1
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Huang C, Li J, Liu C, Zhang Y, Tang Q, Lv X, Ruan M, Deng K. Investigation of brain iron levels in Chinese patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1168845. [PMID: 37284016 PMCID: PMC10239950 DOI: 10.3389/fnagi.2023.1168845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction We aimed (i) to explore the diagnostic value of deep gray matter magnetic susceptibility in Alzheimer's disease (AD) in China and (ii) to analyze its correlation with neuropsychiatric scales. Moreover, we conducted subgroup analysis based on the presence of the APOE-ε4 gene to improve the diagnosis of AD. Methods From the prospective studies of the China Aging and Neurodegenerative Initiative (CANDI), a total of 93 subjects who could undergo complete quantitative magnetic susceptibility imaging and APOE-ε4 gene detection were selected. Differences in quantitative susceptibility mapping (QSM) values between and within groups, including AD patients, individuals with mild cognitive impairment (MCI), and healthy controls (HCs), both APOE-ε4 carriers and non-carriers, were analyzed. Results In primary analysis, the magnetic susceptibility values of the bilateral caudate nucleus and right putamen in the AD group and of the right caudate nucleus in the MCI group were significantly higher than those in the HCs group (P < 0.05). In APOE-ε4 non-carriers, there were significant differences in more regions between the AD, MCI, and HCs groups, such as the left putamen and the right globus pallidus (P < 0.05). In subgroup analysis, the correlation between QSM values in some brain regions and neuropsychiatric scales was even stronger. Discussion Exploration of the correlation between deep gray matter iron levels and AD may provide insight into the pathogenesis of AD and facilitate early diagnosis in elderly Chinese. Further subgroup analysis based on the presence of the APOE-ε4 gene may further improve the diagnostic efficiency and sensitivity.
Collapse
Affiliation(s)
- Chuanbin Huang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
- Fuyang Hospital of TCM, Fuyang, Anhui, China
| | - Jing Li
- Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Chang Liu
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | | | - Qiqiang Tang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Xinyi Lv
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Mengyue Ruan
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Kexue Deng
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
3
|
Bazala R, Zoppellaro G, Kletetschka G. Iron Level Changes in the Brain with Neurodegenerative Disease. BRAIN MULTIPHYSICS 2023. [DOI: 10.1016/j.brain.2023.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
4
|
Radiation as a Tool against Neurodegeneration-A Potential Treatment for Amyloidosis in the Central Nervous System. Int J Mol Sci 2022; 23:ijms232012265. [PMID: 36293118 PMCID: PMC9603404 DOI: 10.3390/ijms232012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Radiotherapy (RT) is a relatively safe and established treatment for cancer, where the goal is to kill tumoral cells with the lowest toxicity to healthy tissues. Using it for disorders involving cell loss is counterintuitive. However, ionizing radiation has a hormetic nature: it can have deleterious or beneficial effects depending on how it is applied. Current evidence indicates that radiation could be a promising treatment for neurodegenerative disorders involving protein misfolding and amyloidogenesis, such as Alzheimer's or Parkinson's diseases. Low-dose RT can trigger antioxidant, anti-inflammatory and tissue regeneration responses. RT has been used to treat peripheral amyloidosis, which is very similar to other neurodegenerative disorders from a molecular perspective. Ionizing radiation prevents amyloid formation and other hallmarks in cell cultures, animal models and pilot clinical trials. Although some hypotheses have been formulated, the mechanism of action of RT on systemic amyloid deposits is still unclear, and uncertainty remains regarding its impact in the central nervous system. However, new RT modalities such as low-dose RT, FLASH, proton therapy or nanoparticle-enhanced RT could increase biological effects while reducing toxicity. Current evidence indicates that the potential of RT to treat neurodegeneration should be further explored.
Collapse
|
5
|
Fei HX, Qian CF, Wu XM, Wei YH, Huang JY, Wei LH. Role of micronutrients in Alzheimer's disease: Review of available evidence. World J Clin Cases 2022; 10:7631-7641. [PMID: 36158513 PMCID: PMC9372870 DOI: 10.12998/wjcc.v10.i22.7631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders that have been studied for more than 100 years. Although an increased level of amyloid precursor protein is considered a key contributor to the development of AD, the exact pathogenic mechanism remains known. Multiple factors are related to AD, such as genetic factors, aging, lifestyle, and nutrients. Both epidemiological and clinical evidence has shown that the levels of micronutrients, such as copper, zinc, and iron, are closely related to the development of AD. In this review, we summarize the roles of eight micronutrients, including copper, zinc, iron, selenium, silicon, manganese, arsenic, and vitamin D in AD based on recently published studies.
Collapse
Affiliation(s)
- Hong-Xin Fei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Chao-Fan Qian
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Xiang-Mei Wu
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Hua Wei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Jin-Yu Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Li-Hua Wei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
6
|
Tran D, DiGiacomo P, Born DE, Georgiadis M, Zeineh M. Iron and Alzheimer's Disease: From Pathology to Imaging. Front Hum Neurosci 2022; 16:838692. [PMID: 35911597 PMCID: PMC9327617 DOI: 10.3389/fnhum.2022.838692] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of β-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While β-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with β-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dean Tran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Donald E. Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Scherlek AA, Kozberg MG, Nicoll JAR, Perosa V, Freeze WM, van der Weerd L, Bacskai BJ, Greenberg SM, Frosch MP, Boche D, van Veluw SJ. Histopathological correlates of haemorrhagic lesions on ex vivo magnetic resonance imaging in immunized Alzheimer's disease cases. Brain Commun 2022; 4:fcac021. [PMID: 35224489 PMCID: PMC8870423 DOI: 10.1093/braincomms/fcac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Haemorrhagic amyloid-related imaging abnormalities on MRI are frequently observed adverse events in the context of amyloid β immunotherapy trials in patients with Alzheimer's disease. The underlying histopathology and pathophysiological mechanisms of haemorrhagic amyloid-related imaging abnormalities remain largely unknown, although coexisting cerebral amyloid angiopathy may play a key role. Here, we used ex vivo MRI in cases that underwent amyloid β immunotherapy during life to screen for haemorrhagic lesions and assess underlying tissue and vascular alterations. We hypothesized that these lesions would be associated with severe cerebral amyloid angiopathy. Ten cases were selected from the long-term follow-up study of patients who enrolled in the first clinical trial of active amyloid β immunization with AN1792 for Alzheimer's disease. Eleven matched non-immunized Alzheimer's disease cases from an independent brain brank were used as 'controls'. Formalin-fixed occipital brain slices were imaged at 7 T MRI to screen for haemorrhagic lesions (i.e. microbleeds and cortical superficial siderosis). Samples with and without haemorrhagic lesions were cut and stained. Artificial intelligence-assisted quantification of amyloid β plaque area, cortical and leptomeningeal cerebral amyloid angiopathy area, the density of iron and calcium positive cells and reactive astrocytes and activated microglia was performed. On ex vivo MRI, cortical superficial siderosis was observed in 5/10 immunized Alzheimer's disease cases compared with 1/11 control Alzheimer's disease cases (κ = 0.5). On histopathology, these areas revealed iron and calcium positive deposits in the cortex. Within the immunized Alzheimer's disease group, areas with siderosis on MRI revealed greater leptomeningeal cerebral amyloid angiopathy and concentric splitting of the vessel walls compared with areas without siderosis. Moreover, greater density of iron-positive cells in the cortex was associated with lower amyloid β plaque area and a trend towards increased post-vaccination antibody titres. This work highlights the use of ex vivo MRI to investigate the neuropathological correlates of haemorrhagic lesions observed in the context of amyloid β immunotherapy. These findings suggest a possible role for cerebral amyloid angiopathy in the formation of haemorrhagic amyloid-related imaging abnormalities, awaiting confirmation in future studies that include brain tissue of patients who received passive immunotherapy against amyloid β with available in vivo MRI during life.
Collapse
Affiliation(s)
- Ashley A. Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Whitney M. Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J. Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Matthew P. Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Susanne J. van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Correspondence to: Susanne J. van Veluw MassGeneral Institute for Neurodegenerative Disease Massachusetts General Hospital 114 16th Street Charlestown, 02129 MA, USA E-mail:
| |
Collapse
|
8
|
The effect of beta-amyloid and tau protein aggregations on magnetic susceptibility of anterior hippocampal laminae in Alzheimer's diseases. Neuroimage 2021; 244:118584. [PMID: 34537383 DOI: 10.1016/j.neuroimage.2021.118584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported the changes of magnetic susceptibility induced by iron deposition in hippocampus of Alzheimer's disease (AD) brains. It is well-known that hippocampus is divided into well-defined laminar architecture, which, however, is difficult to be resolved with in-vivo MRI due to the limited imaging resolution. The present study aims to investigate layer-specific magnetic susceptibility in the hippocampus of AD patients using high-resolution ex-vivo MRI, and elucidate its relationship with beta amyloid (Aβ) and tau protein histology. We performed quantitative susceptibility mapping (QSM) and T2* mapping on postmortem anterior hippocampus samples from four AD, four Primary Age-Related Tauopathy (PART), and three control brains. We manually segmented each sample into seven layers, including four layers in the cornu ammonis1 (CA1) and three layers in the dentate gyrus (DG), and then evaluated AD-related alterations of susceptibility and T2* values and their correlations with Aβ and tau in each hippocampal layer. Specifically, we found (1) layer-specific variations of susceptibility and T2* measurements in all samples; (2) the heterogeneity of susceptibility were higher in all layers of AD patients compared with the age- and gender-matched PART cases while the heterogeneity of T2* values were lower in four layers of CA1; and (3) voxel-wise MRI-histological correlation revealed both susceptibility and T2* values in the stratum molecular (SM) and stratum lacunosum (SL) layers were correlated with the Aβ content in AD, while the T2* values in the stratum radiatum (SR) layer were correlated with the tau content in the PART but not AD. These findings suggest a selective effect of the Aβ- and tau-pathology on the susceptibility and T2* values in the different layers of anterior hippocampus. Particularly, the alterations of magnetic susceptibility in the SM and SL layers may be associated with Aβ aggregation, while those in the SR layermay reflect the age-related tau protein aggregation.
Collapse
|
9
|
Bossoni L, Hegeman-Kleinn I, van Duinen SG, Bulk M, Vroegindeweij LHP, Langendonk JG, Hirschler L, Webb A, van der Weerd L. Off-resonance saturation as an MRI method to quantify mineral- iron in the post-mortem brain. Magn Reson Med 2021; 87:1276-1288. [PMID: 34655092 PMCID: PMC9293166 DOI: 10.1002/mrm.29041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Purpose To employ an off‐resonance saturation method to measure the mineral‐iron pool in the postmortem brain, which is an endogenous contrast agent that can give information on cellular iron status. Methods An off‐resonance saturation acquisition protocol was implemented on a 7 Tesla preclinical scanner, and the contrast maps were fitted to an established analytical model. The method was validated by correlation and Bland‐Altman analysis on a ferritin‐containing phantom. Mineral‐iron maps were obtained from postmortem tissue of patients with neurological diseases characterized by brain iron accumulation, that is, Alzheimer disease, Huntington disease, and aceruloplasminemia, and validated with histology. Transverse relaxation rate and magnetic susceptibility values were used for comparison. Results In postmortem tissue, the mineral‐iron contrast colocalizes with histological iron staining in all the cases. Iron concentrations obtained via the off‐resonance saturation method are in agreement with literature. Conclusions Off‐resonance saturation is an effective way to detect iron in gray matter structures and partially mitigate for the presence of myelin. If a reference region with little iron is available in the tissue, the method can produce quantitative iron maps. This method is applicable in the study of diseases characterized by brain iron accumulation and can complement existing iron‐sensitive parametric methods.
Collapse
Affiliation(s)
- Lucia Bossoni
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lydiane Hirschler
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer's disease, from the UK. Sci Rep 2021; 11:9363. [PMID: 33931662 PMCID: PMC8087805 DOI: 10.1038/s41598-021-88725-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer's disease (AD) and pathologically-unremarkable brains (80-98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood-brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.
Collapse
|
11
|
Vroegindeweij LHP, Bossoni L, Boon AJW, Wilson JHP, Bulk M, Labra-Muñoz J, Huber M, Webb A, van der Weerd L, Langendonk JG. Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration. NEUROIMAGE-CLINICAL 2021; 30:102657. [PMID: 33839643 PMCID: PMC8055714 DOI: 10.1016/j.nicl.2021.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Ferrihydrite-iron is the most abundant iron form in the aceruloplasminemia brain. Iron concentrations over 1 mg/g are found in deep gray matter structures. The deep gray matter contains over three times more iron than the temporal cortex. Iron-sensitive MRI contrast is primarily driven by the amount of ferrihydrite-iron. R2* is more illustrative of the pattern of iron accumulation than QSM at 7 T. Aims Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 µg/g vs. 27 µg/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Lucia Bossoni
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Agnita J W Boon
- Department of Neurology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|