1
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
2
|
Zhi N, Chang X, Zha L, Zhang K, Wang J, Gui S. Platycodonis radix polysaccharides suppress progression of high-fat-induced obesity through modulation of intestinal microbiota and metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156653. [PMID: 40354675 DOI: 10.1016/j.phymed.2025.156653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/15/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Obesity is a prevalent chronic condition worldwide, posing a significant risk to public health. Polysaccharides derived from Platycodonis Radix (PR) have been identified as the primary bioactive compounds in combating obesity, although the underlying molecular mechanisms remain inadequately understood. PURPOSE The purpose of the research is to analyze the potential anti-obesity influnces within PR polysaccharides (PG: PG1 and PG2) by analyzing their impact on gut microbiota (GM) composition, SCFA and BA metabolism, and the regulation of associated gene and protein expression. STUDY DESIGN AND METHODS In this research, 7-week-old male C57BL/6 mice were assigned to a HFD or a control chow diet for 90 days to evaluate the therapeutic effects of PG intervention. Metagenomic analysis was performed to assess GM alterations, while GC-MS and LC-MS were used to quantify SCFA and BA concentrations in cecal contents, respectively. Furthermore, the effects of PG on SCFA- and BA-associated metabolic pathways were examined through qRT-PCR and WB. RESULTS PG1 demonstrated superior efficacy compared to PG2 in reducing HFD-induced obesity and associated metabolic disturbances. High-dose PG1 treatment effectively inhibited weight gain, dyslipidemia, inflammation, liver damage, and fat deposition caused by the HFD. Additionally, PG1 treatment primarily promoted the abundance of SCFA-producing bacteria, enhanced the expression of GPR41 and GPR43 genes, significantly elevated levels of GLP-1 and PYY, and improved circulating leptin and adiponectin levels. The intervention with PG1 notably enhanced the relative abundances of bacteria involved in the production of secondary BAs, such as Lachnospiraceae_NK4A136 and Eubacterium coprostanoligenes. This augmentation facilitated the transformation of primary BAs into secondary forms, diminished the relative expression of intestinal FXR and FGF15, and reduced FGFR4 levels. Consequently, this led to an upregulation of hepatic CYP7A1, accelerating liver cholesterol metabolism and the synthesis of new BAs. CONCLUSION Supplementation with PG1 protects mice from obesity induced by an HFD. The observed protective effects of PG1 appear to be primarily mediated through the activation of the GM-SCFA-GPR pathway and the inhibition of the GM-BA-FXR-FGF15 signaling pathway.
Collapse
Affiliation(s)
- Nannan Zhi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, PR China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, PR China.
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Kailun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, PR China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China.
| |
Collapse
|
3
|
Fabiano GA, Oliveira RPS, Rodrigues S, Santos BN, Venema K, Antunes AEC. Evidence of synbiotic potential of oat beverage enriched with inulin and fermented by L. rhamnosus LR B in a dynamic in vitro model of human colon. Food Res Int 2025; 211:116489. [PMID: 40356187 DOI: 10.1016/j.foodres.2025.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Fermented dairy products are known for their efficiency in delivering and protecting probiotic microorganisms. However, there is a growing demand for diversification of the market with plant-based products. The aim of this study was to develop an oat beverage enriched with inulin and fermented with Lacticaseibacillus rhamnosus LR B and evaluate its synbiotic effects in vitro. For this purpose, the validated dynamic colon model (the TNO Intestinal Model TIM-2) was used with focus on the composition of the gut microbiota and its production of metabolites to evaluate the functionality. The fermentation kinetics, sugars, organic acids and inulin dosage in the fermented oat beverage were also evaluated. The acidification rate was 16.91 10-3 pH units.min-1, reaching the final pH of 4.5 in 2.38 ± 0.05 h. Dosages of sucrose, glucose and lactic acid were 23.35 ± 0.45 g.L-1, 21.37 ± 0.77 g.L-1, 0.94 ± 0.05 g.L-1, respectively. After simulated in vitro digestion, the inulin concentration was partially preserved with 20.11 ± 0.21 maltose equivalent (μg.mL-1). The fermented and pre-digested oat beverage (with 7.71 ± 0.44 log CFU.mL-1) was fed into TIM-2, which was previously inoculated with feces from healthy adults. The analysis identified nine bacterial taxa that were significantly modulated compared to the standard ileal effluent medium (SIEM) control. An increase in relative abundance of Lactobacillus and Catenibacterium, and reduction in Citrobacter, Escherichia-Shigella, and Klebsiella was observed. In addition, the cumulative means of short-chain fatty acids (SCFAs) increased, especially for acetate and butyrate. These findings suggest that the developed oat beverage can positively influence the gut microbiota and its activity, highlighting possible health benefits.
Collapse
Affiliation(s)
- G A Fabiano
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R P S Oliveira
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Rodrigues
- Department of Food Engineering, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - B N Santos
- Department of Chemical Engineering, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - K Venema
- Maastricht University, Centre for Healthy Eating & Food Innovation (HEFI), Venlo, the Netherlands
| | - A E C Antunes
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
4
|
Wang Z, Cai Q, Liu L, Zhu Z. Psyllium husk powder enhances the management of type 2 diabetes by modulating gut microbiota and their metabolic products. Food Res Int 2025; 211:116393. [PMID: 40356108 DOI: 10.1016/j.foodres.2025.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by hyperglycemia and insulin resistance. Plantain shell powder (PHP) serves as a high-quality source of dietary fiber, widely utilized in food additives and pharmaceutical applications. In this study, we investigated the hypoglycemic activity and underlying mechanisms of PHP by examining its effects on intestinal microbiota and metabolism in T2DM mice induced by a high-fat diet and streptozotocin (STZ). Our findings indicate that PHP significantly enhances blood glucose homeostasis and insulin sensitivity, reduces organ damage, and regulates blood lipid levels as well as short-chain fatty acid concentrations; notably, higher doses of PHP yielded optimal results. In addition, PHP can regulate the ratio of Bacteroidota to Firmicutes and increase the relative abundance of beneficial bacteria such as Bacteroidales, Muribaculaceae, and Parabacteroides. Furthermore, PHP enhances the enrichment of key metabolic pathways, including α-linolenic acid metabolism, monobactam biosynthesis, and PPAR signaling pathways, thereby promoting the production of beneficial metabolites. Complex interactions exist among these beneficial bacteria and metabolic pathways that are associated with improved metabolic function, regulation of glucose homeostasis, enhancement of insulin sensitivity, and reduction of inflammation. Our study demonstrates that PHP can ameliorate T2DM by reversing alterations in gut microbiota and metabolic profiles caused by T2DM while promoting the regulation of beneficial microbial populations.
Collapse
Affiliation(s)
- Zhengyu Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Quantao Cai
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Liangzhong Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China.
| | - Zhe Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Wuhan Longfengyuan Biotechnology Co., Ltd., Wuhan 430040, China.
| |
Collapse
|
5
|
Martínez-Ruiz M, Robeson MS, Piccolo BD. Fueling the fire: colonocyte metabolism and its effect on the colonic epithelia. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40405692 DOI: 10.1080/10408398.2025.2507701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Colonic permeability is a major consequence of dysbiosis and diseases affecting the colon, further contributing to inflammation and extraintestinal diseases. Recent advances have shed light on the association between colonocyte energy utilization and the mechanisms that support epithelial function and homeostasis. One unifying theme is the induction of colonocyte hypoxia, driven by the aerobic oxidation of microbial-derived butyrate, as a critical factor promoting multiple cellular processes that support intestinal barrier function, mucus secretion, and the maintenance of synergistic luminal microbes. Particular attention will be focused on experimental evidence supporting beta-oxidation via activation of peroxisome proliferators-activated receptor-γ (PPAR) and upregulation and activation of processes that promote barrier function by hypoxia-inducible factor (HIF) signaling. Growing evidence suggests that colonocyte energy utilization is tightly regulated and switches between beta-oxidation of butyrate and anaerobic glycolysis, the latter being associated with several disease states. As most of the primary literature associated with colonocyte energy utilization has focused on adult models, evidence supporting butyrate oxidation in the neonatal gut is lacking. Thus, this review details the current state of knowledge linking colonocyte substrate utilization to mechanisms supporting gut health, but also highlights the counterindications of colonic butyrate availability and utilization in developmental periods.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Cao Q, Shen M, Li R, Liu Y, Zeng Z, Zhou J, Niu D, Zhang Q, Wang R, Yao J, Zhang G. Elucidating the specific mechanisms of the gut-brain axis: the short-chain fatty acids-microglia pathway. J Neuroinflammation 2025; 22:133. [PMID: 40400035 PMCID: PMC12093714 DOI: 10.1186/s12974-025-03454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
In recent years, the gut microbiota has been increasingly recognized for its influence on various central nervous system diseases mediated by microglia, yet the underlying mechanisms remain unclear. As key metabolites of the gut microbiota, short-chain fatty acids (SCFAs) have emerged as a focal point in understanding microglia-related interactions. In this review, we further refine the connection between the gut microbiota and microglia by introducing the concept of the "SCFAs-microglia" pathway. We summarize current knowledge on this pathway, recent discoveries regarding its role in neurological diseases, and potential pharmacological strategies targeting it. Finally, we outlined the current challenges and limitations in this field of research. We hope this review provides new insights into the role of the gut microbiota in neuroimmune regulation.
Collapse
Affiliation(s)
- Qingyu Cao
- College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Ruoqiu Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Liu
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Jidong Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Quancai Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China.
| | - Guimin Zhang
- College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China.
| |
Collapse
|
7
|
Hossain MM, Tovar J, Cloetens L, Geraldi MV, Venuti C, Nilsson A. Oat beta-glucans consumed at breakfast improve glucose tolerance acutely and after a subsequent lunch - a randomized dose-response study in healthy young adults. Food Funct 2025; 16:4161-4171. [PMID: 40326558 DOI: 10.1039/d5fo00353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Oat beta-glucans (OBGs) lower postprandial blood glucose by increasing gastrointestinal viscosity, delaying gastric emptying, and slowing glucose absorption. While the European Food Safety Authority (EFSA) recommends a minimum intake of 4 g of OBGs per 30 g of available carbohydrates (avCHO) for a significant reduction in glycaemic response, this poses formulation challenges. This study investigated the effects of a commercially available OBG ingredient on postprandial glycemia and appetite sensations immediately after ingestion and following a standardized lunch 3.5 hours later, also exploring whether doses below 4 g of OBGs per 30 g of avCHO could be effective. Nineteen healthy subjects consumed test drinks containing 0 g (Ref), 2 g (BG2), 3 g (BG3), or 4 g (BG4) of OBGs, each providing 30 g of avCHO, in a crossover study. BG2 and BG4 reduced the incremental glucose peak (iPeak) compared to Ref (P < 0.05), with BG3 showing a trend (P = 0.09). BG4 reduced an early glucose incremental area under the curve (iAUC 0-60 min) and improved the post-lunch glycaemic response compared to Ref (P < 0.05). Insulin iPeaks and iAUC (0-120 min) were lower for BG3 and BG4 (P < 0.05). BG4 enhanced satiety and reduced hunger throughout the experimental period (P < 0.05). Doses below 4 g of OBGs per 30 g of avCHO improved postprandial glycemia and appetite, and OBG intake at breakfast enhanced post-lunch glycaemic regulation, suggesting that a lower threshold may be effective in blood glucose management and appetite control.
Collapse
Affiliation(s)
- Mohammad Mukul Hossain
- Department of Process and Life Science Engineering, Division of Food and Pharma, Lund University, Lund, Sweden.
| | - Juscelino Tovar
- Department of Process and Life Science Engineering, Division of Food and Pharma, Lund University, Lund, Sweden.
| | - Lieselotte Cloetens
- Division of Pure and Applied Biochemistry, Lund University, P.O. Box 124, SE- 22100, Lund, Sweden
| | - Marina Vilar Geraldi
- Department of Process and Life Science Engineering, Division of Food and Pharma, Lund University, Lund, Sweden.
| | - Chiara Venuti
- Department of Process and Life Science Engineering, Division of Food and Pharma, Lund University, Lund, Sweden.
| | - Anne Nilsson
- Department of Process and Life Science Engineering, Division of Food and Pharma, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Shimokawa C, Mizutani W, Motegi H, Gokan N, Tomita J, Hisaeda H. Prebiotic Effects of Insoluble Konjac Glucomannan Derived from Edible "Konnyaku" on Weight Control. Microorganisms 2025; 13:877. [PMID: 40284712 PMCID: PMC12029870 DOI: 10.3390/microorganisms13040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Obesity is a major global health issue, and novel dietary approaches are needed for prevention and management. This study investigates the effect of insoluble konjac glucomannan (iKGM) derived from edible konnyaku, a traditional Japanese food, on weight gain suppression in mice. Mice treated with iKGM showed increased fecal volume, reduced food intake, and suppressed weight gain (Day 21; p < 0.01). This weight-suppression effect was prebiotic rather than physical properties of iKGM, as antibiotic treatment abolished the weight-suppressing effect despite increased fecal volume. iKGM treatment altered the gut microbiota, notably increasing Akkermansia muciniphila (Day 21; p < 0.01), a bacterium associated with weight loss, along with elevated levels of short-chain fatty acids (SCFAs) such as butyrate and propionate (Day 21; p < 0.01). Furthermore, iKGM-induced weight suppression was linked to elevated leptin levels (Day 21; p < 0.01), an appetite suppressant induced by SCFAs. These results suggest that iKGM modulates gut microbiota, increases A. muciniphila, induces leptin production, and reduces food intake, inhibiting weight gain. This study indicates that iKGM may represent a promising approach for obesity prevention through gut microbiota modulation. Future research should investigate the mechanisms of iKGM's effects on microbiota and explore its long-term safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku 162-8640, Tokyo, Japan;
| | - Wakana Mizutani
- Department of Parasitology, Graduate School of Medical Science, Gunma University, 3-39-15 Showa, Maebashi 371-8511, Gunma, Japan;
| | - Haruhisa Motegi
- ORIHIRO Plantdew Co., Ltd., 613 Shimooshima-machi, Takasaki 370-0886, Gunma, Japan; (H.M.); (N.G.); (J.T.)
| | - Naomi Gokan
- ORIHIRO Plantdew Co., Ltd., 613 Shimooshima-machi, Takasaki 370-0886, Gunma, Japan; (H.M.); (N.G.); (J.T.)
| | - Junichi Tomita
- ORIHIRO Plantdew Co., Ltd., 613 Shimooshima-machi, Takasaki 370-0886, Gunma, Japan; (H.M.); (N.G.); (J.T.)
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku 162-8640, Tokyo, Japan;
| |
Collapse
|
9
|
Wang S, Lin H, Jia X, Lin Y, Hu C, Li M, Xu Y, Xu M, Zheng J, Zhao X, Li Y, Chen L, Zeng T, Hu R, Ye Z, Shi L, Su Q, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Qin G, Wan Q, Chen G, Dai M, Zhang D, Qiu B, Zhu X, Liu R, Wang X, Tang X, Gao Z, Shen F, Gu X, Luo Z, Qin Y, Chen L, Hou X, Huo Y, Li Q, Wang G, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Zhao J, Mu Y, Xu G, Lai S, Li D, Ning G, Wang W, Bi Y, Lu J. Circulating short-chain and branched short-chain fatty acids and the risk of incident type 2 diabetes: findings from the 4C study. LIFE METABOLISM 2025; 4:loaf001. [PMID: 40078932 PMCID: PMC11897982 DOI: 10.1093/lifemeta/loaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
Previous studies suggested that fecal short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) are associated with glucose regulation. However, the potential relationship between circulating SCFAs and BCFAs with incident diabetes risk in both men and women remains unidentified in prospective cohort studies. In this study, we examined a panel of nine serum SCFAs and BCFAs in 3414 subjects with incident diabetes, and matched normoglycemic controls from the China Cardiometabolic Disease and Cancer Cohort study. In fully adjusted conditional logistic regression models, total SCFAs, total BCFAs, and isovaleric acid were significantly associated with incident type 2 diabetes mellitus (T2DM) (P < 0.05). Interestingly, gender-specific analysis showed that per standard deviation (SD) increment of SCFAs were positively associated with incident T2DM among women, with the odds ratio (95% confidence interval) of 1.16 (1.05-1.29) for total SCFAs and 1.18 (1.07-1.31) for propionate, respectively (P < 0.05, false discovery rate (FDR) < 0.05). No significant associations were observed in men. A significant interaction was detected between men and women for propionate (P interaction < 0.001, FDR < 0.01). After further adjustment of insulin measurements, the associations of serum propionate with diabetes remained significant (P < 0.05, FDR < 0.05). Meanwhile, the associations of total BCFAs and isovaleric acid with diabetes were partially mediated by triglycerides, insulin resistance, and β-cell function in mediation analysis. These findings, for the first time in a large prospective cohort, provide evidence for an association between circulating SCFAs and BCFAs with T2DM risk, and support the potential role of circulating propionate with gender disparities in the early pathogenesis of diabetes.
Collapse
Affiliation(s)
- Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiting Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanli Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lulu Chen
- Department of Endocrine and Metabolic Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tianshu Zeng
- Department of Endocrine and Metabolic Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Lixin Shi
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China
| | - Qing Su
- Department of Endocrine and Metabolic Diseases, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Yu
- Department of Endocrine and Metabolic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Yan
- Department of Endocrine and Metabolic Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guijun Qin
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Wan
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gang Chen
- Department of Endocrine and Metabolic Diseases, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350003, China
| | - Meng Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Di Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bihan Qiu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xulei Tang
- Department of Endocrine and Metabolic Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhengnan Gao
- Department of Endocrine and Metabolic Diseases, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zuojie Luo
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yingfen Qin
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Chen
- Department of Endocrine and Metabolic Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinguo Hou
- Department of Endocrine and Metabolic Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yanan Huo
- Department of Endocrine and Metabolic Diseases, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiang Li
- Department of Endocrine and Metabolic Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guixia Wang
- Department of Endocrine and Metabolic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yinfei Zhang
- Department of Endocrine and Metabolic Diseases, Central Hospital of Shanghai Jiading District, Shanghai 201800, China
| | - Chao Liu
- Department of Endocrine and Metabolic Diseases, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu 210028, China
| | - Youmin Wang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Shengli Wu
- Department of Endocrine and Metabolic Diseases, Karamay Municipal People’s Hospital, Karamay, Xinjiang 834000, China
| | - Tao Yang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huacong Deng
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiajun Zhao
- Department of Endocrine and Metabolic Diseases, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yiming Mu
- Department of Endocrine and Metabolic Diseases, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shenghan Lai
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Herich R, Szabóová R, Karaffová V, Racines MP, Šefcová MA, Larrea-Álvarez M. A Narrative Review on the Impact of Probiotic Supplementation on Muscle Development, Metabolic Regulation, and Fiber Traits Related to Meat Quality in Broiler Chickens. Microorganisms 2025; 13:784. [PMID: 40284621 PMCID: PMC12029878 DOI: 10.3390/microorganisms13040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Public concern over drug resistance has led to governmental regulations banning the use of antibiotics as growth promoters, stimulating interest in developing complementary strategies to maintain animal production, mitigate infections, and enhance muscle characteristics and quality parameters, especially in meat-producing animals. Probiotics are recognized as a potential strategy for improving growth, primarily by promoting intestinal homeostasis. These microorganisms are suggested to modulate gut microbiota, preserving their ecosystem and influencing secondary metabolite production, which can directly or indirectly regulate skeletal muscle metabolism by influencing the expression of key muscle-related genes and the activity of various signaling factors. Several studies have documented the potential benefits of various strains of Bacillus, Enterococcus, and members of the Lactobacillaceae family on muscle characteristics. These studies have shown that probiotics not only modulated myogenic factors but also influenced proteins and enzymes involved in signaling pathways related to carbon metabolism, inflammatory response, mitochondrial dynamics, and antioxidant activity. These effects have been associated with improvements in meat quality parameters and enhanced growth performance. This manuscript seeks to present a brief overview of the impact of probiotic supplementation on muscle health and the quality of meat in broiler chickens.
Collapse
Affiliation(s)
- Robert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia (V.K.)
| | - Renáta Szabóová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia (V.K.)
| | - Maria Paula Racines
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Miroslava Anna Šefcová
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
11
|
Münte E, Hartmann P. The Role of Short-Chain Fatty Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease and Other Metabolic Diseases. Biomolecules 2025; 15:469. [PMID: 40305160 PMCID: PMC12025087 DOI: 10.3390/biom15040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
With its increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major global public health concern over the past few decades. Growing evidence has proposed the microbiota-derived metabolites short-chain fatty acids (SCFAs) as a potential factor in the pathophysiology of MASLD and related metabolic conditions, such as obesity and type 2 diabetes mellitus (T2DM). By influencing key pathways involved in energy homeostasis, insulin sensitivity, and inflammation, SCFAs play an important role in gut microbiota composition, intestinal barrier function, immune modulation, and direct metabolic signaling. Furthermore, recent animal and human studies on therapeutic strategies targeting SCFAs demonstrate their potential for treating these metabolic disorders.
Collapse
Affiliation(s)
- Eliane Münte
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| |
Collapse
|
12
|
Gawey BJ, Mars RA, Kashyap PC. The role of the gut microbiome in disorders of gut-brain interaction. FEBS J 2025; 292:1357-1377. [PMID: 38922780 PMCID: PMC11664017 DOI: 10.1111/febs.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Disorders of Gut-Brain Interaction (DGBI) are widely prevalent and commonly encountered in gastroenterology practice. While several peripheral and central mechanisms have been implicated in the pathogenesis of DGBI, a recent body of work suggests an important role for the gut microbiome. In this review, we highlight how gut microbiota and their metabolites affect physiologic changes underlying symptoms in DGBI, with a particular focus on their mechanistic influence on GI transit, visceral sensitivity, intestinal barrier function and secretion, and CNS processing. This review emphasizes the complexity of local and distant effects of microbial metabolites on physiological function, influenced by factors such as metabolite concentration, duration of metabolite exposure, receptor location, host genetics, and underlying disease state. Large-scale in vitro work has elucidated interactions between host receptors and the microbial metabolome but there is a need for future research to integrate such preclinical findings with clinical studies. The development of novel, targeted therapeutic strategies for DGBI hinges on a deeper understanding of these metabolite-host interactions, offering exciting possibilities for the future of treatment of DGBI.
Collapse
Affiliation(s)
- Brent J Gawey
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben A Mars
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Xie C, Qi C, Zhang J, Wang W, Meng X, Aikepaer A, Lin Y, Su C, Liu Y, Feng X, Gao H. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem Pharmacol 2025; 233:116791. [PMID: 39894305 DOI: 10.1016/j.bcp.2025.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Evidence is accumulating that short-chain fatty acids (SCFAs) produced by the gut microbiota play pivotal roles in host metabolism. They contribute to the metabolic regulation and energy homeostasis of the host not only by preserving intestinal health and serving as energy substrates but also by entering the systemic circulation as signaling molecules, affecting the gut-brain axis and neuroendocrine-immune network. This review critically summarizes the current knowledge regarding the effects of SCFAs in the fine-tuning of the pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance, with an emphasis on the complex relationships among diet, microbiota-derived metabolites, T2DM inflammation, glucose metabolism, and the underlying mechanisms involved. We hold an optimistic view that elucidating how diet can influence gut bacterial composition and activity, SCFA production, and metabolic functions in the host will advance our understanding of the mutual interactions of the intestinal microbiota with other metabolically active organs, and may pave the way for harnessing these pathways to develop novel personalized therapeutics for glucometabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Cong Qi
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Jianwen Zhang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Wei Wang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Xing Meng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Aifeila Aikepaer
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Yuhan Lin
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Chang Su
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124 China
| | - Yunlu Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Xingzhong Feng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| | - Huijuan Gao
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| |
Collapse
|
14
|
Chao J, Coleman RA, Keating DJ, Martin AM. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology 2025; 166:bqaf004. [PMID: 40037297 PMCID: PMC11879239 DOI: 10.1210/endocr/bqaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 03/06/2025]
Abstract
The gut microbiome, comprising bacteria, viruses, fungi, and bacteriophages, is one of the largest microbial ecosystems in the human body and plays a crucial role in various physiological processes. This review explores the interaction between the gut microbiome and enteroendocrine cells (EECs), specialized hormone-secreting cells within the intestinal epithelium. EECs, which constitute less than 1% of intestinal epithelial cells, are key regulators of gut-brain communication, energy metabolism, gut motility, and satiety. Recent evidence shows that gut microbiota directly influence EEC function, maturation, and hormone secretion. For instance, commensal bacteria regulate the production of hormones like glucagon-like peptide 1 and peptide YY by modulating gene expression and vesicle cycling in EE cells. Additionally, metabolites such as short-chain fatty acids, derived from microbial fermentation, play a central role in regulating EEC signaling pathways that affect metabolism, gut motility, and immune responses. Furthermore, the interplay between gut microbiota, EECs, and metabolic diseases, such as obesity and diabetes, is examined, emphasizing the microbiome's dual role in promoting health and contributing to disease states. This intricate relationship between the gut microbiome and EECs offers new insights into potential therapeutic strategies for metabolic and gut disorders.
Collapse
Affiliation(s)
- Jessica Chao
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Rosemary A Coleman
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Damien J Keating
- Gut Sensory Systems Group, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Alyce M Martin
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
15
|
Shallangwa SM, Ross AW, Morgan PJ. Single, but not mixed dietary fibers suppress body weight gain and adiposity in high fat-fed mice. Front Microbiol 2025; 16:1544433. [PMID: 40012787 PMCID: PMC11861375 DOI: 10.3389/fmicb.2025.1544433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025] Open
Abstract
Dietary fiber can suppress excess adipose tissue and weight gain in rodents and humans when fed high fat diets. The gut microbiome is thought to have a key role, although exactly how remains unclear. In a tightly controlled murine study, we explored how different types of dietary fiber and doses affect the gut microbiota and gut epithelial gene expression. We show that 10% pectin and 10% FOS suppress high fat diet (HFD)-induced weight gain, effects not seen at 2% doses. Furthermore, 2 and 10% mixtures of dietary fiber were also without effect. Each fiber treatment stimulated a distinct gut microbiota profile at the family and operational taxonomic unit (OTU) level. Mechanistically it is likely that the single 10% fiber dose shifted selected bacteria above some threshold abundance, required to suppress body weight, which was not achieved by the 10% Mix, composed of 4 fibers each at 2.5%. Plasma levels of the gut hormone PYY were elevated by 10% pectin and FOS, but not 10% mixed fibers, and similarly RNA seq revealed some distinct effects of the 10% single fibers on gut epithelial gene expression. These data show how the ability of dietary fiber to suppress HFD-induced weight gain is dependent upon both fiber type and dose. It also shows that the microbial response to dietary fiber is distinct and that there is not a single microbial response associated with the inhibition of adiposity and weight gain. PYY seems key to the latter response, although the role of other factors such as Reg3γ and CCK needs to be explored.
Collapse
Affiliation(s)
| | | | - Peter J. Morgan
- Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
16
|
Zhao C, Pan J, Wang Y, Zhao J, Huang J. Differential Analysis of Fecal SCFAs and Their Contribution to Adipogenesis in UCP1 Knock-In Pigs. Vet Sci 2025; 12:102. [PMID: 40005862 PMCID: PMC11860427 DOI: 10.3390/vetsci12020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the changes in fecal short-chain fatty acids (SCFAs) content in UCP1 knock-in pigs (KI pigs) and their effect on adipogenesis. Fecal samples from five 6-month-old wild-type (WT) and KI pigs were collected for targeted metabolomics and 16s rRNA sequencing analyses to identify differences in SCFAs and gut microbiota that may contribute to regulating fat deposition in pigs. The metabolome of pig fecal samples targeted for an analysis of SCFAs identified seven SCFAs, with caproic acid (except isovaleric acid) being the significantly different one. The results of the fecal 16s rRNA analysis demonstrated a notable reduction in the abundance of Streptococcus spp. in the KI pigs in comparison to the WT pigs, with a statistically significant difference. Correlation analyses demonstrated a statistically significant positive correlation between the abundance of Streptococcus spp. and SCFAs, as well as pig body weight and fatness. It was postulated that the reduction in SCFAs in the intestinal tracts of KI pigs may be associated with a reduction in Streptococcus spp. abundance. Compared to WT pigs, the concentration of fecal SCFAs in KI pigs was significantly reduced, which may be related to the decreased abundance of Streptococcus. The in vitro experiments showed that caproic acid could significantly enhance the differentiation efficiency of porcine SVF cells into mature adipocytes by activating the FFAR4 gene.
Collapse
Affiliation(s)
- Chengyu Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (Y.W.)
| | - Jianfei Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (Y.W.)
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (Y.W.)
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jiaojiao Huang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
17
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
18
|
Xi Y, Wang Z, Wei Y, Xiao N, Duan L, Zhao T, Zhang X, Zhang L, Wang J, Li Z, Qin D. Gut Microbiota and Osteoarthritis: From Pathogenesis to Novel Therapeutic Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:43-66. [PMID: 39880660 DOI: 10.1142/s0192415x2550003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease, characterized by cartilage damage, synovial inflammation, subchondral bone sclerosis, marginal bone loss, and osteophyte development. Clinical manifestations include inflammatory joint pain, swelling, osteophytes, and limitation of motion. The pathogenesis of osteoarthritis has not yet been fully uncovered. With ongoing research, however, it has been gradually determined that OA is not caused solely by mechanical injury or aging, but rather involves chronic low-grade inflammation, metabolic imbalances, dysfunctional adaptive immunity, and alterations in central pain processing centers. The main risk factors for OA include obesity, age, gender, genetics, and sports injuries. In recent years, extensive research on gut microbiota has revealed that gut dysbiosis is associated with some common risk factors for OA, and that it may intervene in its pathogenesis through both direct and indirect mechanisms. Therefore, gut flora imbalance as a pathogenic factor in OA has become a hotspot topic of research, with potential therapeutic connotations. In this paper, we review the role of the gut microbiota in the pathogenesis of OA, describe its relationship with common OA risk factors, and address candidate gut microbiota markers for OA diagnosis. In addition, with focus on OA therapies, we discuss the effects of direct and indirect interventions targeting the gut microbiota, as well as the impact of gut bacteria on the efficacy of OA drugs.
Collapse
Affiliation(s)
- Yujiang Xi
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- United Graduate School, China Academy of Chinese Medical Sciences, Suzhou Jiangsu 215000, P. R. China
| | - Zhifeng Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Li Duan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Liping Zhang
- Southern Central Hospital of Yunnan Province, Mengzi Honghe 661100, P. R. China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Dongdong Qin
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| |
Collapse
|
19
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
20
|
Masete KV, Günzel D, Schulzke JD, Epple HJ, Hering NA. Matrix-free human 2D organoids recapitulate duodenal barrier and transport properties. BMC Biol 2025; 23:2. [PMID: 39757172 DOI: 10.1186/s12915-024-02105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Traditionally, transformed cell line monolayers have been the standard model for studying epithelial barrier and transport function. Recently, intestinal organoids were proposed as superior in recapitulating the intestine. Typically, 3D organoids are digested and seeded as monolayers on gelatinous matrix pre-coated surfaces for anchorage. As this coat could potentially act as a diffusion barrier, we aimed to generate robust human duodenum-derived organoid monolayers that do not need a gelatinous matrix for anchorage to improve upon existing models to study epithelial transport and barrier function. RESULTS We characterized these monolayers phenotypically regarding polarization, tight junction formation and cellular composition, and functionally regarding uptake of nutrients, ion transport and cytokine-induced barrier dysfunction. The organoid monolayers recapitulated the duodenum phenotypically as well as functionally regarding glucose and short-chain fatty acid uptake. Tumour necrosis factor-alpha induced paracellular transport of 4-kDa Dextran and transcytosis of 44-kDa horseradish peroxidase. Notably, forskolin-stimulated chloride secretion was consistently lower when organoid monolayers were seeded on a layer of basement membrane extract (BME). CONCLUSIONS BME-free organoid monolayers represent an improved model for studying transcytotic, paracellular but especially transcellular transport. As BME is extracted from mice, our model furthers efforts to make organoid culture more animal-free.
Collapse
Affiliation(s)
- Kopano Valerie Masete
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Hans-Jörg Epple
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Antibiotic Stewardship Team, Medical Directorate, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Nina A Hering
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.
| |
Collapse
|
21
|
White AC, Krout IN, Mouhi S, Chang J, Kelly SD, Caudle WM, Sampson TR. The pyrethroid insecticide deltamethrin disrupts neuropeptide and monoamine signaling pathways in the gastrointestinal tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628386. [PMID: 39763966 PMCID: PMC11702531 DOI: 10.1101/2024.12.14.628386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants. One such group of toxicants are pyrethroids, a class of prevalent insecticides used residentially and agriculturally. Pyrethroids agonize voltage-gated sodium channels (VGSCs), inducing neuronal excitotoxicity, and affect the function of monoamine-producing neurons. Given their anatomical location at the interface with the environment and their expression of VGSCs, EECs likely represent a vulnerable cell-type to oral pyrethroid exposure. In this study, we used the EEC cell line, STC-1 cells, to evaluate the effects of the common pyrethroid deltamethrin on the functional status of EECs. We find that deltamethrin impacts both expression of serotonergic pathways and inhibits the adrenergic-evoked release of an EEC hormone, GLP-1, in vitro. In a mouse model of oral exposure, we found that deltamethrin induced an acute, yet transient, loss of intestinal motility, in both fed and fasted conditions. This constipation phenotype was accompanied by a significant decrease in peripheral serotonin production and an inhibition of nutrient-evoked intestinal hormone release. Together, these data demonstrate that deltamethrin alters monoaminergic signaling pathways in EECs and regulates intestinal motility. This work demonstrates a mechanistic link between pyrethroid exposure and intestinal impacts relevant to pyrethroid-associated diseases, including inflammatory bowel disease, neurodegenerative disease, and metabolic disorders.
Collapse
Affiliation(s)
- Alexandria C. White
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| | - Ian N. Krout
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| | - Sabra Mouhi
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - Jianjun Chang
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - Sean D. Kelly
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - W. Michael Caudle
- Gangarosa Dept of Environmental Health, Rollins School of Public Health; Emory University; Atlanta GA 30322
| | - Timothy R. Sampson
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| |
Collapse
|
22
|
Nechalová L, Bielik V, Hric I, Babicová M, Baranovičová E, Grendár M, Koška J, Penesová A. Gut microbiota and metabolic responses to a 12-week caloric restriction combined with strength and HIIT training in patients with obesity: a randomized trial. BMC Sports Sci Med Rehabil 2024; 16:239. [PMID: 39639405 PMCID: PMC11619444 DOI: 10.1186/s13102-024-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Nowadays, obesity has become a major health issue. In addition to negatively affecting body composition and metabolic health, recent evidence shows unfavorable shifts in gut microbiota in individuals with obesity. However, the effects of weight loss on gut microbes and metabolites remain controversial. Therefore, the purpose of this study was to investigate the effects of a 12-week program on gut microbiota and metabolic health in patients with obesity. METHODS We conducted a controlled trial in 23 male and female patients with obesity. Twelve participants completed a 12-week program of caloric restriction combined with strength and HIIT training (INT, pre-BMI 37.33 ± 6.57 kg/m2), and eleven participants were designated as non-intervention controls (pre-BMI 38.65 ± 8.07 kg/m2). Metagenomic sequencing of the V3-V4 region of the 16S rDNA gene from fecal samples allowed for gut microbiota classification. Nuclear magnetic resonance spectroscopy characterized selected serum and fecal metabolite concentrations. RESULTS Within INT, we observed a significant improvement in body composition; a significant decrease in liver enzymes (AST, ALT, and GMT); a significant increase in the relative abundance of the commensal bacteria (e.g., Akkermansia muciniphila, Parabacteroides merdae, and Phocaeicola vulgatus); and a significant decrease in the relative abundance of SCFA-producing bacteria (e.g., the genera Butyrivibrio, Coprococcus, and Blautia). In addition, significant correlations were found between gut microbes, body composition, metabolic health biomarkers, and SCFAs. Notably, the Random Forest Machine Learning analysis identified predictors (Butyrivibrio fibrisolvens, Blautia caecimuris, Coprococcus comes, and waist circumference) with a moderate ability to discriminate between INT subjects pre- and post-intervention. CONCLUSIONS Our results indicate that a 12-week caloric restriction combined with strength and HIIT training positively influences body composition, metabolic health biomarkers, gut microbiota, and microbial metabolites, demonstrating significant correlations among these variables. We observed a significant increase in the relative abundance of bacteria linked to obesity, e.g., Akkermansia muciniphila. Additionally, our study contributes to the ongoing debate about the role of SCFAs in obesity, as we observed a significant decrease in SCFA producers after a 12-week program. TRIAL REGISTRATION The trial was registered on [05/12/2014] with ClinicalTrials.gov (No: NCT02325804).
Collapse
Affiliation(s)
- Libuša Nechalová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia.
| | - Ivan Hric
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Miriam Babicová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Marián Grendár
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Juraj Koška
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Adela Penesová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| |
Collapse
|
23
|
Sharma P, Sharma RK, Gaur K. Understanding the impact of diabetes on bone health: A clinical review. Metabol Open 2024; 24:100330. [PMID: 39606009 PMCID: PMC11600011 DOI: 10.1016/j.metop.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetic bone disease, a form of secondary osteoporosis, is characterized by weakened bones and an increased risk of fractures, especially in patients with type 2 diabetes (T2D). This review explores the key mechanisms driving this condition, including hyperglycemia, insulin resistance, advanced glycation end products (AGEs), and proinflammatory cytokines, all of which disturb normal bone turnover by disrupting the functions of osteoblasts and osteoclasts. We examine the roles of bone turnover and mineralization, as well as how microvascular complications affect bone microarchitecture. Additionally, the influence of gut hormones, such as GLP-1 and GIP, and gut microbiota, particularly species like Akkermansia muciniphila, on the gut-bone axis is discussed, as these factors play a role in regulating bone density and structure. While T2D patients may show normal or even elevated bone mineral density (BMD), the underlying quality of bone is often compromised, leading to increased fragility. This review integrates current knowledge on the molecular, hormonal, and microbial interactions contributing to diabetic bone disease. By highlighting these pathways, we aim to offer insights into potential therapeutic strategies and inform future research aimed at improving the diagnosis, treatment, and overall management of this condition.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
| | - Rahul Kumar Sharma
- Aryakul College of Pharmacy & Research Sitapur, Village- Jajjaur, Post- Manawa, (Near Krishi Vigyan Kendra Sitapur) Sidhauli, Dist- Sitapur- 261303 U.P, India
| | - Khushboo Gaur
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
| |
Collapse
|
24
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
25
|
Feng M, Zou Z, Shou P, Peng W, Liu M, Li X. Gut microbiota and Parkinson's disease: potential links and the role of fecal microbiota transplantation. Front Aging Neurosci 2024; 16:1479343. [PMID: 39679259 PMCID: PMC11638248 DOI: 10.3389/fnagi.2024.1479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and seriously affects the quality of life of elderly patients. PD is characterized by the loss of dopaminergic neurons in the substantia nigra as well as abnormal accumulation of α-synuclein in neurons. Recent research has deepened our understanding of the gut microbiota, revealing that it participates in the pathological process of PD through the gut-brain axis, suggesting that the gut may be the source of PD. Therefore, studying the relationship between gut microbiota and PD is crucial for improving our understanding of the disease's prevention, diagnosis, and treatment. In this review, we first describe the bidirectional regulation of the gut-brain axis by the gut microbiota and the mechanisms underlying the involvement of gut microbiota and their metabolites in PD. We then summarize the different species of gut microbiota found in patients with PD and their correlations with clinical symptoms. Finally, we review the most comprehensive animal and human studies on treating PD through fecal microbiota transplantation (FMT), discussing the challenges and considerations associated with this treatment approach.
Collapse
Affiliation(s)
- Maosen Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pingping Shou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Peng
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
26
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024; 15:11365-11382. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
27
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
28
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
29
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
30
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
31
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Villegas-Ochoa MA, Robles-Sánchez RM, Ayala-Zavala JF, Viuda-Martos M, González-Aguilar GA. Consumption of Plant-Derived Phenolic Acids Modulates Hunger and Satiety Responses Due to Chemical Interactions with Enteroendocrine Mediators. Foods 2024; 13:3640. [PMID: 39594055 PMCID: PMC11593637 DOI: 10.3390/foods13223640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Energy-dense foods are commonly rich in fat and simple sugars and poor in dietary fiber and micronutrients; regularly consuming them decreases the concentration and/or effect of anorexigenic hormones and may increase that of orexigenic ones, thereby decreasing satiety. In contrast, plant-derived phenolic-rich foods exert positive effects on satiety. In silico, in vitro, and in vivo investigations on some of most representative phenolic acids like chlorogenic acid (CGA), gallic acid (GA), ferulic acid (FA), and protocatechuic acid (PCA) have shown that they are able to modulate various hunger and satiety processes; however, there are few studies that show how their chemical structure contributes to achieve such effects. The objective of this review is to summarize how these phenolic acids can favorably modulate hormones and other satiety mediators, with emphasis on the chemical interactions exerted between the core of these compounds and their biological targets. The evidence suggests that they form interactions with certain hormones, their receptors, and/or enzymes involved in regulating hunger and satiety, which are attributed to their chemical structure (such as the position of hydroxyl groups). Further research is needed to continue understanding these molecular mechanisms of action and to utilize the knowledge in the development of health-promoting foods.
Collapse
Affiliation(s)
- B. Shain Zuñiga-Martínez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico
| | - Marcelino Montiel-Herrera
- Departmento de Medicina y Ciencias de la Salud, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - Mónica A. Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Rosario Maribel Robles-Sánchez
- Departmento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain;
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| |
Collapse
|
32
|
Cho H, Lim J. The emerging role of gut hormones. Mol Cells 2024; 47:100126. [PMID: 39426686 PMCID: PMC11577206 DOI: 10.1016/j.mocell.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The gut is traditionally recognized as the central organ for the digestion and absorption of nutrients, however, it also functions as a significant endocrine organ, secreting a variety of hormones such as glucagon-like peptide 1, serotonin, somatostatin, and glucocorticoids. These gut hormones, produced by specialized intestinal epithelial cells, are crucial not only for digestive processes but also for the regulation of a wide range of physiological functions, including appetite, metabolism, and immune responses. While gut hormones can exert systemic effects, they also play a pivotal role in maintaining local homeostasis within the gut. This review discusses the role of the gut as an endocrine organ, emphasizing the stimuli, the newly discovered functions, and the clinical significance of gut-secreted hormones. Deciphering the emerging role of gut hormones will lead to a better understanding of gut homeostasis, innovative treatments for disorders in the gut, as well as systemic diseases.
Collapse
Affiliation(s)
- Hyeryeong Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
34
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Phuong-Nguyen K, McGee SL, Aston-Mourney K, Mcneill BA, Mahmood MQ, Rivera LR. Yoyo Dieting, Post-Obesity Weight Loss, and Their Relationship with Gut Health. Nutrients 2024; 16:3170. [PMID: 39339770 PMCID: PMC11435324 DOI: 10.3390/nu16183170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive body weight is associated with many chronic metabolic diseases and weight loss, so far, remains the gold standard treatment. However, despite tremendous efforts exploring optimal treatments for obesity, many individuals find losing weight and maintaining a healthy body weight difficult. Weight loss is often not sustainable resulting in weight regain and subsequent efforts to lose weight. This cyclic pattern of weight loss and regain is termed "yoyo dieting" and predisposes individuals to obesity and metabolic comorbidities. How yoyo dieting might worsen obesity complications during the weight recurrence phase remains unclear. In particular, there is limited data on the role of the gut microbiome in yoyo dieting. Gut health distress, especially gut inflammation and microbiome perturbation, is strongly associated with metabolic dysfunction and disturbance of energy homeostasis in obesity. In this review, we summarise current evidence of the crosstalk between the gastrointestinal system and energy balance, and the effects of yoyo dieting on gut inflammation and gut microbiota reshaping. Finally, we focus on the potential effects of post-dieting weight loss in improving gut health and identify current knowledge gaps within the field, including gut-derived peptide hormones and their potential suitability as targets to combat weight regain, and how yoyo dieting and associated changes in the microbiome affect the gut barrier and the enteric nervous system, which largely remain to be determined.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Bryony A Mcneill
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Malik Q Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Leni R Rivera
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
36
|
Sun C, Su J, Wang J, Ding K, Chen C. Lycium barbarum polysaccharide increases thermogenesis and energy metabolism through modulation of the gut microbiota to confer resistance to cold temperatures. FASEB J 2024; 38:e70010. [PMID: 39230621 DOI: 10.1096/fj.202400870r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Traditional Chinese medical literature contains numerous records of many traditional Chinese herbal medicines that exhibit efficacy in enhancing resistance to cold, yet there is a lack of scientific explanation. Lycium barbarum is among the herbal medicines that are explicitly documented to enhance resistance to cold in the "Ben Cao Gang Mu (Compendium of Materia Medica)". Herein, we investigated L. barbarum polysaccharide (LBP)-induced browning of inguinal white adipose tissue (iWAT), energy expenditure and thermogenic function in a long-term (4 months) treatment mouse model. LBP supplementation resulted in a significant reduction in weight and adipocyte size in iWAT, along with increased gut microbiota diversity. Specifically, the levels of Lachnospiraceae, Ruminococcaceae and Bacteroidaceae (short-chain fatty acid-producing bacteria) were elevated, leading to a higher level of short-chain fatty acids (SCFAs) in the caecal content. These effects subsequently triggered the release of glucagon-like peptide-1 (GLP-1) and activated the CREB/PGC1α signaling pathway in iWAT, thereby increasing energy expenditure and enhancing thermogenic function. The antibiotic treatment experiments confirmed that the LBP-mediated gut microbiota participated in the process of iWAT browning. In summary, our findings provide the first scientific explanation and mechanistic insights into the cold resistance of L. barbarum and identify potentially safe natural product supplements for individuals in alpine areas.
Collapse
Affiliation(s)
- Chuanxin Sun
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Juan Su
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiarui Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kan Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, P.R. China
| | - Chang Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Institute for Brain Disorders Capital Medical University, Beijing, P.R. China
| |
Collapse
|
37
|
Araújo JR, Marques C, Rodrigues C, Calhau C, Faria A. The metabolic and endocrine impact of diet-derived gut microbiota metabolites on ageing and longevity. Ageing Res Rev 2024; 100:102451. [PMID: 39127442 DOI: 10.1016/j.arr.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Gut dysbiosis has been recently recognized as a hallmark of ageing. At this stage of life, gut microbiota becomes depleted from bacteria involved in the production of short-chain fatty acids (SCFA), indole and its derivative indole-3-propionic acid (IPA), metabolites shown to improve host glycemic control as well as insulin sensitivity and secretion. Moreover, gut microbiota becomes enriched in pathobiont bacteria involved in the production of imidazole propionate, phenols and trimethylamine, metabolites that promote host insulin resistance and atherosclerosis. The magnitude of these changes is much more pronounced in unhealthy than in healthy ageing. On the other hand, a distinct gut microbiota signature is displayed during longevity, the most prominent being an enrichment in both SCFA and IPA bacterial producers. This short Review discusses, in an innovative and integrative way, cutting-edge research on the composition of gut microorganisms and profile of metabolites secreted by them, that are associated with a healthy and unhealthy ageing pattern and with longevity. A detailed description of the positive or detrimental metabolic effects, in the ageing host, of diet-derived gut microbial metabolites is provided. Finally, microbiota-targeted interventions that counteract gut dysbiosis associated with ageing, are briefly outlined.
Collapse
Affiliation(s)
- João R Araújo
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Cláudia Marques
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Catarina Rodrigues
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Conceição Calhau
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal; Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Ana Faria
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal; Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| |
Collapse
|
38
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
39
|
Angelini G, Russo S, Mingrone G. Incretin hormones, obesity and gut microbiota. Peptides 2024; 178:171216. [PMID: 38636809 DOI: 10.1016/j.peptides.2024.171216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. By 2030 the number of people affected by obesity will reach 1.12 billion worldwide. Gastrointestinal hormones, namely incretins, play a vital role in the pathogenesis of obesity and its comorbidities. GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1), which are secreted from the intestine after nutrient intake and stimulate insulin secretion from pancreatic β cells, influence lipid metabolism, gastric empting, appetite and body weight. The gut microbiota plays an important role in various metabolic conditions, including obesity and type 2 diabetes and influences host metabolism through the interaction with enteroendocrine cells that modulate incretins secretion. Gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and indole, directly stimulate the release of incretins from colonic enteroendocrine cells influencing host satiety and food intake. Moreover, bariatric surgery and incretin-based therapies are associated with increase gut bacterial richness and diversity. Understanding the role of incretins, gut microbiota, and their metabolites in regulating metabolic processes is crucial to develop effective strategies for the management of obesity and its associated comorbidities.
Collapse
Affiliation(s)
| | - Sara Russo
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
40
|
Wu X, Chen M, Wang F, Si B, Pan J, Yang J, Wang J, Zhang Y. A new isopropyl esterification method for quantitative profiling of short-chain fatty acids in human and cow milk by gas chromatograph-mass spectrometer. J Dairy Sci 2024; 107:5366-5375. [PMID: 38580152 DOI: 10.3168/jds.2023-24320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Short-chain fatty acids (SCFA) content in milk may have been underestimated due to the neglect of the esterified SCFA content and the lack of an accurate detection method, especially for C1:0, C2:0, and C3:0 SCFA. In this study, an accurate GC-MS profiling method was established for 10 SCFA. A 2-step esterification, including alkaline saponification (60°C for 30 min) and acid-catalyzed esterification (80°C for 150 min) in water/isopropyl/hexane (1:2:1, volume ratio), was found to be the most suitable for the quantification of esterified and nonesterified SCFA analysis. The validation results demonstrate satisfactory linearity, sensitivity, matrix effects, precision, and accuracy. The recoveries of nonesterified and esterified SCFA ranged from 82.78% to 112.49%, respectively. Human milk is distinguished from cow milk by its higher C1:0 and C2:0 content and lower C4:0 and C6:0 content. This method successfully accomplished qualitative and quantitative estimation of all 10 SCFA in milk, including both nonesterified and esterified SCFA. Furthermore, whether our method is applicable for the determination of SCFA in serum, rumen fluid, and feces remains to be explored.
Collapse
Affiliation(s)
- Xufang Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengen Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Boxue Si
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junyu Pan
- College of Food Science and Engineering of Qingdao Agricultural University, Qingdao 266109, China
| | - Jiyong Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
41
|
Li X, Chen R, Wen J, Ji R, Chen X, Cao Y, Yu Y, Zhao C. The mechanisms in the gut microbiota regulation and type 2 diabetes therapeutic activity of resistant starches. Int J Biol Macromol 2024; 274:133279. [PMID: 38906356 DOI: 10.1016/j.ijbiomac.2024.133279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Resistant starch (RS) can potentially prevent type 2 diabetes through the modulation of intestinal microbiota and microbial metabolites. Currently, it has been wildly noted that altering the intestinal microbial composition and short-chain fatty acids levels can achieve therapeutic effects, although the specific mechanisms were rarely elucidated. This review systematically explores the structural characteristics of different RS, analyzes the cross-feeding mechanism utilized by intestinal microbiota, and outlines the pathways and targets of butyrate, a primary microbial metabolite, for treating diabetes. Different RS types may have a unique impact on microbiota composition and their cross-feeding, thus exploring regulatory mechanisms of RS on diabetes through intestinal flora interaction and their metabolites could pave the way for more effective treatment outcomes for host health. Furthermore, by understanding the mechanisms of strain-level cross-feeding and metabolites of RS, precise dietary supplementation methods targeted at intestinal composition and metabolites can be achieved to improve T2DM.
Collapse
Affiliation(s)
- Xiaoqing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruoxin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiahui Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xu Chen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
42
|
Philpott JD, Hovnanian KMR, Stefater-Richards M, Mehta NM, Martinez EE. The enteroendocrine axis and its effect on gastrointestinal function, nutrition, and inflammation. Curr Opin Crit Care 2024; 30:290-297. [PMID: 38872371 PMCID: PMC11295110 DOI: 10.1097/mcc.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Gastrointestinal (GI) dysfunction limits enteral nutrition (EN) delivery in critical illness and contributes to systemic inflammation. The enteroendocrine (EE) axis plays an integral role in this interface between nutrition, inflammation, and GI function in critical illness. In this review, we present an overview of the EE system with a focus on its role in GI inflammation and function. RECENT FINDINGS Enteroendocrine cells have been primarily described in their role in macronutrient digestion and absorption. Recent research has expanded on the diverse functions of EE cells including their ability to sense microbial peptides and metabolites and regulate immune function and inflammation. Therefore, EE cells may be both affected by and contribute to many pathophysiologic states and interventions of critical illness such as dysbiosis , inflammation, and alternative EN strategies. In this review, we present an overview of EE cells including their growing role in nonnutrient functions and integrate this understanding into relevant aspects of critical illness with a focus on EN. SUMMARY The EE system is key in maintaining GI homeostasis in critical illness, and how it is impacted and contributes to outcomes in the setting of dysbiosis , inflammation and different feeding strategies in critical illness should be considered.
Collapse
Affiliation(s)
- Jordan D. Philpott
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
| | - K. Marco Rodriguez Hovnanian
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
| | - Margaret Stefater-Richards
- Department of Medicine, Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nilesh M. Mehta
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Enid E. Martinez
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Johansen OE, Neutel J, Gupta S, Mariani B, Ufheil G, Perrin E, Rytz A, Lahiry A, Delodder F, Lerea-Antes J, Ocampo N, von Eynatten M. Oligomalt, a New Slowly Digestible Carbohydrate, Reduces Post-Prandial Glucose and Insulin Trajectories Compared to Maltodextrin across Different Population Characteristics: Double-Blind Randomized Controlled Trials in Healthy Individuals, People with Obesity, and People with Type 2 Diabetes. Metabolites 2024; 14:410. [PMID: 39195506 DOI: 10.3390/metabo14080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
We assessed the glucometabolic effects of oligomalt, a novel fully slowly digestible carbohydrate, compared with maltodextrin, in cross-over randomized controlled trials (NCT05058144; NCT05963594) involving healthy volunteers (HV), people with overweight or obesity (PwO), and people with type 2 diabetes (T2D). We tested 33 g and/or 50 g of oligomalt/maltodextrin, which were dissolved in 300 mL of water and consumed after fasting in the morning. The primary exploratory endpoint was the incremental area under the curve (iAUC) for postprandial glucose, assessed by frequent blood sampling over 3 h. Insulin levels were also assessed. In the HV cohort, a 4 h hydrogen breath test was performed with 15 g of inulin as a positive control. Analysis was performed by a mixed model. Oligomalt elicited a lower post-prandial glucose response compared to maltodextrin in HV (50 g, n = 15 [7 women], mean age/BMI 31 years/22.6 kg/m2), in PwO (33 g and 50 g, n = 26 [10 women], age/BMI 44 years/29.9 kg/m2, mean HbA1c 5.3%), and in people with T2D (50 g, n = 22 [13 women], age/BMI 61 years/31.8 kg/m2, HbA1c 7.4%), with significant reductions observed in PwO and T2D for the 0-1 h window (HV: -19% [p = 0.149]/PwO33g-38% [p = 0.0002]/PwO50g-28% [p = 0.0027]/T2D-38% [p < 0.0001]; the 0-2 h window (HV: -17% [p = 0.311]/PwO33g-34% [p = 0.0057]/PwO50g-21% [p = 0.0415]/T2D-37% [p < 0.0001]), and the 0-3 h window (HV: -15% [p = 0.386]/PwO33g-30% [p = 0.0213]/PwO50g0-19% [p = 0.0686]/T2D-37% [p = 0.0001]). The post-prandial insulin response was significantly lower, by 38-60%, across all populations, dose, and time points, with oligomalt. In HV, the breath-hydrogen pattern was comparable between oligomalt and maltodextrin, but increased significantly with inulin. These data support the glucometabolic advantages of oligomalt over maltodextrin, hence confirming it as a healthier carbohydrate, and underscoring its full digestibility. This therefore opens up the possibility for the incorporation of oligomalt in relevant food products/matrices.
Collapse
Affiliation(s)
| | - Joel Neutel
- Orange County Research Center, Tustin, CA 92780, USA
| | - Sanjay Gupta
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
| | - Barbara Mariani
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
| | - Gerhard Ufheil
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
- Nestlé Research and Development Konolfingen, Société des Produits Nestlé S.A., 3510 Konolfingen, Switzerland
| | | | - Andreas Rytz
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | - Anirban Lahiry
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | | | - Jaclyn Lerea-Antes
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
- Nestlé Health Science, Bridgewater, NJ 08807, USA
| | - Naomi Ocampo
- Nestlé Health Science, Bridgewater, NJ 08807, USA
| | | |
Collapse
|
44
|
Balendra V, Rosenfeld R, Amoroso C, Castagnone C, Rossino MG, Garrone O, Ghidini M. Postbiotics as Adjuvant Therapy in Cancer Care. Nutrients 2024; 16:2400. [PMID: 39125280 PMCID: PMC11314502 DOI: 10.3390/nu16152400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Postbiotics are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit to the host. They range from cell wall fragments to metabolites, bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence carcinogenesis via a variety of mechanisms. They can promote homeostatic immune responses, reduce inflammation, induce selective cytotoxicity against tumor cells, as well as the enabling the control of tumor cell proliferation and enhancing intestinal epithelial barrier function. Therefore, probiotics can serve as an adjunct strategy in anticancer treatment together with chemotherapy and immunotherapy. Up to now, the only relevant postbiotics used as interventions in oncological patients remain vitamin K molecules, with few phase-II and III trials available. In fact, postbiotics' levels are strictly dependent on the gut microbiota's composition, which may vary between individuals and can be altered under different physiological and pathological conditions. Therefore, the lack of consistent clinical evidence supporting postbiotics' efficacy is due to their poor bioavailability, short half-life, and fluctuating levels. Synbiotics, a mixture of prebiotics and probiotics, are expected to have a more homogeneous bioavailability with respect to postbiotics and may have greater potential for future development. In this review, we focus on the role of postbiotics as an adjuvant therapy in cancer treatment.
Collapse
Affiliation(s)
| | - Roberto Rosenfeld
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | | | - Maria Grazia Rossino
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| | - Ornella Garrone
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| |
Collapse
|
45
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
46
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. METHODS To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. RESULTS AND DISCUSSION Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
47
|
Chow EW, Pang LM, Wang Y. The impact of the host microbiota on Candida albicans infection. Curr Opin Microbiol 2024; 80:102507. [PMID: 38955050 DOI: 10.1016/j.mib.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The human microbiota is a complex microbial ecosystem populated by bacteria, fungi, viruses, protists, and archaea. The coexistence of fungi alongside with many billions of bacteria, especially in the gut, involves complex interactions, ranging from antagonistic to beneficial, between the members of these two kingdoms. Bacteria can impact fungi through various means, such as physical interactions, secretion of metabolites, or alteration of the host immune response, thereby affecting fungal growth and virulence. This review summarizes recent progress in this field, delving into the latest understandings of bacterial-fungal-immune interactions and innovative therapeutic approaches addressing the challenges of treating fungal infections associated with microbiota imbalances.
Collapse
Affiliation(s)
- Eve Wl Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li M Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
49
|
Ruhnke N, Beyer ASL, Kaemmerer D, Sänger J, Schulz S, Lupp A. Expression of free fatty acid receptor 2 in normal and neoplastic tissues. Exp Mol Pathol 2024; 137:104902. [PMID: 38788249 DOI: 10.1016/j.yexmp.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Little information is available concerning protein expression of the free fatty acid receptor 2 (FFAR2), especially in tumours. Therefore, the aim of the present study was to comprehensively characterise the expression profile of FFAR2 in a large series of human normal and neoplastic tissues using immunohistochemistry thus providing a basis for further in-depth investigations into its potential diagnostic or therapeutic importance. METHODS We developed a novel rabbit polyclonal anti-FFAR2 antibody, 0524, directed against the C-terminal region of human FFAR2. Antibody specificity was confirmed via Western blot analyses and immunocytochemistry using the FFAR2-expressing cell line BON-1 and FFAR2-specific small interfering RNA as well as native and FFAR2-transfected HEK-293 cells. The antibody was then used for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic human tissues. RESULTS In normal tissues, FFAR2 was mainly present in distinct cell populations of the cerebral cortex, follicular cells and C cells of the thyroid, cardiomyocytes of the heart, bronchial epithelia and glands, hepatocytes and bile duct epithelia of the liver, gall bladder epithelium, exocrine and β-cells of the endocrine pancreas, glomerular mesangial cells and podocytes as well as collecting ducts of the kidney, intestinal mucosa (particularly enteroendocrine cells), prostate epithelium, seminiferous tubules of the testicles, and placental syncytiotrophoblasts. In neoplastic tissues, FFAR2 was particularly prevalent in papillary thyroid carcinomas, parathyroid adenomas, and gastric, colon, pancreatic, hepatocellular, cholangiocellular, urinary bladder, breast, cervical, and ovarian carcinomas. CONCLUSIONS We generated and characterised a novel rabbit polyclonal anti-human FFAR2 antibody that is well-suited for visualising FFAR2 expression in human routine pathology tissues. This antibody is also suitable for Western blot and immunocytochemistry experiments. To our knowledge, this antibody enabled the first broad FFAR2 protein expression profile in various normal and neoplastic human tissues.
Collapse
Affiliation(s)
- Niklas Ruhnke
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
50
|
Tan S, Santolaya JL, Wright TF, Liu Q, Fujikawa T, Chi S, Bergstrom CP, Lopez A, Chen Q, Vale G, McDonald JG, Schmidt A, Vo N, Kim J, Baniasadi H, Li L, Zhu G, He TC, Zhan X, Obata Y, Jin A, Jia D, Elmquist JK, Sifuentes-Dominguez L, Burstein E. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat Metab 2024; 6:1076-1091. [PMID: 38777856 PMCID: PMC12001959 DOI: 10.1038/s42255-024-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jacobo L Santolaya
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Freeney Wright
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sensen Chi
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Colin P Bergstrom
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Lopez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Chen
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Schmidt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ezra Burstein
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|