1
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
2
|
Villegas-Serna T, Wilson LJ, Curtis C. Topical application of L-Menthol - Physiological and genetic considerations to assist in developing female athlete research: A narrative review. J Therm Biol 2024; 119:103758. [PMID: 38070272 DOI: 10.1016/j.jtherbio.2023.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024]
Abstract
L-menthol is a cyclic monoterpene derived from aromatic plants, which gives a cooling sensation upon application. With this in mind, L-menthol is beginning to be considered as a potential ergogenic aid for exercise and sporting competitions, particularly in hot environments, however female-specific research is lacking. The aim of this narrative review is to summarize available literature relating to topical application of L-menthol and provide commentary on avenues of consideration relating to future research developments of topical L-menthol in female athletes. From available studies in male participants, L-menthol topical application results in no endurance exercise performance improvements, however decreases in thermal sensation are observed. Mixed results are observed within strength performance parameters. Several genetic variations and single nucleotide polymorphisms have been identified in relation to sweat production, fluid loss and body mass changes - factors which may influence topical application of L-menthol. More specifically to female athletes, genetic variations relating to sweat responses and skin thickness, phases of the menstrual cycle, and body composition indices may affect the ergogenic effects of L-menthol topical application, via alterations in thermogenic responses, along with differing tissue distribution compared to their male counterparts. This narrative review concludes that further development of female athlete research and protocols for topical application of L-menthol is warranted due to physiological and genetic variations. Such developments would benefit research and practitioners alike with further personalized sport science strategies around phases of the menstrual cycle and body composition indices, with a view to optimize ergogenic effects of L-menthol.
Collapse
Affiliation(s)
- Tatiana Villegas-Serna
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain
| | - Laura J Wilson
- London Sport Institute, Middlesex University, London, NW4 4BT, United Kingdom
| | - Christopher Curtis
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
4
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
5
|
Xie L, Yi SX, Peng QF, Liu P, Jiang H. Retrospective study of effect of whole-body vibration training on balance and walking function in stroke patients. World J Clin Cases 2021; 9:6268-6277. [PMID: 34434993 PMCID: PMC8362547 DOI: 10.12998/wjcc.v9.i22.6268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dysfunction in stroke patients has been a problem that we committed to solve and explore. Physical therapy has some effect to regain strength, balance, and coordination. However, it is not a complete cure, so we are trying to find more effective treatments.
AIM To observe the effect of whole-body vibration training (WVT) on the recovery of balance and walking function in stroke patients, which could provide us some useful evidence for planning rehabilitation.
METHODS The clinical data of 130 stroke participants who underwent conventional rehabilitation treatment in our hospital from January 2019 to August 2020 were retrospectively analyzed. The participants were divided into whole-body vibration training (WVT) group and non-WVT (NWVT) group according to whether they were given WVT. In the WVT group, routine rehabilitation therapy was combined with WVT by the Galileo Med L Plus vibration trainer at a frequency of 20 Hz and a vibration amplitude of 0+ACY-plusmn+ADs-5.2 mm, and in the NWVT group, routine rehabilitation therapy only was provided. The treatment course of the two groups was 4 wk. Before and after treatment, the Berg balance scale (BBS), 3 m timed up-and-go test (TUGT), the maximum walking speed test (MWS), and upper limb functional reaching (FR) test were performed.
RESULTS After 4 wk training, in both groups, the BBS score and the FR distance respectively increased to a certain amount (WVT = 46.08 ± 3.41 vs NWVT = 40.22 ± 3.75; WVT = 20.48 ± 2.23 vs NWVT = 16.60 ± 2.82), with P < 0.05. Furthermore, in the WVT group, both BBS score and FR distance (BBS: 18.32 ± 2.18; FR: 10.00 ± 0.92) increased more than that in the NWVT group (BBS: 13.29 ± 1.66; FR: 6.16 ± 0.95), with P < 0.05. Meanwhile, in both groups, the TUGT and the MWS were improved after training (WVT = 32.64 ± 3.81 vs NWVT = 39.56 ± 3.68; WVT = 12.73 ± 2.26 vs NWVT = 15.04 ± 2.27, respectively), with P < 0.05. The change in the WVT group (TUGT: 17.49 ± 1.88; MWS: 6.79 ± 0.81) was greater than that in the NWVT group (TUGT: 10.76 ± 1.42; MWS: 4.84 ± 0.58), with P < 0.05.
CONCLUSION The WVT could effectively improve the balance and walking function in stroke patients, which may be good for improving their quality of life.
Collapse
Affiliation(s)
- Lei Xie
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shi-Xiong Yi
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Qi-Feng Peng
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Pei Liu
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Heng Jiang
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| |
Collapse
|
6
|
de la Iglesia R, Espinosa-Salinas I, Lopez-Silvarrey FJ, Ramos-Alvarez JJ, Segovia JC, Colmenarejo G, Borregon-Rivilla E, Marcos-Pasero H, Aguilar-Aguilar E, Loria-Kohen V, Reglero G, Ramirez-de Molina A. A Potential Endurance Algorithm Prediction in the Field of Sports Performance. Front Genet 2020; 11:711. [PMID: 32849773 PMCID: PMC7431952 DOI: 10.3389/fgene.2020.00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Sport performance is influenced by several factors, including genetic susceptibility. In the past years, specific single nucleotide polymorphisms have been associated to sport performance; however, these effects should be considered in multivariable prediction systems since they are related to a polygenic inheritance. The aim of this study was to design a genetic endurance prediction score (GES) of endurance performance and analyze its association with anthropometric, nutritional and sport efficiency variables in a cross-sectional study within fifteen male cyclists. A statistically significant positive relationship between GES and the VO2 maximum (P = 0.033), VO2 VT1 (P = 0.049) and VO2 VT2 (P < 0.001) was observed. Moreover, additional remarkable associations between genotype and the anthropometric, nutritional and sport performance variables, were achieved. In addition, an interesting link between the habit of consuming caffeinated beverages and the GES was observed. The outcomes of the present study indicate a potential use of this genetic prediction algorithm in the sports' field, which may facilitate the finding of genetically talented athletes, improve their training and food habits, as well as help in the improvement of physical conditions of amateurs.
Collapse
Affiliation(s)
- Rocio de la Iglesia
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Alcorcón, Spain
| | - Isabel Espinosa-Salinas
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - F Javier Lopez-Silvarrey
- Facultad de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain.,Sannus Clinic, Madrid, Spain
| | - J Jose Ramos-Alvarez
- Departamento de Radiología, Rehabilitación y Fisioterapia, Universidad Complutense de Madrid, Madrid, Spain
| | - J Carlos Segovia
- Facultad de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain.,Sannus Clinic, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM + CSIC, Madrid, Spain
| | - Elena Borregon-Rivilla
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Helena Marcos-Pasero
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Elena Aguilar-Aguilar
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Guillermo Reglero
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain.,Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) CEI UAM + CSIC, Madrid, Spain
| | - Ana Ramirez-de Molina
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
7
|
Rivera MA, Fahey TD, López-Taylor JR, Martínez JL. The Association of Aquaporin-1 Gene with Marathon Running Performance Level: a Confirmatory Study Conducted in Male Hispanic Marathon Runners. SPORTS MEDICINE-OPEN 2020; 6:16. [PMID: 32198675 PMCID: PMC7083975 DOI: 10.1186/s40798-020-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/19/2020] [Indexed: 01/10/2023]
Abstract
Background Replication studies are essential for identifying credible associations between alleles and phenotypes. Validation of genotype-phenotype associations in the sports and exercise field is rare. An initial genetic association study suggested that rs1049305 (C > G) in the 3′ untranslated region (3′UTR) of the aquaporin-1 (AQP1) gene was associated with marathon running (MR) performance level in Hispanic males. To validate this finding, we conducted a replication analysis in an independent case-control sample of Hispanic male marathon runners (n = 1430; cases n = 713 and controls n = 717). A meta-analysis was utilized to test the extent of the association between the initial results and the present report. It also provided to test the heterogeneity (variation) between the two studies. Results The replication study showed a statistically significant (p ≤ 0.05) association between rs1049305 (C > G) of the AQP1 gene and MR performance level. Association test results using a fixed effect model for the combined, original study and the present report, yielded an odds ratio = 1.28, 95% confidence interval = 1.13–1.45, p = 0.0001. The extent of the measures of heterogeneity was Tau-squared = 0, H statistic = 1, I2 statistic = 0, and Cochran’s Q test (Q = 0.29; p value 0.59), indicated the variation between studies were due to chance and not to differences in heterogeneity between the two studies. Within the limitations of the present replication, contrast of two studies and its effects on meta-analysis, the findings were robust. Conclusion This study successfully replicated the results of Martínez et al. (Med Sportiva 13:251-5, 2009). The meta-analysis provided further epidemiological credibility for the hypothesis of association between the DNA rs1049305 (C > G) variation in the 3′UTR of the AQP1 gene and MR running performance level in Hispanics male marathon runners. It is not precluded that a linked DNA structure in the surrounding molecular neighborhood could be of influence by been part of the overly complex phenotype of MR performance level.
Collapse
Affiliation(s)
- Miguel A Rivera
- Department of Physical Medicine, Rehabilitation & Sports Medicine, School of Medicine, University of Puerto Rico, Main Building Office A204, San Juan, PR, 00936, USA.
| | - Thomas D Fahey
- Department of Kinesiology, California State University, Chico, CA, USA
| | - Juan R López-Taylor
- Physical Activity and Applied Sport Sciences Institute, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | |
Collapse
|
8
|
Rivera MA, Fahey TD. Association Between aquaporin-1 and Endurance Performance: A Systematic Review. SPORTS MEDICINE-OPEN 2019; 5:40. [PMID: 31486928 PMCID: PMC6728102 DOI: 10.1186/s40798-019-0213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
Background There is abundant and mounting information related to the molecular and biological structure and function of the Aquaporin-1 (AQP1) gene and the AQP1-Aquaporin channel. Regulation of water flow across cell membranes is essential for supporting inter- and intracellular fluid balance, which is critical for health and exercise performance. The transmembrane water channel AQP1 is important for cardiorespiratory endurance (CE) because it influences fluid transfers in erythrocytes, endothelial, and pulmonary cells and is vital for transport of ammonium, bicarbonate, carbon dioxide, glycerol, nitric oxide, potassium ion, water, and trans-epithelial and renal water. Very recent publications suggest the association between a DNA sequence variant, rs1049305 (C > G), in the 3′-untranslated region of the AQP1 gene and CE performance. Other reports indicate further significant associations between AQP1 channel and CE phenotypes. The purposes of this systematic review were to examine the extent of the associations between the AQP1 rs1049305 genotype and CE exercise performance and body fluid loss in long-distance runners and AQP1 channel associations with other CE phenotypes. Methods Data sources: A comprehensive review was conducted using PubMed, EMBASE, CINAHL, and Cochrane electronic databases. The search ranged from January 1, 1988, to December 31, 2018. Studies reported in English, French, and Spanish were considered. Eligibility criteria: The criteria for inclusion in the review were (a) case-control study; (b) unequivocal definition of cases and controls; (c) CE was defined as performance in endurance events, laboratory tests, and/or maximal oxygen consumption; (d) exclusion criteria of known causes; (e) genotyping performed by PCR or sequencing; (f) genotype frequencies reported; and (g) no deviation of genotype frequencies from Hardy-Weinberg equilibrium in the control group. Study appraisal: The systematic review included studies examining the AQP1 gene and AQP1 channel structure and function, associations between the AQP1 gene sequence variant rs1049305 (C > G) and CE performance, body fluid loss in long-distance runners, and other studies reporting on the AQP1 gene and channel CE phenotype associations. Synthesis methods: For each selected study, the following data were extracted: authors, year of publication, sample size and number of cases and controls, CE definition, exclusion criteria, inclusion criteria for cases and controls, methods used for genotyping, genotype, allele frequencies and HWE for genotype frequencies in cases and control groups, and method of AQP1 gene and AQP1 channel analysis. Results The initial databases search found 172 pertinent studies. Of those, 46 studies were utilized in the final synthesis of the systematic review. The most relevant findings were (a) the identification of an independent replication of the association between AQP1 gene sequence variant rs1049305 (C > G) and CE performance; (b) the association of the rs1049305 C-allele with faster CE running performance; (c) in knockout model, using a linear regression analysis of distance run as a function of Aqp1 status (Aqp1-null vs. wild-type mice) and conditions of hypoxia (ambient [O2] = 16%), normoxia (21%), and hyperoxia (40%) indicated that the Aqp1 knockout ran less distance than the wild-type mice (p < 0.001); (d) in vitro, a reduced AQP1 expression was associated with the presence of the rs1049305 G-allele; (e) AQP1 null humans led normal lives and were entirely unaware of any physical limitations. However, they could not support fluid homeostasis when exposed to chronic fluid overload. The limited number of studies with “adequate sample sizes” in various racial and ethnic groups precluding to perform proper in-depth statistical analysis. Conclusions The AQP1 gene and AQP1 channel seems to support homeostatic mechanisms, yet to be totally understood, that are auxiliary in achieving an advantage during endurance exercise. AQP1 functions are vital during exercise and have a profound influence on endurance running performance. AQP1s are underappreciated structures that play vital roles in cellular homeostasis at rest and during CE endurance running exercise. The outcome of the present systematic review provide support to the statement of hypotheses and further research endeavors on the likely influence of AQP1 gene and AQP1 channel on CE performance. Registration: The protocol is not registered.
Collapse
Affiliation(s)
- Miguel A Rivera
- Department of Physical Medicine, Rehabilitation & Sports Medicine, School of Medicine, University of Puerto Rico, Main Building Office A204, San Juan, PR, 00936, USA.
| | - Thomas D Fahey
- Department of Kinesiology, California State University, Chico, 95929-0330, CA, USA
| |
Collapse
|
9
|
Sun S, Loprinzi PD, Guan H, Zou L, Kong Z, Hu Y, Shi Q, Nie J. The Effects of High-Intensity Interval Exercise and Hypoxia on Cognition in Sedentary Young Adults. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:43. [PMID: 30744172 PMCID: PMC6409841 DOI: 10.3390/medicina55020043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/05/2023]
Abstract
Background and Objectives: Limited research has evaluated the effects of acute exercise on cognition under different conditions of inspired oxygenation. Thus, the purpose of this study was to examine the effects of high-intensity interval exercise (HIE) under normoxia (inspired fraction of oxygen (FIO₂): 0.209) and moderate hypoxia (FIO₂: 0.154) on cognitive function. Design: A single-blinded cross-over design was used to observe the main effects of exercise and oxygen level, and interaction effects on cognitive task performance. Methods: Twenty inactive adults (10 males and 10 females, 19⁻27 years old) performed a cognitive task (i.e., the Go/No-Go task) before and immediately after an acute bout of HIE under normoxic and hypoxic conditions. The HIE comprised 10 repetitions of 6 s high-intensity cycling against 7.5% body weight interspersed with 30 s passive recovery. Heart rate, peripheral oxygen saturation (SpO₂) and rating of perceived exertion were monitored. Results: The acute bout of HIE did not affect the reaction time (p = 0.204, η² = 0.083) but the accuracy rate decreased significantly after HIE under both normoxic and hypoxic conditions (p = 0.001, η² = 0.467). Moreover, moderate hypoxia had no influence either on reaction time (p = 0.782, η² = 0.004) or response accuracy (p = 0.972, η² < 0.001). Conclusions: These results indicate that an acute session of HIE may impair response accuracy immediately post-HIE, without sacrificing reaction time. Meanwhile moderate hypoxia was found to have no adverse effect on cognitive function in inactive young adults, at least in the present study.
Collapse
Affiliation(s)
- Shengyan Sun
- Faculty of Education, University of Macau, Macao, China.
- Department of Physical Education, Huzhou University, Huzhou 313000, China.
| | - Paul D Loprinzi
- Department of Health, Exercise Science and Recreation Management, School of Applied Sciences, The University of Mississippi, Oxford, MS 38677, USA.
| | - Hongwei Guan
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY 14850, USA.
| | - Liye Zou
- Lifestyle (Mind-Body Movement) Research Center, College of Sports Science, Shenzhen University, Shenzhen 518060, China.
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China.
| | - Yang Hu
- Sports Science Research Center, Beijing Sport University, Beijing 100084, China.
| | - Qingde Shi
- School of Physical Education and Sports, Macao Polytechnic Institute, Macao, China.
| | - Jinlei Nie
- School of Physical Education and Sports, Macao Polytechnic Institute, Macao, China.
| |
Collapse
|
10
|
Shahbazi S, Mashayekhi A, Fatahi N, Mahdavi MR. Association of ABO and Colton Blood Group Gene Polymorphisms With Hematological Traits Variation. Medicine (Baltimore) 2015; 94:e2144. [PMID: 26632894 PMCID: PMC4674197 DOI: 10.1097/md.0000000000002144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematological parameters are appraised routinely to determine overall human health and to diagnose and monitor certain diseases. In GWASs, more than 30 loci carrying common deoxyribonucleic acid (DNA) polymorphisms have been identified related to hematological traits. In this study, we investigated the contribution of ABO rs2073823 along with AQP1 rs1049305 and rs10244884 polymorphisms in hematological traits variation in a cohort of Iranian healthy individuals.Genomic DNA was extracted from peripheral blood of 168 healthy volunteer. Genotyping was performed by ARMS-PCR or PCR-RFLP and confirmed by DNA sequencing. Complete blood analyses were conducted for the participants. Significant association was observed between AQP1 rs1049305 and the hematological traits including hemoglobin, hematocrit, and platelet count (P = 0.012, 0.008, and 0.011, respectively). The AQP1 rs10244884 status was also significantly linked to hemoglobin and hematocrit levels in the study cohort (P = 0.015 and 0.041, respectively). Furthermore, ABO rs2073823 polymorphism was identified as a hemoglobin and hematocrit levels modifier (both with P = 0.004).AQP1 and ABO variants appear to predict hemoglobin and hematocrit levels but not other erythrocyte phenotype parameters including red blood cell counts and red blood cell indices.
Collapse
Affiliation(s)
- Shirin Shahbazi
- From the Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University (SS, AM, M-R M), and Biotechnology Research Center, Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran (NF)
| | | | | | | |
Collapse
|
11
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Saunders CJ, Posthumus M, O'Connell K, September AV, Collins M. A variant within the AQP1 3'-untranslated region is associated with running performance, but not weight changes, during an Ironman Triathlon. J Sports Sci 2014; 33:1342-8. [PMID: 25495276 DOI: 10.1080/02640414.2014.989535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to test the association of the rs1049305 (G > C) variant within the 3'-untranslated region of the aquaporin 1 gene, AQP1, with changes in body weight, post-race serum sodium concentration and performance in Ironman triathletes. Five hundred and four male Ironman triathletes were genotyped for the rs1049305 variant within the AQP1 gene. Change in pre- and post-race body weight was calculated for 470 triathletes and used as a proxy for changes in body fluid during the race, as well as to divide triathletes into biologically relevant weight-loss groups (0-3%, 3-5% and >5%). There were no rs1049305 genotype effects on post-race serum sodium concentrations (P = 0.647), pre-race weight (P = 0.610) nor relative weight change during the Ironman Triathlons (P = 0.705). In addition, there were no significant differences in genotype (P = 0.640) nor allele (P = 0.643) distributions between the weight loss groups. However, triathletes who carry a C-allele were found to complete the 42.2-km run stage faster (mean 286, s = 49 min) than triathletes with a GG genotype (mean 296, s = 47 min; P = 0.032). The AQP1 rs1049305 variant is associated with running performance, but not relative body weight change, during the 2000, 2001 and 2006 South African Ironman Triathlons.
Collapse
Affiliation(s)
- Colleen J Saunders
- a MRC/UCT Research Unit for Exercise Science and Sports Medicine of the Department of Human Biology, Faculty of Health Sciences , University of Cape Town, South Africa and the South African Medical Research Council , Cape Town , South Africa
| | | | | | | | | |
Collapse
|
13
|
González C, González-Buitrago JM, Izquierdo G. Aquaporins, anti-aquaporin-4 autoantibodies and neuromyelitis optica. Clin Chim Acta 2013; 415:350-60. [DOI: 10.1016/j.cca.2012.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/24/2022]
|