, most commonly pneumonia. Treatment pathways varied substantially, and current treatments and off-label therapies were frequently described as burdensome, emotionally taxing, and/or financially worrisome. Patients described their journey as an "emotional rollercoaster," especially during pre-diagnosis and treatment. Patients reported common barriers to care, particularly insurance problems and access to expert care. Patients specifically cited the need for improved education on autoimmune PAP within the medical community and increased help with insurance challenges related to current treatments. CONCLUSIONS This PJM provides insights on patients' journeys with autoimmune PAP. Patients reported inconsistent, burdensome, and circuitous journeys. This PJM provides the medical community with valuable information on patients' needs and increases awareness of this rare disease. Over time, these factors may improve diagnosis, treatment, and the holistic experience of patients with autoimmune PAP.
Collapse
Affiliation(s)
- Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, 1549 Gale Lemerand Drive, Gainesville, FL, 32610, USA.
| | - Niki Plomaritis
- PAP Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| | - Michele Rhee
- Savara Inc, 1717 Langhorne Newtown Road, Langhorne, PA, 19047, USA.
| | | | - Brian Robinson
- Savara Inc, 1717 Langhorne Newtown Road, Langhorne, PA, 19047, USA.
| |
Collapse
|
5
|
Bay P, de Prost N. Diagnostic approach in acute hypoxemic respiratory failure. JOURNAL OF INTENSIVE MEDICINE 2025; 5:119-126. [PMID: 40241832 PMCID: PMC11997604 DOI: 10.1016/j.jointm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 04/18/2025]
Abstract
Acute hypoxemic respiratory failure (AHRF) is the leading cause of intensive care unit (ICU) admissions. Of patients with AHRF, 40 %-50 % will require invasive mechanical ventilation during their stay in the ICU, and 30 %-80 % will meet the Berlin Criteria for Acute Respiratory Distress Syndrome (ARDS). Rapid identification of the underlying cause of AHRF is necessary before initiating targeted treatment. Almost 10 % of patients with ARDS have no identified classic risk factors however, and the precise cause of AHRF may not be identified in up to 15 % of patients, particularly in cases of immunosuppression. In these patients, a multidisciplinary, comprehensive, and hierarchical diagnostic work-up is mandatory, including a detailed history and physical examination, chest computed tomography, extensive microbiological investigations, bronchoalveolar lavage fluid cytological analysis, immunological tests, and investigation of the possible involvement of pneumotoxic drugs.
Collapse
Affiliation(s)
- Pierre Bay
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique – Hôpitaux de Paris (AP-HP), Créteil, France
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team “Viruses, Hepatology, Cancer”, Créteil, France
| | - Nicolas de Prost
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique – Hôpitaux de Paris (AP-HP), Créteil, France
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team “Viruses, Hepatology, Cancer”, Créteil, France
| |
Collapse
|
6
|
Lee E, Ataya A, McCarthy C, Godart E, Cosenza J, King A, Robinson B, Wang T. The healthcare burden of pulmonary alveolar proteinosis (PAP). Orphanet J Rare Dis 2025; 20:73. [PMID: 39953603 PMCID: PMC11829527 DOI: 10.1186/s13023-024-03478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/21/2024] [Indexed: 02/17/2025] Open
Abstract
INTRODUCTION Pulmonary alveolar proteinosis (PAP) is a rare lung syndrome characterized by the accumulation of surfactant in the alveoli. Using a longitudinal claims database, we compared measures of clinical and economic burden between a sample of diagnosed PAP patients and non-PAP matched controls. METHODS PAP patients were identified leveraging IPM.ai's longitudinal U.S. claims database spanning January 1, 2009, through May 1, 2022. PAP patients were selected based on the presence of ICD-10: J84.01 or ICD-9: 516.0 in their claims history and were indexed for observation. An age, gender, and geographically matched control cohort was created (ratio of 1:4) for comparison. A third cohort, consisting of likely undiagnosed PAP patients, was identified using a machine learning model. The PAP and control cohorts were tracked longitudinally, depending on individual index dates, from January 1, 2018, through May 1, 2023. Inclusion criteria required evidence of continual claims activity 12 months prior to and after the index date, which reduced the total number of diagnosed PAP and control patients in the analysis. Demographics, comorbidities, procedures, medication use, annual healthcare resource utilization (HCRU), and costs were calculated for eligible PAP and control patients and were compared 12 months prior to, and 12 months after each patient's index date. RESULTS After inclusion criteria were applied, 2312 confirmed PAP patients and 9247 matched controls were included in the analysis. Compared with matched controls, PAP patients had significantly higher rates of diagnosed conditions at baseline as defined by the Charlson Comorbidity Index (CCI). During the follow-up period, PAP patients had higher rates of diagnosed conditions, procedures, medication use, and cost-of-care compared with controls. PAP patients also had higher rates of emergency room visits (35% vs. 14%; P < 0.001), outpatient visits (87% vs. 56%; P < 0.001), inpatient visits (20% vs. 5%; P < 0.001) and had longer lengths of stay for inpatient hospitalizations (2.8 days vs. 0.56 days; P < 0.001), respectively. CONCLUSION This study represents the largest dataset of PAP patients and matched controls to be analyzed to date. Findings indicate that PAP patients have higher rates of diagnosed conditions, procedures, medication use, HCRU, and costs compared with non-PAP patients.
Collapse
Affiliation(s)
- Elinor Lee
- UCLA Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, 650 Charles E. Young Drive South, 43-229 CHS, Los Angeles, CA, 90095-1690, USA.
| | - Ali Ataya
- Division of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL, USA
| | - Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Erica Godart
- UCLA Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, 650 Charles E. Young Drive South, 43-229 CHS, Los Angeles, CA, 90095-1690, USA
| | - John Cosenza
- IPM.Ai, a Real Chemistry Company, New York, NY, USA
| | - Alysse King
- IPM.Ai, a Real Chemistry Company, New York, NY, USA
| | | | - Tisha Wang
- UCLA Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, 650 Charles E. Young Drive South, 43-229 CHS, Los Angeles, CA, 90095-1690, USA
| |
Collapse
|
7
|
Li X, Huang L, Mao M, Xu H, Liu C, Liu Y, Liu H. HucMSCs-derived Exosomes Promote Lung Development in Premature Birth via Wnt5a/ROCK1 Axis. Stem Cell Rev Rep 2025; 21:520-535. [PMID: 39565502 PMCID: PMC11872993 DOI: 10.1007/s12015-024-10824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Bronchopulmonary dysplasia (BPD) frequently affects extremely preterm and low birth weight infants, with current treatments lacking specificity. Enhancing extra-uterine preterm alveoli development and repairing damage are crucial for BPD management. Here we show that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exos) can enhance fetal lung development in mice by delivering specific contents. Briefly, hucMSCs-Exos were extracted using ultracentrifugation and identified by transmission electron microscopy (TEM), flow cytometry, Western blot (WB), and nanoparticle tracking analysis (NTA). These exosomes were then administered to pregnant mice via tail vein injection. Embryonic lung tissues were collected at E13.5 and E18.5 via cesarean section and analyzed using hematoxylin-eosin (HE) staining, immunofluorescence, and TEM. Proteomic analysis was conducted to identify protein components in the exosomes, and WB was used to assess protein expression changes. hucMSCs-Exos from full-term infants were more effective in promoting cell proliferation than those from preterm infants. In vivo, full-term hucMSCs-Exos significantly enhanced alveolarization in fetal lung tissues. Proteomic analysis revealed higher Wnt5a expression in full-term hucMSCs-Exos, and further experiments confirmed a direct interaction between Wnt5a and ROCK1. WB also showed increased expression of the autophagy marker LC3B in the lung tissues of mice treated with full-term exosomes. In conclusion, term hucMSCs-Exos may directly regulate the phosphorylation of ROCK1 in mouse lung tissue through naturally enriched Wnt5a, thus promoting autophagy of AT2 cells and lamellar body development, and ultimately enhance the alveolarization and reducing the incidence of BPD in premature infants.
Collapse
Affiliation(s)
- Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lidong Huang
- University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hong Xu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Caijun Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
8
|
Kozono T, Tanaka K, Yagi T, Kamikawaji K, Watanabe M, Iwanaga A, Hamada M, Koreeda Y, Inoue H, Higashimoto I. Autoimmune pulmonary alveolar proteinosis developed during treatment for systemic sclerosis: a case report. BMC Pulm Med 2025; 25:32. [PMID: 39838335 PMCID: PMC11753109 DOI: 10.1186/s12890-025-03489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Reports of autoimmune diseases coexisting with autoimmune pulmonary alveolar proteinosis (autoimmune PAP; APAP) are extremely rare. APAP coexisting with autoimmune diseases may often be misdiagnosed as connective tissue disease-associated interstitial lung disease (ILD). Here, we describe a rare case of a patient with systemic sclerosis who was diagnosed with APAP after the exacerbation of lung opacities during treatment with immunosuppressive agents. CASE PRESENTATION A 72-year-old woman was diagnosed with systemic sclerosis (SSc) at the age of 68, and initiated treatment with prednisolone (PSL). At the age of 70, she was diagnosed with ILD associated with SSc. Despite intravenous cyclophosphamide (IVCY), no improvement was observed. A significant elevation of Krebs von den Lungen-6 (KL-6) and a crazy-paving pattern on chest computed tomography (CT) are observed. Bronchoscopy showed milky white bronchoalveolar lavage fluid (BALF) and histology of periodic acid-Schiff (PAS) stain-positive eosinophilic granular material. Serum anti granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies were measured, and the result was positive, leading to the diagnosis of APAP. CONCLUSION In patients with interstitial lung shadows who do not improve with immunosuppressive treatment, PAP is one of the differential diagnoses that should be considered. All physicians should be aware that the appropriate diagnosis of PAP and the measurement of serum anti-GM-CSF antibodies will critically affect patient outcomes.
Collapse
Affiliation(s)
- Tomoki Kozono
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Kentaro Tanaka
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-Shi, Kagoshima, 890-8544, Japan.
| | - Tomoko Yagi
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Kazuto Kamikawaji
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Masaki Watanabe
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Azusa Iwanaga
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Minako Hamada
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Yoshifusa Koreeda
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-Shi, Kagoshima, 890-8544, Japan
| | - Ikkou Higashimoto
- Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan
| |
Collapse
|
9
|
Sandeep G, Singha SK, Gupta A, Chinnadurai K, Gupta H. Fast-Track Extubation in a Patient Undergoing Whole Lung Lavage: A Case Report. Ann Card Anaesth 2025; 28:80-83. [PMID: 39851155 PMCID: PMC11902368 DOI: 10.4103/aca.aca_163_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 01/26/2025] Open
Abstract
ABSTRACT Pulmonary alveolar proteinosis (PAP) is a rare pulmonary pathology characterized by the accumulation of surfactant within type II alveolar epithelial cells. Whole lung lavage is the standard treatment for pulmonary alveolar proteinosis involving a large volume of fluid is infused into one lung and subsequently retrieved while the other lung is remains ventilated. Fast-tracking a patient undergoing whole lung lavage requires vigilant monitoring of arterial blood gases, fluid status, and respiratory mechanics. We report a case of a patient who underwent whole lung lavage for PAP, where early extubation was performed, avoiding the complications associated with prolonged mechanical ventilation.
Collapse
Affiliation(s)
- Gade Sandeep
- Cardiac Anaesthesiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Subrata K. Singha
- Department of Anaesthesiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Anil Gupta
- Cardiac Anaesthesiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | |
Collapse
|
10
|
Lyu TW, Yung K, Chien YC, Tsai XCH, Hou HA. Primary myelofibrosis as the etiology of pulmonary alveolar proteinosis: a rare clinical scenario. Leuk Lymphoma 2025; 66:150-154. [PMID: 39329179 DOI: 10.1080/10428194.2024.2408363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Ting-Wei Lyu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Kenneth Yung
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Pulmonology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ying-Chun Chien
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xavier Cheng-Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Education and Research, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Tay CK, Kumar A, Hsu AAL, Lee P. Whole lung and sequential bronchoscopic lavage for pulmonary alveolar proteinosis. Curr Opin Pulm Med 2025; 31:41-52. [PMID: 39569652 DOI: 10.1097/mcp.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW Pulmonary alveolar proteinosis (PAP) is a diffuse lung disease that results from the accumulation of lipoproteinaceous material in the alveoli due to abnormal surfactant homeostasis. Since its introduction in the 1960s, whole lung lavage (WLL) has been the primary treatment for PAP. This review focuses on WLL, including its technique modifications, and sequential bronchoscopic lavage. RECENT FINDINGS Autoimmune PAP, which accounts for the majority of cases, occurs when antigranulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies lead to the deficiency of bioavailable GM-CSF. At present, there are no international guidelines or consensus statements for PAP treatment. Traditionally, therapeutic decisions are made based on the severity and type of PAP. Despite emerging data on GM-CSF-based therapies, WLL remains a central component in the therapeutic strategy for PAP. SUMMARY Although the technique of WLL has evolved over time, there is still no universally adopted, standardized protocol. However, key periprocedural aspects - such as preprocedural planning, patient evaluation, anesthetic technique, lavage protocol, and postprocedural care - remain essential to ensuring the safety and success of WLL.
Collapse
Affiliation(s)
- Chee Kiang Tay
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital
| | - Anupam Kumar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota Medical School
| | - Anne Ann Ling Hsu
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital
| | - Pyng Lee
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore
| |
Collapse
|
12
|
Alvarez-Payares JC, Ribero Vargas DA, Suárez EU, Barrera-Correa D, Vélez Aguirre JD, Hernandez-Rodriguez JC, Ramirez-Urrea SI. Pulmonary Manifestations in Patients With Hematologic Malignancies: In Pursuit of an Accurate Diagnosis. Cureus 2025; 17:e77418. [PMID: 39949462 PMCID: PMC11822728 DOI: 10.7759/cureus.77418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
Pulmonary involvement is common in patients with hematologic malignancies (HMs) and varies depending on the underlying condition, including lymphoproliferative disorders, acute leukemia, myelodysplastic syndrome, and allogeneic stem cell transplantation. Pulmonary complications are a frequent cause of morbidity and mortality in these patients, often resulting from the immunosuppressive effects of the disease or its treatment. The clinical manifestations of these complications are nonspecific, and their differential diagnosis is broad, encompassing both infectious and noninfectious causes. A thorough clinical assessment requires consideration of factors such as the patient's history, baseline immune status, treatment regimens, time since the last chemotherapy, and environmental exposures. Radiographic imaging, particularly high-resolution CT, plays a critical role in evaluating these complications, helping clinicians identify distinct patterns of pulmonary involvement. Therefore, a personalized diagnostic approach is essential, and multidisciplinary management is crucial for optimal patient care.
Collapse
Affiliation(s)
| | | | - E U Suárez
- Hematology, Fundación Jiménez Díaz University Hospital, Madrid, ESP
| | | | | | | | | |
Collapse
|
13
|
Pais-Cunha I, Gonçalves A, Paulino S, Fontoura Matias J, Sónia S, Ferraz C, Azevedo I. Autoimmune Pulmonary Alveolar Proteinosis: A Rare Diagnosis in Pediatric Age. J Investig Med High Impact Case Rep 2025; 13:23247096251323188. [PMID: 40084558 PMCID: PMC11909686 DOI: 10.1177/23247096251323188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 03/16/2025] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (AI-PAP) is a rare condition, especially in children. The clinical presentation ranges from asymptomatic forms to respiratory distress requiring ventilation. We describe the case of a 13-year-old adolescent male who presented to the emergency department with acute pleuritic chest pain not associated with systemic complaints. On examination, he had diminished breath sounds in the lower two thirds of the chest with no other abnormal findings; SpO2 (oxygen saturation) was 98% on room air. Chest radiograph revealed a marked interstitial infiltrate, comparable with the one taken 4 years earlier during an acute illness that was presumptively treated with azithromycin. A computed tomography (CT) scan revealed multiple bilateral areas of ground-glass opacities with areas of crazy paving, involving > 65% of lung parenchyma, suggestive of pulmonary alveolar proteinosis (PAP). Respiratory viral testing, including for coronavirus (SARS-CoV2), was negative. Bronchoalveolar lavage performed in the outpatient setting revealed a milky fluid and positive periodic acid-Schiff staining. Spirometry indicated a mild restrictive pattern (forced vital capacity [FVC] = 77%) and diffusing capacity of the lungs for carbon monoxide (DLCO) showed a moderate decrease at 48.6%. No mutations associated with surfactant dysfunction were found on the genetic panel. Anti-granulocyte macrophage colony-stimulating factor (GM-CSF) antibody testing was strongly positive, raising suspicion for autoimmune PAP. At 20 months of follow-up, the patient remains asymptomatic with a normal spirometry. Although treatment with agents, such as the inhaled form of granulocyte-macrophage colony-stimulating factor (GM-CSF) appears promising for the treatment of symptomatic adult patients, as this patient remains asymptomatic, a conservative approach was taken, and he continues to be monitored in the clinic.
Collapse
Affiliation(s)
- Inês Pais-Cunha
- Serviço de Pediatria, UAG da Mulher e da Criança, ULS São João, Porto, PortugalULS São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | - Sara Paulino
- Serviço de Pediatria, UAG da Mulher e da Criança, ULS São João, Porto, PortugalULS São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Fontoura Matias
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Unidade de Pneumologia Pediátrica, UAG da Mulher e da Criança, ULS São João, Porto, Portugal
| | - Silva Sónia
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Unidade de Pneumologia Pediátrica, UAG da Mulher e da Criança, ULS São João, Porto, Portugal
| | - Catarina Ferraz
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Unidade de Pneumologia Pediátrica, UAG da Mulher e da Criança, ULS São João, Porto, Portugal
| | - Inês Azevedo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Unidade de Pneumologia Pediátrica, UAG da Mulher e da Criança, ULS São João, Porto, Portugal
| |
Collapse
|
14
|
De Ponti FF, Liu Z, Scott CL. Understanding the complex macrophage landscape in MASLD. JHEP Rep 2024; 6:101196. [PMID: 39524202 PMCID: PMC11550213 DOI: 10.1016/j.jhepr.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of disease states ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which can eventually lead to the development of cirrhosis and hepatocellular carcinoma. Macrophages have long been implicated in driving the progression from steatosis to end-stage disease, yet we still know relatively little about the precise involvement of these cells in MASLD progression and/or regression. Rather, there are a considerable number of conflicting reports regarding the precise roles of these cells. This confusion stems from the fact that, until recently, macrophages in the liver were considered a homogenous population. However, thanks to recent technological advances including multi-parameter flow cytometry, single-cell RNA sequencing and spatial proteogenomics, we now know that this is not the case. Rather hepatic macrophages, even in the healthy liver, are heterogenous, existing in multiple subsets with distinct transcriptional profiles and hence likely functions. This heterogeneity is even more prominent in MASLD, where the macrophage pool consists of multiple different subsets of resident and recruited cells. To probe the unique functions of these cells and determine if targeting macrophages may be a viable therapeutic strategy in MASLD, we first need to unravel this complexity and decipher which populations and/or activation states are present and what functions each of these may play in driving MASLD progression. In this review, we summarise recent advances in the field, highlighting what is currently known about the hepatic macrophage landscape in MASLD and the questions that remain to be tackled.
Collapse
Affiliation(s)
- Federico F. De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
15
|
McCarthy C, Bonella F, O'Callaghan M, Dupin C, Alfaro T, Fally M, Borie R, Campo I, Cottin V, Fabre A, Griese M, Hadchouel A, Jouneau S, Kokosi M, Manali E, Prosch H, Trapnell BC, Veltkamp M, Wang T, Toews I, Mathioudakis AG, Bendstrup E. European Respiratory Society guidelines for the diagnosis and management of pulmonary alveolar proteinosis. Eur Respir J 2024; 64:2400725. [PMID: 39147411 DOI: 10.1183/13993003.00725-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a rare syndrome caused by several distinct diseases leading to progressive dyspnoea, hypoxaemia, risk of respiratory failure and early death due to accumulation of proteinaceous material in the lungs. Diagnostic strategies may include computed tomography (CT) of the lungs, bronchoalveolar lavage (BAL), evaluation of antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), genetic testing and, eventually, lung biopsy. The management options are focused on removing the proteinaceous material by whole lung lavage (WLL), augmentation therapy with GM-CSF, rituximab, plasmapheresis and lung transplantation. The presented diagnostic and management guidelines aim to provide guidance to physicians managing patients with PAP. METHODS A European Respiratory Society Task Force composed of clinicians, methodologists and patients with experience in PAP developed recommendations in accordance with the ERS Handbook for Clinical Practice Guidelines and the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) approach. This included a systematic review of the literature and application of the GRADE approach to assess the certainty of evidence and strength of recommendations. The Task Force formulated five PICO (Patients, Intervention, Comparison, Outcomes) questions and two narrative questions to develop specific evidence-based recommendations. RESULTS The Task Force developed recommendations for the five PICO questions. These included management of PAP with WLL, GM-CSF augmentation therapy, rituximab, plasmapheresis and lung transplantation. Also, the Task Force made recommendations regarding the use of GM-CSF antibody testing, diagnostic BAL and biopsy based on the narrative questions. In addition to the recommendations, the Task Force provided information on the hierarchy of diagnostic interventions and therapy. CONCLUSIONS The diagnosis of PAP is based on CT and BAL cytology or lung histology, whereas the diagnosis of specific PAP-causing diseases requires GM-CSF antibody testing or genetic analysis. There are several therapies including WLL and augmentation therapy with GM-CSF available to treat PAP, but supporting evidence is still limited.
Collapse
Affiliation(s)
- Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
- Shared first authorship
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
- Shared first authorship
| | | | - Clairelyne Dupin
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
| | - Tiago Alfaro
- Pneumologia Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Markus Fally
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
| | - Ilaria Campo
- Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vincent Cottin
- Reference Center for Rare Pulmonary Diseases, Department of Respiratory Medicine, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, Lyon, France
| | - Aurelie Fabre
- Histopathology Department, St Vincent's University Hospital, Dublin, Ireland
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig Maximilians University, German Center for Lung Research, Munich, Germany
| | - Alice Hadchouel
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, INSERM U1151 INEM, Université Paris Cité, Paris, France
| | - Stephane Jouneau
- Respiratory Disease Department, Reference Center for Rare Pulmonary Diseases, Pontchaillou Hospital, IRSET UMR 1085, EHESP, Université de Rennes, Rennes, France
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Effrosyni Manali
- 2nd Pulmonary Medicine Department, General University Hospital "Attikon", Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bruce C Trapnell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and Department of Pediatrics, University of Cincinnati, Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Marcel Veltkamp
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ingrid Toews
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander G Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Shared senior authorship
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Disease and Allergy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Shared senior authorship
| |
Collapse
|
16
|
Merrell E, Arens L, Gyawali B, Nead M, Roto D. A 63-Year-Old Presents With Acute Fatigue, Dyspnea, and Hypoxia. Chest 2024; 166:e113-e116. [PMID: 39389692 DOI: 10.1016/j.chest.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 10/12/2024] Open
Abstract
CASE PRESENTATION A 63-year-old woman without significant medical history presented to an urgent care center with a 3-day history of fatigue and dyspnea on exertion. She was found to have an oxygen saturation in the low 80s on room air and was transferred to the closest hospital for further evaluation. Initial chest radiographs showed extensive bilateral interstitial opacities favoring the mid to lower lungs. A general infectious workup was unrevealing. The cause of her symptoms was thought to be an atypical bacterial or viral infection. She was discharged home on supplemental oxygen, 2 L/min via nasal cannula; instructed to finish a 7-day course of antibiotics; and given strict return precautions. Six days later she returned to the ED with worsening dyspnea despite finishing the prescribed course of antibiotics; she was admitted for further evaluation. She had emigrated from Northern India in the early 2000s. While in India, cooking was performed over an open fire. Their home was situated on a poultry farm. She has never smoked. She was up to date on typical cancer screening. She had no pets and denied further exposure to birds since moving to the United States. Her occupational history included manufacturing, but she denied significant exposure to dusts or metal shavings.
Collapse
Affiliation(s)
- Eric Merrell
- Department of Pulmonary and Critical Care Medicine. University of Rochester Medicine Center. Rochester, NY.
| | - Louis Arens
- Department of Pulmonary and Critical Care Medicine. University of Rochester Medicine Center. Rochester, NY
| | - Bishal Gyawali
- Department of Pulmonary and Critical Care Medicine. University of Rochester Medicine Center. Rochester, NY
| | - Michael Nead
- Department of Pulmonary and Critical Care Medicine. University of Rochester Medicine Center. Rochester, NY
| | - Dominick Roto
- Department of Pulmonary and Critical Care Medicine. University of Rochester Medicine Center. Rochester, NY
| |
Collapse
|
17
|
Alotaibi NS, Arafah O, Aljonaieh K, Ayaz F, Hinai HAL. Usage of Foley's catheter in pediatric lung isolation, whole lung lavage: A case report. Saudi J Anaesth 2024; 18:556-558. [PMID: 39600446 PMCID: PMC11587974 DOI: 10.4103/sja.sja_80_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 11/29/2024] Open
Abstract
This case report delves into pediatric lung isolation challenges and innovations in managing patients with pulmonary alveolar proteinosis undergoing whole lung lavage. The central focus is on a 5-year-old girl who initially encountered intraoperative complications, including bilateral pneumothorax and pulmonary edema. However, a subsequent attempt employing a Foley's catheter for lung isolation proved successful, with the patient displaying marked postoperative improvements. The case offers valuable insights into the intricate balance of anesthesia, ventilatory parameters, and the novel use of common medical equipment, like the Foley's catheter, for specialized procedures in pediatric pulmonology.
Collapse
Affiliation(s)
- Narjes S. Alotaibi
- Department of Anesthesia, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Osamah Arafah
- Department of Anesthesia, King Faisal Specialist Hospital and Research Centre, Kingdom of Saudi Arabia
| | - Khalid Aljonaieh
- Department of Anesthesia, King Faisal Specialist Hospital and Research Centre, Kingdom of Saudi Arabia
| | - Feras Ayaz
- Department of Anesthesia, King Faisal Specialist Hospital and Research Centre, Kingdom of Saudi Arabia
| | - Hanan A. L. Hinai
- Department of Anesthesia, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
18
|
Hernández-Hernández I, De La Rosa JV, Martín-Rodríguez P, Díaz-Sarmiento M, Recio C, Guerra B, Fernández-Pérez L, León TE, Torres R, Font-Díaz J, Roig A, de Mora F, Boscá L, Díaz M, Valledor AF, Castrillo A, Tabraue C. Endogenous LXR signaling controls pulmonary surfactant homeostasis and prevents lung inflammation. Cell Mol Life Sci 2024; 81:287. [PMID: 38970705 PMCID: PMC11335212 DOI: 10.1007/s00018-024-05310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRβ, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRβ as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.
Collapse
Affiliation(s)
- Irene Hernández-Hernández
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan V De La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Patricia Martín-Rodríguez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mercedes Díaz-Sarmiento
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Theresa E León
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Angela Roig
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lisardo Boscá
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, Madrid, 28029, Spain
| | - Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, School of Physics, Faculty of Sciences, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
19
|
Bai X, Gao J, Guan X, Narum DE, Fornis LB, Griffith DE, Gao B, Sandhaus RA, Huang H, Chan ED. Analysis of alpha-1-antitrypsin (AAT)-regulated, glucocorticoid receptor-dependent genes in macrophages reveals a novel host defense function of AAT. Physiol Rep 2024; 12:e16124. [PMID: 39016119 PMCID: PMC11252833 DOI: 10.14814/phy2.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Alpha-1-antitrypsin (AAT) plays a homeostatic role in attenuating excessive inflammation and augmenting host defense against microbes. We demonstrated previously that AAT binds to the glucocorticoid receptor (GR) resulting in significant anti-inflammatory and antimycobacterial consequences in macrophages. Our current investigation aims to uncover AAT-regulated genes that rely on GR in macrophages. We incubated control THP-1 cells (THP-1control) and THP-1 cells knocked down for GR (THP-1GR-KD) with AAT, performed bulk RNA sequencing, and analyzed the findings. In THP-1control cells, AAT significantly upregulated 408 genes and downregulated 376 genes. Comparing THP-1control and THP-1GR-KD cells, 125 (30.6%) of the AAT-upregulated genes and 154 (41.0%) of the AAT-downregulated genes were significantly dependent on GR. Among the AAT-upregulated, GR-dependent genes, CSF-2 that encodes for granulocyte-monocyte colony-stimulating factor (GM-CSF), known to be host-protective against nontuberculous mycobacteria, was strongly upregulated by AAT and dependent on GR. We further quantified the mRNA and protein of several AAT-upregulated, GR-dependent genes in macrophages and the mRNA of several AAT-downregulated, GR-dependent genes. We also discussed the function(s) of selected AAT-regulated, GR-dependent gene products largely in the context of mycobacterial infections. In conclusion, AAT regulated several genes that are dependent on GR and play roles in host immunity against mycobacteria.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of MedicineRocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Junfeng Gao
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Xiaoyu Guan
- Department of Biostatistics and InformaticsUniversity of Colorado School of Public Health Anschutz Medical CampusAuroraColoradoUSA
| | - Drew E. Narum
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
| | | | - David E. Griffith
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert A. Sandhaus
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Hua Huang
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Edward D. Chan
- Department of MedicineRocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
20
|
Arumugam P, Carey BC, Wikenheiser-Brokamp KA, Krischer J, Wessendarp M, Shima K, Chalk C, Stock J, Ma Y, Black D, Imbrogno M, Collins M, Kalenda Yombo DJ, Sakthivel H, Suzuki T, Lutzko C, Cancelas JA, Adams M, Hoskins E, Lowe-Daniels D, Reeves L, Kaiser A, Trapnell BC. A toxicology study of Csf2ra complementation and pulmonary macrophage transplantation therapy of hereditary PAP in mice. Mol Ther Methods Clin Dev 2024; 32:101213. [PMID: 38596536 PMCID: PMC11001781 DOI: 10.1016/j.omtm.2024.101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Pulmonary macrophage transplantation (PMT) is a gene and cell transplantation approach in development as therapy for hereditary pulmonary alveolar proteinosis (hPAP), a surfactant accumulation disorder caused by mutations in CSF2RA/B (and murine homologs). We conducted a toxicology study of PMT of Csf2ra gene-corrected macrophages (mGM-Rα+Mϕs) or saline-control intervention in Csf2raKO or wild-type (WT) mice including single ascending dose and repeat ascending dose studies evaluating safety, tolerability, pharmacokinetics, and pharmacodynamics. Lentiviral-mediated Csf2ra cDNA transfer restored GM-CSF signaling in mGM-Rα+Mϕs. Following PMT, mGM-Rα+Mϕs engrafted, remained within the lungs, and did not undergo uncontrolled proliferation or result in bronchospasm, pulmonary function abnormalities, pulmonary or systemic inflammation, anti-transgene product antibodies, or pulmonary fibrosis. Aggressive male fighting caused a similarly low rate of serious adverse events in saline- and PMT-treated mice. Transient, minor pulmonary neutrophilia and exacerbation of pre-existing hPAP-related lymphocytosis were observed 14 days after PMT of the safety margin dose but not the target dose (5,000,000 or 500,000 mGM-Rα+Mϕs, respectively) and only in Csf2raKO mice but not in WT mice. PMT reduced lung disease severity in Csf2raKO mice. Results indicate PMT of mGM-Rα+Mϕs was safe, well tolerated, and therapeutically efficacious in Csf2raKO mice, and established a no adverse effect level and 10-fold safety margin.
Collapse
Affiliation(s)
- Paritha Arumugam
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Brenna C Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Division of Pathology & Laboratory Medicine, CCHMC, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Krischer
- Departments of Pediatrics and Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Matthew Wessendarp
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Kenjiro Shima
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Jennifer Stock
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Yan Ma
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Diane Black
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Michelle Imbrogno
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Margaret Collins
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Dan Justin Kalenda Yombo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Haripriya Sakthivel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Carolyn Lutzko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Cell Manipulations Laboratory, CCHMC, Cincinnati, OH, USA
| | - Jose A Cancelas
- Division of Experimental Hematology, CCHMC, Cincinnati, OH, USA
| | - Michelle Adams
- Office for Clinical and Translational Research, CCHMC, Cincinnati, OH, USA
| | - Elizabeth Hoskins
- Office for Clinical and Translational Research, CCHMC, Cincinnati, OH, USA
| | | | - Lilith Reeves
- Translational Core Laboratory, CCHMC, Cincinnati, OH, USA
| | - Anne Kaiser
- Office of Research Compliance & Regulatory Affairs, CCHMC, Cincinnati, OH, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
- Division of Pulmonary Medicine, CCHMC, Cincinnati, OH, USA
| |
Collapse
|
21
|
Zhao J, Andreev I, Silva HM. Resident tissue macrophages: Key coordinators of tissue homeostasis beyond immunity. Sci Immunol 2024; 9:eadd1967. [PMID: 38608039 DOI: 10.1126/sciimmunol.add1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Resident tissue macrophages (RTMs) encompass a highly diverse set of cells abundantly present in every tissue and organ. RTMs are recognized as central players in innate immune responses, and more recently their importance beyond host defense has started to be highlighted. Despite sharing a universal name and several canonical markers, RTMs perform remarkably specialized activities tailored to sustain critical homeostatic functions of the organs they reside in. These cells can mediate neuronal communication, participate in metabolic pathways, and secrete growth factors. In this Review, we summarize how the division of labor among different RTM subsets helps support tissue homeostasis. We discuss how the local microenvironment influences the development of RTMs, the molecular processes they support, and how dysregulation of RTMs can lead to disease. Last, we highlight both the similarities and tissue-specific distinctions of key RTM subsets, aiming to coalesce recent classifications and perspectives into a unified view.
Collapse
Affiliation(s)
- Jia Zhao
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ilya Andreev
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hernandez Moura Silva
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
22
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
23
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Lee E, Williams KJ, McCarthy C, Bridges JP, Redente EF, de Aguiar Vallim TQ, Barrington RA, Wang T, Tarling EJ. Alveolar macrophage lipid burden correlates with clinical improvement in patients with pulmonary alveolar proteinosis. J Lipid Res 2024; 65:100496. [PMID: 38185217 PMCID: PMC10844116 DOI: 10.1016/j.jlr.2024.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.
Collapse
Affiliation(s)
- Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - James P Bridges
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine Aurora, CO, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Johnsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA, USA; Basic Liver Research Center at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert A Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL, USA; Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elizabeth J Tarling
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Johnsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA, USA; Basic Liver Research Center at University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
25
|
Neehus AL, Carey B, Landekic M, Panikulam P, Deutsch G, Ogishi M, Arango-Franco CA, Philippot Q, Modaresi M, Mohammadzadeh I, Corcini Berndt M, Rinchai D, Le Voyer T, Rosain J, Momenilandi M, Martin-Fernandez M, Khan T, Bohlen J, Han JE, Deslys A, Bernard M, Gajardo-Carrasco T, Soudée C, Le Floc'h C, Migaud M, Seeleuthner Y, Jang MS, Nikolouli E, Seyedpour S, Begueret H, Emile JF, Le Guen P, Tavazzi G, Colombo CNJ, Marzani FC, Angelini M, Trespidi F, Ghirardello S, Alipour N, Molitor A, Carapito R, Mazloomrezaei M, Rokni-Zadeh H, Changi-Ashtiani M, Brouzes C, Vargas P, Borghesi A, Lachmann N, Bahram S, Crestani B, Fayon M, Galode F, Pahari S, Schlesinger LS, Marr N, Bogunovic D, Boisson-Dupuis S, Béziat V, Abel L, Borie R, Young LR, Deterding R, Shahrooei M, Rezaei N, Parvaneh N, Craven D, Gros P, Malo D, Sepulveda FE, Nogee LM, Aladjidi N, Trapnell BC, Casanova JL, Bustamante J. Human inherited CCR2 deficiency underlies progressive polycystic lung disease. Cell 2024; 187:390-408.e23. [PMID: 38157855 PMCID: PMC10842692 DOI: 10.1016/j.cell.2023.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France.
| | - Brenna Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Marija Landekic
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
| | - Patricia Panikulam
- Molecular Basis of Altered Immune Homeostasis, INSERM U1163, Paris Cité University, Imagine Institute, Paris 75015, France
| | - Gail Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Carlos A Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Mohammadreza Modaresi
- Pediatric Pulmonary and Sleep Medicine Department, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Pulmonary Disease and Sleep Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Iraj Mohammadzadeh
- Non-communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Melissa Corcini Berndt
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris 75015, France
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Taushif Khan
- The Jackson Laboratory, Farmington, CT 06032, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Alexandre Deslys
- Leukomotion Laboratory, Paris Cité University, INSERM UMR-S1151, CNRS UMR-S8253, Necker Hospital for Sick Children, Paris 75015, France
| | - Mathilde Bernard
- Leukomotion Laboratory, Paris Cité University, INSERM UMR-S1151, CNRS UMR-S8253, Necker Hospital for Sick Children, Paris 75015, France; Curie Institute, PSL Research University, CNRS, UMR144, Paris 75248, France; Pierre-Gilles de Gennes Institute, PSL Research University, Paris 75005, France
| | - Tania Gajardo-Carrasco
- Molecular Basis of Altered Immune Homeostasis, INSERM U1163, Paris Cité University, Imagine Institute, Paris 75015, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France
| | - Mi-Sun Jang
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany
| | - Eirini Nikolouli
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hugues Begueret
- Department of Pathology, Haut-Lévèque Hospital, CHU Bordeaux, Pessac 33604, France
| | | | - Pierre Le Guen
- Pulmonology Service, Bichat Hospital, AP-HP and Paris Cité University, INSERM U1152, PHERE, Paris 75018, France
| | - Guido Tavazzi
- Department of Surgical, Pediatric, and Diagnostic Sciences, University of Pavia, Pavia 27100, Italy; Anesthesia and Intensive Care, San Matteo Research Hospital, Pavia 27100, Italy
| | - Costanza Natalia Julia Colombo
- Anesthesia and Intensive Care, San Matteo Research Hospital, Pavia 27100, Italy; Experimental Medicine, University of Pavia, Pavia 27100, Italy
| | | | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia 27100, Italy
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia 27100, Italy
| | - Stefano Ghirardello
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia 27100, Italy
| | - Nasrin Alipour
- Molecular Immuno-Rheumatology Laboratory, INSERM UMR_S1109, GENOMAX Platform, Faculty of Medicine, OMICARE University Hospital Federation, Immunology and Hematology Research Center, Research Center in Biomedicine of Strasbourg (CRBS), Federation of Translational Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg 67081, France; Interdisciplinary Thematic Institute (ITI) of Precision Medicine of Strasbourg, University of Strasbourg, Strasbourg 67081, France
| | - Anne Molitor
- Molecular Immuno-Rheumatology Laboratory, INSERM UMR_S1109, GENOMAX Platform, Faculty of Medicine, OMICARE University Hospital Federation, Immunology and Hematology Research Center, Research Center in Biomedicine of Strasbourg (CRBS), Federation of Translational Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg 67081, France; Interdisciplinary Thematic Institute (ITI) of Precision Medicine of Strasbourg, University of Strasbourg, Strasbourg 67081, France
| | - Raphael Carapito
- Molecular Immuno-Rheumatology Laboratory, INSERM UMR_S1109, GENOMAX Platform, Faculty of Medicine, OMICARE University Hospital Federation, Immunology and Hematology Research Center, Research Center in Biomedicine of Strasbourg (CRBS), Federation of Translational Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg 67081, France; Interdisciplinary Thematic Institute (ITI) of Precision Medicine of Strasbourg, University of Strasbourg, Strasbourg 67081, France; Immunology Laboratory, Biology Technical Platform, Biology Pole, New Civil Hospital, Strasbourg 67091, France
| | | | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Necker Hospital for Sick Children, Paris 75015, France
| | - Pablo Vargas
- Leukomotion Laboratory, Paris Cité University, INSERM UMR-S1151, CNRS UMR-S8253, Necker Hospital for Sick Children, Paris 75015, France; Curie Institute, PSL Research University, CNRS, UMR144, Paris 75248, France; Pierre-Gilles de Gennes Institute, PSL Research University, Paris 75005, France
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia 27100, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany; REBIRTH - Research Center for Translational Regenerative Medicine, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover 30625, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Seiamak Bahram
- Molecular Immuno-Rheumatology Laboratory, INSERM UMR_S1109, GENOMAX Platform, Faculty of Medicine, OMICARE University Hospital Federation, Immunology and Hematology Research Center, Research Center in Biomedicine of Strasbourg (CRBS), Federation of Translational Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg 67081, France; Interdisciplinary Thematic Institute (ITI) of Precision Medicine of Strasbourg, University of Strasbourg, Strasbourg 67081, France; Immunology Laboratory, Biology Technical Platform, Biology Pole, New Civil Hospital, Strasbourg 67091, France
| | - Bruno Crestani
- Pulmonology Service, Bichat Hospital, AP-HP and Paris Cité University, INSERM U1152, PHERE, Paris 75018, France
| | - Michael Fayon
- Department of Pediatrics, Bordeaux Hospital, University of Bordeaux, 33000 Bordeaux, France; Cardiothoracic Research Center, U1045 INSERM, 33000 Bordeaux, France
| | - François Galode
- Department of Pediatrics, Bordeaux Hospital, University of Bordeaux, 33000 Bordeaux, France; Cardiothoracic Research Center, U1045 INSERM, 33000 Bordeaux, France
| | - Susanta Pahari
- Host-Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Larry S Schlesinger
- Host-Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar; Institute of Translational Immunology, Brandenburg Medical School, Brandenburg 14770, Germany
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Raphael Borie
- Pulmonology Service, Bichat Hospital, AP-HP and Paris Cité University, INSERM U1152, PHERE, Paris 75018, France
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robin Deterding
- Pediatric Pulmonary Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Mohammad Shahrooei
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran; Clinical and Diagnostic Immunology, KU Leuven, Leuven 3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity to Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel Craven
- Division of Pediatric Pulmonology, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Philippe Gros
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 2B4, Canada
| | - Danielle Malo
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Fernando E Sepulveda
- Molecular Basis of Altered Immune Homeostasis, INSERM U1163, Paris Cité University, Imagine Institute, Paris 75015, France
| | - Lawrence M Nogee
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathalie Aladjidi
- Pediatric Oncology Hematology Unit, Clinical Investigation Center (CIC), Multi-theme-CIC (CICP), University Hospital Bordeaux, Bordeaux 33000, France
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Departments of Medicine and Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris 75015, France.
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France; Paris Cité University, Imagine Institute, Paris 75015, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris 75015, France.
| |
Collapse
|
26
|
Mabo A, Borie R, Wemeau-Stervinou L, Uzunhan Y, Gomez E, Prevot G, Reynaud-Gaubert M, Traclet J, Bergot E, Cadranel J, Marchand-Adam S, Bergeron A, Blanchard E, Bondue B, Bonniaud P, Bourdin A, Burgel PR, Hirschi S, Marquette CH, Quétant S, Nunes H, Chenivesse C, Crestani B, Guirriec Y, Monnier D, Ménard C, Tattevin P, Cottin V, Luque Paz D, Jouneau S. Infections in autoimmune pulmonary alveolar proteinosis: a large retrospective cohort. Thorax 2023; 79:68-74. [PMID: 37758458 DOI: 10.1136/thorax-2023-220040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare disease, predisposing to an increased risk of infection. A complete picture of these infections is lacking. RESEARCH QUESTION Describe the characteristics and clinical outcomes of patients diagnosed with aPAP, and to identify risk factors associated with opportunistic infections. METHODS We conducted a retrospective cohort including all patients diagnosed with aPAP between 2008 and 2018 in France and Belgium. Data were collected using a standardised questionnaire including demographics, comorbidities, imaging features, outcomes and microbiological data. RESULTS We included 104 patients, 2/3 were men and median age at diagnosis was 45 years. With a median follow-up of 3.4 years (IQR 1.7-6.6 years), 60 patients (58%), developed at least one infection, including 23 (22%) with opportunistic infections. Nocardia spp was the main pathogen identified (n=10). Thirty-five (34%) patients were hospitalised due to infection. In univariate analysis, male gender was associated with opportunistic infections (p=0.04, OR=3.88; 95% CI (1.02 to 22.06)). Anti-granulocyte macrophage colony-stimulating factor antibody titre at diagnosis was significantly higher among patients who developed nocardiosis (1058 (316-1591) vs 580 (200-1190), p=0.01). Nine patients had died (9%), but only one death was related to infection. INTERPRETATION Patients with aPAP often presented with opportunistic infections, especially nocardiosis, which highlights the importance of systematic search for slow-growing bacteria in bronchoalveolar lavage or whole lung lavage.
Collapse
Affiliation(s)
- Axelle Mabo
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Raphael Borie
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie A, Hopital Bichat, APHP, Paris, France
| | - Lidwine Wemeau-Stervinou
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Institut Cœur-Poumon, Service de Pneumologie et Immuno-Allergologie, CHRU Lille, Lille, France
| | - Yurdagül Uzunhan
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Emmanuel Gomez
- Centre de Compétence pour les Maladies Pulmonaires Rares, Département de Pneumologie, Hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - Gregoire Prevot
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Larry, CHU Toulouse, Toulouse, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, Centre de Compétences des Maladies Rares Pulmonaires et de l'Hypertension Pulmonaire, CHU Nord de Marseille, AP-HM, Aix Marseille Université, Marseille, France
| | - Julie Traclet
- Service de Pneumologie, Centre National Coordonnateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), UMR754, INRAE, Université Lyon 1, ERN-LUNG, Lyon, France
| | - Emmanuel Bergot
- Centre de Compétence pour les Maladies Pulmonaires Rares de l'Adulte, Service de Pneumologie et Oncologie Thoracique, Hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares, Hôpital Tenon, APHP, Sorbonne Université, Paris, France
| | - Sylvain Marchand-Adam
- Service de Pneumologie, CHRU de Tours, Université François Rabelais de Tours, INSERM U1100, Tours, France
| | - Anne Bergeron
- Service de Pneumologie, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Elodie Blanchard
- Service de Pneumologie, centre de compétence pour les maladies pulmonaires rares, CHU de Bordeaux, Pessac, France
| | - Benjamin Bondue
- Service de Pneumologie, CUB Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adulte, CHU Dijon-Bourgogne, Inserm U123, Université de Bourgogne, Dijon, France
| | - Arnaud Bourdin
- Service de Pneumologie, CHU Montpellier, Université de Montpellier, Inserm U1046, Montpellier, France
| | - Pierre Regis Burgel
- Service de Pneumologie, Hopital Cochin Pneumologie, AP-HP, Université Paris Cité Paris, Paris, France
| | - Sandrine Hirschi
- Service de Pneumologie et Transplantation Pulmonaire, Hopitaux universitaires de Strasbourg, Strasbourg, France
| | - Charles Hugo Marquette
- Service de Pneumologie, CHU Nice, Fédération Hospitalo-Universitaire OncoAge, Nice, France
| | - Sébastien Quétant
- Service Hospitalo-Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU de Grenoble-Alpes, La Tronche, Grenoble, France
| | - Hilario Nunes
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Cécile Chenivesse
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Institut Cœur-Poumon, Service de Pneumologie et Immuno-Allergologie, CHRU Lille, Lille, France
| | - Bruno Crestani
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie A, Hopital Bichat, APHP, Paris, France
| | - Yoann Guirriec
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Delphine Monnier
- Service d'Immunologie, Laboratoire de Biologie Médicale de Référence Lipoprotéinose Alvéolaire, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Cédric Ménard
- Service d'Immunologie, Laboratoire de Biologie Médicale de Référence Lipoprotéinose Alvéolaire, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Pierre Tattevin
- Service de Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Inserm U1230, Université de Rennes, Rennes, France
| | - Vincent Cottin
- Service de Pneumologie, Centre National Coordonnateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), UMR754, INRAE, Université Lyon 1, ERN-LUNG, Lyon, France
| | - David Luque Paz
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
- Service de Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Inserm U1230, Université de Rennes, Rennes, France
| | - Stéphane Jouneau
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
- Inserm UMR1085 IRSET, Université de Rennes, EHESP, Rennes, France
| |
Collapse
|
27
|
Gupta A, Kundu R. Pulmonary alveolar proteinosis: Colourful crazy shapes and sizes on cytology. Diagn Cytopathol 2023; 51:786-789. [PMID: 37724501 DOI: 10.1002/dc.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Affiliation(s)
- Anjali Gupta
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reetu Kundu
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Towe C, Grom AA, Schulert GS. Diagnosis and Management of the Systemic Juvenile Idiopathic Arthritis Patient with Emerging Lung Disease. Paediatr Drugs 2023; 25:649-658. [PMID: 37787872 DOI: 10.1007/s40272-023-00593-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Chronic lung disease in children with systemic juvenile idiopathic arthritis (SJIA-LD) is an emerging and potentially life-threatening disease complication. Despite recent descriptions of its clinical spectrum, preliminary immunologic characterization, and proposed hypotheses regaarding etiology, optimal approaches to diagnosis and management remain unclear. Here, we review the current clinical understanding of SJIA-LD, including the potential role of biologic therapy in disease pathogenesis, as well as the possibility of drug reactions with eosinophilia and systemic symptoms (DRESS). We discuss approaches to evaluation of children with suspected SJIA-LD, including a proposed algorithm to risk-stratify all SJIA patients for screening to detect LD early. We review potential pharmacologic and non-pharmacologic treatment approaches that have been reported for SJIA-LD or utilized in interstitial lung diseases associated with other rheumatic diseases. This includes lymphocyte-targeting therapies, JAK inhibitors, and emerging therapies against IL-18 and IFNγ. Finally, we consider urgent unmet needs in this area including in basic discovery of disease mechanisms and clinical research to improve disease detection and patient outcomes.
Collapse
Affiliation(s)
- Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexei A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4010, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4010, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Chuang CH, Cheng CH, Tsai YC, Tsai MJ, Sheu CC, Chong IW. Pulmonary alveolar proteinosis in Taiwan. J Formos Med Assoc 2023; 122:1061-1068. [PMID: 37105870 DOI: 10.1016/j.jfma.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND/PURPOSE Pulmonary alveolar proteinosis (PAP) is rare disease manifested as alveolar macrophage dysfunction and abnormal accumulation of surfactant protein in the alveoli. In this nationwide, population-based study, we investigated the epidemiology of PAP in Taiwan, and discovered the comorbidities and prognostic factors of PAP. METHODS From the National Health Insurance Research Database (NHIRD), we obtained comprehensive information about all patients of PAP in Taiwan between 1995 and 2013. The incidence, baseline characteristics comorbidities, and prognostic factors of PAP were investigated. RESULTS The annual incidence rate of PAP was around 0.79 (range: 0.49-1.17) patients per million people after 2000, and the prevalence rate was 7.96 patients per million people by the end of 2013. In total, 276 patients of PAP were identified, including 177 (64%) and 99 (36%) patients with primary and secondary PAP, respectively. The median age of diagnosis was 53.8 years. The median survival was 9.6 years after the initial PAP diagnosis, and the 5-year survival rate was 65.96%. Twenty (7%) patients received whole lung lavage (WLL) within three months after the diagnosis had significantly better survival compared to the others. Multivariable Cox regression analyses showed that elder age, secondary PAP, and malignancy were associated with poorer survival, while WLL within 3 months of diagnosis might greatly improve the survival. CONCLUSION We demonstrated the epidemiology of PAP in Taiwan, showing several poor prognostic factors and the potential effectiveness of WLL. Further prospective studies based on registry are warranted to improve the diagnosis and treatment of PAP.
Collapse
Affiliation(s)
- Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Yu-Chen Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Wilkinson ZA, Nathani A, Almeida F, Arrossi AV. All that glitters isn't gold: an unusual case of Pneumocystis jirovecii pneumonia. Histopathology 2023; 83:487-489. [PMID: 37256699 DOI: 10.1111/his.14965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Affiliation(s)
| | - Avantika Nathani
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Francisco Almeida
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
31
|
Paine R, Chasse R, Halstead ES, Nfonoyim J, Park DJ, Byun T, Patel B, Molina-Pallete G, Harris ES, Garner F, Simms L, Ahuja S, McManus JL, Roychowdhury DF. Inhaled Sargramostim (Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor) for COVID-19-Associated Acute Hypoxemia: Results of the Phase 2, Randomized, Open-Label Trial (iLeukPulm). Mil Med 2023; 188:e2629-e2638. [PMID: 36458916 PMCID: PMC10363010 DOI: 10.1093/milmed/usac362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION Granulocyte-macrophage colony-stimulating factor (GM-CSF), a protein produced in the lung, is essential for pulmonary host defense and alveolar integrity. Prior studies suggest potential benefits in several pulmonary conditions, including acute respiratory distress syndrome and viral infections. This trial evaluated the effect of the addition of inhaled sargramostim (yeast-derived, glycosylated recombinant human GM-CSF) to standard of care (SOC) on oxygenation and clinical outcomes in patients with COVID-19-associated acute hypoxemia. MATERIALS AND METHODS A randomized, controlled, open-label trial of hospitalized adults with COVID-19-associated hypoxemia (oxygen saturation <93% on ≥2 L/min oxygen supplementation and/or PaO2/FiO2 <350) randomized 2:1 to inhaled sargramostim (125 mcg twice daily for 5 days) plus SOC versus SOC alone. Institutional SOC before and during the study was not limited. Primary outcomes were change in the alveolar-arterial oxygen gradient (P(A-a)O2) by day 6 and the percentage of patients intubated within 14 days. Safety evaluations included treatment-emergent adverse events. Efficacy analyses were based on the modified intent-to-treat population, the subset of the intent-to-treat population that received ≥1 dose of any study treatment (sargramostim and/or SOC). An analysis of covariance approach was used to analyze changes in oxygenation measures. The intubation rate was analyzed using the chi-squared test. All analyses are considered descriptive. The study was institutional review board approved. RESULTS In total, 122 patients were treated (sargramostim, n = 78; SOC, n = 44). The sargramostim arm experienced greater improvement in P(A-a)O2 by day 6 compared to SOC alone (least squares [LS] mean change from baseline [SE]: -102.3 [19.4] versus -30.5 [26.9] mmHg; LS mean difference: -71.7 [SE 33.2, 95% CI -137.7 to -5.8]; P = .033; n = 96). By day 14, 11.5% (9/78) of sargramostim and 15.9% (7/44) of SOC arms required intubation (P = .49). The 28-day mortality was 11.5% (9/78) and 13.6% (6/44) in the sargramostim and SOC arms, respectively (hazard ratio 0.85; P = .76). Treatment-emergent adverse events occurred in 67.9% (53/78) and 70.5% (31/44) on the sargramostim and SOC arms, respectively. CONCLUSIONS The addition of inhaled sargramostim to SOC improved P(A-a)O2, a measure of oxygenation, by day 6 in hospitalized patients with COVID-19-associated acute hypoxemia and was well tolerated. Inhaled sargramostim is delivered directly to the lung, minimizing systemic effects, and is simple to administer making it a feasible treatment option in patients in settings where other therapy routes may be difficult. Although proportionally lower rates of intubation and mortality were observed in sargramostim-treated patients, this study was insufficiently powered to demonstrate significant changes in these outcomes. However, the significant improvement in gas exchange with sargramostim shows this inhalational treatment enhances pulmonary efficiency in this severe respiratory illness. These data provide strong support for further evaluation of sargramostim in high-risk patients with COVID-19.
Collapse
Affiliation(s)
- Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Robert Chasse
- Department of Pulmonary and Critical Care, TidalHealth Peninsula Regional Medical Center, Salisbury, MD 21801, USA
| | - E Scott Halstead
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Penn State University, Hershey, PA 17033, USA
| | - Jay Nfonoyim
- Department of Medicine and Critical Care, Richmond University Medical Center, Staten Island, NY 10310, USA
| | - David J Park
- Department of Hematology and Oncology, Providence St. Jude Medical Center, Fullerton, CA 92835, USA
| | - Timothy Byun
- Department of Hematology and Medical Oncology, Providence St. Joseph Hospital, Orange, CA 92868, USA
| | - Bela Patel
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Guido Molina-Pallete
- Department of Pulmonary and Critical Care, Great Plains Health, North Platte, NE 69101, USA
| | - Estelle S Harris
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Fiona Garner
- Partner Therapeutics, Inc., Lexington, MA 02421, USA
| | - Lorinda Simms
- Partner Therapeutics, Inc., Lexington, MA 02421, USA
| | - Sanjeev Ahuja
- Partner Therapeutics, Inc., Lexington, MA 02421, USA
| | | | | |
Collapse
|
32
|
Smith LC, Gow AJ, Abramova E, Vayas K, Guo C, Noto J, Lyman J, Rodriquez J, Gelfand-Titiyevskiy B, Malcolm C, Laskin JD, Laskin DL. Role of PPARγ in dyslipidemia and altered pulmonary functioning in mice following ozone exposure. Toxicol Sci 2023; 194:109-119. [PMID: 37202362 PMCID: PMC10306402 DOI: 10.1093/toxsci/kfad048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jack Noto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jack Lyman
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jessica Rodriquez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Benjamin Gelfand-Titiyevskiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Callum Malcolm
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
33
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
34
|
Kawana S, Miyoshi K, Tanaka S, Sugimoto S, Shimizu D, Matsubara K, Okazaki M, Hattori N, Toyooka S. Pulmonary alveolar proteinosis after lung transplantation: Two case reports and literature review. Respirol Case Rep 2023; 11:e01160. [PMID: 37229297 PMCID: PMC10203803 DOI: 10.1002/rcr2.1160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) affecting transplanted lungs is not well recognized. Herein, we report two cases of PAP after lung transplantation (LTx). The first case was a 4-year-old boy with hereditary pulmonary fibrosis who underwent bilateral LTx and presented with respiratory distress on postoperative day (POD) 23. He was initially treated for acute rejection, died due to infection on POD 248, and was diagnosed with PAP at autopsy. The second case involved a 52-year-old man with idiopathic pulmonary fibrosis who underwent bilateral LTx. On POD 99, chest computed tomography revealed ground-glass opacities. Bronchoalveolar lavage and transbronchial biopsy led to a diagnosis of PAP. Follow-up with immunosuppression tapering resulted in clinical and radiological improvement. PAP after lung transplantation mimics common acute rejection; however, is potentially transient or resolved with tapering immunosuppression, as observed in the second case. Transplant physicians should be aware of this rare complication to avoid misconducting immunosuppressive management.
Collapse
Affiliation(s)
- Shinichi Kawana
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Dai Shimizu
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Kei Matsubara
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| | - Noboru Hattori
- Department of Molecular and Internal MedicineHiroshima University, Graduate School of Biomedical and Health SciencesHiroshimaJapan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Organ Transplant CenterOkayama University HospitalOkayamaJapan
| |
Collapse
|
35
|
Xu HB, Tian MQ, Bai YH, Ran X, Li L, Chen Y. CD40LG-associated X-linked Hyper-IgM Syndrome (XHIGM) with pulmonary alveolar proteinosis: a case report. BMC Pediatr 2023; 23:239. [PMID: 37173671 PMCID: PMC10182603 DOI: 10.1186/s12887-023-04054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND D40LG-associated X-linked hyper-IgM syndrome with pulmonary alveolar proteinosis has rarely been reported, and its genotype-phenotypic correlation remains elusive. CASE PRESENTATION We describe a five-month-old boy with CD40LG mutation (c.516T > A, p.Tyr172Ter) X-linked hyper-IgM syndrome with pulmonary alveolar proteinosis as the first manifestation. The patient completely recovered after immunotherapy and allogeneic hematopoietic stem cell transplantation. In addition, four previously reported patients with CD40LG mutation with pulmonary alveolar proteinosis were also analyzed. All of these patients presented with early onset of pulmonary infections and a good response to immunotherapy. The structural model of CD40LG indicated that all mutations caused the X-linked hyper-IgM syndrome with pulmonary alveolar proteinosis to be located within the tumor necrosis factor homology domain. CONCLUSIONS A case was presented, and the characteristics of four cases of CD40LG-associated X-linked hyper-IgM syndrome with pulmonary alveolar proteinosis were summarized. The variant locations may explain the phenotypic heterogeneity of patients with the CD40LG mutation.
Collapse
Affiliation(s)
- Hong-Bo Xu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China.
- Department of Pediatrics, Guizhou Children's Hospital, Guizhou, 563003, Zunyi, China.
| | - Mao-Qiang Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
- Department of Pediatrics, Guizhou Children's Hospital, Guizhou, 563003, Zunyi, China
| | - Yong-Hua Bai
- Department of pathology, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, Zunyi, China
| | - Xiao Ran
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
- Department of Pediatrics, Guizhou Children's Hospital, Guizhou, 563003, Zunyi, China
| | - Lei Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
- Department of Pediatrics, Guizhou Children's Hospital, Guizhou, 563003, Zunyi, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
- Department of Pediatrics, Guizhou Children's Hospital, Guizhou, 563003, Zunyi, China
| |
Collapse
|
36
|
Carey B, Chalk C, Stock J, Toth A, Klingler M, Greenberg H, Uchida K, Arumugam P, Trapnell BC. A dried blood spot test for diagnosis of autoimmune pulmonary alveolar proteinosis. J Immunol Methods 2022; 511:113366. [PMID: 36198356 PMCID: PMC10026347 DOI: 10.1016/j.jim.2022.113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Granulocyte/macrophage colony-stimulating factor autoantibodies (GMAbs) mediate the pathogenesis of autoimmune pulmonary alveolar proteinosis (autoimmune PAP) and their quantification in serum by enzyme-linked immunosorbent assay (ELISA) - the serum GMAb test - is the 'gold standard' for diagnosis of autoimmune PAP. Because GMAbs are high in autoimmune PAP and low or undetectable in healthy people, we hypothesized that the ELISA could be adapted for evaluation of blood obtained from the fingertip using a dried blood spot card (DBSC) for specimen collection. Here, we report development of such a method - the DBSC GMAb test - and evaluate its ability to measure GMAb concentration in blood and to diagnose autoimmune PAP. Fresh, heparinized whole blood was obtained from 60 autoimmune PAP patients and 19 healthy people and used to measure the GMAb concentration in blood (by the DBSC GMAb test). After optimization, the DBSC GMAb test was evaluated for accuracy, precision, reliability, sensitivity, specificity, and ruggedness. The coefficient of variation among repeated measurements was low with regard to well-to-well, plate-to-plate, day-to-day, and inter-operator variation, and results were unaffected by exposure of prepared DBSC specimens to a wide range of temperatures (from -80 °C to 65 °C), repeated freeze-thaw cycles, or storage for up to 2.5 months before testing. The limit of blank (LoB), limit of detection (LoD), and lower limit of quantification (LLoQ), were 0.01, 0.21, and 3.5 μg/ml of GMAb in the blood, respectively. Receiver operating curve characteristic analysis identified 2.7 μg/ml as the optimal GMAb concentration cutoff value to distinguish autoimmune PAP from healthy people. This cutoff value was less than the LLoQ and the ranges of GMAb results for autoimmune PAP patients and healthy people were widely separated (median (interquartile range): 22.6 (13.3-43.8) and 0.23 (0.20-0.30) μg/ml, respectively). Consequently, the LLoQ is recommended as the lower limit of the range indicating a positive test result (i.e., that autoimmune PAP is present); lower values indicate a negative test result (i.e., autoimmune PAP is not present). Among the 30 autoimmune PAP patients and 19 healthy people evaluated, the sensitivity and specificity of the DBSC GMAb test were both 100% for a diagnosis of autoimmune PAP. Results demonstrate the DBSC GMAb test reliably measures GMAbs in blood and performs well in the diagnosis of autoimmune PAP.
Collapse
Affiliation(s)
- Brenna Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Stock
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrea Toth
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria Klingler
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Henry Greenberg
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kanji Uchida
- Tokyo University Graduate School of Medicine, Tokyo, Japan
| | - Paritha Arumugam
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Assessment of Statin Treatment for Pulmonary Alveolar Proteinosis without Hypercholesterolemia: A 12-Month Prospective, Longitudinal, and Observational Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1589660. [PMID: 36330458 PMCID: PMC9626205 DOI: 10.1155/2022/1589660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
Background Pulmonary alveolar proteinosis (PAP) is a rare disorder which is characterized by the accumulation of excessive surfactant lipids and proteins in alveolar macrophages and alveoli. Oral statin therapy has been reported to be a novel therapy for PAP with hypercholesterolemia. We aimed to evaluate the safety and efficacy of oral statin therapy for PAP without hypercholesterolemia. Methods In a prospective real-world observational study, 47 PAP patients without hypercholesterolemia were screened. Oral statin was initiated as therapy for these PAP patients with 12 months of follow-up. Results Forty PAP patients completed the study. 26 (65%) of 40 PAP patients responded to statin therapy according to the study criteria. Partial pressure of arterial oxygen (PaO2) and percentage of diffusion capacity predicted (DLCO%) significantly increased while disease severity score (DSS) and radiographic abnormalities decreased after 12 months of statin therapy (all p < 0.05). The factors associated with response were higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody and baseline total cholesterol/high-density lipoprotein cholesterol (TC/HDL) (p = 0.015 and p = 0.035, respectively). The area under the receiver operating characteristic curve (AUROC) of dose of atorvastatin for predicting the response to statin therapy for PAP was 0.859 (95% CI: 0.738-0.979, p < 0.001). The cutoff dose of atorvastatin was 67.5 mg daily with their corresponding specificity (64.3%) and sensitivity (96.2%). No severe side effects were observed during the study. Conclusions In PAP patients without hypercholesterolemia, statin therapy resulted in improvements in arterial blood gas (ABG) measurement, pulmonary function, and radiographic assessment.
Collapse
|
38
|
Dörr D, Obermayer B, Weiner JM, Zimmermann K, Anania C, Wagner LK, Lyras EM, Sapozhnikova V, Lara-Astiaso D, Prósper F, Lang R, Lupiáñez DG, Beule D, Höpken UE, Leutz A, Mildner A. C/EBPβ regulates lipid metabolism and
Pparg
isoform 2 expression in alveolar macrophages. Sci Immunol 2022; 7:eabj0140. [DOI: 10.1126/sciimmunol.abj0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by accumulation of surfactant lipoproteins within the lung alveoli. Alveolar macrophages (AMs) are crucial for surfactant clearance, and their differentiation depends on colony-stimulating factor 2 (CSF2), which regulates the establishment of an AM-characteristic gene regulatory network. Here, we report that the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) is essential for the development of the AM identity, as demonstrated by transcriptome and chromatin accessibility analysis. Furthermore, C/EBPβ-deficient AMs showed severe defects in proliferation, phagocytosis, and lipid metabolism, collectively resulting in a PAP-like syndrome. Mechanistically, the long C/EBPβ protein variants LAP* and LAP together with CSF2 signaling induced the expression of
Pparg
isoform 2 but not
Pparg
isoform 1, a molecular regulatory mechanism that was also observed in other CSF2-primed macrophages. These results uncover C/EBPβ as a key regulator of AM cell fate and shed light on the molecular networks controlling lipid metabolism in macrophages.
Collapse
Affiliation(s)
- Dorothea Dörr
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - January Mikolaj Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Zimmermann
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
| | - Chiara Anania
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetics and Sex Development Group, Berlin, Germany
| | - Lisa Katharina Wagner
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
| | - Ekaterini Maria Lyras
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
| | - Valeriia Sapozhnikova
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
| | - David Lara-Astiaso
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology, and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Darío G. Lupiáñez
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetics and Sex Development Group, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uta E. Höpken
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
| | - Achim Leutz
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Alexander Mildner
- Max-Delbrück-Center for Molecular Medicine in Helmholtz Association (MDC), Berlin, Germany
- Institute of Biomedicine, Medicity University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Shrestha D, Muthu V, Sehgal IS, Bal A, Agarwal R, Dhooria S. Autoimmune pulmonary alveolar proteinosis and sarcoidosis in the same patient: Case report and systematic review. Lung India 2022; 39:466-469. [PMID: 36629209 PMCID: PMC9623857 DOI: 10.4103/lungindia.lungindia_127_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 01/14/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary disorder characterized by surfactant accumulation in the alveolar spaces while sarcoidosis is a multisystem granulomatous disease of unknown etiology. The occurrence of PAP and sarcoidosis in the same patient is rare. A 37-year-old woman presented with cough and breathlessness and was diagnosed to have autoimmune PAP. She responded well to subcutaneous injections of recombinant granulocyte macrophage colony stimulating factor. Three years later, she developed fever, chest pain, cough, and facial palsy. The evaluation revealed a diagnosis of sarcoidosis that responded to immunosuppressive treatment. We discuss the link between PAP and sarcoidosis and review the literature on this association.
Collapse
Affiliation(s)
- Deepa Shrestha
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Inderpaul S. Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
40
|
Pulmonary Alveolar Proteinosis and Pregnancy: A Review of the Literature and Case Presentation. Medicina (B Aires) 2022; 58:medicina58080984. [PMID: 35893099 PMCID: PMC9331898 DOI: 10.3390/medicina58080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary Alveolar Proteinosis (PAP) is a rare, usually autoimmune, disease, where surfactant accumulates within alveoli due to decreased clearance, causing dyspnea and hypoxemia. The disease is even more rare in pregnancy; nevertheless, it has been reported in pregnant women and can even appear for the first time during pregnancy as an asthma-like illness. Therefore, awareness is important. Similarly to many autoimmune diseases, it can worsen during pregnancy and postpartum, causing maternal and fetal/neonatal complications. This paper offers a narrative literature review of PAP and pregnancy, while illustrating a case of a pregnant patient with known PAP who developed preeclampsia in the third trimester but had an overall fortunate maternal and neonatal outcome.
Collapse
|
41
|
Beeckmans H, Ambrocio GPL, Bos S, Vermaut A, Geudens V, Vanstapel A, Vanaudenaerde BM, De Baets F, Malfait TLA, Emonds MP, Van Raemdonck DE, Schoemans HM, Vos R. Allogeneic Hematopoietic Stem Cell Transplantation After Prior Lung Transplantation for Hereditary Pulmonary Alveolar Proteinosis: A Case Report. Front Immunol 2022; 13:931153. [PMID: 35928826 PMCID: PMC9344132 DOI: 10.3389/fimmu.2022.931153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare, diffuse lung disorder characterized by surfactant accumulation in the small airways due to defective clearance by alveolar macrophages, resulting in impaired gas exchange. Whole lung lavage is the current standard of care treatment for PAP. Lung transplantation is an accepted treatment option when whole lung lavage or other experimental treatment options are ineffective, or in case of extensive pulmonary fibrosis secondary to PAP. A disadvantage of lung transplantation is recurrence of PAP in the transplanted lungs, especially in hereditary PAP. The hereditary form of PAP is an ultra-rare condition caused by genetic mutations in genes encoding for the granulocyte macrophage-colony stimulating factor (GM-CSF) receptor, and intrinsically affects bone marrow derived-monocytes, which differentiate into macrophages in the lung. Consequently, these macrophages typically display disrupted GM-CSF receptor-signaling, causing defective surfactant clearance. Bone marrow/hematopoietic stem cell transplantation may potentially reverse the lung disease in hereditary PAP. In patients with hereditary PAP undergoing lung transplantation, post-lung transplant recurrence of PAP may theoretically be averted by subsequent hematopoietic stem cell transplantation, which results in a graft-versus-disease (PAP) effect, and thus could improve long-term outcome. We describe the successful long-term post-transplant outcome of a unique case of end-stage respiratory failure due to hereditary PAP-induced pulmonary fibrosis, successfully treated by bilateral lung transplantation and subsequent allogeneic hematopoietic stem cell transplantation. Our report supports treatment with serial lung and hematopoietic stem cell transplantation to improve quality of life and prolong survival, without PAP recurrence, in selected patients with end-stage hereditary PAP.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Gene P. L. Ambrocio
- Department of Internal Medicine, Division of Pulmonary Medicine, University of the Philippines – Philippine General Hospital, Manila, Philippines
| | - Saskia Bos
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Astrid Vermaut
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Vincent Geudens
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Frans De Baets
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | | | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Dirk E. Van Raemdonck
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hélène M. Schoemans
- Department of Hematology, Bone Marrow Transplant Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Robin Vos,
| |
Collapse
|
42
|
Andrews JT, Voth DE, Huang SCC, Huang L. Breathe In, Breathe Out: Metabolic Regulation of Lung Macrophages in Host Defense Against Bacterial Infection. Front Cell Infect Microbiol 2022; 12:934460. [PMID: 35899042 PMCID: PMC9309258 DOI: 10.3389/fcimb.2022.934460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Lung macrophages are substantially distinct from other tissue-resident macrophages. They act as frontier sentinels of the alveolar-blood interface and are constantly exposed to various pathogens. Additionally, they precisely regulate immune responses under homeostatic and pathological conditions to curtail tissue damage while containing respiratory infections. As a highly heterogeneous population, the phenotypes and functions of lung macrophages with differing developmental ontogenies are linked to both intrinsic and extrinsic metabolic processes. Importantly, targeting these metabolic pathways greatly impacts macrophage functions, which in turn leads to different disease outcomes in the lung. In this review, we will discuss underlying metabolic regulation of lung macrophage subsets and how metabolic circuits, together with epigenetic modifications, dictate lung macrophage function during bacterial infection.
Collapse
Affiliation(s)
- J. Tucker Andrews
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Lu Huang, ; Stanley Ching-Cheng Huang,
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Lu Huang, ; Stanley Ching-Cheng Huang,
| |
Collapse
|
43
|
Fan G, Huang Y, Xue F, He B. Complete remission of pulmonary alveolar proteinosis after anti-tuberculous chemotherapy: a case report. J Int Med Res 2022; 50:3000605221113785. [PMID: 35899929 PMCID: PMC9340953 DOI: 10.1177/03000605221113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare respiratory system disorder. Patients with PAP are at risk for a wide variety of secondary infections. This current case report describes a patient with PAP complicated by tuberculosis. A 48-year-old male patient with multiple follow-up chest computed tomography scans that showed predominant diffuse ground glass opacity in both lung fields, presented a few years later with new calcified lesions and pleural effusion. At this point, the associated auxiliary examination indicated the possibility of PAP combined with tuberculosis infection. The patient achieved complete remission after anti-tuberculosis treatment. PAP is an easily overlooked clinical syndrome due to its low prevalence and lack of specific clinical manifestations, especially when combined with other pulmonary lesions. Therefore, clinicians should consider this rare disease in patients presenting with pulmonary disease and plan for its co-morbidity with other secondary outcomes, such as opportunistic infections, which are a common and life-threatening complication in patients with PAP. This case indicates the possibility that anti-tuberculosis therapy can improve alveolar proteinosis in patients with PAP and secondary Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Guangtao Fan
- Department of Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yilong Huang
- Department of Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Fenglin Xue
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Bo He
- Department of Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
44
|
A 34-Year-Old Man With Lightheadedness and Dyspnea. Chest 2022; 161:e371-e376. [DOI: 10.1016/j.chest.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
|
45
|
McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2022; 205:1016-1035. [PMID: 35227171 PMCID: PMC9851473 DOI: 10.1164/rccm.202112-2742so] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/24/2022] [Indexed: 01/23/2023] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Brenna C. Carey
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
46
|
Li F, Okreglicka KM, Piattini F, Pohlmeier LM, Schneider C, Kopf M. Gene therapy of Csf2ra deficiency in mouse fetal monocyte precursors restores alveolar macrophage development and function. JCI Insight 2022; 7:152271. [PMID: 35393945 PMCID: PMC9057586 DOI: 10.1172/jci.insight.152271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Tissue-resident macrophage-based immune therapies have been proposed for various diseases. However, generation of sufficient numbers that possess tissue-specific functions remains a major handicap. Here, we showed that fetal liver monocytes cultured with GM-CSF (CSF2-cFLiMo) rapidly differentiated into a long-lived, homogeneous alveolar macrophage–like population in vitro. CSF2-cFLiMo retained the capacity to develop into bona fide alveolar macrophages upon transfer into Csf2ra–/– neonates and prevented development of alveolar proteinosis and accumulation of apoptotic cells for at least 1 year in vivo. CSF2-cFLiMo more efficiently engrafted empty alveolar macrophage niches in the lung and protected mice from severe pathology induced by respiratory viral infection compared with transplantation of macrophages derived from BM cells cultured with M-CSF (CSF1-cBMM) in the presence or absence of GM-CSF. Harnessing the potential of this approach for gene therapy, we restored a disrupted Csf2ra gene in fetal liver monocytes and demonstrated their capacity to develop into alveolar macrophages in vivo. Altogether, we provide a platform for generation of immature alveolar macrophage–like precursors amenable for genetic manipulation, which will be useful to dissect alveolar macrophage development and function and for pulmonary transplantation therapy.
Collapse
Affiliation(s)
- Fengqi Li
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Federica Piattini
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lea Maria Pohlmeier
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christoph Schneider
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
48
|
Tanem JM, Scott JP. Common Presentations of Rare Drug Reactions and Atypical Presentations of Common Drug Reactions in the Intensive Care Unit. Crit Care Clin 2022; 38:287-299. [DOI: 10.1016/j.ccc.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Liu S, Cui X, Xia K, Wang D, Han J, Yao X, Liu X, Bian L, Zhang J, Li G. A Bibliometric Analysis of Pulmonary Alveolar Proteinosis From 2001 to 2021. Front Med (Lausanne) 2022; 9:846480. [PMID: 35391885 PMCID: PMC8980592 DOI: 10.3389/fmed.2022.846480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Pulmonary alveolar proteinosis (PAP) is a rare syndrome first described by Rosen et al. in 1958. Despite our considerably evolved understanding of PAP over the past decades, no bibliometric studies have been reported on this field. We aimed to analyze and visualize the research hotspots and current trends of the PAP research field using a bibliometric analysis to help understand the future development of basic and clinical research. Methods The literature regarding PAP was culled from the Web of Science Core Collection (WoSCC) database. Data were extracted from the relevant articles and visually analyzed using CiteSpace and VOSviewer software. Results Nine hundred and nine qualifying articles were included in the analysis. Publications regarding PAP increased over time. These articles mainly come from 407 institutions of 57 countries. The leading countries were the USA and Japan. University of Cincinnati (USA) and Niigata University (Japan) featured the highest number of publications among all institutions. Bruce C Trapnell exerts a significant publication impact and has made the most outstanding contributions in the field of PAP. American Journal of Physiology-Lung Cellular and Molecular Physiology was the journal with the most publications, and American Journal of Respiratory and Critical Care Medicine was the most commonly cited journal. All the top 5 co-cited journals belong to Q1. Keyword citation bursts revealed that inflammation, deficiency, tissue resident macrophage, classification, autoimmune pulmonary alveolar proteinosis, sarcoidosis, gm csf, high resolution ct, and fetal monocyte were the emerging research hotspots. Conclusion Research on PAP is prosperous. International cooperation is also expected to deepen and strengthen in the future. Our results indicated that the etiology and pathogenesis of PAP, current and emerging therapies, especially the novel pathogenesis-based options will remain research hotspots in the future.
Collapse
Affiliation(s)
- Shixu Liu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Xia
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Wang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Han
- Affilated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoyan Yao
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohong Liu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingjie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhi Zhang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangxi Li
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Guangxi Li
| |
Collapse
|
50
|
A mini-whole lung lavage to treat autoimmune pulmonary alveolar proteinosis (PAP). Respir Res 2022; 23:60. [PMID: 35300687 PMCID: PMC8932062 DOI: 10.1186/s12931-022-01982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Background PAP is an ultra-rare respiratory syndrome characterized by the accumulation of surfactant within the alveoli. Whole lung lavage (WLL) is the current standard of care of PAP, however it is not a standardized procedure and the total amount of fluid used to wash each lung is still debated. Considering ICU hospitalization associated risks, a “mini-WLL” with anticipated manual clapping and reduced total infusion volume and has been proposed in our center. The aim of the study is to retrospectively analyze the efficacy of mini-WLL compared to standard WLL at the Pavia center. Methods 13 autoimmune PAP patients eligible for WLL were included: 7 patients were admitted to mini-WLL (9 L total infusion volume for each lung) and 6 patients underwent standard WLL (14 L of infusion volume). Functional data (VC%, FVC%, TLC%, DLCO%) and alveolar-arterial gradient values (A-aO2) were collected at the baseline and 1, 3, 6, 12, 18 months after the procedure. Results A statistically significant improvement of VC% (p = 0.013, 95%CI 3.49–30.19), FVC% (p = 0.016, 95%CI 3.37–32.09), TLC% (p = 0.001, 95%CI 7.38–30.34) was observed in the mini-WLL group in comparison with the standard WLL group, while no significant difference in DLCO% and A-aO2 mean values were reported. Conclusion Mini-WLL has demonstrated higher efficacy in ameliorating lung volumes, suggesting that a lower infusion volume is sufficient to remove the surfactant accumulation and possibly allows a reduced mechanical insult of the bronchi walls and the alveoli. However, no statistically significant differences were found in terms of DLCO% and Aa-O2.
Collapse
|