1
|
Zhang T, Wang Y, Gu Y, Wu J, Zhan X, Gong P. Gellan gum-sialoglycan conjugates: a mucin mimic for alleviating inflammation in Caco-2 cells and modulating gut microbiota in the elderly. Int J Biol Macromol 2025; 310:143478. [PMID: 40286969 DOI: 10.1016/j.ijbiomac.2025.143478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
The sialylation of intestinal mucins plays a crucial role in maintaining intestinal homeostasis and shaping the gut microbiota. This study aims to develop a mucin-like polymer to modulate the intestinal microbiota in the elderly individuals. We synthesized functionalized conjugates using sialic acid monomer, 3'-sialyllactose, and Gellan gum, resulting in a series of GG-sialoglycan conjugates with diverse glycan chain lengths and terminal structures. The sialic acid contents of GG-EDA-Sia, GG-EDA-SL, GG-HAD-Sia, and GG-HAD-SL were 28.48 %, 29.78 %, 23.45 and 41.58 %, respectively. These conjugates exhibited anti-digestion effects. In addition, they demonstrated favorable biocompatibility and exhibited notable anti-inflammatory properties. In vitro fermentation experiments using fecal bacteria from elderly individuals revealed that GG-sialoglycan conjugates enhanced the proliferation of beneficial bacteria such as Lactobacillus, Bifidobacterium, and Blautia, while simultaneously suppressing pathogens like Escherichia-Shigella. It is worth noting that GG-sialoglycan conjugates containing 3'-sialyllactose exhibited superior prebiotic activity compared to those with sialic acid monomer. In summary, our findings strongly support the promising potential of functional sialic acid-based macromolecular glycan conjugates as a novel strategy to improve aging-related intestinal health.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yiqun Gu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ping Gong
- Department of Obstetrical, Affiliated Hospital of Jiangnan University, Wuxi 214123, China
| |
Collapse
|
2
|
Sausa M, Paladino L, Scalia F, Zummo FP, Vergilio G, Rappa F, Cappello F, Gratie MI, Proia P, Di Felice V, Marino Gammazza A, Macaluso F, Barone R. Lactobacillus fermentum LF31 Supplementation Reversed Atrophy Fibers in a Model of Myopathy Through the Modulation of IL-6, TNF-α, and Hsp60 Levels Enhancing Muscle Regeneration. Nutrients 2025; 17:1550. [PMID: 40362856 PMCID: PMC12073311 DOI: 10.3390/nu17091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Recent studies have highlighted the role of the gut-muscle axis, suggesting that modulation of the gut microbiota may indirectly benefit skeletal muscle. This study aimed to evaluate the effects of Lactobacillus fermentum (L. fermentum) supplementation in a model of muscle atrophy induced by chronic ethanol (EtOH) intake, focusing on inflammatory and antioxidant mechanisms. Methods: Sixty 12-month-old female Balb/c mice were divided randomly into three groups (n = 20/group): (1) Ethanol (EtOH) group, receiving ethanol daily for 8 and 12 weeks to induce systemic oxidative stress and inflammation; (2) Ethanol + Probiotic (EtOH + P) group, receiving both ethanol and L. fermentum supplementation for the same durations; and (3) Control (Ctrl) group, receiving only water. Muscle samples were analyzed for the fiber morphology, inflammatory markers, oxidative stress indicators, and satellite cell (SC) activity. All data were tested for normality using the Shapiro-Wilk test before applying a parametric analysis. A statistical analysis was performed using one-way ANOVA followed by a Bonferroni post-hoc test. The level of significance was set at p < 0.05. Results: EtOH exposure caused significant atrophy in all muscle fiber types (type I, IIa, and IIb), with the most pronounced effects on oxidative fibers. L. fermentum supplementation significantly reversed atrophy in type I and IIa fibers, accompanied by a significant reduction in IL-6, TNF-α, and Hsp60 expression levels, indicating the protective effect of L. fermentum against oxidative stress and inflammation. Moreover, the probiotic treatment increased MyoD expression in SCs, suggesting enhanced regenerative activity, without histological evidence of fibrosis. Conclusions: These findings suggest that L. fermentum supplementation could counteract EtOH-induced skeletal muscle damage by reducing inflammation and oxidative stress and promoting muscle repair, indicating its potential as an adjuvant, in the therapeutic strategy of models of muscle degeneration.
Collapse
Affiliation(s)
- Martina Sausa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Letizia Paladino
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy;
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Francesca Rappa
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy;
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Melania Ionelia Gratie
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy;
| | - Valentina Di Felice
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90133 Palermo, Italy
| | - Filippo Macaluso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.S.); (F.S.); (F.P.Z.); (G.V.); (F.C.); (M.I.G.); (V.D.F.); (A.M.G.); (R.B.)
| |
Collapse
|
3
|
Satapathy P, Khatib MN, Vadia N, Menon SV, Chennakesavulu K, Panigrahi R, Shabil M, Singh M, Sah S, Lingamaiah D, Goh KW, Mawejje E, Bushi G. Association between proton pump inhibitor use and migraine: a systematic review and meta-analysis. J Headache Pain 2025; 26:63. [PMID: 40155825 PMCID: PMC11954283 DOI: 10.1186/s10194-025-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Migraine is a common neurological disorder with potential pharmacological triggers. Proton pump inhibitors (PPIs), commonly prescribed for managing gastroesophageal reflux disease and other acid-related gastrointestinal disorders, have been linked to headaches. However, their association with migraine remains unclear. This systematic review and meta-analysis assessed the association between PPI use and the incidence of migraine. METHOD A systematic search of PubMed, Embase, and Web of Science was conducted in accordance with the PRISMA framework and registered with PROSPERO (ID: CRD42025644604) to enhance transparency. The search, conducted up to January 2024, included studies focusing on the association between migraine and PPI use. Data screening and extraction were performed using Nested Knowledge software. Meta-analyses were conducted in R software, with heterogeneity assessed through the I² statistic. Pooled adjusted odds ratios (aORs) with 95% confidence intervals (CIs) were calculated using a random-effects model. Sensitivity analyses were also performed to assess the robustness of the results. Gender and migraine subtype were considered in subgroup analyses. Additionally, the GRADE approach was applied to assess the certainty of the evidence across the pooled outcomes. RESULTS Five studies involving over 1.5 million participants met the inclusion criteria. The overall pooled adjusted odds ratio (aOR) was 2.508 (95% CI, 0.790-7.969; I² = 91.2%). However, there was a significant association in males (aOR, 3.875; 95% CI, 2.413-6.222; I² = 0%) but not in females (aOR, 2.475; 95% CI, 0.563-10.890; I² = 91.1%). No significant differences were found between migraine types: with aura (aOR, 2.079; 95% CI, 0.945-4.576; I² = 25.4%) and without aura (aOR, 2.524; 95% CI, 0.807-7.896; I² = 96.5%). The GRADE assessment indicated a very low certainty of the evidence. CONCLUSION This review found no significant overall association between PPI use and migraine. However, a significant association was observed in males but not in females. Further research is needed to clarify this association and explore the underlying causality mechanisms, and migraine subtypes, particularly why the association appears more pronounced in males. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Prakasini Satapathy
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospital, Saveetha University, Chennai, India.
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia.
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Educatsion, Wardha, India.
| | - Nasir Vadia
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kattela Chennakesavulu
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
- Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Mahendra Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, India
| | - Sanjit Sah
- Department of Pediatrics, Hospital and Research Centre, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, Maharashtra, 411018, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth (Deemed-to-be-University), Pune, Maharashtra, 411018, India
- Department of Medicine, Korea Universtiy, Seoul, 02481, South Korea
| | - Doddolla Lingamaiah
- Chitkara Centre for Research and Development, Chitkara University Institute of Engineering and Technology, Chitkara University, Himachal Pradesh, 174103, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Edward Mawejje
- School of Public Health, Makerere University College of Health Sciences, Mulago Hill, Kampala, Uganda.
| | - Ganesh Bushi
- Centre Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
4
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Pacilio S, Lombardi S, Costa R, Paris F, Petrocelli G, Marrazzo P, Cenacchi G, Alviano F. Role of Perinatal Stem Cell Secretome as Potential Therapy for Muscular Dystrophies. Biomedicines 2025; 13:458. [PMID: 40002871 PMCID: PMC11852414 DOI: 10.3390/biomedicines13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammation mechanisms play a critical role in muscle homeostasis, and in Muscular Dystrophies (MDs), the myofiber damage triggers chronic inflammation which significantly controls the disease progression. Immunomodulatory strategies able to target inflammatory pathways and mitigate the immune-mediated damage in MDs may provide new therapeutic options. Owing to its capacity of influencing the immune response and enhancing tissue repair, stem cells' secretome has been proposed as an adjunct or standalone treatment for MDs. In this review study, we discuss the challenging points related to the inflammation condition characterizing MD pathology and provide a concise summary of the literature supporting the potential of perinatal stem cells in targeting and modulating the MD inflammation.
Collapse
Affiliation(s)
- Serafina Pacilio
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Sara Lombardi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Francesca Paris
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Pasquale Marrazzo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| |
Collapse
|
6
|
Cussotto S, Colle R, David DJ, Corruble E. When antidepressants meet the gut microbiota: implications and challenges. Int Clin Psychopharmacol 2025; 40:46-48. [PMID: 39611716 DOI: 10.1097/yic.0000000000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Affiliation(s)
- Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay
| | - Romain Colle
- Université Paris-Saclay, Centre de recherche en Epidémiologie et Santé des Populations (CESP), MOODS UMR1018, CESP-Inserm, Team Moods, Faculté de Médecine, Le Kremin-Bicêtre
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Denis J David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay
| | - Emmanuelle Corruble
- Université Paris-Saclay, Centre de recherche en Epidémiologie et Santé des Populations (CESP), MOODS UMR1018, CESP-Inserm, Team Moods, Faculté de Médecine, Le Kremin-Bicêtre
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Shete O, Ghosh TS. Normal Gut Microbiomes in Diverse Populations: Clinical Implications. Annu Rev Med 2025; 76:95-114. [PMID: 39556491 DOI: 10.1146/annurev-med-051223-031809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The human microbiome is a sensor and modulator of physiology and homeostasis. Remarkable tractability underpins the promise of therapeutic manipulation of the microbiome. However, the definition of a normal or healthy microbiome has been elusive. This is in part due to the underrepresentation of minority groups and major global regions in microbiome studies to date. We review studies of the microbiome in different populations and highlight a commonality among health-associated microbiome signatures along with major drivers of variation. We also provide an overview of microbiome-associated therapeutic interventions for some widespread, widely studied diseases. We discuss sources of bias and the challenges associated with defining population-specific microbiome reference bases. We propose a roadmap for defining normal microbiome references that can be used for population-customized microbiome therapeutics and diagnostics.
Collapse
Affiliation(s)
- Omprakash Shete
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, India;
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, India;
| |
Collapse
|
8
|
Borgiani G, Possidente C, Fabbri C, Oliva V, Bloemendaal M, Arias Vasquez A, Dinan TG, Vieta E, Menchetti M, De Ronchi D, Serretti A, Fanelli G. The bidirectional interaction between antidepressants and the gut microbiota: are there implications for treatment response? Int Clin Psychopharmacol 2025; 40:3-26. [PMID: 39621492 PMCID: PMC11594561 DOI: 10.1097/yic.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/13/2023] [Indexed: 07/13/2024]
Abstract
This review synthesizes the evidence on associations between antidepressant use and gut microbiota composition and function, exploring the microbiota's possible role in modulating antidepressant treatment outcomes. Antidepressants exert an influence on measures of gut microbial diversity. The most consistently reported differences were in β-diversity between those exposed to antidepressants and those not exposed, with longitudinal studies supporting a potential causal association. Compositional alterations in antidepressant users include an increase in the Bacteroidetes phylum, Christensenellaceae family, and Bacteroides and Clostridium genera, while a decrease was found in the Firmicutes phylum, Ruminococcaceae family, and Ruminococcus genus. In addition, antidepressants attenuate gut microbial differences between depressed and healthy individuals, modulate microbial serotonin transport, and influence microbiota's metabolic functions. These include lyxose degradation, peptidoglycan maturation, membrane transport, and methylerythritol phosphate pathways, alongside gamma-aminobutyric acid metabolism. Importantly, baseline increased α-diversity and abundance of the Roseburia and Faecalibacterium genera, in the Firmicutes phylum, are associated with antidepressant response, emerging as promising biomarkers. This review highlights the potential for gut microbiota as a predictor of treatment response and emphasizes the need for further research to elucidate the mechanisms underlying antidepressant-microbiota interactions. More homogeneous studies and standardized techniques are required to confirm these initial findings.
Collapse
Affiliation(s)
- Gianluca Borgiani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Vincenzo Oliva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ted G. Dinan
- APC Microbiome Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Eduard Vieta
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Medicine and Surgery, Kore University of Enna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Wu Z, Bian M, Zhang H, Wang M, Wang P, Shao Y, Shen L, Zhu G. Compositional characteristics of the gut microbiome in patients with uremia. INDIAN J PATHOL MICR 2025; 68:42-50. [PMID: 39011618 DOI: 10.4103/ijpm.ijpm_554_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/05/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT During acute or chronic uremia, the cumulative harmful effects of uremic toxins result in numerous health problems and, ultimately, mortality. Previous research has identified that uremic retention solutes originate from the gut microbiome, indicating that uremia may be closely associated with gut microbiome dysbiosis. To deepen our understanding of the compositional characteristics of the gut microbiome in patients with uremia and thereby promote precision medicine in the treatment of uremia, we conducted a study of the compositional characteristics of the gut microbiome in 20 patients with uremia. The gut microbiome diversity of uremic patients and the control group showed certain differences. Nonmetric multidimensional scaling analysis showed that the beta diversity of the gut microbiome of uremic patients was significantly different from that of the healthy control individuals, with a distinct clustering effect in the uremic patient group, and it also showed a similarly distinct clustering effect in the healthy control group. The Chao1 index and Sobs index were significantly lower in the uremic patient group than in the healthy control group ( P < 0.05). By analyzing the composition and abundance distribution of the gut microbiome in the uremic patient group and healthy control group, we found that the relative abundance of the gut microbiome constituents Fusobacteriota , Enterobacteriaceae, Oscillospirales, Ruminococcaceae, and Lachnospiraceae was significantly increased in the intestines of uremic patients. We also detected the rare taxa Erysipelotrichaceae, which was present only in the uremic patient group. Predictive functional analysis suggested that an increased abundance of Ruminococcaceae and Lachnospirales, which are associated with indoxyl sulfate and phenylacetyl glutamine, and an increased abundance of Oscillospirales, which is associated with pyruvate metabolism, in uremic patients may strongly influence the gut environment according to renal function, resulting in dysbiosis associated with uremic toxin production. Rare taxa such as Erysipelotrichaceae have been suggested to be detrimental to intestinal disease. Further research into these gut microbiomes may provide new ideas for the prevention and treatment of uremia with the gut microbiome.
Collapse
Affiliation(s)
- Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Mingjie Bian
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Hong Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Mengli Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Peng Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Yunxia Shao
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Second People's Hospital of Wuhu, Anhui, China
- Department of Neohrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Guoping Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
10
|
Wen NN, Sun LW, Geng Q, Zheng GH. Gut microbiota changes associated with frailty in older adults: A systematic review of observational studies. World J Clin Cases 2024; 12:6815-6825. [PMID: 39687638 PMCID: PMC11525918 DOI: 10.12998/wjcc.v12.i35.6815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/24/2024] Open
Abstract
BACKGROUND Frailty is a complex aging-related syndrome characterized by a cumulative loss of physiological reserve and increased vulnerability to adverse clinical outcomes, including falls, disability, incapacity and death. While an increasing number of studies suggest that the gut microbiota may play a key role in the pathophysiology of frailty, direct evaluation of the association between gut microbiome alterations and frailty in older adults remains limited. AIM To gain insight into gut dysbiosis in frail older adults. METHODS Seven electronic databases (China National Knowledge Infrastructure, VIP, SinoMed, Wanfang, PubMed, Web of Science and EMBASE) were searched for articles published before October 31, 2023 to identify observational studies that compared the microbiomes of older adults with and without frailty. The diversity and composition of the gut microbiota were the main outcomes used to analyze the associations of changes in the gut microbiota with frailty in older adults. The quality of the included studies was assessed via the Newcastle-Ottawa Scale and the Agency for Healthcare Research and Quality. RESULTS Eleven observational studies with 912 older adults were included in this review. Consistent results revealed a significant difference in the gut microbiota composition between frail and non-frail older adults, with a significant decrease in α diversity and a significant increase in β diversity in frail older adults. The pooled results revealed that at the phylum level, four microbiota (Actinobacteria, Proteobacteria, Verrucomicrobia and Synergistetes) were significantly enriched, and two microbiota (Firmicutes and Fusobacteria) were significantly depleted in frail older adults. At the family level, the results consistently revealed that the abundances of 6 families, most of which belong to the Actinobacteria or Proteobacteria phylum, were greater in frail than in non-frail older adults. At the genus or species level, consistent results from more than two studies revealed that the abundances of the genera Prevotella, Faecalibacterium, and Roseburia were significantly lower in frail older adults; individual studies revealed that the abundances of some genera or species (e.g., Megamonas, Blautia, and Megasphaera) were significantly lower, whereas those of other genera or species (e.g., Bifidobacterium, Oscillospira, Ruminococcus and Pyramidobacter) were significantly greater in frail older adults. CONCLUSION This systematic review suggests that changes in the gut microbiota are associated with frailty in older adults, which is commonly reflected by a reduction in beneficial species and an increase in pathogenic species. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Na-Na Wen
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Wei Sun
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Qian Geng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Guo-Hua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
11
|
Bao J, Wang L, Li S, Guo J, Ma P, Huang X, Guo G, Zhang H, Wang Y. Screening and Functional Prediction of Rumen Microbiota Associated with Methane Emissions in Dairy Cows. Animals (Basel) 2024; 14:3195. [PMID: 39595248 PMCID: PMC11591143 DOI: 10.3390/ani14223195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Agricultural activities are a significant contributor to global greenhouse gas emissions, accounting for 14.5% of total anthropogenic emissions. Specifically, greenhouse gas emissions from beef cattle and dairy cattle constitute 35% and 30% of total global livestock emissions, respectively. This study focuses on dairy cattle, exploring the complex relationships between rumen microbiota and methane emission. The methane emissions of 968 lactating Holstein cows were measured using a laser methane detector (LMD, Shanghai Hesai Technology Co., Ltd., Shanghai, China). Among the measured cows, 107 individuals were further selected into high (HME) and low methane-emitting (LME) groups, including 50 cows in the HME group and 57 in the LME group. This study analyzed differences in rumen microbiota and microbial functions between cows with varying levels of methane emissions. The results showed significant differences in the Simpson and Pielou indices of rumen bacterial communities between the HME and LME groups. Beta diversity analysis revealed significant differences in microbial community structure between the two groups. It was found that the abundance of Bacteroidales and Prevotellaceae in the rumen of cows in the HME group cows was significantly higher than that of cows in the LME group (LDA > 3, p < 0.05). Additionally, bacterial functions related to biosynthesis and carbohydrate metabolism were more active in the HME group. This study revealed distinct differences in the rumen bacterial communities between HME and LME cow in Chinese Holstein cattle, and identified specific bacteria and their functional differences in the HME group. The microbial characteristics and metabolic pathways provide new insights for developing strategies to reduce methane emissions, supporting the sustainable development of the dairy industry.
Collapse
Affiliation(s)
- Jiatai Bao
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.B.); (L.W.); (S.L.); (J.G.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.M.); (X.H.)
| | - Lei Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.B.); (L.W.); (S.L.); (J.G.)
| | - Shanshan Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.B.); (L.W.); (S.L.); (J.G.)
| | - Jiahe Guo
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.B.); (L.W.); (S.L.); (J.G.)
| | - Pan Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.M.); (X.H.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (P.M.); (X.H.)
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, Beijing 100029, China;
| | - Hailiang Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.B.); (L.W.); (S.L.); (J.G.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.B.); (L.W.); (S.L.); (J.G.)
| |
Collapse
|
12
|
Boustany A, Feuerstadt P, Tillotson G. The 3 Ds: Depression, Dysbiosis, and Clostridiodes difficile. Adv Ther 2024; 41:3982-3995. [PMID: 39276186 PMCID: PMC11480130 DOI: 10.1007/s12325-024-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024]
Abstract
This paper explores the intricate relationship between depression, gut dysbiosis, and Clostridioides difficile infections, collectively termed "The 3 Ds". Depression is a widespread mental disorder increasing in prevalence. It is recognized for its societal burden and complex pathophysiology, encompassing genetic, environmental, and microbiome-related factors. The consequent increased use of antidepressants has led to growing concerns about their effects on the gut microbiome. Various classes of antidepressants and antipsychotics show antimicrobial activity, potentially leading to shifts in the gut microbiome and contributing to the development of dysbiosis. Dysbiosis, in turn, can predispose individuals to opportunistic infections like C. difficile, a significant healthcare concern due to its high recurrence rates and severe impact on patients' quality of life. Further, the link between antidepressant use and an increased risk of C. difficile infection (CDI) is explored and, finally, the emergence of live biotherapeutic products as novel treatment options for recurrent CDI is discussed.
Collapse
Affiliation(s)
- Antoine Boustany
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Paul Feuerstadt
- Yale University School of Medicine, New Haven, CT, USA
- PACT-Gastroenterology Center, Hamden, CT, USA
| | | |
Collapse
|
13
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
14
|
Worsley SF, Davies CS, Lee CZ, Mannarelli ME, Burke T, Komdeur J, Dugdale HL, Richardson DS. Longitudinal gut microbiome dynamics in relation to age and senescence in a wild animal population. Mol Ecol 2024; 33:e17477. [PMID: 39010794 DOI: 10.1111/mec.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
In humans, gut microbiome (GM) differences are often correlated with, and sometimes causally implicated in, ageing. However, it is unclear how these findings translate in wild animal populations. Studies that investigate how GM dynamics change within individuals, and with declines in physiological condition, are needed to fully understand links between chronological age, senescence and the GM, but have rarely been done. Here, we use longitudinal data collected from a closed population of Seychelles warblers (Acrocephalus sechellensis) to investigate how bacterial GM alpha diversity, composition and stability are associated with host senescence. We hypothesised that GM diversity and composition will differ, and become more variable, in older adults, particularly in the terminal year prior to death, as the GM becomes increasingly dysregulated due to senescence. However, GM alpha diversity and composition remained largely invariable with respect to adult age and did not differ in an individual's terminal year. Furthermore, there was no evidence that the GM became more heterogenous in senescent age groups (individuals older than 6 years), or in the terminal year. Instead, environmental variables such as season, territory quality and time of day, were the strongest predictors of GM variation in adult Seychelles warblers. These results contrast with studies on humans, captive animal populations and some (but not all) studies on non-human primates, suggesting that GM deterioration may not be a universal hallmark of senescence in wild animal species. Further work is needed to disentangle the factors driving variation in GM-senescence relationships across different host taxa.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Chuen Zhang Lee
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Nature Seychelles, Mahé, Republic of Seychelles
| |
Collapse
|
15
|
Remelli F, Mattioli I, Govoni B, Zurlo A, De Giorgio R, Volpato S, Cultrera R. Recurrence of Clostridioides difficile infection and mortality in older inpatients. Eur Geriatr Med 2024; 15:743-751. [PMID: 38448711 DOI: 10.1007/s41999-024-00942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE The prevalence of Clostridioides difficile infection in older and frail population is extremely high and adverse outcomes, including future recurrences and premature mortality, are common. Nonetheless, the clinical risk profile for Clostridioides difficile recurrence in older people is still controversial. We aimed to investigate: 1) the association between Clostridioides difficile recurrence and 6-month mortality; 2) the risk factors for Clostridioides difficile recurrence after hospital discharge. METHODS This is a retrospective study on adults with a first episode of Clostridioides difficile infection admitted to all Internal Medicine and Geriatrics Units of the University Hospital of Ferrara (Italy) between January 2018 and December 2020. For each patient, sociodemographic, clinical and laboratory data were collected through hospital database system. The primary and secondary outcomes were mortality and recurrence within 6 months from the first infectious episode, respectively. RESULTS The mean age of the 386 enrolled patients was 77.8 years; 61.7% were females. Twelve percent patients had Clostridioides difficile recurrence and 32.1% patients died during the 6-month follow-up. At Cox analysis, after adjustment for the potential confounders, participants with recurrence reported a twofold risk of death compared to those without recurrence (HR, 95% CI 2.45, 1.59-3.78). Compared to patients treated with metronidazole, those treated with vancomycin showed a lower risk of recurrence (log-rank p < 0.001). CONCLUSION Clostridioides difficile recurrence is associated with a higher risk of mortality and it may itself be a marker of frailty and vulnerability. Vancomycin treatment during the infectious episode was associated with lower recurrence rate, as compared to metronidazole.
Collapse
Affiliation(s)
- Francesca Remelli
- Department of Medical Science, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Irene Mattioli
- Department of Medicine, Azienda AUSL of Ferrara, Ferrara, Italy
| | - Benedetta Govoni
- Geriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Amedeo Zurlo
- Department of Medical Science, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
- Geriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Department of Medical Science, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy.
- Geriatrics Unit, Azienda Ospedaliero-Universitaria of Ferrara, Ferrara, Italy.
| | - Rosario Cultrera
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Infectious Diseases, Azienda Unità Sanitaria Locale of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Bose D, Saha P, Roy S, Trivedi A, More M, Klimas N, Tuteja A, Chatterjee S. A Double-Humanized Mouse Model for Studying Host Gut Microbiome-Immune Interactions in Gulf War Illness. Int J Mol Sci 2024; 25:6093. [PMID: 38892281 PMCID: PMC11172868 DOI: 10.3390/ijms25116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Unraveling the multisymptomatic Gulf War Illness (GWI) pathology and finding an effective cure have eluded researchers for decades. The chronic symptom persistence and limitations for studying the etiologies in mouse models that differ significantly from those in humans pose challenges for drug discovery and finding effective therapeutic regimens. The GWI exposome differs significantly in the study cohorts, and the above makes it difficult to recreate a model closely resembling the GWI symptom pathology. We have used a double engraftment strategy for reconstituting a human immune system coupled with human microbiome transfer to create a humanized-mouse model for GWI. Using whole-genome shotgun sequencing and blood immune cytokine enzyme linked immunosorbent assay (ELISA), we show that our double humanized mice treated with Gulf War (GW) chemicals show significantly altered gut microbiomes, similar to those reported in a Veteran cohort of GWI. The results also showed similar cytokine profiles, such as increased levels of IL-1β, IL-6, and TNF R-1, in the double humanized model, as found previously in a human cohort. Further, a novel GWI Veteran fecal microbiota transfer was used to create a second alternative model that closely resembled the microbiome and immune-system-associated pathology of a GWI Veteran. A GWI Veteran microbiota transplant in humanized mice showed a human microbiome reconstitution and a systemic inflammatory pathology, as reflected by increases in interleukins 1β, 6, 8 (IL-1β, IL-6, IL-8), tumor necrosis factor receptor 1 (TNF R-1), and endotoxemia. In conclusion, though preliminary, we report a novel in vivo model with a human microbiome reconstitution and an engrafted human immune phenotype that may help to better understand gut-immune interactions in GWI.
Collapse
Affiliation(s)
- Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Ashok Tuteja
- Division of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
- Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92697, USA
- VA Research and Development, VA Long Beach Health Care, Long Beach, CA 90822, USA
| |
Collapse
|
17
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
18
|
Mancabelli L, Milani C, De Biase R, Bocchio F, Fontana F, Lugli GA, Alessandri G, Tarracchini C, Viappiani A, De Conto F, Nouvenne A, Ticinesi A, Bussolati O, Meschi T, Cecchi R, Turroni F, Ventura M. Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation. mSystems 2024; 9:e0129423. [PMID: 38441032 PMCID: PMC11019788 DOI: 10.1128/msystems.01294-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems. IMPORTANCE In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Christian Milani
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosita De Biase
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Fabiana Bocchio
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Parma University Hospital, Parma, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Parma University Hospital, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Parma University Hospital, Parma, Italy
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
20
|
Zeng C, Chen H, Cao T, Wang L, Jiao S, Lin C, Zhang B, Cai H. B-GOS alleviates olanzapine-induced lipid disturbances in mice by enriching Akkermansia and upregulation of PGRMC1-Wnt signaling. Food Chem Toxicol 2024; 185:114490. [PMID: 38325638 DOI: 10.1016/j.fct.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/24/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Although olanzapine (OLZ) remains one of the most efficacious antipsychotic medications for the treatment of schizophrenia, there are significant tolerability issues related to its metabolic profile such as weight gain and dyslipidemia. Our previous studies have demonstrated that progesterone receptor membrane component 1 (PGRMC1) plays a key role in antipsychotic-induced metabolic side effects. Prebiotics showed positive effects on lipid metabolism, however, limited studies focused on their therapeutic potential and mechanisms in treating antipsychotic-induced lipid metabolic disorders. Herein, our study aims to explore the effects of the prebiotic B-GOS on lipid disturbances induced by OLZ and elucidate its underlying mechanisms via PGRMC1 pathway. In an 8-week study, long-term intraperitoneal administration of OLZ at a dosage of 8 mg/kg/day in mice induced lipid disturbances as manifested by significantly increased lipid indexes in plasma and liver. B-GOS effectively alleviated the OLZ-induced abnormal lipid metabolism by enhancing the diversity of the gut microbiota, with a 100-fold increase in Akkermansia abundance and a 10-fold decrease in Faecalibaculum abundance. Followed by the B-GOS related changes of gut microbiota, OLZ-induced substantial hepatic inhibition of PGRMC1, and associated protein factors of Wnt signaling pathway (Wnt3a, β-catenin, and PPAR-γ) were reversed without affecting plasma levels of short-chain fatty acids. Taken together, prebiotics like B-GOS enriching Akkermansia offer a promising novel approach to alleviate antipsychotic-induced lipid disturbances by modulating the PGRMC1-Wnt signaling pathway.
Collapse
Affiliation(s)
- Cuirong Zeng
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Shimeng Jiao
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
21
|
Ni Lochlainn M, Bowyer RCE, Moll JM, García MP, Wadge S, Baleanu AF, Nessa A, Sheedy A, Akdag G, Hart D, Raffaele G, Seed PT, Murphy C, Harridge SDR, Welch AA, Greig C, Whelan K, Steves CJ. Effect of gut microbiome modulation on muscle function and cognition: the PROMOTe randomised controlled trial. Nat Commun 2024; 15:1859. [PMID: 38424099 PMCID: PMC10904794 DOI: 10.1038/s41467-024-46116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Studies suggest that inducing gut microbiota changes may alter both muscle physiology and cognitive behaviour. Gut microbiota may play a role in both anabolic resistance of older muscle, and cognition. In this placebo controlled double blinded randomised controlled trial of 36 twin pairs (72 individuals), aged ≥60, each twin pair are block randomised to receive either placebo or prebiotic daily for 12 weeks. Resistance exercise and branched chain amino acid (BCAA) supplementation is prescribed to all participants. Outcomes are physical function and cognition. The trial is carried out remotely using video visits, online questionnaires and cognitive testing, and posting of equipment and biological samples. The prebiotic supplement is well tolerated and results in a changed gut microbiome [e.g., increased relative Bifidobacterium abundance]. There is no significant difference between prebiotic and placebo for the primary outcome of chair rise time (β = 0.579; 95% CI -1.080-2.239 p = 0.494). The prebiotic improves cognition (factor score versus placebo (β = -0.482; 95% CI,-0.813, -0.141; p = 0.014)). Our results demonstrate that cheap and readily available gut microbiome interventions may improve cognition in our ageing population. We illustrate the feasibility of remotely delivered trials for older people, which could reduce under-representation of older people in clinical trials. ClinicalTrials.gov registration: NCT04309292.
Collapse
Affiliation(s)
- Mary Ni Lochlainn
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK.
| | - Ruth C E Bowyer
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | | | - María Paz García
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Samuel Wadge
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Andrei-Florin Baleanu
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Ayrun Nessa
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Alyce Sheedy
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Gulsah Akdag
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Deborah Hart
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Giulia Raffaele
- GKT School of Medical Education, King's College London, London, UK
| | - Paul T Seed
- Unit for Medical Statistics/Department for Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Caroline Murphy
- King's Clinical Trials Unit, Research Management and Innovation Directorate, King's College London, London, UK
| | - Stephen D R Harridge
- Centre for Human & Applied Physiological Sciences, King's College London, London, UK
| | - Ailsa A Welch
- Department of Epidemiology and Public Health, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Carolyn Greig
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, Franklin Wilkins Building, SE1 9NH, London, UK
| | - Claire J Steves
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK.
| |
Collapse
|
22
|
Michaelis L, Berg L, Maier L. Confounder or Confederate? The Interactions Between Drugs and the Gut Microbiome in Psychiatric and Neurological Diseases. Biol Psychiatry 2024; 95:361-369. [PMID: 37331548 DOI: 10.1016/j.biopsych.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
The gut microbiome is emerging as an important factor in signaling along the gut-brain axis. The intimate physiological connection between the gut and the brain allows perturbations in the microbiome to be directly transmitted to the central nervous system and thereby contribute to psychiatric and neurological diseases. Common microbiome perturbations result from the ingestion of xenobiotic compounds including pharmaceuticals such as psychotropic drugs. In recent years, a variety of interactions between these drug classes and the gut microbiome have been reported, ranging from direct inhibitory effects on gut bacteria to microbiome-mediated drug degradation or sequestration. Consequently, the microbiome may play a critical role in influencing the intensity, duration, and onset of therapeutic effects, as well as in influencing the side effects that patients may experience. Furthermore, because the composition of the microbiome varies from person to person, the microbiome may contribute to the frequently observed interpersonal differences in the response to these drugs. In this review, we first summarize the known interactions between xenobiotics and the gut microbiome. Then, for psychopharmaceuticals, we address the question of whether these interactions with gut bacteria are irrelevant for the host (i.e., merely confounding factors in metagenomic analyses) or whether they may even have therapeutic or adverse effects.
Collapse
Affiliation(s)
- Lena Michaelis
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lara Berg
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lisa Maier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
24
|
Molinaro M, Torrente Y, Villa C, Farini A. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review. Int J Mol Sci 2024; 25:631. [PMID: 38203802 PMCID: PMC10778889 DOI: 10.3390/ijms25010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.
Collapse
Affiliation(s)
- Monica Molinaro
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| |
Collapse
|
25
|
Lin SKK, Chen HC, Chen CH, Chen IM, Lu ML, Hsu CD, Chiu YH, Wang TY, Chen HM, Chung YCE, Kuo PH. Exploring the human gut microbiota targets in relation to the use of contemporary antidepressants. J Affect Disord 2024; 344:473-484. [PMID: 37820962 DOI: 10.1016/j.jad.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Antidepressants, specifically selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), are commonly prescribed for depression treatment. Animal studies have shown that antidepressants can influence gut microbiota composition and specific bacterial taxa. We aimed to investigate the association between antidepressant use and human gut microbiota composition and functional pathway. METHODS We collected information on antidepressant use, demographic, food patterns, and clinical characteristics through questionnaires and medical records. The gut microbiota profiles of 271 depressive patients were carried out through 16S rRNA gene sequencing. Patients were categorized based on different types of antidepressant use groups for gut microbiota comparisons. MaAsLin2 was performed to evaluate microbiota composition across groups. PICRUSt2 was used to predict microbiota functional pathways. RESULTS Patients taking SSRIs or SNRIs had a lower microbiota diversity. We found seven taxa abundances (Turicibacter, Barnesiella, Lachnospiraceae_ND3007_group, Romboutia, Akkermansia, Dialister, Romboutia and Fusicatenibacter) differed in patients with various types of antidepressants compared with those without antidepressant treatments (p < 0.05). Turicibacter inversely correlated with depression severity in SSRIs or SNRI users (r = -0.43, p < 0.05). Top identified pathways were related to compound fermentation and biosynthesis in microbiota function. CONCLUSION Antidepressant usage, especially SSRIs and SNRIs, associates with changes in gut microbiota composition and specific taxa. Given our study's preliminary cross-sectional nature, further research is warranted to comprehend the relationship between antidepressant use, treatment response, and gut microbiota, aiming to enhance therapeutic interventions in the future.
Collapse
Affiliation(s)
- Shih-Kai Kevin Lin
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsi-Chung Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Department of Psychiatry, Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - I-Ming Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Dien Hsu
- Department of Psychiatry, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Yi-Hang Chiu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Yang Wang
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Mei Chen
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Chu Ella Chung
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
28
|
Gnatzy L, Ismailos G, Vertzoni M, Reppas C. Managing the clinical effects of drug-induced intestinal dysbiosis with a focus to antibiotics: Challenges and opportunities. Eur J Pharm Sci 2023; 188:106510. [PMID: 37380062 DOI: 10.1016/j.ejps.2023.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The term "intestinal dysbiosis" is used for indicating change(s) of the intestinal microbiota which have been associated with the development of diseases and the deterioration of disease treatments in humans. In this review, documented clinical effects of drug-induced intestinal dysbiosis are briefly presented, and methodologies which could be considered for the management of drug-induced intestinal dysbiosis based on clinical data are critically reviewed. Until relevant methodologies are optimized and/or their effectiveness to the general population is confirmed, and, since drug-induced intestinal dysbiosis refers predominantly to antibiotic-specific intestinal dysbiosis, a pharmacokinetically-based approach for mitigating the impact of antimicrobial therapy on intestinal dysbiosis is proposed.
Collapse
Affiliation(s)
- Lea Gnatzy
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - George Ismailos
- Experimental, Research and Training Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece; National Antimicrobial Testing Committee, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
29
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Garcez FB, Garcia de Alencar JC, Fernandez SSM, Avelino-Silva VI, Sabino EC, Martins RCR, Franco LAM, Lima Ribeiro SM, Possolo de Souza H, Avelino-Silva TJ. Association Between Gut Microbiota and Delirium in Acutely Ill Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1320-1327. [PMID: 36869725 PMCID: PMC10395556 DOI: 10.1093/gerona/glad074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 03/05/2023] Open
Abstract
Our aim was to investigate the association between gut microbiota and delirium occurrence in acutely ill older adults. We included 133 participants 65+ years consecutively admitted to the emergency department of a tertiary university hospital, between September 2019 and March 2020. We excluded candidates with ≥24-hour antibiotic utilization on admission, recent prebiotic or probiotic utilization, artificial nutrition, acute gastrointestinal disorders, severe traumatic brain injury, recent hospitalization, institutionalization, expected discharge ≤48 hours, or admission for end-of-life care. A trained research team followed a standardized interview protocol to collect sociodemographic, clinical, and laboratory data on admission and throughout the hospital stay. Our exposure measures were gut microbiota alpha and beta diversities, taxa relative abundance, and core microbiome. Our primary outcome was delirium, assessed twice daily using the Confusion Assessment Method. Delirium was detected in 38 participants (29%). We analyzed 257 swab samples. After adjusting for potential confounders, we observed that a greater alpha diversity (higher abundance and richness of microorganisms) was associated with a lower risk of delirium, as measured by the Shannon (odds ratio [OR] = 0.77; 95% confidence interval [CI] = 0.60-0.99; p = .042) and Pielou indexes (OR = 0.69; 95% CI = 0.51-0.87; p = .005). Bacterial taxa associated with pro-inflammatory pathways (Enterobacteriaceae) and modulation of relevant neurotransmitters (Serratia: dopamine; Bacteroides, Parabacteroides: GABA) were more common in participants with delirium. Gut microbiota diversity and composition were significantly different in acutely ill hospitalized older adults who experienced delirium. Our work is an original proof-of-concept investigation that lays a foundation for future biomarker studies and potential therapeutic targets for delirium prevention and treatment.
Collapse
Affiliation(s)
- Flavia Barreto Garcez
- Laboratorio de Investigacao Medica em Envelhecimento (LIM 66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Medicina, Hospital Universitario, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Júlio César Garcia de Alencar
- Laboratorio de Investigacao Medica em Emergencias Clinicas (LIM 51), Departamento de Clínica Médica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Vivian Iida Avelino-Silva
- Departamento de Molestias Infecciosas e Parasitarias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Faculdade Israelita de Ciencias da Saude Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Departamento de Molestias Infecciosas e Parasitarias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Parasitologia Medica (LIM 46), Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Cristina Ruedas Martins
- Laboratório de Parasitologia Medica (LIM 46), Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Augusto Moysés Franco
- Laboratório de Parasitologia Medica (LIM 46), Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Heraldo Possolo de Souza
- Laboratorio de Investigacao Medica em Emergencias Clinicas (LIM 51), Departamento de Clínica Médica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Junqueira Avelino-Silva
- Laboratorio de Investigacao Medica em Envelhecimento (LIM 66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Faculdade Israelita de Ciencias da Saude Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
31
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Meschi T. The possible role of gut microbiota dysbiosis in the pathophysiology of delirium in older persons. MICROBIOME RESEARCH REPORTS 2023; 2:19. [PMID: 38046817 PMCID: PMC10688815 DOI: 10.20517/mrr.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 12/05/2023]
Abstract
Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Tiziana Meschi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| |
Collapse
|
33
|
Jemimah S, Chabib CMM, Hadjileontiadis L, AlShehhi A. Gut microbiome dysbiosis in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. PLoS One 2023; 18:e0285346. [PMID: 37224131 DOI: 10.1371/journal.pone.0285346] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that causes gradual memory loss. AD and its prodromal stage of mild cognitive impairment (MCI) are marked by significant gut microbiome perturbations, also known as gut dysbiosis. However, the direction and extent of gut dysbiosis have not been elucidated. Therefore, we performed a meta-analysis and systematic review of 16S gut microbiome studies to gain insights into gut dysbiosis in AD and MCI. METHODS We searched MEDLINE, Scopus, EMBASE, EBSCO, and Cochrane for AD gut microbiome studies published between Jan 1, 2010 and Mar 31, 2022. This study has two outcomes: primary and secondary. The primary outcomes explored the changes in α-diversity and relative abundance of microbial taxa, which were analyzed using a variance-weighted random-effects model. The secondary outcomes focused on qualitatively summarized β-diversity ordination and linear discriminant analysis effect sizes. The risk of bias was assessed using a methodology appropriate for the included case-control studies. The geographic cohorts' heterogeneity was examined using subgroup meta-analyses if sufficient studies reported the outcome. The study protocol has been registered with PROSPERO (CRD42022328141). FINDINGS Seventeen studies with 679 AD and MCI patients and 632 controls were identified and analyzed. The cohort is 61.9% female with a mean age of 71.3±6.9 years. The meta-analysis shows an overall decrease in species richness in the AD gut microbiome. However, the phylum Bacteroides is consistently higher in US cohorts (standardised mean difference [SMD] 0.75, 95% confidence interval [CI] 0.37 to 1.13, p < 0.01) and lower in Chinese cohorts (SMD -0.79, 95% CI -1.32 to -0.25, p < 0.01). Moreover, the Phascolarctobacterium genus is shown to increase significantly, but only during the MCI stage. DISCUSSION Notwithstanding possible confounding from polypharmacy, our findings show the relevance of diet and lifestyle in AD pathophysiology. Our study presents evidence for region-specific changes in abundance of Bacteroides, a major constituent of the microbiome. Moreover, the increase in Phascolarctobacterium and the decrease in Bacteroides in MCI subjects shows that gut microbiome dysbiosis is initiated in the prodromal stage. Therefore, studies of the gut microbiome can facilitate early diagnosis and intervention in Alzheimer's disease and perhaps other neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherlyn Jemimah
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aamna AlShehhi
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
35
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
36
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
37
|
Ecarnot F, Boccardi V, Calcagno A, Franceschi C, Fülop T, Itzhaki RF, Michel JP, Panza F, Rainero I, Solfrizzi V, Ticinesi A, Veronese N, Maggi S. Dementia, infections and vaccines: 30 years of controversy. Aging Clin Exp Res 2023; 35:1145-1160. [PMID: 37160649 PMCID: PMC10169152 DOI: 10.1007/s40520-023-02409-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer's disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut-brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present.
Collapse
Affiliation(s)
- Fiona Ecarnot
- EA3920, University of Franche-Comté, 25000, Besancon, France
- Department of Cardiology, University Hospital Besancon, 3-8 Boulevard Fleming, 25000, Besancon, France
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod, Russia
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Tamas Fülop
- Department of Medicine, Geriatrics Division, Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Innocenzo Rainero
- Dementia Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Internal Medicine, University of Palermo, Palermo, Italy.
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
38
|
Sturov NV, Popov SV, Belikov II. Gut Microbiota and the Ways to Correct it in Chronic Kidney Disease. Indian J Nephrol 2023; 33:162-169. [PMID: 37448901 PMCID: PMC10337223 DOI: 10.4103/ijn.ijn_469_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 07/15/2023] Open
Abstract
Approximately 13% of the Russian population suffers from chronic kidney disease (CKD). Such a high prevalence of the disease, as well as the complexity and high cost of renal replacement therapy, explain the need for developing and implementing new approaches to treat patients at the pre-dialysis stages. The data collected in recent decades highlight the importance of gut microbiota in the progression of CKD. This review provides information about the microbiota composition in healthy individuals and patients with CKD and discusses the mechanisms of interaction in the intestine-kidney system. The article also presents the specifics of the violation of gut microbiota (GM) and correction thereof in CKD.
Collapse
Affiliation(s)
- Nikolay V. Sturov
- Peoples’ Friendship University of Russia (RUDN University), Department of General Practice, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Sergey V. Popov
- Peoples’ Friendship University of Russia (RUDN University), Department of General Practice, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Igor I. Belikov
- Peoples’ Friendship University of Russia (RUDN University), Department of General Practice, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
39
|
Colard-Thomas J, Thomas QD, Viala M. Comedications with Immune Checkpoint Inhibitors: Involvement of the Microbiota, Impact on Efficacy and Practical Implications. Cancers (Basel) 2023; 15:2276. [PMID: 37190203 PMCID: PMC10136801 DOI: 10.3390/cancers15082276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a major breakthrough in solid oncology over the past decade. The immune system and the gut microbiota are involved in their complex mechanisms of action. However, drug interactions have been suspected of disrupting the fine equilibrium necessary for optimal ICI efficacy. Thus, clinicians are facing a great deal of sometimes contradictory information on comedications with ICIs and must at times oppose conflicting objectives between oncological response and comorbidities or complications. We compiled in this review published data on the role of the microbiota in ICI efficacy and the impact of comedications. We found mostly concordant results on detrimental action of concurrent corticosteroids, antibiotics, and proton pump inhibitors. The timeframe seems to be an important variable each time to preserve an initial immune priming at ICIs initiation. Other molecules have been associated with improved or impaired ICIs outcomes in pre-clinical models with discordant conclusions in retrospective clinical studies. We gathered the results of the main studies concerning metformin, aspirin, and non-steroidal anti-inflammatory drugs, beta blockers, renin-angiotensin-aldosterone system inhibitors, opioids, and statins. In conclusion, one should always assess the necessity of concomitant treatment according to evidence-based recommendations and discuss the possibility of postponing ICI initiation or switching strategies to preserve the critical window.
Collapse
Affiliation(s)
- Julien Colard-Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
| | - Quentin Dominique Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
- Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute (IRCM) INSERM U1194, University of Montpellier (UM), 34090 Montpellier, France
| | - Marie Viala
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
| |
Collapse
|
40
|
Farini A, Tripodi L, Villa C, Strati F, Facoetti A, Baselli G, Troisi J, Landolfi A, Lonati C, Molinaro D, Wintzinger M, Gatti S, Cassani B, Caprioli F, Facciotti F, Quattrocelli M, Torrente Y. Microbiota dysbiosis influences immune system and muscle pathophysiology of dystrophin-deficient mice. EMBO Mol Med 2023; 15:e16244. [PMID: 36533294 PMCID: PMC9994487 DOI: 10.15252/emmm.202216244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive severe muscle-wasting disease caused by mutations in DMD, encoding dystrophin, that leads to loss of muscle function with cardiac/respiratory failure and premature death. Since dystrophic muscles are sensed by infiltrating inflammatory cells and gut microbial communities can cause immune dysregulation and metabolic syndrome, we sought to investigate whether intestinal bacteria support the muscle immune response in mdx dystrophic murine model. We highlighted a strong correlation between DMD disease features and the relative abundance of Prevotella. Furthermore, the absence of gut microbes through the generation of mdx germ-free animal model, as well as modulation of the microbial community structure by antibiotic treatment, influenced muscle immunity and fibrosis. Intestinal colonization of mdx mice with eubiotic microbiota was sufficient to reduce inflammation and improve muscle pathology and function. This work identifies a potential role for the gut microbiota in the pathogenesis of DMD.
Collapse
Affiliation(s)
- Andrea Farini
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Francesco Strati
- Mucosal Immunology Lab, Department of Experimental OncologyIEO‐European Institute of OncologyMilanItaly
| | - Amanda Facoetti
- Humanitas UniversityMilanItaly
- Humanitas Clinical and Research Center IRCCSMilanItaly
| | - Guido Baselli
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Present address:
SciLifeLab, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica SalernitanaUniversity of SalernoBaronissiItaly
- Theoreo Srl, Spinoff Company of the University of SalernoMontecorvino PuglianoItaly
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry, Scuola Medica SalernitanaUniversity of SalernoBaronissiItaly
- Theoreo Srl, Spinoff Company of the University of SalernoMontecorvino PuglianoItaly
| | - Caterina Lonati
- Center for Surgical ResearchFondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Davide Molinaro
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Michelle Wintzinger
- Molecular Cardiovascular Biology Division, Heart InstituteCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Stefano Gatti
- Center for Surgical ResearchFondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Barbara Cassani
- Humanitas Clinical and Research Center IRCCSMilanItaly
- Department of Medical Biotechnologies and Translational MedicineUniversità Degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Unit of Gastroenterology and Endoscopy, Department of Pathophysiology and TransplantationUniversità degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di MilanoMilanItaly
| | - Federica Facciotti
- Unit of Gastroenterology and Endoscopy, Department of Pathophysiology and TransplantationUniversità degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di MilanoMilanItaly
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart InstituteCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Yvan Torrente
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| |
Collapse
|
41
|
D'Amico F, Barone M, Brigidi P, Turroni S. Gut microbiota in relation to frailty and clinical outcomes. Curr Opin Clin Nutr Metab Care 2023; 26:219-225. [PMID: 36942920 DOI: 10.1097/mco.0000000000000926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW The gut microbiota is involved in several aspects of host health and disease, but its role is far from fully understood. This review aims to unveil the role of our microbial community in relation to frailty and clinical outcomes. RECENT FINDINGS Ageing, that is the continuous process of physiological changes that begin in early adulthood, is mainly driven by interactions between biotic and environmental factors, also involving the gut microbiota. Indeed, our gut microbial counterpart undergoes considerable compositional and functional changes across the lifespan, and ageing-related processes may be responsible for - and due to - its alterations during elderhood. In particular, a dysbiotic gut microbiota in the elderly population has been associated with the development and progression of several age-related disorders. SUMMARY Here, we first provide an overview of the lifespan trajectory of the gut microbiota in both health and disease. Then, we specifically focus on the relationship between gut microbiota and frailty syndrome, that is one of the major age-related burdens. Finally, examples of microbiome-based precision interventions, mainly dietary, prebiotic and probiotic ones, are discussed as tools to ameliorate the symptoms of frailty and its overlapping conditions (e.g. sarcopenia), with the ultimate goal of actually contributing to healthy ageing and hopefully promoting longevity.
Collapse
Affiliation(s)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences
| | | | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
43
|
Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023; 15:nu15051138. [PMID: 36904138 PMCID: PMC10005077 DOI: 10.3390/nu15051138] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional research for estimating the habitual fruit and vegetable intake, especially in children and in patients with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the plasma and urine can be influenced by the presence of several age-related conditions, including frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging. Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function. Although these considerations may not make HA the ideal biomarker of aging trajectories, the study of its metabolism and clearance in older subjects may provide valuable information for disentangling the complex interaction between diet, gut microbiota, frailty and multimorbidity.
Collapse
|
44
|
Chen H, Cao T, Zhang B, Cai H. The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Front Pharmacol 2023; 14:1097284. [PMID: 36762113 PMCID: PMC9905135 DOI: 10.3389/fphar.2023.1097284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the mainstay of treatment for schizophrenia and other neuropsychiatric diseases but cause a high risk of disruption to lipid metabolism, which is an intractable therapeutic challenge worldwide. Although the exact mechanisms underlying this lipid disturbance are complex, an increasing body of evidence has suggested the involvement of the gut microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the abundance and composition of the intestinal microflora. The subsequent effects involve the generation of different categories of signaling molecules by gut microbes such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile acids (BAs), and gut hormones that regulate lipid metabolism. On the one hand, these signaling molecules can directly activate the vagus nerve or be transported into the brain to influence appetite via the gut-brain axis. On the other hand, these molecules can also regulate related lipid metabolism via peripheral signaling pathways. Interestingly, therapeutic strategies directly targeting the gut microbiota and related metabolites seem to have promising efficacy in the treatment of SGA-induced lipid disturbances. Thus, this review provides a comprehensive understanding of how SGAs can induce disturbances in lipid metabolism by altering the gut microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
45
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
S A, K G, A AM. Intermodulation of gut-lung axis microbiome and the implications of biotics to combat COVID-19. J Biomol Struct Dyn 2022; 40:14262-14278. [PMID: 34699326 DOI: 10.1080/07391102.2021.1994875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease pandemic caused by the COVID-19 virus has infected millions of people around the world with a surge in transmission and mortality rates. Although it is a respiratory viral infection that affects airway epithelial cells, a diverse set of complications, including cytokine storm, gastrointestinal disorders, neurological distress, and hyperactive immune responses have been reported. However, growing evidence indicates that the bidirectional crosstalk of the gut-lung axis can decipher the complexity of the disease. Though not much research has been focused on the gut-lung axis microbiome, there is a translocation of COVID-19 infection from the lung to the gut through the lymphatic system resulting in disruption of gut permeability and its integrity. It is believed that detailed elucidation of the gut-lung axis crosstalk and the role of microbiota can unravel the most significant insights on the discovery of diagnosis using microbiome-based-therapeutics for COVID-19. This review calls attention to relate the influence of dysbiosis caused by COVID-19 and the involvement of the gut-lung axis. It presents first of its kind details that concentrate on the momentousness of biotics in disease progression and restoration. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya S
- Department of Bioinformatics, Stella Maris College, Chennai, India.,Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Gunasekaran K
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Anita Margret A
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
47
|
TCA and SSRI Antidepressants Exert Selection Pressure for Efflux-Dependent Antibiotic Resistance Mechanisms in Escherichia coli. mBio 2022; 13:e0219122. [PMID: 36374097 PMCID: PMC9765716 DOI: 10.1128/mbio.02191-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial diversity is reduced in the gut microbiota of animals and humans treated with selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs). The mechanisms driving the changes in microbial composition, while largely unknown, is critical to understand considering that the gut microbiota plays important roles in drug metabolism and brain function. Using Escherichia coli, we show that the SSRI fluoxetine and the TCA amitriptyline exert strong selection pressure for enhanced efflux activity of the AcrAB-TolC pump, a member of the resistance-nodulation-cell division (RND) superfamily of transporters. Sequencing spontaneous fluoxetine- and amitriptyline-resistant mutants revealed mutations in marR and lon, negative regulators of AcrAB-TolC expression. In line with the broad specificity of AcrAB-TolC pumps these mutants conferred resistance to several classes of antibiotics. We show that the converse also occurs, as spontaneous chloramphenicol-resistant mutants displayed cross-resistance to SSRIs and TCAs. Chemical-genomic screens identified deletions in marR and lon, confirming the results observed for the spontaneous resistant mutants. In addition, deletions in 35 genes with no known role in drug resistance were identified that conferred cross-resistance to antibiotics and several displayed enhanced efflux activities. These results indicate that combinations of specific antidepressants and antibiotics may have important effects when both are used simultaneously or successively as they can impose selection for common mechanisms of resistance. Our work suggests that selection for enhanced efflux activities is an important factor to consider in understanding the microbial diversity changes associated with antidepressant treatments. IMPORTANCE Antidepressants are prescribed broadly for psychiatric conditions to alter neuronal levels of synaptic neurotransmitters such as serotonin and norepinephrine. Two categories of antidepressants are selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs); both are among the most prescribed drugs in the United States. While it is well-established that antidepressants inhibit reuptake of neurotransmitters there is evidence that they also impact microbial diversity in the gastrointestinal tract. However, the mechanisms and therefore biological and clinical effects remain obscure. We demonstrate antidepressants may influence microbial diversity through strong selection for mutant bacteria with increased AcrAB-TolC activity, an efflux pump that removes antibiotics from cells. Furthermore, we identify a new group of genes that contribute to cross-resistance between antidepressants and antibiotics, several act by regulating efflux activity, underscoring overlapping mechanisms. Overall, this work provides new insights into bacterial responses to antidepressants important for understanding antidepressant treatment effects.
Collapse
|
48
|
Tursi A, Papa V, Lopetuso LR, Settanni CR, Gasbarrini A, Papa A. Microbiota Composition in Diverticular Disease: Implications for Therapy. Int J Mol Sci 2022; 23:14799. [PMID: 36499127 PMCID: PMC9736941 DOI: 10.3390/ijms232314799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Gut microbiota (GM) composition and its imbalance are crucial in the pathogenesis of several diseases, mainly those affecting the gastrointestinal tract. Colon diverticulosis and its clinical manifestations (diverticular disease, DD) are among the most common digestive disorders in developed countries. In recent literature, the role of GM imbalance in the onset of the different manifestations within the clinical spectrum of DD has been highlighted. This narrative review aims to summarize and critically analyze the current knowledge on GM dysbiosis in diverticulosis and DD by comparing the available data with those found in inflammatory bowel disease (IBD). The rationale for using probiotics to rebalance dysbiosis in DD is also discussed.
Collapse
Affiliation(s)
- Antonio Tursi
- Territorial Gastroenterology Service, ASL BAT, 70031 Andria, Italy
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
| | - Valerio Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Gemelli, IRCCS, 00168 Rome, Italy
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Romano Settanni
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Gemelli, IRCCS, 00168 Rome, Italy
| | - Alfredo Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
49
|
Thomann AK, Wüstenberg T, Wirbel J, Knoedler LL, Thomann PA, Zeller G, Ebert MP, Lis S, Reindl W. Depression and fatigue in active IBD from a microbiome perspective-a Bayesian approach to faecal metagenomics. BMC Med 2022; 20:366. [PMID: 36244970 PMCID: PMC9575298 DOI: 10.1186/s12916-022-02550-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraintestinal symptoms are common in inflammatory bowel diseases (IBD) and include depression and fatigue. These are highly prevalent especially in active disease, potentially due to inflammation-mediated changes in the microbiota-gut-brain axis. The aim of this study was to investigate the associations between structural and functional microbiota characteristics and severity of fatigue and depressive symptoms in patients with active IBD. METHODS We included clinical data of 62 prospectively enrolled patients with IBD in an active disease state. Patients supplied stool samples and completed the questionnaires regarding depression and fatigue symptoms. Based on taxonomic and functional metagenomic profiles of faecal gut microbiota, we used Bayesian statistics to investigate the associative networks and triangle motifs between bacterial genera, functional modules and symptom severity of self-reported fatigue and depression. RESULTS Associations with moderate to strong evidence were found for 3 genera (Odoribacter, Anaerotruncus and Alistipes) and 3 functional modules (pectin, glycosaminoglycan and central carbohydrate metabolism) with regard to depression and for 4 genera (Intestinimonas, Anaerotruncus, Eubacterium and Clostridiales g.i.s) and 2 functional modules implicating amino acid and central carbohydrate metabolism with regard to fatigue. CONCLUSIONS This study provides the first evidence of association triplets between microbiota composition, function and extraintestinal symptoms in active IBD. Depression and fatigue were associated with lower abundances of short-chain fatty acid producers and distinct pathways implicating glycan, carbohydrate and amino acid metabolism. Our results suggest that microbiota-directed therapeutic approaches may reduce fatigue and depression in IBD and should be investigated in future research.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Torsten Wüstenberg
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Core Facility for Neuroscience of Self-Regulation (CNSR), Field of Focus 4 (FoF4), Heidelberg University, Heidelberg, Germany
| | - Jakob Wirbel
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Laura-Louise Knoedler
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Georg Zeller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Healthy Metabolism, Centre of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
50
|
Nagata N, Nishijima S, Miyoshi-Akiyama T, Kojima Y, Kimura M, Aoki R, Ohsugi M, Ueki K, Miki K, Iwata E, Hayakawa K, Ohmagari N, Oka S, Mizokami M, Itoi T, Kawai T, Uemura N, Hattori M. Population-level Metagenomics Uncovers Distinct Effects of Multiple Medications on the Human Gut Microbiome. Gastroenterology 2022; 163:1038-1052. [PMID: 35788347 DOI: 10.1053/j.gastro.2022.06.070] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Medication is a major determinant of human gut microbiome structure, and its overuse increases the risks of morbidity and mortality. However, effects of certain commonly prescribed drugs and multiple medications on the gut microbiome are still underinvestigated. METHODS We performed shotgun metagenomic analysis of fecal samples from 4198 individuals in the Japanese 4D (Disease, Drug, Diet, Daily life) microbiome project. A total of 759 drugs were profiled, and other metadata, such as anthropometrics, lifestyles, diets, physical activities, and diseases, were prospectively collected. Second fecal samples were collected from 243 individuals to assess the effects of drug initiation and discontinuation on the microbiome. RESULTS We found that numerous drugs across different treatment categories influence the microbiome; more than 70% of the drugs we profiled had not been examined before. Individuals exposed to multiple drugs, polypharmacy, showed distinct gut microbiome structures harboring significantly more abundant upper gastrointestinal species and several nosocomial pathobionts due to additive drug effects. Polypharmacy was also associated with microbial functions, including the reduction of short-chain fatty acid metabolism and increased bacterial stress responses. Even nonantibiotic drugs were significantly correlated with an increased antimicrobial resistance potential through polypharmacy. Notably, a 2-time points dataset revealed the alteration and recovery of the microbiome in response to drug initiation and cessation, corroborating the observed drug-microbe associations in the cross-sectional cohort. CONCLUSION Our large-scale metagenomics unravels extensive and disruptive impacts of individual and multiple drug exposures on the human gut microbiome, providing a drug-microbe catalog as a basis for a deeper understanding of the role of the microbiome in drug efficacy and toxicity.
Collapse
Affiliation(s)
- Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Suguru Nishijima
- Computational Bio-Big Data Open Innovation Lab., National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasushi Kojima
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Moto Kimura
- Department of Clinical Research Strategic Planning Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryo Aoki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan; Diabetes and Metabolism Information Center, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kohjiro Ueki
- Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniko Miki
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Eri Iwata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Kayoko Hayakawa
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan; Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan; Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Naomi Uemura
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Tokyo, Japan
| | - Masahira Hattori
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|