1
|
Zhu M, Yang J, Zhao H, Qiu Y, Yuan L, Hong J, Cao W. Effect of Elaeagnus angustifolia Honey in the Protection Against Ethanol-Induced Chronic Gastric Injury via Counteracting Oxidative Stress, Interfering with Inflammation and Regulating Gut Microbiota in Mice. Foods 2025; 14:1600. [PMID: 40361682 PMCID: PMC12072024 DOI: 10.3390/foods14091600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Chronic alcohol consumption is a major contributor to gastric injury, yet current therapeutic strategies predominantly rely on chemical agents with limited efficacy and potential side effects. Natural products, with their multi-target biocompatibility and safety advantages, offer promising alternatives for gastric protection. We examined the phenolic compounds of Elaeagnus angustifolia honey (EAH) and investigated its prophylactic potential against ethanol-induced chronic gastric injury in mice. HPLC-DAD-Q-TOF-MS analysis showed that 21 phenolic compounds were tentatively and qualitatively identified in EAH, as well as 14 phenolic compounds. Moreover, gastric ulcer indices, histopathological morphology, oxidative stress markers (MDA, GSH, SOD), inflammatory mediators (NO, PGE2), and cytokine gene expression (TNF-α, IL-6, IL-1β, iNOS) were evaluated via enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. Western blot was employed to assess COX-2 protein expression, while 16S rRNA sequencing analyzed gut microbiota composition. The results demonstrated that EAH could play a role in gastric injury caused by long-term alcoholism by protecting gastric tissue structure, interfering with oxidative stress and inflammatory response, and remodeling the intestinal microbial community.
Collapse
Affiliation(s)
- Min Zhu
- College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830049, China; (M.Z.); (J.Y.); (Y.Q.); (L.Y.)
| | - Jiayan Yang
- College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830049, China; (M.Z.); (J.Y.); (Y.Q.); (L.Y.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China;
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| | - Yu Qiu
- College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830049, China; (M.Z.); (J.Y.); (Y.Q.); (L.Y.)
| | - Lin Yuan
- College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830049, China; (M.Z.); (J.Y.); (Y.Q.); (L.Y.)
| | - Jingyang Hong
- College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830049, China; (M.Z.); (J.Y.); (Y.Q.); (L.Y.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China;
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| |
Collapse
|
2
|
Wang H, Jin H, Dong Y, Wang Z, Wang Y, Wei F. Structural characterization of Dendrobium huoshanense polysaccharides and its gastroprotective effect on acetic acid-induced gastric ulcer in mice. Int J Biol Macromol 2025; 311:143361. [PMID: 40268013 DOI: 10.1016/j.ijbiomac.2025.143361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Dendrobium huoshanense (DH) is a medicinal plant known for its efficacy in improving gastrointestinal diseases. In this study, a novel polysaccharide, DHPs-1, was isolated and purified from DH, and its structural characteristics were analyzed using advanced methodologies, including monosaccharide composition analysis, methylation, FT-IR spectroscopy, and NMR. The gastroprotective effect of DHPs-1 was assessed using a mouse model of chronic gastric ulcers induced by acetic acid. The results revealed that DHPs-1 is primarily composed of mannose (Man) and glucose (Glc) with a molecular weight of 3.137 × 106 Da. The purified polysaccharide DHPs-1 is primarily composed of →4)-β-D-Glcp-(1 → and →4)-β-D-Manp-(1→, with an acetyl substitution at the C-2 position of Man. DHPs-1 exhibited a pronounced protective effect against acetic acid-induced chronic gastric ulcers in mice by modulating gastric defense factors and inflammatory mediators. Furthermore, DHPs-1 downregulated the expression of p-p65/p-IκBα in gastric tissues, thereby mitigating gastric mucosal injury. These findings suggest that DHPs-1 has the potential to serve as an effective gastric mucosal protective agent and could be developed into functional foods and dietary supplements.
Collapse
Affiliation(s)
- Haonan Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Jin
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yuan Dong
- Yunnan Provincial lnstitute for Drug Control, Kunming 650011, China
| | - Zhao Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Ying Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Feng Wei
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
3
|
Generalov E, Laryushkin D, Kritskaya K, Kulchenko N, Sinitsyn A, Yakovenko L, Generalova L, Belostotsky N. Immune Basis of Therapeutic Effects of Solanum tuberosum L. Polysaccharide on Chronic Peptic Ulcer Healing. Pharmaceuticals (Basel) 2025; 18:502. [PMID: 40283939 PMCID: PMC12030385 DOI: 10.3390/ph18040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Polysaccharides are complex molecules with a wide range of biological activities that can be used in various biomedical applications. In this work, the antiulcer effect and influence on the level of pro- and anti-inflammatory cytokines of Solanum tuberosum L. polysaccharide (STP) were studied. Methods: The antiulcer effect of STP was studied in the Okabe chronic peptic ulcer model by evaluating the influence of STP on the ulcer index in Wistar rats, comparing it to omeprazole and ranitidine. Dose-effect analysis was also carried out. The level of pro- and anti-inflammatory cytokines was studied using ELISA kits. Results: After treatment in the polysaccharide groups, ulcer healing is observed in 60-80% of cases, in the omeprazole group in 50%, and in the ranitidine group in 25%. STP intravenous injections lead to the formation of a more differentiated mucous membrane; no coarse scar tissue is formed, which is typical for control and comparison drugs. Glycan causes a significant acceleration of the healing of experimental peptic ulcers in rats. STP appears to modulate pro- and anti-inflammatory cytokines. On the fourth and tenth days, a significant decrease in the levels of pro-inflammatory cytokines IL-1b and IFN-γ was noted in the polysaccharide group compared to the control group, while the level of anti-inflammatory cytokine IL-4 significantly increased. Conclusions: Intravenous administration of STP leads to the restoration of functionality and effective tissue regeneration. The antiulcer activity of STP is based on the regulation of the pro- and anti-inflammatory balance.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Denis Laryushkin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (D.L.); (K.K.)
| | - Kristina Kritskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (D.L.); (K.K.)
| | - Nina Kulchenko
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis of the RUDN University, 117198 Moscow, Russia;
- Department of Tumors of the Reproductive and Urinary Organs of Oncourology P.A. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre, 125284 Moscow, Russia
| | - Arkady Sinitsyn
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Federal Research Centre ‘Fundamental of Biotechnology’ of the Russian Academy of Sciences (FRC Biotechnology RAS), 119071 Moscow, Russia
| | - Leonid Yakovenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | | - Nikolay Belostotsky
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, 111123 Moscow, Russia;
| |
Collapse
|
4
|
Shen C, Zhang S, Di H, Wang S, Wang Y, Guan F. The Role of Triterpenoids in Gastric Ulcer: Mechanisms and Therapeutic Potentials. Int J Mol Sci 2025; 26:3237. [PMID: 40244034 PMCID: PMC11990034 DOI: 10.3390/ijms26073237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Gastric ulcer (GU) is a prevalent gastrointestinal disorder impacting millions worldwide, with complex pathogenic mechanisms that may progress to severe illnesses. Conventional therapies relying on anti-secretory agents and antibiotics are constrained by drug abuse and increased bacterial resistance, highlighting the urgent need for safer therapeutic alternatives. Natural medicinal compounds, particularly triterpenoids derived from plants and herbs, have gained significant attention in recent years due to their favorable efficacy and reduced toxicity profiles. Emerging evidence indicates that triterpenoids exhibit potent anti-ulcer properties across various experimental models, modulating key pathways involved in inflammation, oxidative stress, apoptosis, and mucosal protection. Integrating current knowledge of these bioactive compounds facilitates the development of natural triterpenoids, addresses challenges in their clinical translation, deepens mechanistic understanding of GU pathogenesis, and drives innovation of therapeutic strategies for GU. This review comprehensively evaluates the progress of research on triterpenoids in GU treatment since 2000, discussing their biological sources, structural characteristics, pharmacological activities, and mechanisms of action, the animal models employed in the studies, current limitations, and the challenges associated with their clinical application.
Collapse
Affiliation(s)
- Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Han Di
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
5
|
Liu J, Dai Y, Yang W, Chen ZY. Role of Mushroom Polysaccharides in Modulation of GI Homeostasis and Protection of GI Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6416-6441. [PMID: 40063730 PMCID: PMC11926878 DOI: 10.1021/acs.jafc.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Edible and medicinal mushroom polysaccharides (EMMPs) have been widely studied for their various biological activities. It has been shown that EMMPs could modulate microbiota in the large intestine and improve intestinal health. However, the role of EMMPs in protecting the gastric barrier, regulating gastric microbiota, and improving gastric health cannot be ignored. Hence, this review will elucidate the effect of EMMPs on gastric and intestinal barriers, with emphasis on the interaction of EMMPs with microbiota in maintaining overall gastrointestinal health. Additionally, this review highlights the gastroprotective effects and underlying mechanisms of EMMPs against gastric mucosa injury, gastritis, gastric ulcer, and gastric cancer. Furthermore, the effects of EMMPs on intestinal diseases, including inflammatory bowel disease, colorectal cancer, and intestinal infection, are also summarized. This review will also discuss the future perspective and challenges in the use of EMMPs as a dietary supplement or a nutraceutical in preventing and treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Jianhui Liu
- Collaborative
Innovation Center for Modern Grain Circulation and Safety, Jiangsu
Province Engineering Research Center of Edible Fungus Preservation
and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Yi Dai
- Collaborative
Innovation Center for Modern Grain Circulation and Safety, Jiangsu
Province Engineering Research Center of Edible Fungus Preservation
and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Wenjian Yang
- Collaborative
Innovation Center for Modern Grain Circulation and Safety, Jiangsu
Province Engineering Research Center of Edible Fungus Preservation
and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhen-Yu Chen
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, NT, Hong Kong 999077, China
| |
Collapse
|
6
|
Zhang WW, Wang XF, Yu HY, Wang LF. Influence of a diet meal plan on pepsinogen I and II, gastrin-17, and nutritional status in gastric ulcer patients. World J Clin Cases 2024; 12:4574-4581. [PMID: 39070811 PMCID: PMC11235480 DOI: 10.12998/wjcc.v12.i21.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Gastric ulcers (GUs) have a high risk of clinical morbidity and recurrence, and further exploration is needed for the prevention, diagnosis, and treatment of the disease. AIM To investigated the effects of a diet plan on pepsinogen (PG) I, PG II, gastrin-17 (G-17) levels and nutritional status in patients with GUs. METHODS A total of 100 patients with GUs treated between May 2022 and May 2023 were enrolled, with 47 patients in the control group receiving routine nursing and 53 patients in the experimental group receiving dietary nursing intervention based on a diet plan. The study compared the two groups in terms of nursing efficacy, adverse events (vomiting, acid reflux, and celialgia), time to symptom improvement (burning sensation, acid reflux, and celialgia), gastric function (PG I, PG II, and G-17 levels), and nutritional status [prealbumin (PA) and albumin (ALB) levels]. RESULTS The experimental group showed a markedly higher total effective rate of nursing, a significantly lower incidence of adverse events, and a shorter time to symptom improvement than the control group. Additionally, the experimental group's post-intervention PG I, PG II, and G-17 levels were significantly lower than pre-intervention or control group levels, whereas PA and ALB levels were significantly higher. CONCLUSION The diet plan significantly reduced PG I, PG II, and G-17 levels in patients with GUs and significantly improved their nutritional status.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Gastroenterology, Lujiang County Hospital of Traditional Chinese Medicine, Hefei 231500, Anhui Province, China
| | - Xiao-Fei Wang
- Department of Gastroenterology, Lujiang County Hospital of Traditional Chinese Medicine, Hefei 231500, Anhui Province, China
| | - Hai-Yan Yu
- Department of Anorectal Surgery, Lujiang County Hospital of Traditional Chinese Medicine, Hefei 231500, Anhui Province, China
| | - Ling-Fang Wang
- Department of Gastroenterology, Lujiang County Hospital of Traditional Chinese Medicine, Hefei 231500, Anhui Province, China
| |
Collapse
|
7
|
Arabacı Tamer S, Mermer KS, Erdoğan Ö, Çevik Ö, Ercan F, Bağcı C, Yeğen BÇ. Neuropeptide W facilitates chronic gastric ulcer healing by the regulation of cyclooxygenase and NF-κB signaling pathways. Inflammopharmacology 2024; 32:1519-1529. [PMID: 38227096 PMCID: PMC11006733 DOI: 10.1007/s10787-023-01403-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
AIMS Putative beneficial effects of neuropeptide W (NPW) in the early phase of gastric ulcer healing process and the involvement of cyclooxygenase (COX) enzymes were investigated in an acetic acid-induced gastric ulcer model. MAIN METHODS In anesthetized male Sprague-Dawley rats, acetic acid was applied surgically on the serosa and then a COX-inhibitor (COX-2-selective NS-398, COX-1-selective ketorolac, or non-selective indomethacin; 2 mg/kg/day, 3 mg/kg/day or 5 mg/kg/day; respectively) or saline was injected intraperitoneally. One h after ulcer induction, omeprazole (20 mg/kg/day), NPW (0.1 μg/kg/day) or saline was intraperitoneally administered. Injections of NPW, COX-inhibitors, omeprazole or saline were continued for the following 2 days until rats were decapitated at the end of the third day. KEY FINDINGS NPW treatment depressed gastric prostaglandin (PG) I2 level, but not PGE2 level. Similar to omeprazole, NPW treatment significantly reduced gastric and serum tumor necrosis factor-alpha and interleukin-1 beta levels and depressed the upregulation of nuclear factor kappa B (NF-κB) and COX-2 expressions due to ulcer. In parallel with the histopathological findings, treatment with NPW suppressed ulcer-induced increases in myeloperoxidase activity and malondialdehyde level and replenished glutathione level. However, the inhibitory effect of NPW on myeloperoxidase activity and NPW-induced increase in glutathione were not observed in the presence of COX-1 inhibitor ketorolac or the non-selective COX-inhibitor indomethacin. SIGNIFICANCE In conclusion, NPW facilitated the healing of gastric injury in rats via the inhibition of pro-inflammatory cytokine production, oxidative stress and neutrophil infiltration as well as the downregulation of COX-2 protein and NF-κB gene expressions.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Kadriye Sezen Mermer
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ömer Erdoğan
- Faculty of Medicine, Department of Biochemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Faculty of Medicine, Department of Biochemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Cahit Bağcı
- Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
8
|
Zhang M, Xu L, Chen L, Wu H, Jia L, Zhu H. Dendrobium officinale Polysaccharides as a Natural Functional Component for Acetic-Acid-Induced Gastric Ulcers in Rats. Molecules 2024; 29:880. [PMID: 38398633 PMCID: PMC10891678 DOI: 10.3390/molecules29040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Dendrobium officinale is an important edible and medicinal plant, with the Dendrobium officinale polysaccharide (DOP) being its primary active constituent, known for its diverse biological activities. In this study, DOP was extracted and characterized for its structural properties. The potential of DOP to ameliorate gastric ulcers (GUs) was investigated using an acetic-acid-induced GU model in rats. The results demonstrated that DOP exerted a multifaceted protective effect against GU, mitigating the deleterious impact on food intake and body weight in rats. DOP exhibited its protective action by attenuating cellular damage attributed to oxidative stress and inflammatory reactions mediated by enhanced activities of SOD, GSH, and GSH-PX, coupled with a downregulation in the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Furthermore, DOP effectively inhibited apoptosis in gastric mucosa cells of acetic-acid-induced GU rat models and facilitated the self-repair of damaged tissues. Remarkably, the DOP-200 and DOP-400 groups outperformed omeprazole in reducing the expression of IL-6 and malondialdehyde (MDA) in tissues, as well as IL-1β, IL-6, and TNF-α in serum. These groups also exhibited an improved expression of SOD in tissues and SOD, GSH, and GSH-PX in serum. A Western blot analysis of gastric mucosa demonstrated that the DOP-200 and DOP-400 groups significantly reduced the expression of NF-κBp65, phosphorylated NF-κBp65, FoxO3a, and Bim. The observed antagonism to GU appeared to be associated with the NF-κB cell pathway. Additionally, qRT-PCR results indicate that DOP reduced the mRNA transcription levels of IL-6, and TNF-α, which shows that the healing of GU is related to the reduction in the inflammatory reaction by DOP. However, the expression of EGF and VEGF decreased, suggesting that the mechanism of DOP inhibiting GU may not be directly related to EGF and VEGF, or there is an uncertain competitive relationship between them, so further research is needed.
Collapse
Affiliation(s)
- Miao Zhang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (M.Z.); (L.J.)
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| | - Liba Xu
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| | - Long Chen
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain
| | - Huan Wu
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| | - Li Jia
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (M.Z.); (L.J.)
| | - Hua Zhu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (M.Z.); (L.J.)
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| |
Collapse
|
9
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
10
|
Lopes ALF, Araújo AKDS, Chaves LDS, Pacheco G, Oliveira APD, Silva KCD, Oliveira ACPD, Aquino CCD, Gois MB, Nicolau LAD, Medeiros JVR. Protective effect of alpha-ketoglutarate against water-immersion restraint stress-induced gastric mucosal damage in mice. Eur J Pharmacol 2023; 960:176118. [PMID: 37871764 DOI: 10.1016/j.ejphar.2023.176118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Gastric lesions have several aetiologies, among which stress is the most prominent. Therefore, identification of new therapies to prevent stress is of considerable importance. Alpha-ketoglutarate (α-kg) several beneficial effects and has shown promise in combating oxidative stress, inflammation, and premature aging. Thus, this study aimed to evaluate the protective effect of α-kg in a gastric damage model by water-immersion restraint stress (WIRS). Pretreatment with α-kg decreased stress-related histopathological scores of tissue oedema, cell loss, and inflammatory infiltration. The α-kg restored the percentage of type III collagen fibres. Mucin levels were preserved as well as the structure and area of the myenteric plexus ganglia were preserved after pretreatment with α-kg. Myeloperoxidase (MPO) levels and the expression of pro-inflammatory cytokines (TNF-α and IL-1β) were also reduced following α-kg pretreatment. Decreased levels of glutathione (GSH) in the stress group were restored by α-kg. The omeprazole group was used as standard drug e also demonstrated improve on some parameters after the exposition to WIRS as inflammatory indexes, GSH and mucin. Through this, was possible to observe that α-kg can protect the gastric mucosa exposed to WIRS, preserve tissue architecture, reduce direct damage to the mucosa and inflammatory factors, stimulate the production of type III collagen and mucin, preserve the myenteric plexus ganglia, and maintain antioxidant potential. Due to, we indicate that α-kg has protective activity of the gastric mucosa, demonstrating its ability to prevent damage associated with gastric lesions caused by stress.
Collapse
Affiliation(s)
- André Luis Fernandes Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Andreza Ketly da Silva Araújo
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Letícia de Sousa Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Ana Patrícia de Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Katriane Carvalho da Silva
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Antonio Carlos Pereira de Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | | | - Marcelo Biondaro Gois
- Post-Graduation Program in Biosciences and Health, Federal University of Rondonópolis, Rondonópolis, Brazil.
| | - Lucas Antonio Duarte Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| |
Collapse
|
11
|
Huang Z, Hu M, Peng X, Wang R, Song X, Yin J. The protective effect of small black soybean (Vigna Mungo L.) polysaccharide on acetic acid-induced gastric ulcer in SD rats and its impact on gut microbiota and metabolites. FOOD BIOSCI 2023; 56:103187. [DOI: 10.1016/j.fbio.2023.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Novel Gastroprotective and Thermostable Cocrystal of Dimethyl Fumarate: Its Preparation, Characterization, and In Vitro and In Vivo Evaluation. ACS OMEGA 2023; 8:26218-26230. [PMID: 37521634 PMCID: PMC10372935 DOI: 10.1021/acsomega.3c02463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Crystallization has revolutionized the field of solid-state formulations by modulating the physiochemical and release profile of active pharmaceutical ingredients (APIs). Dimethyl fumarate (DF), an FDA-approved first-line drug for relapsing-remitting multiple sclerosis, has a sublimation problem, leading to loss of the drug during its processing. To tackle this problem, DF cocrystal has been prepared by using solvent evaporation technique using nicotinamide as a coformer, which has been chosen based on in silico predictions and their ability to participate in hydrogen bonding. Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation analysis have characterized the cocrystal and its thermostability. Comparative analysis of the release profile has been done by the dissolution and pharmacokinetic study of DF and its cocrystal. Formulated cocrystal is noncytotoxic, antioxidant and inhibits interleukin-6 and tissue necrosis factor-α in peripheral blood mononuclear cells induced by lipopolysaccharide. We have obtained a thermostable cocrystal of DF with a similar physicochemical and release profile to that of DF. The formulated cocrystal also provides a gastroprotective effect which helps counterbalance the adverse effects of DF by reducing lipid peroxidation and total nitrite levels.
Collapse
Affiliation(s)
- Qadir Alam
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, U.P., India
| | - Ankit Ganeshpurkar
- Pharmaceutical
Chemistry Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology
(Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sushil Kumar Singh
- Pharmaceutical
Chemistry Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology
(Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, U.P., India
| |
Collapse
|
13
|
Zhao Y, Cheng G, Gao Y, Cui L, Zhao Y, Zhang Y, Tian Y, Zhao Y, Zhang Y, Qu H, Kong H. Green synthetic natural carbon dots derived from Fuligo Plantae with inhibitory effect against alcoholic gastric ulcer. Front Mol Biosci 2023; 10:1223621. [PMID: 37484528 PMCID: PMC10360179 DOI: 10.3389/fmolb.2023.1223621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Fuligo Plantae (FP), the ash that sticks to the bottom of pots or chimneys after weeds burn, has long been used for its hemostatic effects and treatment of gastrointestinal bleeding. Nevertheless, the active ingredient of FP still needs to be further explored. Methods: The microstructure, optical and chemical properties of FP-CDs were characterized. An alcohol-induced gastric ulcer model was utilized to evaluate whether pre-administration of FP-CDs alleviated gastric bleeding symptoms and ameliorated gastric mucosal barrier disruption. In addition, the feces of each group of rats were extracted for 16S rDNA genome sequencing of intestinal flora. Results: FP-CDs with a diameter ranging from 1.4-3.2 nm had abundant chemical groups, which may be beneficial to the exertion of inherent activity. FP-CDs alleviated alcohol-induced gastric ulcer, as demonstrated by activating the extrinsic coagulation pathway, alleviating inflammation, and suppressing oxidative stress levels. More interestingly, FP-CDs can improve the diversity and dysbiosis of intestinal flora in rats with alcohol-induced gastric ulcer. Conclusion: These comes about illustrate the momentous inhibitory effects of FP-CDs on alcoholic gastric ulcer in rats, which give a modern methodology for investigating the effective ingredient of FP, and lay an experimental basis for the application of FP-CDs in the clinical treatment of alcoholic gastric ulcer.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Luming Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Zhang X, Liu D, Ye Z, Chen X, Chen H, Ye M. Gastroprotective effect of the Lachnum polysaccharide and polysaccharide-dipeptide conjugates against gastric ulcer. Food Chem Toxicol 2023; 174:113661. [PMID: 36803919 DOI: 10.1016/j.fct.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Polysaccharides from Lachnum have many important biological activities. The LEP2a-dipeptide derivative (LAG) was obtained by carboxymethyl modification and alanyl-glutamine modification of LEP2a, an extracellular polysaccharide component of Lachnum. Mice with acute gastric ulcers were treated with 50 (low doses) and 150 (high doses) mg/kg, and their therapeutic effects were evaluated from the aspects of pathological damage to gastric tissue, oxidative stress response and inflammatory signal cascade reaction. High doses of LAG and LEP2a significantly inhibited pathological damage to the gastric mucosa, increased the activities of SOD and GSH-Px, and decreased the levels of MDA, and MPO. LEP-2A and LAG could also inhibit the production of proinflammatory factors and reduce the inflammatory response. They significantly decreased the levels of IL-6, IL-1β and TNF-α, while upregulated the level of PGE2 at high doses. LAG and LEP2a inhibited the protein expression of p-JNK, p-ERK, p-P38, p-IKK, p-IKB α and p-NF-KBP65. LAG and LEP2a protect the gastric mucosa in mice with ulcers by improving oxidative stress, blocking the MAPK/NF-κB pathway and inhibiting the production of inflammatory factors, and the anti-ulcer activity of LAG is superior to that of LEP2a.
Collapse
Affiliation(s)
- Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Liu
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, Anqing, 246003, China.
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue Chen
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
15
|
Salaheldin AT, Shehata MR, Sakr HI, Atia T, Mohamed AS. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar Drugs 2022; 21:25. [DOI: https:/doi.org/10.3390/md21010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Peptic ulcer is a widespread disease, with a lifetime frequency of 5–10% among the general population and an annual incidence of 0.1–0.3%. Ovothiol A is naturally produced from sea urchin eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose (5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A doses. Molecular docking studies were used to examine the interactions between ovothiol A and the H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST, SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and stabilization of fibroblast growth factors to promote gastric ulcers healing.
Collapse
Affiliation(s)
| | | | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | | |
Collapse
|
16
|
Salaheldin AT, Shehata MR, Sakr HI, Atia T, Mohamed AS. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar Drugs 2022; 21:25. [PMID: 36662198 PMCID: PMC9862145 DOI: 10.3390/md21010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Peptic ulcer is a widespread disease, with a lifetime frequency of 5−10% among the general population and an annual incidence of 0.1−0.3%. Ovothiol A is naturally produced from sea urchin eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose (5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A doses. Molecular docking studies were used to examine the interactions between ovothiol A and the H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST, SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and stabilization of fibroblast growth factors to promote gastric ulcers healing.
Collapse
Affiliation(s)
| | | | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | | |
Collapse
|
17
|
Salaheldin AT, Shehata MR, Sakr HI, Atia T, Mohamed AS. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar Drugs 2022. [DOI: doi.org/10.3390/md21010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Peptic ulcer is a widespread disease, with a lifetime frequency of 5–10% among the general population and an annual incidence of 0.1–0.3%. Ovothiol A is naturally produced from sea urchin eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose (5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A doses. Molecular docking studies were used to examine the interactions between ovothiol A and the H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST, SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and stabilization of fibroblast growth factors to promote gastric ulcers healing.
Collapse
|
18
|
Protective Effect of Foxtail Millet Protein Hydrolysate on Ethanol and Pyloric Ligation-Induced Gastric Ulcers in Mice. Antioxidants (Basel) 2022; 11:antiox11122459. [PMID: 36552666 PMCID: PMC9774519 DOI: 10.3390/antiox11122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Foxtail millet has been traditionally considered to possess gastroprotective effects, but studies evaluating its use as a treatment for gastric ulcers are lacking. Here, we assessed the antiulcer effects of foxtail millet protein hydrolysate (FPH) and explored its mechanism by using blocking agents. In a mouse model of ethanol-induced gastric ulcers, pretreatment with FPH reduced the ulcerative lesion index, downregulated the expression of inflammatory cytokines in the gastric tissue, increased the activity of antioxidant enzymes, and improved the oxidative status. FPH increased constitutive the activity of nitric oxide synthase (cNOS), NO levels, and mucin expression in gastric mucosa, and inhibited the activation of the ET-1/PI3K/Akt pathway. In a mouse model of pyloric ligation-induced gastric ulcers, FPH inhibited gastric acid secretion and decreased the activity of gastric protease. Pretreatment of mice with the sulfhydryl blocker NEM and the NO synthesis inhibitor L-NAME abolished the gastroprotective effect of FPH, but not the KATP channel blocker glibenclamide and the PGE2 synthesis blocker indomethacin. Among the peptides identified in FPH, 10 peptides were predicted to have regulatory effects on the gastric mucosa, and the key sequences were GP and PG. The results confirmed the gastroprotective effect of FPH and revealed that its mechanism was through the regulation of gastric mucosal mucus and NO synthesis. This study supports the health effects of a millet-enriched diet and provides a basis for millet protein as a functional food to improve gastric ulcers and its related oxidative stress.
Collapse
|
19
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
20
|
Ji J, Zhao L, Liu X, Wu H, Wang D, Dan Liu, Chen X, Feng S. Green synthesis, characterization of formononetin mediated AgNPs and its testing for formothion in typical fruit and vegetable samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Li L, Du Y, Wang Y, He N, Wang B, Zhang T. Atractylone Alleviates Ethanol-Induced Gastric Ulcer in Rat with Altered Gut Microbiota and Metabolites. J Inflamm Res 2022; 15:4709-4723. [PMID: 35996682 PMCID: PMC9392477 DOI: 10.2147/jir.s372389] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gastric ulcer (GU) is the most common multifactor gastrointestinal disorder affecting millions of people worldwide. There is evidence that gut microbiota is closely related to the development of GU. Atractylone (ATR) has been reported to possess potential biological activities, but research on ATR alleviating GU injury is unprecedented. Methods Helicobacter pylori (H. pylori)-induced GU model in zebrafish and ethanol-induced acute GU model in rat were established to evaluate the anti-inflammatory and ulcer inhibitory effects of ATR. Then, 16S rRNA sequencing and metabolomics analysis were performed to investigate the effect of ATR on the microbiota and metabolites in rat feces and their correlation. Results Therapeutically, ATR inhibited H. pylori-induced gastric mucosal injury in zebrafish. In the ulceration model of rat, ATR mitigated the gastric lesions damage caused by ethanol, decreased the ulcer area, and reduced the production of inflammatory factors. Additionally, ATR alleviated the gastric oxidative stress injury by increasing the activity of superoxide dismutase (SOD) and decreasing the level of malondialdehyde (MDA). Furthermore, ATR played a positive role in relieving ulcer through reshaping gut microbiota composition including Parabacteroides and Bacteroides and regulating the levels of metabolites including amino acids, short-chain fatty acids (SCFAs), and bile acids. Conclusion Our work sheded light on the mechanism of ATR treating GU from the perspective of the gut microbiota and explored the correlation between gut microbiota, metabolites, and host phenotype.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, People’s Republic of China
| | - Ning He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Natural and Engineered Nanomaterials for the Identification of Heavy Metal Ions—A Review. NANOMATERIALS 2022; 12:nano12152665. [PMID: 35957095 PMCID: PMC9370674 DOI: 10.3390/nano12152665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
In recent years, there has been much interest in developing advanced and innovative approaches for sensing applications in various fields, including agriculture and environmental remediation. The development of novel sensors for detecting heavy metals using nanomaterials has emerged as a rapidly developing research area due to its high availability and sustainability. This review emphasized the naturally derived and engineered nanomaterials that have the potential to be applied as sensing reagents to interact with metal ions or as reducing and stabilizing agents to synthesize metallic nanoparticles for the detection of heavy metal ions. This review also focused on the recent advancement of nanotechnology-based detection methods using naturally derived and engineered materials, with a summary of their sensitivity and selectivity towards heavy metals. This review paper covers the pros and cons of sensing applications with recent research published from 2015 to 2022.
Collapse
|
23
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
24
|
Wang XY, Wang M, Yin JY, Song YH, Wang YX, Nie SP, Xie MY. Gastroprotective activity of polysaccharide from the fruiting body of Hericium erinaceus against acetic acid-induced gastric ulcer in rats and structure of one bioactive fraction. Int J Biol Macromol 2022; 210:455-464. [PMID: 35483513 DOI: 10.1016/j.ijbiomac.2022.04.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating gastroprotective activity of Hericium erinaceus polysaccharide (HEP) and characterizing one of its bioactive fractions. Acetic acid-induced gastric ulcer (GU) rat model was used to evaluate the gastroprotective activity of HEP, while H2O2-induced injury GES-1 cell model was conducted to screen the bioactive fractions from HEP. Moreover, one of the bioactive fractions was characterized using methylation and 1D/2D NMR analysis. Results indicated HEP treatment could ameliorate acetic acid-induced GU in rats. HEP supplement decreased levels of interleukin-6, tumor necrosis factor-α and malondialdehyde and myeloperoxidase activity, and increased releases of nitric oxide, prostaglandin E2, epidermal growth factor, vascular endothelial growth factor and basic fibroblast growth factor and superoxide dismutase activity in gastric tissues of ulcerated rats. Five purified polysaccharides from HEP were screened to be bioactive fractions with cytoprotection on H2O2-induced injury in GES-1 cells. Among them, RP-S was characterized to be a (1 → 6)-β-D-glucan, whose backbone was composed of →6)-β-D-Glcp-(1 → residue and branched with T-β-D-Glcp-(1 → residue at O-3 position. In conclusion, HEP possessed gastroprotection against acetic acid-induced GU in rats and one of its bioactive fractions was a β-D-glucan. This study supports the utilization of HEP in anti-GU and provides evidences for the structure of gastroprotective HEP.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Ye-Hao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
25
|
Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro. J Food Biochem 2022; 46:e14188. [PMID: 35484857 DOI: 10.1111/jfbc.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
The crude Hedysarum polysaccharides (HPS: HPS-50 and HPS-80) obtained from Radix Hedysari exhibited great pharmacological activities in our previous research. This study investigated the effects of HPS on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury (ALI) in mice and LPS-induced injury in LO2 cells, as well as the relationship between structural characteristics and hepatoprotective activities. The in vivo results showed that compared with HPS-80, HPS-50 showed stronger hepatoprotection, which improved histopathological changes to normal levels. HPS-50 significantly decreased the levels of ALT, AST, MPO, and MDA, increased the activities of SOD, CAT, and GSH, and suppressed the LPS/D-GalN-triggered production of TNF-α, IL-1β, and IL-6 (p < .05). The results in vitro showed that HPS-50-P (HPS-50-1, HPS-50-2, and HPS-50-3) purified from HPS-50 played significant protective roles against LPS-induced injury in LO2 cells by reducing cell apoptosis and relieving cell cycle arrest. HPS-50-2 restored the percentage of normal cells from 54.8% to 94.7%, and reduced the S phase cells from 59.40% to 47.05% (p < .01). By analyzing the structure of HPS-50-P, including monosaccharide composition, molecular weight, chain conformation, and surface morphology, we speculated that the best protective effect of HPS-50-2 might be attributed to its beta configuration, highest molecular weight, and high glucose and galactose contents. These findings indicate that HPS-50 might be a promising source of functional foods for the protection and prevention of ALI. PRACTICAL APPLICATIONS: In this study, the protective effect of HPS on ALI was evaluated from multiple perspectives, and HPS-50-2 was screened as a potential active ingredient. This study has two practical applications. First, it provides a new way to improve ALI, and a new option for patients to prevent and treat ALI. Second, this work also complements the pharmacological activity of Radix Hedysari and provides a basis for the development of Radix Hedysari as a functional food.
Collapse
Affiliation(s)
- Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Huifang Wu
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Gengen Shi
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
26
|
Isolation, structures and bioactivities of the polysaccharides from Radix Hedysari: A review. Int J Biol Macromol 2022; 199:212-222. [PMID: 34995662 DOI: 10.1016/j.ijbiomac.2021.12.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
Radix Hedysari, a well-known traditional Chinese herbal medicine, has a long history as a medicinal plant in China based on its wide spectrum of biological and pharmacological activities. Until now, many chemical constituents have been isolated and identified from Radix Hedysari, such as polysaccharides, flavonoids, phenylpropanoids, trace elements and so on. Of these, Radix Hedysari polysaccharides are one of the most important active compounds of the Radix Hedysari and have various biological activities, including anti-tumor activity, antioxidant activity, anti-diabetic activity, immunity enhancement effect and regulation of intestinal flora. These beneficial biological activities are related to the chemical structure of the Radix Hedysari polysaccharides. The chemical structure of HPS is the basis of its biological activity, which is affected by many factors, such as the composition of monosaccharide, the size of relative molecular weight, the way of glycoside bond connection, the three-dimensional structure of polysaccharide, and so on. Different extraction and separation methods lead to different configurations of polysaccharides and different biological activities of polysaccharides. In general, the bioactivity of polysaccharides showed a certain dose-response or structure-activity relationship. At present, few studies of regarding the structure-function relationships of these polysaccharides have been reported, and it is not easy to relate the structures of HPS to their biological activities. Nevertheless, some relationships can be inferred as follows. This article is aimed to provide a systematic and up-to-date review on the extraction, purification, structural characterization, and biological activities of the Radix Hedysari polysaccharides to support its further therapeutic potentials and sanitarian functions. Furthermore, the possible development and a perspective for future research of Radix Hedysari polysaccharides are also discussed.
Collapse
|
27
|
Ji J, Wu H, Wang D, Liu D, Chen X, Feng S. Green synthesis, characterization of Radix Hedysari-mediated silver nanoparticles and their use for sensitive colorimetric detection of Pb 2+ in the Yellow River medium. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:643-651. [PMID: 35080529 DOI: 10.1039/d1ay01852c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a safe, rapid, and environment-friendly green synthesis of silver nanoparticles using the alcohol extract of Radix Hedysari (RH-AgNPs) was developed, the alcohol extract of Radix Hedysari (RH) acted as the reducing agent, stabilizer, and modifier. The main components of RH were determined using high-performance liquid chromatography (HPLC). The particle size and morphology of RH-AgNPs were optimized and characterized by a series of techniques. The size distribution, zeta potential, element distribution, and crystalline nature of RH-AgNPs were all determined. It was indicated that RH-AgNPs showed great sensitivity for lead ion (Pb2+) detection with a limit of detection (LOD) of 1.5 μM with a wide range of 10-500 μM. The selectivity was also explored for common metal ions. RH-AgNPs were then applied to the detection of Pb2+ in spiked Yellow River samples, and the possible mechanism is based on the crosslinking reaction between the hydroxide radical, carboxylate radical and Pb2+.
Collapse
Affiliation(s)
- Jiahui Ji
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Huifang Wu
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Donghan Wang
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Dan Liu
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Xinyue Chen
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Shilan Feng
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| |
Collapse
|
28
|
Lu S, Kong S, Wang Y, Hu Z, Zhang L, Liao M. Gastric acid-response chitosan/alginate/tilapia collagen peptide composite hydrogel: Protection effects on alcohol-induced gastric mucosal injury. Carbohydr Polym 2022; 277:118816. [PMID: 34893233 DOI: 10.1016/j.carbpol.2021.118816] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Long-term excessive alcohol intake can easily lead to gastritis, gastric ulcer, and gastric bleeding. In this paper, the gastric acid-responsive hydrogel of CS-NAC/alginate/tilapia collagen peptide (CS-NAC/ALG/TCP) was developed. Its structure and properties were determined. The alcohol-induced gastric mucosal injury models in mice were established to evaluate the protective effects of CS-NAC/ALG/TCP. The results showed that CS-NAC/ALG/TCP was successfully fabricated, and it showed a sustained release of TCP, strong mucoadhesion, and excellent biodegradability in vitro. In the animal experiments, CS-NAC/ALG/TCP improved the oxidative stress status of the gastric mucosa by increasing the levels of SOD, GSH, and CAT in tissues. It also down-regulated the expression of MPO, TNF-α, IL-1β, and IL-6, and increased the production of gastric protective factors such as PGE2 and NO in mouse stomach, thereby reducing the alcohol-induced inflammation and protecting the gastric mucosal injury. Besides, CS-NAC/ALG/TCP can also increase the activities of alcohol metabolism enzymes to improve alcohol metabolism, thereby reducing alcoholic damage. In conclusion, CS-NAC/ALG/TCP is a promising candidate for the treatment of alcohol-induced gastric injury.
Collapse
Affiliation(s)
- Sitong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Songzhi Kong
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ye Wang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lingyu Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingneng Liao
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
29
|
Sun Y, Ma N, Yi J, Zhou L, Cai S. Gastroprotective effect and mechanisms of Chinese sumac fruits ( Rhus chinensis Mill.) on ethanol-induced gastric ulcers in mice. Food Funct 2021; 12:12565-12579. [PMID: 34813638 DOI: 10.1039/d1fo02864b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper aimed to study the effect of the phenol-rich fraction from Chinese sumac fruits on ethanol-induced gastric ulcers in mice and to further elucidate the potential mechanisms. The results showed that the phenol-rich fraction of the fruits significantly decreased the ulcer index, restored the levels of prostaglandin E-2, heat shock protein 70, glutathione and superoxide dismutase, and reduced the malondialdehyde content. Further analyses revealed that the fraction significantly alleviated the gastric oxidative stress by upregulating the Nrf2 protein pathway to increase the HO-1 and NQO1 expression levels, suppressed the inflammation by reducing the expression levels of p-NF-κB and p-IκBα and inhibited the secretion of tumor necrosis factor-α, interleukin-1β, and interleukin-6. In addition, the fraction remarkably prevented gastric mucous cell apoptosis by upregulating Bcl-2 and downregulating Bax and cleaved caspase3. This experiment clarified for the first time that the phenol-rich fraction from Chinese sumac fruits can prevent ethanol-induced gastric ulcers in mice by inhibiting the oxidative stress, inflammatory response and cell apoptosis. The results obtained from the current work indicated that the phenol-rich fraction from Chinese sumac fruits could be applied as a kind of natural resource for producing new functional foods to prevent and/or improve gastric ulcers induced by ethanol.
Collapse
Affiliation(s)
- Yilin Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Nan Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
30
|
Xue Z, Zhao L, Wang D, Chen X, Liu D, Liu X, Feng S. Structural characterization of a polysaccharide from Radix Hedysari and its protective effects against H 2O 2-induced injury in human gastric epithelium cells. Int J Biol Macromol 2021; 189:503-515. [PMID: 34437918 DOI: 10.1016/j.ijbiomac.2021.08.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
The gastroprotective effects of polysaccharides had become a hot topic in the field of functional polysaccharides research. Three polysaccharides, namely HPS-80-1, HPS-80-2, and HPS-80-3 were purified by DEAE-52 column chromatography. The thermodynamic characteristics, scanning electron microscopy, and Congo red experimental results of the above polysaccharides were greatly distinctive. Then a mature GES-1 oxidative stress cell model induced by H2O2 was established to screen out subsequent research subjects. It turned out that HPS-80-1 had a desirable protective effect, which was confirmed by analyses of cell cycle & apoptosis, and oxidative stress-related factors in the cell culture media, and so on. Furthermore, Structural features demonstrated that the backbone of HPS-80-1 appeared to mainly consist of →4)-α-D-Glcp-(1→, →4,6)-β-L-Glcp-(1→, and →6)-α-D-Galp-(1→, with branches at O-1, O-4, and O-6 position consisting of →2,4)-β-D-Rhap-(1→, →1)-α-D-Galp-(4→, and →3,4)-α-D-Manp-(1→. It was speculated that the excellent gastric mucosal protective activity of HPS-80-1 may be due to the high amount of glucose in the backbone. In addition, it was also related to the anti-inflammatory activity and antioxidant bases such as (1 → 4)-Glcp and (1 → 6)-Galp in the structure of HPS-80-1. These findings provide a scientific basis for further utilization of polysaccharides from Radix Hedysari.
Collapse
Affiliation(s)
- Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou 730030, PR China
| | - Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinyue Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
31
|
Protective effect of against ethanol-induced gastric ulcer and its mechanism. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:561-567. [PMID: 34986535 DOI: 10.3724/zdxbyxb-2021-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: To investigate the protective effect of (FD) against ethanol-induced gastric ulcer and its mechanism. : Human gastric epithelial GES-1 cells were divided into normal control group, model control group, FD 95% alcohol extract group, FD 50% alcohol extract group and FD decoction extract group. Gastric ulcer was induced by treatment with 1% ethanol in GES-1 cells. The cell proliferation was detected with MTT method in each group. Sixty SD rats were randomly divided into normal control group, model control group, ranitidine group and low-dose, medium-dose, high-dose FD 95% alcohol extract groups (150, 300, 600 mg/kg). The corresponding drugs were administrated by gavage for The gastric ulcer model was induced by intragastric administration of anhydrous ethanol. The gastric ulcer area and ulcer inhibition rate of rats were measured in each group; the degree of gastricmucosal damage was observed by scanning electron microscopy; the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β in serum and the content of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT) in gastric tissues were detected by ELISA method. : 95% alcohol extract of FD had the strongest protective effect on proliferation of GES-1 cells. In animal experiments, compared with the normal control group, a large area of ulcers appeared on the gastric mucosa in the model control group, while the ulcer areas of the FD groups and ranitidine group were significantly smaller than that of the model control group (all <0.05). Compared with the model control group, FD groups and ranitidine group significantly reduced the levels of TNF-α, IL-1β, IL-6 in serum and the MDA content in the gastric tissues, and increased the activity of SOD, CAT and GSH in gastric tissues (all <0.05). : The 95% alcohol extract of FD can reduce the levels of TNF-α, IL-1β and IL-6 in serum and the content of MDA in gastric tissues, and increase the activity of SOD, CAT and GSH in gastric tissues to achieve the protective effect against gastric ulcer.
Collapse
|
32
|
Gupta M, Gulati M, Kapoor B, Kumar B, Kumar R, Kumar R, Khurana N, Gupta R, Singh N. Anti-ulcerogenic effect of methanolic extract of Elaeagnus conferta Roxb. seeds in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114115. [PMID: 33852947 DOI: 10.1016/j.jep.2021.114115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Elaeagnus conferta Roxb. (Elaeagnaceae) is a subtropical shrub mainly native to India, Vietnam, Malaysia and South China, whose various parts are used for treatment of diabetes, gastric ulcers, pain, oxidative stress and pulmonary disorders. Though the other parts of the plant have been reported for their ethnic use i.e. fruits as astringent locally and for cancer systemically, leaves for body pain and flowers for pain in chest and the seeds are mentioned as edible, there is no report per se on the medicinal use of seeds. Based on the fact that seeds of closely resembling species i.e. Elaeagnus rhamnoides has demonstrated significant anti-gastroulcerative property, the probability of the seeds of E. conferta possessing similar activity seemed quite significant. AIM OF THE STUDY Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta. MATERIALS AND METHODS Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied. RESULTS Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner. CONCLUSIONS The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.
Collapse
Affiliation(s)
- Mukta Gupta
- Research Scholar, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Naresh Singh
- Rayat Institute of Pharmacy, Railmajra, SBS Nagar, Punjab, India.
| |
Collapse
|
33
|
Luo J, Hu J, Zhang M, Zhang Y, Wu J, Cheng J, Qu H, Kong H, Zhao Y. Gastroprotective effects of Nelumbinis Rhizomatis Nodus-derived carbon dots on ethanol-induced gastric ulcers in rats. Nanomedicine (Lond) 2021; 16:1657-1671. [PMID: 34261362 DOI: 10.2217/nnm-2020-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the gastroprotective effects of Nelumbinis Rhizomatis Nodus carbon dots (NRN-CDs) on ethanol-induced gastric ulcers in rats. Materials & methods: NRN-CDs synthesized and characterized by transmission electron microscopy, ultraviolet, fluorescence and Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and zeta potential analyzer. Their gastroprotective effects toward ethanol-induced gastric ulcers were evaluated in male Sprague-Dawley rats. Results: NRN-CDs showed an average diameter of 2.33 ± 0.42 nm and a lattice spacing of 0.29 nm. Pretreatment with NRN-CDs significantly decreased the ulcer index and attenuated the severity of gastric mucosal damage, indicating that NRN-CDs exerted potent gastric protective effect. Moreover, the gastroprotection effect was related to the regulation of oxidative stress and inflammatory factors. Conclusion: NRN-CDs could be developed as a potential drug for the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Juan Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Hu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiashu Wu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chaoyang District, Beijing, 100029, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
34
|
Hu J, Luo J, Zhang M, Wu J, Zhang Y, Kong H, Qu H, Cheng G, Zhao Y. Protective Effects of Radix Sophorae Flavescentis Carbonisata-Based Carbon Dots Against Ethanol-Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities. Int J Nanomedicine 2021; 16:2461-2475. [PMID: 33814910 PMCID: PMC8009542 DOI: 10.2147/ijn.s289515] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
AIM To explore the effects of Radix Sophorae Flavescentis carbonisata-based carbon dots (RSFC-CDs) on an ethanol-induced acute gastric ulcer rat model. METHODS The structure, optical properties, functional groups and elemental composition of RSFC-CDs synthesized by one-step pyrolysis were characterized. The gastric protective effects of RSFC-CDs were evaluated and confirmed by applying a rat model of ethanol-induced acute gastric ulcers. The underlying mechanisms were investigated through the nuclear factor-kappa B (NF-κB) signalling pathway and oxidative stress. RESULTS RSFC-CDs with a diameter ranging from 2-3 nm mainly showed gastric protective effects by reducing the levels of NF-κB, tumour necrosis factor-α (TNF-α), interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) to inhibit ethanol-induced inflammation and oxidative stress. CONCLUSION RSFC-CDs have anti-inflammatory and anti-oxidative effects, making them promising for application in ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Jie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276000, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
35
|
Qi Y, Ren W, Zhang H, Chen G, Huang W, Li X, He J, Zhao W. Optimization of Extraction and Purification of Polysaccharides from Veronicastrum axillare, and Evaluation of Their Biological Activities. Chem Biodivers 2021; 18:e2000864. [PMID: 33533083 DOI: 10.1002/cbdv.202000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Veronicastrum axillare polysaccharides (VAP) were isolated by cellulase-assisted digestion. The optimum conditions (2 % cellulase, 47 °C for 2.5 h, then, 95 °C for 2.5 h, pH 4.1, solid/liquid ratio 1 : 7.6) were identified by a combination of single factor optimization and response surface DOE (design of experiment) methods, and achieved a yield of 4.7 %. Treatment with 1 % TCA for 10 min, then, 2 % DEAE-cellulose removed protein and colored impurities. Purified VAP retained most of the radical-scavenging activities and GES-1 cell protection capability in vitro, indicating VAP were the key active components of V. axillare. Some molecular features were identified by FT-IR and NMR analyses. The molecular weight was estimated from DOSY NMR experiments to be around 21 kDa. There were 6.3 % uronic acid residues in the VAP. The constituent sugars after TFA hydrolysis were identified by HPLC to include glucose, arabinose, rhamnose, galactose, and xylose in a molar ratio of 405 : 259 : 82 : 42 : 1.
Collapse
Affiliation(s)
- Yijia Qi
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Weiming Ren
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Haixia Zhang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Gang Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5 A 1S6, Canada
| | - Weiyi Huang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Xuexia Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Jie He
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Weichun Zhao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| |
Collapse
|
36
|
Shi G, Wang D, Xue Z, Zhou X, Fang Y, Feng S, Zhao L. The amelioration of ulcerative colitis induced by Dinitrobenzenesulfonic acid with Radix Hedysari. J Food Biochem 2020; 44:e13421. [PMID: 32776340 DOI: 10.1111/jfbc.13421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease with an unknown precise etiology. This study proves that Radix Hedysari (RH) ameliorates UC. Four RH extracts were used to ameliorate UC induced by 2,4-Dinitrobenzenesulfonic acid by 7 days intervention in agreement to preliminary studies. Compared to treatment with RH extracts, the RH ethanol extract (EE) was found to be more effective in ameliorating UC. With EE, the DAI were significantly decreased. Macroscopic and histopathological assessments suggest that the colon mucosa was repaired, the organizational structure of the colon had been rebuilt. The levels of MPO, TNF-α, IL-1β, and MDA were significantly decreased (p < .01), the levels of T-SOD and CAT were significantly increased (p < .01). Moreover, the compounds in EE were analyzed by HPLC. The results show that EE can ameliorate UC, and its anti-inflammatory capability probably plays an important role. RH can act as a functional food and ameliorate UC. PRACTICAL APPLICATIONS: In this work, the ameliorative effect of RH on UC was evaluated from multiple angles. There are two practical applications of this work. On the one hand, a new approach to ameliorating UC is provided by this work. In addition, UC patients have a new option for improving their symptoms. On the other hand, this work also provides information on how best to process RH for therapeutic use. In addition, we can utilize some compounds of RH that were once considered useless and reduce the waste of natural resources.
Collapse
Affiliation(s)
- Gengen Shi
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xianglin Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Yaoyao Fang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
37
|
Xing M, Fu R, Liu Y, Wang P, Ma P, Zhu C, Fan D. Human-like collagen promotes the healing of acetic acid-induced gastric ulcers in rats by regulating NOS and growth factors. Food Funct 2020; 11:4123-4137. [PMID: 32347870 DOI: 10.1039/d0fo00288g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human-like collagen (HLC), the collagen produced using fermentation technology, has been demonstrated previously to promote wound healing. However, the healing property of HLC in gastric ulcers remains to be verified. In this study, we investigated the healing efficacy and healing mechanisms of HLC on gastric ulcers. To investigate whether HLC still has healing activity on gastric ulcers after gastric digestion, we simulated gastric digestion in vitro to obtain a human-like collagen digestion product (HLCP) and used it as the control drug. A chronic gastric ulcer model induced by 60% acetic acid in rats was used to evaluate the healing effect of gastric ulcers in this study. The results showed that oral administration of HLC or HLCP for 4 or 7 days promoted ulcer healing, which can be directly observed by significant reductions in ulcer area. The oral administration of HLC and HLCP significantly increased the protein expression of growth factors (EGF, HGF, VEGF, bFGF and TGF-β1) and the HGF receptor (HGFr), promoted collagen deposition, regulated the activity of NOS, and decreased pro-inflammatory cytokines (TNF-a, il-6, il-10) and endothelin-1 (ET-1) levels in gastric tissue. Moreover, cell experiments showed that the effects of HLC on cell proliferation and migration are mainly caused by its digestion products. These findings indicate that HLC may be used as a nutritional supplement or therapeutic drug to promote the healing of gastric ulcers.
Collapse
Affiliation(s)
- Mimi Xing
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen X, Ji J, Shi G, Xue Z, Zhou X, Zhao L, Feng S. Formononetin in Radix Hedysari extract-mediated green synthesis of gold nanoparticles for colorimetric detection of ferrous ions in tap water. RSC Adv 2020; 10:32897-32905. [PMID: 35516523 PMCID: PMC9056706 DOI: 10.1039/d0ra05660j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2021] [Accepted: 08/20/2020] [Indexed: 11/21/2022] Open
Abstract
This study linked natural plant materials and nanomaterials; reporting an environmentally friendly, non-toxic and efficient method for the green synthesis of gold nanoparticles (AuNPs) using an ethyl acetate extract of Radix Hedysari (EAR). The components of the extract were identified using HPLC and it was found that formononetin accounted for more than 90% of the total contents. We predicted that formononetin in EAR plays a crucial role in green synthesis. Thus, formononetin was used as a standard reductant to synthesize AuNPs, and the result confirmed our prediction. The synthetic mechanism was also discussed in detail in the article. Moreover, EAR–AuNPs realized the sensitive and selective colorimetric detection of ferrous ions (Fe2+) among other metal ions, and were applied to spiked tap water with a low detection limit of 1.5 μM in a wide range from 10 μM to 500 μM. EAR–AuNPs were green synthesized using Radix Hedysari extract for the first time and were successfully applied in real sample detection. AuNPs were synthesized using Radix Hedysari extract and used for the sensitive and selective detection of Fe2+.![]()
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiahui Ji
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Gengen Shi
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiyuan Xue
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xianglin Zhou
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou, 730030, P. R. China
| | - Shilan Feng
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|