1
|
Zhang Q, Wang M, Li Y, Zhang H, Wang Y, Chen X, Yao L, Cui M, Dong H, Li X, Liu J, Zhu B, Xu Y. Efficacy, safety and exploratory analysis of neoadjuvant tislelizumab (a PD-1 inhibitor) plus nab-paclitaxel followed by epirubicin/cyclophosphamide for triple-negative breast cancer: a phase 2 TREND trial. Signal Transduct Target Ther 2025; 10:169. [PMID: 40414961 DOI: 10.1038/s41392-025-02254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
The optimal chemotherapy backbone and specific population of triple-negative breast cancer (TNBC) patients that benefit from neoadjuvant immunotherapy are not well established. This prospective, single-arm, phase II TREND trial assessed the efficacy and safety of tislelizumab plus nab-paclitaxel and epirubicin/cyclophosphamide-based chemotherapy as a neoadjuvant treatment for TNBC (ChiCTR2000035262). The primary endpoint was pathological complete response (pCR), with the secondary endpoints including safety assessment and objective response rate (ORR). ScRNA-seq, bulk RNA-seq, TCR-seq, cyTOF and WES were performed on pre-treatment and post-treatment samples. Among 53 total enrolled patients, 44 completed the combined neoadjuvant therapy, and 30 of 44 patients (68.18%) achieved pCR. Additionally, 14 out of 44 patients had a complete response (31.82%), with an ORR of 93.18%. The most commonly observed treatment-related adverse events (TRAEs) were alopecia, nausea and liver injury with 6 cases classified as grade 3 or higher adverse events. Immune response-related pathways, including TNF signaling pathway, T cell receptor signaling pathway, were enriched in pCR group. Pre-treatment model was identified and construct to predict response to immunotherapy. CDKN1A+ CD8 T lymphocytes were enriched in pCR group after neoadjuvant immunotherapy. Dynamic change of immune-related pathways at an early stage during the neoadjuvant immunotherapy may be associated with the treatment efficacy. In conclusion, neoadjuvant treatment of tislelizumab with nab-paclitaxel and anthracycline-based chemotherapy showed promising clinical activity and was well-tolerated among TNBC patients, without high incidence of TRAEs. These findings provide evidence supporting neoadjuvant tislelizumab with chemotherapy as an effective rational approach for treating TNBC.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110801, P. R. China
| | - Mozhi Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yumeng Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Hengjun Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yusong Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Xiuyun Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Litong Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Mingke Cui
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110801, P. R. China
| | - Haoran Dong
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Xiang Li
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Jian Liu
- Centre for Bioinformatics and Intelligent Medicine, Nankai University, Tianjin, 300071, P. R. China
- College of Computer Science, Nankai University, Tianjin, 300071, P. R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Yingying Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China.
| |
Collapse
|
2
|
Xiao F, Xie D, Zhou D, Yang L, Liu F. Immunological mediators in the causal relationship between latent autoimmune diabetes in adults and breast cancer: A Mendelian randomization analysis. Medicine (Baltimore) 2025; 104:e42571. [PMID: 40419887 DOI: 10.1097/md.0000000000042571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
To investigate the link between Latent Autoimmune Diabetes in Adults (LADA) and breast cancer (BC) subtypes using Mendelian randomization (MR) and identify potential immunological mediators. We used MR with genetic variants as instruments, leveraging genome-wide association studies data from Europeans to assess the relationship between LADA and BC subtypes. The study evaluated the mediating role of immune cells and employed methods like inverse variance weighted, MR Egger, and MR-PRESSO to ensure robust results. LADA showed a negative association with overall BC, human epidermal growth factor receptor 2-positive BC, and estrogen receptor-positive BC. The FinnGen Biobank replication and meta-analysis confirmed these inverse relationships. CD11c on CD62L+ myeloid dendritic cells mediated the relationship between LADA and BC risk. Our study indicated a negative association between LADA and BC development, especially for human epidermal growth factor receptor 2-positive and estrogen receptor-positive subtypes, with CD11c on CD62L+ myeloid dendritic cells as a key mediator. These findings suggest potential mechanisms for LADA's influence on BC risk and highlight opportunities for targeted prevention and treatment.
Collapse
Affiliation(s)
- Fangting Xiao
- Department of Breast Surgery, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Diya Xie
- Department of General Surgery, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Daosen Zhou
- Department of General Surgery, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Lihang Yang
- Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Fengmin Liu
- Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Oh J, Hoelzl J, Carlson JCT, Bill R, Peterson HM, Faquin WC, Pittet MJ, Pai SI, Weissleder R. Spatial analysis identifies DC niches as predictors of pembrolizumab therapy in head and neck squamous cell cancer. Cell Rep Med 2025; 6:102100. [PMID: 40311615 DOI: 10.1016/j.xcrm.2025.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/05/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) shows variable response to anti-programmed cell death protein 1 (PD-1) therapy, which can be partially explained by a combined positive score (CPS) of tumor and immune cell expression of programmed death-ligand 1 (PD-L1) within the local tumor microenvironment (TME). To better define TME immune determinants associated with treatment efficacy, we conduct a study of n = 48 HNSCC tumors from patients prior to pembrolizumab therapy. Our investigation combines a rapid bioorthogonal multiplex staining method with computational analysis of whole-slide imaging to capture the single-cell spatial heterogeneity and complexity of the TME. Analyzing 6,316 fields of view (FOVs), we provide comprehensive PD-L1 phenotyping and cell proximity assays across the entirety of tissue sections. While none of the PD-L1 metrics adequately predict response, we find that the spatial organization of CCR7+ dendritic cells (DCs) in niches better predicts overall patient survival than CPS alone. This study highlights the importance of understanding the spatial context of immune networks for immunotherapy.
Collapse
Affiliation(s)
- Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan Hoelzl
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Ruben Bill
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Hannah M Peterson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William C Faquin
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; AGORA Cancer Research Center, and Swiss Cancer Center Leman, 1011 Lausanne, Switzerland; Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Sara I Pai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Wu Y, Chen W, Deng J, Cao X, Yang Z, Chen J, Tan Q, Zhou E, Li M, Liu J, Guo M, Jin Y. Tumour-derived microparticles obtained through microwave irradiation induce immunogenic cell death in lung adenocarcinoma. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01922-3. [PMID: 40389640 DOI: 10.1038/s41565-025-01922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
Tumour-derived microparticles (TMPs), extracellular vesicles traditionally obtained upon ultraviolet (UV) radiation of tumour cells, hold promise in tumour immunotherapies and vaccines and have demonstrated potential as drug delivery systems for tumour treatment. However, concerns remain regarding the limited efficacy and safety of UV-derived TMPs. Here we introduce a microwave (MW)-assisted method for preparing TMPs, termed MW-TMPs. Brief exposure of tumour cells to short-wavelength MW radiation promotes the release of TMPs showing superior in vivo antitumour activity and safety compared with UV-TMPs. MW-TMPs induce immunogenic cell death and reprogramme suppressive tumour immune microenvironments in different lung tumour models, enabling dual targeting of tumour cells by natural killer and T cells. We show that they can efficiently deliver methotrexate to tumours, synergistically boosting the efficacy of PD-L1 blockade. This MW-TMP development strategy is simpler, more efficient and safer than traditional UV-TMP methods.
Collapse
Affiliation(s)
- Yali Wu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghui Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiatong Liu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Li S, Zhou X, Feng H, Huang K, Chen M, Lin M, Lin H, Deng Z, Chen Y, Liao W, Zhang Z, Chen J, Guan B, Su T, Feng Z, Shu G, Yu A, Pan Y, Fu L. Deciphering the Immunomodulatory Function of GSN + Inflammatory Cancer-Associated Fibroblasts in Renal Cell Carcinoma Immunotherapy: Insights From Pan-Cancer Single-Cell Landscape and Spatial Transcriptomics Analysis. Cell Prolif 2025:e70062. [PMID: 40375605 DOI: 10.1111/cpr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
The heterogeneity of cancer-associated fibroblasts (CAFs) could affect the response to immune checkpoint inhibitor (ICI) therapy. However, limited studies have investigated the role of inflammatory CAFs (iCAFs) in ICI therapy using pan-cancer single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics sequencing (ST-seq) analysis. We performed pan-cancer scRNA-seq and ST-seq analyses to identify the subtype of GSN+ iCAFs, exploring its spatial distribution characteristics in the context of ICI therapy. The pan-cancer scRNA-seq and bulk RNA-seq data are incorporated to develop the Caf.Sig model, which predicts ICI response based on CAF gene signatures and machine learning approaches. Comprehensive scRNA-seq analysis, along with in vivo and in vitro experiments, investigates the mechanisms by which GSN+ iCAFs influence ICI efficacy. The Caf.Sig model demonstrates well performances in predicting ICI therapy response in pan-cancer patients. A higher proportion of GSN+ iCAFs is observed in ICI non-responders compared to responders in the pan-cancer landscape and clear cell renal cell carcinoma (ccRCC). Using real-world immunotherapy data, the Caf.Sig model accurately predicts ICI response in pan-cancer, potentially linked to interactions between GSN+ iCAFs and CD8+ Tex cells. ST-seq analysis confirms that interactions and cellular distances between GSN+ iCAFs and CD8+ exhausted T (Tex) cells impact ICI efficacy. In a co-culture system of primary CAFs, primary tumour cells and CD8+ T cells, downregulation of GSN on CAFs drives CD8+ T cells towards a dysfunctional state in ccRCC. In a subcutaneously tumour-grafted mouse model, combining GSN overexpression with ICI treatment achieves optimal efficacy in ccRCC. Our study provides the Caf.Sig model as an outperforming approach for patient selection of ICI therapy, and advances our understanding of CAF biology and suggests potential therapeutic strategies for upregulating GSN in CAFs in cancer immunotherapy.
Collapse
Affiliation(s)
- Shan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinwei Zhou
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haoqian Feng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kangbo Huang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Minyu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingjie Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zebing Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
| | - Yuhang Chen
- Department of Geniturinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wuyuan Liao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengkun Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jinwei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bohong Guan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian Su
- Department of Pediatric Intensive Care Unit (PICU), Guangdong Provincial People's Hospital Heyuan Hospital, Heyuan, Guangdong, China
| | - Zihao Feng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guannan Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Anze Yu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yihui Pan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liangmin Fu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, Hunan, China
| |
Collapse
|
6
|
Schalck A, Tran T, Li J, Sei E, Bai S, Hu M, Lin J, Bright SJ, Reddick S, Yang F, Batra H, Contreras A, Raso MG, Stauder MC, Hoffman KE, Reddy JP, Nead KT, Smith BD, Sawakuchi GO, Woodward WA, Watowich SS, Litton JK, Bedrosian I, Mittendorf EA, Le-Petross H, Navin NE, Shaitelman SF. The impact of breast radiotherapy on the tumor genome and immune ecosystem. Cell Rep 2025; 44:115703. [PMID: 40378044 DOI: 10.1016/j.celrep.2025.115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/17/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
Radiotherapy is a pillar of breast cancer treatment; however, it remains unclear how radiotherapy modulates the tumor microenvironment. We investigated this question in a cohort of 20 patients with estrogen-receptor positive (ER+) breast tumors who received neoadjuvant radiotherapy. Tumor biopsies were collected before and 7 days postradiation. Single-cell DNA sequencing (scDNA-seq) and scRNA-seq were conducted on 8 and 11 patients, respectively, at these two time points. The scRNA data showed increased infiltration of naive-like CD4 T cells and an early, activated CD8 T cell population following radiotherapy. Radiotherapy also eliminated existing cytotoxic T cells and resulted in myeloid cell increases. In tumor cells, the scDNA-seq data showed a high genomic selection of subclones in half of the patients with high ER expression, while the remaining number had low genomic selection and an interferon response. Collectively, these data provide insight into the impact of radiotherapy in ER+ breast cancer patients.
Collapse
Affiliation(s)
- Aislyn Schalck
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biological Sciences, University of Texas, Houston, TX 770303, USA
| | - Tuan Tran
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianzhuo Li
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emi Sei
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanshan Bai
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Hu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jerome Lin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott J Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel Reddick
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Janssen China Research & Development, Johnson&Johnson, Shanghai 201210, China
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandro Contreras
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael C Stauder
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen E Hoffman
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jay P Reddy
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin T Nead
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin D Smith
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel O Sawakuchi
- Graduate School of Biological Sciences, University of Texas, Houston, TX 770303, USA; Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wendy A Woodward
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Huong Le-Petross
- Department of Breast Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas E Navin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biological Sciences, University of Texas, Houston, TX 770303, USA; Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Simona F Shaitelman
- Department of Breast Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Shorer O, Pinhasi A, Yizhak K. Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy. CELL GENOMICS 2025; 5:100842. [PMID: 40187353 DOI: 10.1016/j.xgen.2025.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Despite the crucial role of T cell clones in anti-tumor activity, their characterization and association with clinical outcomes following immune checkpoint inhibitors are lacking. Here, we analyzed paired single-cell RNA sequencing/T cell receptor sequencing of 767,606 T cells across 460 samples spanning 6 cancer types. We found a robust signature of response based on expanded CD8+ clones that differentiates responders from non-responders. Analysis of persistent clones showed transcriptional changes that are differentially induced by therapy in the different response groups, suggesting an improved reinvigoration capacity in responding patients. Moreover, a gene trajectory analysis revealed changes in the pseudo-temporal state of de novo clones that are associated with clinical outcomes. Lastly, we found that clones shared between tumor and blood are more abundant in non-responders and execute distinct transcriptional programs. Overall, our results highlight differences in clonal transcriptional states that are linked to patient response, offering valuable insights into the mechanisms driving effective anti-tumor immunity.
Collapse
Affiliation(s)
- Ofir Shorer
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Asaf Pinhasi
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel; The Taub Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
8
|
Thomas N, Foukakis T, Willard-Gallo K. The interplay between the immune response and neoadjuvant therapy in breast cancer. Front Oncol 2025; 15:1469982. [PMID: 40421087 PMCID: PMC12104209 DOI: 10.3389/fonc.2025.1469982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Treatment of early breast cancer is currently experiencing a rapid evolution because of important insight into tumor subtypes and continuous development and improvement of novel therapeutics. Historically considered non-immunogenic, breast cancer has seen a paradigm shift with increased understanding of immune microenvironment, which have revealed extensive heterogeneity in tumor-associated inflammation. Notably, the more aggressive breast cancer subtypes, including triple-negative and HER2-positive, have exhibited favorable responses to combined chemo-immunotherapy protocols. Neoadjuvant therapy has emerged as the standard of care for these tumors, with pathological complete response used as a surrogate endpoint for long-term clinical outcomes and coincidently expediting new drug approval. The neoadjuvant setting affords a unique opportunity for in vivo treatment response evaluation and effects on the tumor microenvironment. In this review, the predictive and prognostic value of the tumor immune microenvironment before, during, and after treatment across various therapeutic regimens, tailored to distinct breast cancer subtypes, is carefully examined.
Collapse
Affiliation(s)
- Noémie Thomas
- Molecular Immunology Unit, Institut Jules Bordet, Brussel, Belgium
| | - Theodoros Foukakis
- Translational Breast Cancer Research, Department of Oncology-Pathology, Karolinska Institute, Stokholm, Sweden
| | | |
Collapse
|
9
|
Kakimi K, Sugie T. Why combine and why neoadjuvant? Tumor immunological perspectives on chemoimmunotherapy in triple-negative breast cancer. Breast Cancer 2025:10.1007/s12282-025-01707-5. [PMID: 40327275 DOI: 10.1007/s12282-025-01707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by limited targeted therapies and high recurrence rates. While immune checkpoint inhibitors (ICIs) have shown promise, their efficacy as monotherapy is limited. Clinically, ICIs demonstrate significant benefit primarily when combined with chemotherapy, particularly in the neoadjuvant setting for early-stage TNBC, which yields superior outcomes compared to adjuvant therapy. This review elucidates the tumor immunological principles underlying these observations. We discussed how the suppressive tumor microenvironment (TME), progressive T cell exhaustion, and associated epigenetic scarring constrain ICI monotherapy effectiveness. Crucially, we highlight the immunological advantages of the neoadjuvant approach: the presence of the primary tumor provides abundant antigens, and intact tumor-draining lymph nodes (TDLNs) act as critical sites for ICI-mediated priming and expansion of naïve and precursor exhausted T cells. This robust activation within TDLNs enhances systemic anti-tumor immunity and expands the T cell repertoire, a process less effectively achieved in the adjuvant setting after tumor resection. These mechanisms provide a strong rationale for the improved pathological complete response (pCR) rates and event-free survival observed with neoadjuvant chemoimmunotherapy, as demonstrated in trials like KEYNOTE-522. We further explore the implications for adjuvant therapy decisions based on treatment response, the challenges of ICI resistance, the need for predictive biomarkers, management of immune-related adverse events (irAEs), and future therapeutic directions. Understanding the dynamic interplay between chemotherapy, ICIs, T cells, and the TME, particularly the role of TDLNs in the neoadjuvant context, is essential for optimizing immunotherapy strategies and improving outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Chemotherapy Center, Kansai Medical University Kori Hospital, 8-45 Korihondori, Neyagawa, Osaka, 572-8551, Japan.
| | - Tomoharu Sugie
- Chemotherapy Center, Kansai Medical University Kori Hospital, 8-45 Korihondori, Neyagawa, Osaka, 572-8551, Japan.
| |
Collapse
|
10
|
Elder AM, Fairchild HR, Kines KT, Cozzens LM, Becks AR, Slansky JE, Anderson SM, Lyons TR. Semaphorin7A and PD-L1 cooperatively drive immunosuppression during mammary involution and breast cancer. Cell Rep 2025; 44:115676. [PMID: 40333186 DOI: 10.1016/j.celrep.2025.115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Postpartum mammary gland remodeling after a pregnancy/lactation cycle is characterized by mechanisms of cell death and inflammation. Here, we show that SEMA7A promotes PD-L1 expression in immune cells of the mammary tissue during involution. These same phenotypes are mimicked in the microenvironment of SEMA7A-expressing tumors, which partially respond to αPD-1/αPD-L1 treatments in vivo. However, cells that remain after treatment are enriched for SEMA7A expression. Therefore, we tested a monoclonal antibody that directly targets SEMA7A-expressing tumors, in part, by reducing SEMA7A-mediated upregulation of PD-L1. In vivo, the SEMA7A monoclonal antibody reduces tumor growth and/or promotes complete regression of mouse mammary tumors, reduces some immunosuppressive phenotypes in the tumor microenvironment, and restores cytotoxic T cells, suggesting that SEMA7A may be a candidate for immune-based therapy for breast cancer patients.
Collapse
Affiliation(s)
- Alan M Elder
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heather R Fairchild
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren M Cozzens
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria R Becks
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill E Slansky
- University of Colorado Cancer Center, Aurora, CO, USA; Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Cancer Center, Aurora, CO, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Chen AD, Kroehling L, Ennis C, Denis GV, Monti S. A highly resolved integrated transcriptomic atlas of human breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643025. [PMID: 40161579 PMCID: PMC11952505 DOI: 10.1101/2025.03.13.643025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In this study, we developed an integrated single cell transcriptomic (scRNAseq) atlas of human breast cancer (BC), the largest resource of its kind, totaling > 600,000 cells across 138 patients. Rigorous integration and annotation of publicly available scRNAseq data enabled a highly resolved characterization of epithelial, immune, and stromal heterogeneity within the tumor microenvironment (TME). Within the immune compartment we were able to characterize heterogeneity of CD4, CD8 T cells and macrophage subpopulations. Within the stromal compartment, subpopulations of endothelial cells (ECs) and cancer associated fibroblasts (CAFs) were resolved. Within the cancer epithelial compartment, we characterized the functional heterogeneity of cells across the axes of stemness, epithelial-mesenchymal plasticity, and canonical cancer pathways. Across all subpopulations observed in the TME, we performed a multi-resolution survival analysis to identify epithelial cell states and immune cell types which conferred a survival advantage in both The Cancer Genome Atlas (TCGA) and METABRIC. We also identified robust associations between TME composition and clinical phenotypes such as tumor subtype and grade that were not discernible when the analysis was limited to individual datasets, highlighting the need for atlas-based analyses. This atlas represents a valuable resource for further high-resolution analyses of TME heterogeneity within BC.
Collapse
|
12
|
Han Y, Hu M, Wang Y, Xu S, Jiang F, Wang Y, Liu Z. A coagulation-related long non-coding RNA signature to predict prognosis and immune features of breast cancer. Discov Oncol 2025; 16:662. [PMID: 40317354 PMCID: PMC12049355 DOI: 10.1007/s12672-025-02316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Breast cancer (BC) remains one of the most common malignancies among women worldwide, with persistently poor prognosis despite advancements in diagnostics and therapies. Long non-coding RNAs (lncRNAs) and coagulation-related genes (CRGs) are increasingly recognized for their roles in prognosis and immune modulation. Using transcriptomic data from 1,045 BC patients in TCGA, we identified CRG-associated lncRNAs via coexpression analysis (Pearson |R|> 0.4, p < 0.001) and constructed a prognostic model through univariate Cox analysis, LASSO regression with tenfold cross-validation (λ = 0.05), and multivariate Cox analysis. The model stratified patients into high- and low-risk groups with distinct overall survival (HR = 3.21, p < 0.001) and demonstrated robust predictive accuracy (AUC = 0.795 at 1 year). Functional enrichment revealed immune-related pathways (e.g., cytokine signaling, PD-L1 regulation), and high-risk patients exhibited elevated tumor mutational burden (TMB) and PD-L1 expression, suggesting enhanced immunotherapy responsiveness. Drug sensitivity analysis identified 5 targeted agents (e.g., BIBW2992) with differential efficacy between risk groups. This CRG-lncRNA signature provides a novel tool for prognosis prediction and personalized immunotherapy in BC, illuminating crosstalk between coagulation and immune pathways.
Collapse
Affiliation(s)
- Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Yanzhong Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
13
|
Elst L, Vandermaesen K, Albersen M. Emerging Advances in the Molecular Landscape of Penile Cancer and Their Implications for Precision Medicine. Curr Treat Options Oncol 2025; 26:367-374. [PMID: 40237885 DOI: 10.1007/s11864-025-01319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
OPINION STATEMENT Penile cancer is a rare but aggressive malignancy, characterized by early lymphatic spread which is the most critical prognostic factor. Treatment options for patients with locally advanced and metastatic disease are limited, primarily relying on cisplatin-based chemotherapy, which is characterized by high toxicity and early resistance. In recent years, there has been a growing interest on translational research exploring the tumor microenvironment, enabling the identification of novel potential therapeutic targets. Emerging preclinical evidence supports the use of immune checkpoint inhibitors, antibody-drug conjugates and novel exploratory therapies targeting myeloid-derived suppressor cells and tumor associated macrophages, as well as their combinations. However, robust phase III trials investigating such therapies are currently lacking. A deeper understanding of the penile cancer immune landscape and the role of specific mutations in carcinogenesis, might lead to the development of novel combination strategies to overcome cisplatin resistance and disease progression, and to a better selection of patients for inclusion in future clinical trials.
Collapse
Affiliation(s)
- Laura Elst
- Center for Cancer Biology, Laboratory of Translational Genetics, VIB-KU Leuven, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Herestraat, 49, 3000, Leuven, Belgium
| | - Kaat Vandermaesen
- Center for Cancer Biology, Laboratory of Translational Genetics, VIB-KU Leuven, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Herestraat, 49, 3000, Leuven, Belgium
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium.
- Department of Development and Regeneration, KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Liu C, Zhang Y, Liao R, Wang L, Zhou X, Tan M, Xu K, Wang H, Wang Q, Zhao Y, Cui Z, Lan X. Single-cell RNA sequencing of bone marrow reveals the immune response mechanisms of lymphocytes under avian leukosis virus subgroup J infection. Poult Sci 2025; 104:104995. [PMID: 40121758 PMCID: PMC11981752 DOI: 10.1016/j.psj.2025.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Avian Leukosis Virus (ALV) can induce tumorigenesis and immune suppression by acting on lymphocytes in the bone marrow. In this study, single-cell RNA sequencing (scRNA-seq) was used to analyze chicken bone marrow lymphocytes under Avian Leukosis Virus subtype J (ALV-J) infection. Using subgroup-specific marker genes and cell state analysis, we identified 18 distinct cell clusters, including 8 T cell clusters, 2 B cell clusters, 5 tumor-like cell clusters, and 3 unidentified clusters. Gene expression analysis revealed that in the 10 T/B lymphocyte clusters, the differentially expressed genes in double-positive T cells, B1-like B cells, and cytotoxic T cells were highly enriched in pathways related to viral infection and immune response. These three cell populations exhibited high proportions and significant changes after infection, suggesting a strong immune response to ALV-J infection. Additionally, during ALV-J infection, the proportion of regulatory T cells and CTLA4 T cells increased, while immune suppressive factors TGFB1 and IL16 were highly expressed across the cell populations, indicating an immune-suppressive state in bone marrow lymphocytes. Moreover, ALV-J infected all cell populations; however, within the same cluster, only a fraction of the cells expressed ALV-J viral genes. Notably, in all cells expressing ALV-J viral genes, the "Rho family GTPase signaling pathway" associated with antiviral responses was activated. The Rho family, which is a key regulator of cytoskeletal reorganization and cell polarity, also plays a critical role in tumor cell proliferation and metastasis. Further analysis using Ingenuity Pathway Analysis (IPA) software predicted key upstream regulators of immune response, such as MYC and MCYN. In conclusion, this study identifies key genes and signaling pathways involved in immune responses of different lymphocyte subpopulations triggered by ALV-J infection in bone marrow. These findings contribute to a better understanding of the immune mechanisms in ALV-J-infected bone marrow lymphocytes and provide insights for discovering breeding loci for ALV-J resistance.
Collapse
Affiliation(s)
- Cheng Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Ruyu Liao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lecheng Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xinyi Zhou
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Min Tan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Keyun Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiwei Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qigui Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1226-1282. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Ding X, Wu Q, Du Y, Ji MM, Yang H, Hu Q, Ye Y. CDK16 + Luminal Progenitor Cell-Like Tumor Cells Interacted with POSTN + Cancer-Associated Fibroblasts Associate with Chemo-Resistance In Breast Cancer. SMALL METHODS 2025; 9:e2401192. [PMID: 39930931 DOI: 10.1002/smtd.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/12/2025] [Indexed: 05/26/2025]
Abstract
Tumor heterogeneity and interaction with tumor microenvironment play a crucial role in neoadjuvant chemotherapy (NAC) resistance in breast cancer (BRCA). Unraveling this dynamic interaction may help uncover novel therapeutic targets. Here, dynamic changes in tumor states and cellular composition are systemically characterized using 175,825 single-cell transcriptomics from naïve and post-treatment biopsies of BRCA patients receiving NAC. CDK16+ tumors are identified featured with luminal progenitor cell (LPC)-like tumor cells enriched in the triple-negative subtype of BRCA, associated with chemo-resistance. Integrating single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and six independent public gene expression profiles that underwent chemotherapy revealed that POSTN+ cancer-associated fibroblasts (CAFs) are closely localized and interacted with CDK16+ LPC-like tumor cells to promote chemo-resistance. In vivo, CDK16 knockdown in tumor cells combined with chemotherapy significantly enhanced therapeutic efficacy. This in-house scRNA-seq from a mouse model validated that CDK16 knockdown reduced the LPC-like tumor cell signature, and the interaction of tumor featured with LPC-like tumor cells and POSTN+ CAFs. Together, the systematically integrated analyses uncovered an interaction network of CDK16+ tumor and POSTN+ CAFs that contributed to NAC- resistance, providing a new strategy for targeting CDK16 to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Xinyu Ding
- Shanghai Institute of Immunology, Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
| | - Yanhua Du
- Shanghai Institute of Immunology, Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng-Meng Ji
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
17
|
Tseng TY, Hsieh CH, Liu JY, Huang HC, Juan HF. Single-cell and multi-omics integration reveals cholesterol biosynthesis as a synergistic target with HER2 in aggressive breast cancer. Comput Struct Biotechnol J 2025; 27:1719-1731. [PMID: 40391299 PMCID: PMC12088767 DOI: 10.1016/j.csbj.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Breast cancer stands as one of the most prevalent malignancies affecting women. Alterations in molecular pathways in cancer cells represent key regulatory disruptions that drive malignancy, influencing cancer cell survival, proliferation, and potentially modulating therapeutic responsiveness. Therefore, decoding the intricate molecular mechanisms and identifying novel therapeutic targets through systematic computational approaches are essential steps toward advancing effective breast cancer treatments. In this study, we developed an integrative computational framework that combines single-cell RNA sequencing (scRNA-seq) and multi-omics analyses to delineate the functional characteristics of malignant cell subsets in breast cancer patients. Our analyses revealed a significant correlation between cholesterol biosynthesis and HER2 expression in malignant breast cancer cells, supported by proteomics data, gene expression profiles, drug treatment scores, and cell-surface HER2 intensity measurements. Given previous evidence linking cholesterol biosynthesis to HER2 membrane dynamics, we proposed a combinatorial strategy targeting both pathways. Experimental validation through clonogenic and viability assays demonstrated that simultaneous inhibition of cholesterol biosynthesis (via statins) and HER2 (via Neratinib) synergistically reduced malignant breast cancer cells, even in HER2-negative contexts. Through systematic analysis of scRNA-seq and multi-omics data, our study computationally identified and experimentally validated cholesterol biosynthesis and HER2 as novel combinatorial therapeutic targets in breast cancer. This data-driven approach highlights the potential of leveraging multiple molecular profiling techniques to uncover previously unexplored treatment strategies.
Collapse
Affiliation(s)
- Tzu-Yang Tseng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chiao-Hui Hsieh
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jie-Yu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei, Taiwan
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Laga T, Van Rompuy AS, Busschaert P, Marquina G, Loverix L, Olbrecht S, Ottenbourgs T, Baert T, Van Gorp T, Vergote I, Lambrechts D, Van Nieuwenhuysen E. Single-cell profiling in ovarian germ cell and sex cord-stromal tumours. Br J Cancer 2025:10.1038/s41416-025-03012-6. [PMID: 40269311 DOI: 10.1038/s41416-025-03012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The tumour microenvironment of rare ovarian germ cell tumours (OGCT) and sex-cord stromal tumours (SCST) remains unexplored. To better understand their immune and stromal landscape, we constructed a blueprint using single-cell RNA sequencing (scRNA-seq). METHODS We performed scRNA-seq of 66, 919 cells from twelve fresh tumour samples: seven adult granulosa cell tumour (aGSCT), one juvenile GSCT (jGSCT), one Sertoli-Leydig (SL) tumour, two immature teratoma (IT) and one dysgerminoma (DG). We characterised immune cell subtypes and fibroblasts based on their specific marker genes. Validation included combined positive score (CPS) of 46 OGCTs and 66 SCSTs, and bulk RNA sequencing (n = 32). RESULTS Cell clustering and annotation revealed a immune-activated microenvironment in DG, driven by PD-1- exhausted T cells, reflected in high CPS (≥10) and upregulated immune pathways. IT samples displayed no immunoreactive profile, consistent with a negative CPS. aGSCTs exhibited a fibroblast-enriched, immune-desert phenotype, with low T cell infiltration and increased immunosuppressive LYVE1 and CX3CR1+ macrophages, corresponding to negative CPS. CONCLUSION We constructed a detailed blueprint of the OGCT and SCSTs microenvironment of, elucidating potential modulators that shape their immune landscape. The immune-suppressive environment in aGSCTs likely limits immunotherapy response, as immunosuppressive macrophages inhibit T cell expansion along with EMT activation and fibroblast predominance.
Collapse
Affiliation(s)
- T Laga
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium.
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium.
- VIB Centre for Cancer Biology, Lab of Translational Genetics, Leuven, Belgium.
| | - A S Van Rompuy
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium
| | - P Busschaert
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Lab of Translational Genetics, Leuven, Belgium
| | - G Marquina
- Department of Medical Oncology, San Carlos Hospital, Madrid, Spain
| | - L Loverix
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - S Olbrecht
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - T Ottenbourgs
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
| | - T Baert
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - T Van Gorp
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
| | - I Vergote
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - D Lambrechts
- VIB Centre for Cancer Biology, Lab of Translational Genetics, Leuven, Belgium
| | - E Van Nieuwenhuysen
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Cai X, Cho JY, Chen L, Liu Y, Ji F, Salgado K, Ge S, Yang D, Yu H, Shao J, Futreal PA, Sepesi B, Gibbons D, Chen Y, Wang G, Cheng C, Wu M, Zhang J, Hsiao A, Xia T. Enriched pathways in gut microbiome predict response to immune checkpoint inhibitor treatment across demographic regions and various cancer types. iScience 2025; 28:112162. [PMID: 40151642 PMCID: PMC11937697 DOI: 10.1016/j.isci.2025.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Understanding the effect of gut microbiota function on immune checkpoint inhibitor (ICI) responses is urgently needed. Here, we integrated 821 fecal metagenomes from 12 datasets to identify differentially abundant genes and construct random forest models to predict ICI response. Gene markers demonstrated excellent predictive performance, with an average area under the curve (AUC) of 0.810. Pathway analyses revealed that quorum sensing (QS), ABC transporters, flagellar assembly, and amino acid biosynthesis pathways were enriched between responders (R) and non-responders (NRs) across 12 datasets. Furthermore, luxS, manA, fliC, and trpB exhibited consistent changes between R and NR across 12 datasets. Follow-up microbiota transplant experiments showed that inter-species signaling by different QS autoinducer-2 (AI-2) molecules (synthesized by luxS) can act on overall community function to promote the colonization of Akkermansia muciniphila, which is associated with superior ICI responses. Together, our data highlight the role of gut microbiota function in modulating the microbiome and antitumor immunity.
Collapse
Affiliation(s)
- Xunhui Cai
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Lijun Chen
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Fenghu Ji
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Katia Salgado
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Siyi Ge
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui Yu
- Clinical Laboratory, Wuhan Children’s Hospital, Wuhan, China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Shao
- Clinical Laboratory, Wuhan Children’s Hospital, Wuhan, China
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Tian Xia
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Xu J, Zhou H, Liu Z, Huang Y, Zhang Z, Zou H, Wang Y. PDT-regulated immune gene prognostic model reveals tumor microenvironment in colorectal cancer liver metastases. Sci Rep 2025; 15:13129. [PMID: 40240471 PMCID: PMC12003684 DOI: 10.1038/s41598-025-97667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Liver metastasis is the most common site of metastasis in colorectal cancer, and the prognosis of colorectal cancer patients with liver metastasis is extremely poor. Revealing the key genes of CLM and implementing targeted interventions is of great significance for colorectal cancer patients. By using the weighted gene co-expression network analysis (WGCNA) algorithm, key gene modules related to metastasis in colorectal cancer were identified. Subsequently, immune-regulating and prognostic-influencing key gene sets were identified from these modules to construct a prognostic model related to colorectal cancer metastasis. Genetic background differences underlying this model were analyzed using colorectal cancer methylation and mutation data, followed by Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) analysis of the relevant biological processes associated with the model. The value of predicting tumor drug response through the model was assessed using drug half maximal inhibitory concentration (IC50) data from colorectal cancer cell lines. Subsequently, utilizing single-cell sequencing data about liver metastasis, the colorectal cancer immune microenvironment reflected in the predictive model was analyzed, and a key gene set of the model was identified. Lastly, experimental validation was conducted to investigate the regulatory effects of photodynamic therapy (PDT) on the key genes of the model, and the cytotoxic effect of PDT on colorectal cancer was confirmed. An immune-related gene prognostic model regulating CLM was constructed, consisting of HSPA1A, ULBP2, RBP7, OXT, SLC11A1, INHBB, and ICOS. This model can predict the clinical response of colorectal cancer patients to Oxaliplatin, Cisplatin, Irinotecan, and 5-Fluorouracil. Single-cell sequencing results demonstrate that the model is associated with an immunosuppressive microenvironment in CLM. The higher the model's riskscore, the weaker the MHC-I, MHC-II, and various tumor immune signaling pathway networks in the colorectal cancer microenvironment. Causal analysis reveals that SLC11A1, ICOS, and HSPA1A play key roles in this model. PDT can kill colorectal cancer cells, inhibit colorectal cancer cell metastasis, significantly influence the expression of genes such as SLC11A1, ICOS, and HSPA1A in these processes, and suppress the infiltration of macrophages in the colorectal microenvironment, inhibiting the immune escape process of PD-1/PD-L1. A prognostic model based on immunity regulated by PDT has been established for assessing the prognosis of CLM patients, as well as clinical responses to chemotherapy drugs and immunotherapy.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhongtao Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Heng Zou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
21
|
Li X, Pan L, Li W, Liu B, Xiao C, Chew V, Zhang X, Long W, Ginhoux F, Loscalzo J, Buggert M, Zhang X, Sheng R, Wang Z. Deciphering immune predictors of immunotherapy response: A multiomics approach at the pan-cancer level. Cell Rep Med 2025; 6:101992. [PMID: 40054456 PMCID: PMC12047473 DOI: 10.1016/j.xcrm.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has transformed cancer treatment, yet many patients fail to respond. Employing single-cell multiomics, we unveil T cell dynamics influencing ICB response across 480 pan-cancer and 27 normal tissue samples. We identify four immunotherapy response-associated T cells (IRATs) linked to responsiveness or resistance and analyze their pseudotemporal patterns, regulatory mechanisms, and T cell receptor clonal expansion profiles specific to each response. Notably, transforming growth factor β1 (TGF-β1)+ CD4+ and Temra CD8+ T cells negatively correlate with therapy response, in stark contrast to the positive response associated with CXCL13+ CD4+ and CD8+ T cells. Validation with a cohort of 23 colorectal cancer (CRC) samples confirms the significant impact of TGF-β1+ CD4+ and CXCL13+ CD4+ and CD8+ T cells on ICB efficacy. Our study highlights the effectiveness of single-cell multiomics in pinpointing immune markers predictive of immunotherapy outcomes, providing an important resource for crafting targeted immunotherapies for successful ICB treatment across cancers.
Collapse
Affiliation(s)
- Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Solna, Sweden.
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China; Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-Duke NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo 102-0074, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800 Villejuif, France; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| | - Zhenning Wang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
22
|
Li H, Zandberg DP, Kulkarni A, Chiosea SI, Santos PM, Isett BR, Joy M, Sica GL, Contrera KJ, Tatsuoka CM, Brand M, Duvvuri U, Kim S, Kubik M, Sridharan S, Tu F, Chen J, Bruno TC, Vignali DAA, Cillo AR, Bao R, Wang JH, Vujanovic L, Ferris RL. Distinct CD8 + T cell dynamics associate with response to neoadjuvant cancer immunotherapies. Cancer Cell 2025; 43:757-775.e8. [PMID: 40086437 DOI: 10.1016/j.ccell.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/30/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
We leverage a clinical trial (NCT04080804) that compared neoadjuvant anti-PD-1, anti-PD-1+CTLA-4, and anti-PD-1+LAG-3 therapies in head and neck squamous cell carcinoma patients. Combination therapies promote higher pathologic response rates versus monotherapy, and major pathologic response is associated with better survival. To address whether successful immune checkpoint inhibitor (ICI) regimens act through similar or distinct pathways, we robustly and longitudinally characterize transcriptional and proteomic dynamics of CD8+ tumor-infiltrating lymphocytes (TILs) in a clonal manner. Anti-PD-1+LAG-3 reprograms CD8+ TIL with type-I interferon response and exhaustion gene programs into effector memory and resident memory (TEM/TRM). In contrast, anti-PD-1+CTLA-4 activates and expands pre-existing TEM/TRM CD8+ TIL, but does not rejuvenate exhausted phenotypes into T effector cells. Anti-PD-1+LAG-3, but not anti-PD-1+CTLA-4, induces widespread TCR sharing among the different transcriptional states, as well as increased TCR diversity in responding patients. Our data suggest doublet regimen-specific transcriptional and clonal dynamics of tumor-reactive CD8+ T cells.
Collapse
Affiliation(s)
- Housaiyin Li
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Molecular Genetics and Development Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan P Zandberg
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simion I Chiosea
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia M Santos
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian R Isett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Gabriel L Sica
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin J Contrera
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Curtis M Tatsuoka
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Matthias Brand
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Umamaheswar Duvvuri
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, NYU Grossman School of Medicine, New York, NY, USA
| | - Seungwon Kim
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Kubik
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shaum Sridharan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Tu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Chen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Molecular Genetics and Development Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Hong Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert L Ferris
- UNC Lineberger Comprehensive Cancer Center, UNC Health Care System, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Yates J, Van Allen EM. New horizons at the interface of artificial intelligence and translational cancer research. Cancer Cell 2025; 43:708-727. [PMID: 40233719 PMCID: PMC12007700 DOI: 10.1016/j.ccell.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
Artificial intelligence (AI) is increasingly being utilized in cancer research as a computational strategy for analyzing multiomics datasets. Advances in single-cell and spatial profiling technologies have contributed significantly to our understanding of tumor biology, and AI methodologies are now being applied to accelerate translational efforts, including target discovery, biomarker identification, patient stratification, and therapeutic response prediction. Despite these advancements, the integration of AI into clinical workflows remains limited, presenting both challenges and opportunities. This review discusses AI applications in multiomics analysis and translational oncology, emphasizing their role in advancing biological discoveries and informing clinical decision-making. Key areas of focus include cellular heterogeneity, tumor microenvironment interactions, and AI-aided diagnostics. Challenges such as reproducibility, interpretability of AI models, and clinical integration are explored, with attention to strategies for addressing these hurdles. Together, these developments underscore the potential of AI and multiomics to enhance precision oncology and contribute to advancements in cancer care.
Collapse
Affiliation(s)
- Josephine Yates
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich, Switzerland; ETH AI Center, ETH Zurich, Zurich, Switzerland; Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard University, Boston, MA, USA; Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
24
|
Zhao B, Wu J, Zhang T, Han M, Zhang C, Rong X, Zhang R, Chen X, Peng F, Jin J, Liu S, Dong X, Zhao S. A spatial transcriptomics study of MES-like and mono/macro cells in gliomas. Sci Rep 2025; 15:12730. [PMID: 40222970 PMCID: PMC11994772 DOI: 10.1038/s41598-025-95277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Gliomas, including both glioblastoma multiforme (GBM) and lower-grade glioma (LGG), present a substantial challenge in neuro-oncology because of genetic heterogeneity and unsatisfactory prognosis. This study aimed to conduct a comprehensive multi-omics analysis of gliomas using various bioinformatics approaches to identify potential therapeutic targets and prognostic markers. A comprehensive analysis was conducted on 1327 sequencing data samples alongside their relevant clinical information sourced from The Cancer Genome Atlas (TCGA) pertaining to glioblastoma (GBM), low-grade glioma (LGG), the Chinese Glioma Genome Atlas (CCGA) and University of California Santa Cruz Xena (UCSC Xena) datasets. These tools were employed for gene expression profiling, survival analysis, and cell communication mapping. Spatial transcriptomics revealed the localization of mesenchymal (MES)-like malignant tumors, and drug sensitivity analysis was performed to evaluate responses to quinpirole and meropenem. Additionally, the Tumor Immune Dysfunction and Exclusion (TIDE) framework was utilized to gauge the responsiveness to immunotherapy. The MES-like malignant and monocyte/macrophage (mono/macro) cell subsets showed high hallmark scores, playing key roles in the tumor microenvironment. MES-like malignant marker gene scores correlated with overall survival across datasets, whereas mono/macro marker gene scores were significant in the TCGA-LGG and CCGA datasets. Key interactions between these cell types were found, especially with CD14-ITGB2, LGALS1-CD69, and APOE-TREM2. The mono/macro cell subset demonstrated better immune therapy responsiveness, as indicated by lower TIDE scores. Spatial transcriptomics revealed that MES-like malignant tumors are predominantly localized in four distinct regions, with the marker genes CHI3L1 and ADM confirming these locations. Drug sensitivity analysis revealed differential responses of the MES-like malignant cell subset to quinpirole and meropenem. Our results offer fresh perspectives on the differential roles of MES-like malignant and monocyte/macrophage cell subsets in tumor progression and immune modulation, providing novel insights into glioma biology.
Collapse
Affiliation(s)
- Boyan Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China
- Shenzhen University School of Medicine, Shenzhen, 518000, Guangdong, China
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China
| | - Tiehui Zhang
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, Guangdong, China
| | - Mingyang Han
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China
| | - Cheng Zhang
- University of Toronto Scarborough 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada
| | - Xuan Rong
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China
| | - Ruotian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, 150001, Heilongjiang, China
| | - Fei Peng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Jin
- Shenzhen University School of Medicine, Shenzhen, 518000, Guangdong, China
| | - Shiya Liu
- Shenzhen University School of Medicine, Shenzhen, 518000, Guangdong, China
| | - Xingli Dong
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China.
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China.
- Shenzhen University School of Medicine, Shenzhen, 518000, Guangdong, China.
- Department of Neurosurgery, Shenzhen University General Hospital, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
25
|
Tian Y, Yang Y, He L, Yu X, Zhou H, Wang J. Exploring the tumor microenvironment of breast cancer to develop a prognostic model and predict immunotherapy responses. Sci Rep 2025; 15:12569. [PMID: 40221624 PMCID: PMC11993623 DOI: 10.1038/s41598-025-97784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Breast cancer is the most prevalent malignancy in women and exhibits significant heterogeneity. The tumor microenvironment (TME) plays a critical role in tumorigenesis, progression, and response to therapy. However, its impact on the prognosis and immunotherapy responses is incompletely understood. Using public databases, we conducted a comprehensive investigation of transcriptome and single-cell sequencing data. After performing immune infiltration analysis, we conducted consensus clustering, weighted gene co-expression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (Lasso) regression to identify independent prognostic genes in breast cancer. Subsequently, we developed a prognostic model for patients with breast cancer. Tumor Immune Dysfunction and Exclusion (TIDE) values were used to assess patient's responsiveness to breast cancer. Based on single-cell RNA-sequencing data, we identified various cell types through cluster analysis and investigated the expression of prognostic model genes in each cell type. The drug sensitivity of targeted therapeutic agents for breast cancer treatment was analyzed in different cell types. We identified 12 independent prognostic genes associated with breast cancer and used these genes to construct a prognostic model. The prognostic model accurately discriminated between patients classified as high- and low-risk, providing precise prognostic predictions for individual patients. Additionally, our model exhibited a robust capacity to predict the immunotherapeutic response in breast cancer patients. Our investigation revealed a notable association between the proportion of endothelial cells (ECs) and patient prognosis in breast cancer. A prognostic model for breast cancer was formulated that showed close associations between prognosis and response to immunotherapy. For patients predicted by our model to not respond effectively to immunotherapeutic agents, it may be considered to combine immunotherapeutic agents with targeted therapeutic agents identified through our drug sensitivity analysis, which could potentially enhance treatment efficacy.
Collapse
Affiliation(s)
- Ye Tian
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhou
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Wang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Huang J, Zhang H, Lin X, Wu X, Chen X, Chen W, Liang S, Chen Y, Luo Q, Xu C, Liu S, Liu X, Zhang S. Regulatory T Cell Infiltration-Driven Single-Cell Transcriptomic Analysis Identifies SAP18 as a Prognostic Marker for Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2025; 56:97. [PMID: 40208395 DOI: 10.1007/s12029-025-01174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Advanced esophageal squamous cell carcinoma (ESCC) is characterized by molecular heterogeneity and distinct patterns of immune cell infiltration. Regulatory T cells (Tregs), in particular, play a critical role in shaping an immunosuppressive tumor microenvironment (TME), which is associated with poor clinical outcomes. METHODS We developed a prognostic model by integrating GEO-derived bulk RNA sequencing data and single-cell transcriptome. Model predictions were confirmed through RT-qPCR, Western blot, and immunohistochemistry on clinical specimens, while in vitro assays (CCK8, transwell invasion, scratch, colony formation, and immunofluorescence) validated the function of SAP18 in cell proliferation, invasion, and ECM remodeling. RESULTS Expression patterns of the 5 Tregs-associated genes in clinical specimens aligned with model predictions, underscoring the model's robustness. The high-risk subgroup was associated with upregulated extracellular matrix (ECM) remodeling, an abundance of immune-suppressive cells, higher TP53 mutation rate, and limited benefit from immunotherapy. In contrast, the low-risk subgroup exhibited anti-tumor immunity. Cell-cell communication analysis also implicated the collagen pathway in Tregs-mediated immune evasion in ESCC. Functional assays indicated that SAP18 in the prognostic model significantly promotes proliferation, invasion, and ECM reconstruction, further highlighting its potential as a therapeutic target. CONCLUSION Our findings elucidate the role of Tregs in the TME, underscoring significant potential of SAP18, which is essential for assessing patient prognosis and may facilitate the development of personalized therapies for ESCC.
Collapse
Affiliation(s)
- Jianxiang Huang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
- College of Pharmacy, Jinan University, Guangzhou, 510220, PR China
| | - Hanshuo Zhang
- Gastrointestinal Anorectal Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
| | - Xinyue Lin
- Department of Pharmacology, Medical College of Shantou University, Shantou, 515063, PR China
| | - Xiaolong Wu
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
- College of Pharmacy, Jinan University, Guangzhou, 510220, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
| | - Wang Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
| | - Shanshan Liang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
| | - Qianhua Luo
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Chengcheng Xu
- College of Pharmacy, Jinan University, Guangzhou, 510220, PR China
| | - Shaojie Liu
- Gastrointestinal Anorectal Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China
| | - Xingmei Liu
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China.
- Department of Nursing, Guangzhou Red Cross Hospital of Jinan University, Haizhu District, No. 396, Tongfuzhong Road, Guangzhou, 510220, PR China.
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, PR China.
- College of Pharmacy, Jinan University, Guangzhou, 510220, PR China.
| |
Collapse
|
27
|
Chung DC, Shakfa N, Vakharia J, Warner K, Jacquelot N, Sayad A, Han S, Ghaedi M, Garcia-Batres CR, Sotty J, Azarmina A, Nowlan F, Chen EL, Zon M, Elford AR, Wang BX, Nguyen LT, Mrkonjic M, Clarke BA, Bernardini MQ, Haibe-Kains B, Ferguson SE, Crome SQ, Jackson HW, Ohashi PS. CD103+CD56+ ILCs Are Associated with an Altered CD8+ T-cell Profile within the Tumor Microenvironment. Cancer Immunol Res 2025; 13:527-546. [PMID: 40084939 PMCID: PMC11962407 DOI: 10.1158/2326-6066.cir-24-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/10/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Immunotherapies have had unprecedented success in the treatment of multiple cancer types, albeit with variable response rates. Unraveling the complex network of immune cells within the tumor microenvironment (TME) may provide additional insights to enhance antitumor immunity and improve clinical response. Many studies have shown that NK cells or innate lymphoid cells (ILC) have regulatory capacity. Here, we identified CD103 as a marker that was found on CD56+ cells that were associated with a poor proliferative capacity of tumor-infiltrating lymphocytes in culture. We further demonstrated that CD103+CD56+ ILCs isolated directly from tumors represented a distinct ILC population that expressed unique surface markers (such as CD49a and CD101), transcription factor networks, and transcriptomic profiles compared with CD103-CD56+ NK cells. Using single-cell multiomic and spatial approaches, we found that these CD103+CD56+ ILCs were associated with CD8+ T cells with reduced expression of granzyme B. Thus, this study identifies a population of CD103+CD56+ ILCs with potentially inhibitory functions that are associated with a TME that includes CD8+ T cells with poor antitumor activity. Further studies focusing on these cells may provide additional insights into the biology of an inhibitory TME.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Noor Shakfa
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
| | - Jehan Vakharia
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Kathrin Warner
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nicolas Jacquelot
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Azin Sayad
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - SeongJun Han
- Department of Immunology, University of Toronto, Toronto, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Maryam Ghaedi
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Carlos R. Garcia-Batres
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jules Sotty
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arvin Azarmina
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ferris Nowlan
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Edward L.Y. Chen
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
| | - Michael Zon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Medical Biophysics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Alisha R. Elford
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ben X. Wang
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Linh T. Nguyen
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Miralem Mrkonjic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Blaise A. Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Gynecologic Oncology, University Health Network, Toronto, Canada
| | - Marcus Q. Bernardini
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Gynecologic Oncology, University Health Network, Toronto, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Medical Biophysics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Sarah E. Ferguson
- Division of Gynecologic Oncology, University Health Network, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Hartland W. Jackson
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
28
|
He L, Ren W, Cheng W, Chen J, Lai J, Wu Y, Wu Z, Bao D, Wei Y, Piao JG. Arsenene-Vanadene nanodots co-activate Apoptosis/Ferroptosis for enhanced chemo-immunotherapy. Acta Biomater 2025; 196:453-470. [PMID: 40032219 DOI: 10.1016/j.actbio.2025.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Triple-Negative Breast Cancer (TNBC) represents a highly aggressive subtype of breast cancer with an unfavorable prognosis, characterized by minimal immune infiltration and pronounced immune suppression, resulting in a limited response to immunotherapy. In this study, a multifunctional Arsenene-Vanadene nanodot (AsV) drug delivery system is introduced, which responds to the tumor microenvironment by releasing arsenic and vanadium. Arsenic undergoes oxidation to generate highly toxic trivalent arsenic, which induces apoptosis in tumor cells while utilizing apoptotic cell debris to transiently activate the immune system. Additionally, arsenic binds to cysteine, indirectly facilitating ferroptosis. Concurrently, vanadium's redox cycling properties are harnessed to trigger a Fenton-like reaction, promoting lipid peroxidation. Furthermore, ferroptosis is enhanced through the depletion of glutathione and inactivation of glutathione peroxidase 4 (GPX4), leading to the release of damage-associated molecular patterns and thereby amplifying the anti-tumor immune response. This study represents the first instance of integrating arsenene's apoptosis-inducing properties with vanadium's ferroptosis-enhancing effects, providing a synergistic approach to improving the immunotherapeutic response and offering a potential strategy for enhancing TNBC prognosis. STATEMENT OF SIGNIFICANCE: Triple-negative breast cancer (TNBC) exhibits resistance to immunotherapy due to its highly immunosuppressive tumor microenvironment. In this study, tumour-responsive Arsenene-Vanadene nanodots (AsV) were developed to induce a synergistic effect by triggering apoptosis and ferroptosis through microenvironment-specific mechanisms. The arsenic component generates cytotoxic trivalent arsenic, promoting apoptosis while binding to cysteine, thereby reducing GSH synthesis. Simultaneously, vanadium initiates lipid peroxidation through Fenton-like reactions and disruption of the glutathione/GPX4 axis, further amplifying ferroptotic cell death. This dual-action system transforms tumor cell debris into immune-stimulating signals while circumventing conventional immunotherapy limitations. As the first strategy integrating arsenic-induced apoptosis with vanadium-enhanced ferroptosis, this approach provides a mechanistic framework to overcome TNBC immunosuppression through coordinated cell death pathways, demonstrating potential for precision nanomedicine applications.
Collapse
Affiliation(s)
- Li He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - WeiYe Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - WeiYi Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - JingQuan Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jianjun Lai
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China
| | - Yajun Wu
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China
| | - Zhibing Wu
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China; Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China.
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, PR China.
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China; Jinhua Academy of Zhejiang Chinese Medical University.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
29
|
Huang J, Shi J, Ma N, Li Y, Jin W, Zhang H, Zhang X, Luo N, Ding Y, Xie Q, Li Q, Xiong Y. Celastrol-loaded ginsenoside Rg3 liposomes enhance anti-programmed death ligand 1 immunotherapy by inducing immunogenic cell death in triple-negative breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156514. [PMID: 39986227 DOI: 10.1016/j.phymed.2025.156514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), characterized by high heterogeneity and invasiveness. Currently, inducing immunogenic cell death (ICD) of tumor cells through approaches such as radiotherapy and chemotherapy is an effective strategy to enhance the response to anti-programmed death-ligand 1 antibody (aPD-L1) therapy in TNBC. However, radiotherapy and chemotherapy treatments often upregulate PD-L1 expression in tumor cells, thereby weakening the tumor cells' response to aPD-L1. Celastrol exhibits broad-spectrum and potent anti-tumor activity, efficiently inducing ICD without increasing PD-L1 levels in tumor cells. PURPOSE This study aims to elucidate the tumor-targeting effects of celastrol-loaded liposomes and its synergistic efficacy and mechanism of action in combination with aPD-L1 against TNBC. METHODS The Rg3 liposomes loaded with celastrol (Cel-Rg3-Lp) were prepared using the thin-film hydration method. BALB/c mice were utilized to establish an in situ breast cancer model. Mice were intravenously injected with Cel-Rg3-Lp at a dosage of celastrol 1 mg/kg once every two days for a total of 7 injections. Flow cytometry, western blot, and immunofluorescence techniques were employed to investigate the synergistic effects and mechanisms of Cel-Rg3-Lp combined with aPD-L1 in the treatment of TNBC. RESULTS The findings of this study demonstrate that after 7 administrations of Cel-Rg3-Lp (1 mg/kg celastrol, intravenously), significant anti-tumor effects are observed, including the recruitment of CD8+T cells and dendritic cells (DCs), while reducing the infiltration of immunosuppressive cells. The therapeutic efficacy was further enhanced when combined with aPD-L1. Additionally, Cel-Rg3-Lp markedly downregulated glucose-regulated protein 78 (GRP78) expression, thereby inducing ICD in tumor cells. CONCLUSION This study successfully constructed a multifunctional liposome and proposed a mechanism for inducing ICD through the GRP78-endoplasmic reticulum stress pathway. The liposome downregulates GRP78, triggering endoplasmic reticulum stress in tumor cells, inducing ICD, activating DCs, and enhancing antigen presentation to T cells. This improves the tumor immune microenvironment and provides a theoretical foundation for combining Cel-Rg3-Lp with aPD-L1 in the treatment of TNBC. This mechanism opens unique prospects for using celastrol in TNBC therapy and enhancing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ninghui Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wanyu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ningchao Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ye Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qiong Xie
- Gynecology Department, Zhoushan Hospital of Traditional Chinese Medicine (Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University), Zhoushan, Zhejiang 316000, China.
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310053, China.
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
30
|
Ruan X, Wu L, Tang Z, Li Y, Wang J, Jiang H, Zhang L, Wang S, Chen Z, Yuan C, Xia Y, Pan Y, Gao J, Zhao X. Two chemotherapeutic agents expand stem-like CD62L +CD8 + T cells in antitumor immune responses. Front Immunol 2025; 16:1533857. [PMID: 40236705 PMCID: PMC11996895 DOI: 10.3389/fimmu.2025.1533857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Recent findings reveal that the precursors of exhausted CD8+ T (CD8+ Tpex) cells possess stem-like signatures in tumor immunity, which originate from tumor draining lymph node (TdLN)-derived tumor-specific memory (CD8+ TTSM) cells. Both of these T subsets can be collectively referred to as stem-like CD8+ T cells, which demonstrate robust self-renewal ability and can proliferate and differentiate into transitory effector-like exhausted T cells (Texint). There are reports that chemotherapeutic drugs can promote the antitumor immune responses of patients by increasing the number of CD8+ T cells; however, whether chemotherapeutic drugs increase these two stem-like CD8+ T cells remain further exploration. Methods Tpex cell-associated subpopulations in human colorectal tumors were analyzed by using single-cell sequencing data. CT26 and B16 tumor models of wild type and Eomes conditional knockout mice were constructed, and the changes of TTSM, Tpex and Tex subsets in mice were dissected by flow cytometry after treatment with decitabine (DAC), doxorubicin (DOX) and 5-Fluorouracil (5-FU). Results In this study, we demonstrated that DAC and 5-FU expanded CD8+ TTSM cells in TdLNs. At the same time, we validated that DAC and 5-FU substantially promoted the expansion of CD62L+CD8+ Tpex cells and subsequently increased effector function of CX3CR1+ CD8+ Texint cells. In addition, the conditional knockout of transcription factor Eomes in CD8+ T cells partially eliminated DAC-amplified CD62L+ CD8+ Tpex cells, but had no effect on such CD8+ T subset expanded by 5-FU. Conclusion The present study demonstrated that both DAC and 5-FU promoted the differentiation of stem-like CD8+ TTSM cells in TdLNs and significantly enhanced the differentiation and expansion of stem-like CD62L+ CD8+ Tpex and CX3CR1+ Texint cells in tumor microenvironment. The knockout of Eomes partially influenced the role of DAC in promoting the differentiation and expansion of stem-like CD8+ T cells.
Collapse
Affiliation(s)
- Xiaokang Ruan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan, China
| | - Linwei Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zijian Tang
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Haolin Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjia Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoqiang Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenlei Yuan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujian Xia
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Pan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianling Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Hu X, Li H, Chen M, Qian J, Jiang H. Reference-informed evaluation of batch correction for single-cell omics data with overcorrection awareness. Commun Biol 2025; 8:521. [PMID: 40158033 PMCID: PMC11954866 DOI: 10.1038/s42003-025-07947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Batch effect correction (BEC) is fundamental to integrate multiple single-cell RNA sequencing datasets, and its success is critical to empower in-depth interrogation for biological insights. However, no simple metric is available to evaluate BEC performance with sensitivity to data overcorrection, which erases true biological variations and leads to false biological discoveries. Here, we propose RBET, a reference-informed statistical framework for evaluating the success of BEC. Using extensive simulations and six real data examples including scRNA-seq and scATAC-seq datasets with different numbers of batches, batch effect sizes and numbers of cell types, we demonstrate that RBET evaluates the performance of BEC methods more fairly with biologically meaningful insights from data, while other methods may lead to false results. Moreover, RBET is computationally efficient, sensitive to overcorrection and robust to large batch effect sizes. Thus, RBET provides a robust guideline on selecting case-specific BEC method, and the concept of RBET is extendable to other modalities.
Collapse
Affiliation(s)
- Xiaoyue Hu
- Center for Data Science, Zhejiang University, Hangzhou, China
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - He Li
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junbin Qian
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China.
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
34
|
Yan W, Shi X, Zhao Y, Liu X, Jia X, Gao L, Yuan J, Liao A, Yasui H, Wang X, Wang X, Zhang R, Wang H. Microbiota-reprogrammed phosphatidylcholine inactivates cytotoxic CD8 T cells through UFMylation via exosomal SerpinB9 in multiple myeloma. Nat Commun 2025; 16:2863. [PMID: 40128181 PMCID: PMC11933704 DOI: 10.1038/s41467-025-57966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/09/2025] [Indexed: 03/26/2025] Open
Abstract
Gut microbiome influences tumorigenesis and tumor progression through regulating the tumor microenvironment (TME) and modifying blood metabolites. However, the mechanisms by which gut microbiome and blood metabolites regulate the TME in multiple myeloma (MM) remain unclear. By employing16S rRNA gene sequencing coupled with metagenomics and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, we find that Lachnospiraceae are high and phosphatidylcholine (PC) are low in MM patients. We further show that Lachnospiraceae inhibits PC production from MM cells and enhances cytotoxic CD8 T cell function. Mechanistically, PC promotes Sb9 mRNA maturation in MM cells by LIN28A/B via lysophosphatidic acid, thus enhances exosamal Sb9 production. Exosamal Sb9 then reduces GZMB expression by suppressing tumor protein p53 (TP53) UFMylation via the competitive binding of TP53 with the ubiquitin-fold modifier conjugating enzyme 1 in CD8 T cells. We thus show that Lachnospiraceae and PC may be potential therapeutic targets for MM treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yun Zhao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xueming Jia
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Le Gao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jiahe Yuan
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hiroshi Yasui
- Department of Hematology and Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Xiaobin Wang
- Center for Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xiaotian Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
35
|
Jiang R, Yang L, Liu X, Xu Y, Han L, Chen Y, Gao G, Wang M, Su T, Li H, Fang L, Sun N, Du H, Zheng J, Wang G. Genetically engineered macrophages reverse the immunosuppressive tumor microenvironment and improve immunotherapeutic efficacy in TNBC. Mol Ther 2025:S1525-0016(25)00198-4. [PMID: 40119517 DOI: 10.1016/j.ymthe.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The main challenges in current immunotherapy for triple-negative breast cancer (TNBC) lie in the immunosuppressive tumor microenvironment (TME). Considering tumor-associated macrophages (TAMs) are the most abundant immune cells in the TME, resetting TAMs is a promising strategy for ameliorating the immunosuppressive TME. Here, we developed genetically engineered macrophages (GEMs) with gene-carrying adenoviruses, to maintain the M1-like phenotype and directly deliver the immune regulators interleukin-12 and CXCL9 into local tumors, thereby reversing the immunosuppressive TME. In tumor-bearing mice, GEMs demonstrated targeted enrichment in tumors and successfully reprogramed TAMs to M1-like macrophages. Moreover, GEMs significantly enhanced the accumulation, proliferation, and activation of CD8+ T cells, mature dendritic cells, and natural killer cells within tumors, while diminishing M2-like macrophages, immunosuppressive myeloid-derived suppressor cells, and regulatory T cells. This treatment efficiently suppressed tumor growth. In addition, combination therapy with GEMs and anti-programmed cell death protein 1 further improved interferon-γ+CD8+ T cell percentages and tumor inhibition efficacy in an orthotopic murine TNBC model. Therefore, this study provides a novel strategy for reversing the immunosuppressive TME and improving immunotherapeutic efficacy through live macrophage-mediated gene delivery.
Collapse
Affiliation(s)
- Ranran Jiang
- Department of Oncology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Liechi Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Xin Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Urology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Yujun Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ge Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Tong Su
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Hongwei Du
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Department of Oncology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
36
|
Liu Z, Yang Z, Wu J, Zhang W, Sun Y, Zhang C, Bai G, Yang L, Fan H, Chen Y, Zhang L, Jiang B, Liu X, Ma X, Tang W, Liu C, Qu Y, Yan L, Zhao D, Wu Y, He S, Xu L, Peng L, Chen X, Zhou B, Zhao L, Zhao Z, Tan F, Zhang W, Yi D, Li X, Gao Q, Zhang G, Wang Y, Yang M, Fu H, Guo Y, Hu X, Cai Q, Qi L, Bo Y, Peng H, Tian Z, She Y, Zou C, Zhu L, Cheng S, Zhang Y, Zhong W, Chen C, Gao S, Zhang Z. A single-cell atlas reveals immune heterogeneity in anti-PD-1-treated non-small cell lung cancer. Cell 2025:S0092-8674(25)00291-0. [PMID: 40147443 DOI: 10.1016/j.cell.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/20/2024] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Anti-PD-(L)1 treatment is standard for non-small cell lung cancer (NSCLC), but patients show variable responses to the same regimen. The tumor immune microenvironment (TIME) is associated with immunotherapy response, yet the heterogeneous underlying therapeutic outcomes remain underexplored. We applied single-cell RNA and TCR sequencing (scRNA/TCR-seq) to analyze surgical tumor samples from 234 NSCLC patients post-neoadjuvant chemo-immunotherapy. Analyses revealed five distinct TIME subtypes with varying major pathological response (MPR) rates. MPR patients had elevated levels of FGFBP2+ NK/NK-like T cells, memory B cells, or effector T cells, while non-MPR patients showed higher CCR8+ Tregs. T cell clonal expansion analyses unveiled heterogeneity in non-MPR patients, marked by varying expansions of Tex-relevant cells and CCR8+ Tregs. Precursor exhausted T cells (Texp cells) correlated with recurrence-free survival, identifying a patient subgroup with reduced recurrence risk despite lack of MPR. Our study dissects TIME heterogeneity in response to chemoimmunotherapy, offering insights for NSCLC management.
Collapse
Affiliation(s)
- Zedao Liu
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenjie Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Sun
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongtao Fan
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yawen Chen
- National Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Benyuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoshi Ma
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen 518020, China
| | - Wei Tang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chang Liu
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Qu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lixu Yan
- Department of Pathology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shun He
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lishan Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhangyi Zhao
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanting Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dingcheng Yi
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | | | - Qianqian Gao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Honghao Fu
- Department of General Thoracic Surgery, Jining First People's Hospital, Affiliated Hospital of Shandong First Medical University, Jining 272000, China
| | - Yongjun Guo
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueda Hu
- Analytical Biosciences Limited, Beijing, China
| | - Qingyuan Cai
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lu Qi
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Peng
- National Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- National Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Chang Zou
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen 518020, China.
| | - Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Sijin Cheng
- Changping Laboratory, Beijing 102206, China; Chongqing Medical University, Chongqing, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Zhongyuan Cell Therapy and Immunotherapy Laboratory, Zhengzhou 450000, China.
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China; Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Metoikidou C, Karnaukhov V, Boeckx B, Timperi E, Bonté PE, Wang L, Espenel M, Albaud B, Loirat D, Wang X, Sotiriou C, Aftimos P, Punie K, Wildiers H, Labroska V, Wang MW, Waterfall JJ, Piccart-Gebhart M, Mora T, Walczak A, Lantz O, Buisseret L, Lambrechts D, Amigorena S, Romano E. Continuous replenishment of the dysfunctional CD8 T cell axis is associated with response to chemoimmunotherapy in advanced breast cancer. Cell Rep Med 2025; 6:101973. [PMID: 39983715 PMCID: PMC11970331 DOI: 10.1016/j.xcrm.2025.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/18/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Chemotherapy combined with immune checkpoint blockade has shown clinical activity in breast cancer. Response, however, occurs in only a low proportion of patients. How the immune landscape of the tumor determines the immune and clinical responses to chemoimmunotherapy is not well understood. Here, using a combination of single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq), we profile 40 biopsies from 27 patients with metastatic triple-negative breast cancer (TNBC), receiving chemotherapy and anti-PD-L1 alone or in combination with anti-CD73, in a phase 2 randomized clinical trial. Our results show an enrichment of late-dysfunctional, clonally expanded CD8+ T cells in responder (R) patients. On treatment, R display an influx of newly emerging clonotypes, as well as expansion of the CD8+ precursors. Collectively, our data suggest that baseline clonal expansion could be a potential predictor of response and that both clonal reinvigoration of pre-existing tumor-reactive T cells and clonal replacement on-treatment are important for a protective response to chemoimmunotherapy.
Collapse
Affiliation(s)
- Christina Metoikidou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vadim Karnaukhov
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Eleonora Timperi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Ling Wang
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Marion Espenel
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | - Benoit Albaud
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | - Delphine Loirat
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - Xiaoxiao Wang
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Aftimos
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua J Waterfall
- Translational Research Department, Institut Curie, 75005 Paris, France; INSERM U830, Institut Curie, 75005 Paris, France
| | | | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Aleksandra Walczak
- Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Emanuela Romano
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France.
| |
Collapse
|
38
|
Guo Y, Wan R, Duan J, Yuan L, Wang Z, Zhong J, Zhang X, Ma Z, Bai H, Wang J. Targeting tumor-intrinsic S100 calcium-binding protein A1 augments antitumor immunity and potentiates immunotherapy efficacy. Signal Transduct Target Ther 2025; 10:99. [PMID: 40090947 PMCID: PMC11911448 DOI: 10.1038/s41392-025-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, but the therapeutic response is highly heterogeneous, which highlights the necessity for developing predictive biomarkers and overcoming ICB resistance. Cancer cell-intrinsic features, especially those that can be dynamically monitored via liquid biopsy, represent a broader scope for biomarker development. In addition, a potential mode of ICB resistance is tumor-intrinsic mechanisms leading to an immunosuppressive tumor microenvironment (TME). However, the underlying interactive network remains elusive, and the generalizable biomarkers and targeting strategies are still lacking. Here, we uncovered the potential of plasma S100 calcium-binding protein A1 (S100A1) for determining ICB efficacy via liquid biopsy of patients with lung cancer. Multiomics and functional studies have suggested that tumor-intrinsic S100A1 expression correlated with an immunologically "cold" TME and resistance to ICB in multiple syngeneic murine tumors and tissue samples from patients with lung cancer. Mechanistic investigations demonstrated that interfering with the tumor-intrinsic S100A1/ubiquitin-specific protease 7/p65/granulocyte-macrophage colony-stimulating factor (GM-CSF) modulatory axis could potentiate an inflamed TME by promoting M1-like macrophage polarization and T cell function. GM-CSF priming was sufficient to enhance the ICB response in tumors with high S100A1 expression in preclinical models. These findings define S100A1 as a potential blood-based biomarker and a novel synergistic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yufeng Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Wan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zhong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
39
|
Abdulrahman Z, Slieker RC, McGuire D, Welters MJP, van Poelgeest MIE, van der Burg SH. Single-cell spatial transcriptomics unravels cell states and ecosystems associated with clinical response to immunotherapy. J Immunother Cancer 2025; 13:e011308. [PMID: 40081939 PMCID: PMC11907085 DOI: 10.1136/jitc-2024-011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a complex and dynamic ecosystem that is known to influence responses to immunotherapy. We leveraged single-cell spatial transcriptomics to systematically dissect the intricate complexity of the TME, in particular the cellular heterogeneity and spatial interactions. Their collective impact on immunotherapy efficacy was studied in the context of a homogeneous group of patients with vulvar high-grade squamous intraepithelial lesions (vHSIL) treated with an immunotherapeutic tumor-specific peptide vaccine. METHODS We performed single-cell spatial transcriptomics on 20 pretreatment vHSIL lesions, stratified by clinical response to immunotherapeutic vaccination into complete responders (CR), partial responders (PR) and non-responders (NR). Using a 1,000-gene panel, we mapped over 274,000 single cells in situ, identifying 18 cell clusters and 99 distinct non-epithelial cell states. Findings were validated against public single-cell transcriptomic data sets to assess their broader relevance across tumor types. RESULTS Profound heterogeneity within the TME was detected across the response groups. CR lesions exhibited a higher ratio of immune-supportive to immune-suppressive cells-a pattern mirrored in other solid tumors following neoadjuvant checkpoint blockade. Key immune populations enriched in CRs included CD4+CD161+ effector T cells and chemotactic CD4+ and CD8+ T cells. Conversely, PRs were characterized by increased proportions of T helper 2 cells and CCL18-expressing macrophages, which are associated with the recruitment of type 2 T cells and regulatory T cells. NRs displayed preferential infiltration with immunosuppressive fibroblasts. Distinct spatial immune ecosystems further defined response groups. Although a number of immune cells were detected in all patients, type 1 effector cells dominated interactions in CRs, type 2 cells were prominently interacting in PRs, while NRs lacked organized immune cell interactions. CONCLUSIONS This study underscores the dual importance of both cellular composition and spatial organization in steering clinical response to immunotherapy.
Collapse
Affiliation(s)
- Ziena Abdulrahman
- Department of Medical Oncology, Leiden University Medical Center, Leiden, ZH, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Roderick C Slieker
- Department of Medical Oncology, Leiden University Medical Center, Leiden, ZH, Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, Leiden, ZH, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, ZH, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
40
|
Dent R, Cortés J, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, Im SA, Holgado E, Foukakis T, Kümmel S, Yearley J, Wang A, Nebozhyn M, Huang L, Cristescu R, Jelinic P, Karantza V, Schmid P. Molecular determinants of response to neoadjuvant pembrolizumab plus chemotherapy in patients with high-risk, early-stage, triple-negative breast cancer: exploratory analysis of the open-label, multicohort phase 1b KEYNOTE-173 study. Breast Cancer Res 2025; 27:35. [PMID: 40069763 PMCID: PMC11895130 DOI: 10.1186/s13058-024-01946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/09/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The multicohort, open-label, phase 1b KEYNOTE-173 study was conducted to investigate pembrolizumab plus chemotherapy as neoadjuvant therapy for triple-negative breast cancer (TNBC). This exploratory analysis evaluated features of the tumor microenvironment that might be predictive of response. METHODS Cell fractions from 20 paired samples collected at baseline and after one cycle of neoadjuvant pembrolizumab prior to chemotherapy initiation were analyzed by spatial localization (tumor compartment, stromal compartment, or sum of tumor and stromal compartments [total tumor]) using three six-plex immunohistochemistry panels with T-cell, myeloid cell, and natural killer cell components. Area under the receiver operating characteristic curve (AUROC) was used to assess associations between immune subsets and gene expression signatures (T-cell-inflamed gene expression profile [TcellinfGEP] and 10 non-TcellinfGEP signatures using RNA sequencing) and pathologic complete response (pCR). RESULTS At baseline, six immune subsets quantitated within the tumor compartment showed AUROC with 95% CIs not crossing 0.5, including CD11c+ cells (macrophage and dendritic cell [DC]: AUROC, 0.85; 95% confidence interval [CI] 0.63-1.00), CD11c+/MHCII+/CD163-/CD68- cells (DC: 0.76; 95% CI, 0.53-0.99), CD11c+/MHCII-/CD163-/CD68- cells (nonactivated/immature DC: 0.80; 95% CI 0.54-1.00), and CD11c+/CD163+ cells (M2 macrophage: 0.77; 95% CI 0.55-0.99). Other associations with pCR included baseline CD11c+/MHCII-/CD163-/CD68- (nonactivated/immature DC) within the total tumor (AUROC, 0.76; 95% CI 0.51-1.00) and the baseline CD11c/CD3 ratio within the tumor compartment (0.75; 95% CI 0.52-0.98). Changes in immune subsets following one cycle of pembrolizumab were not strongly associated with pCR. Although T-cell associations were relatively weak, specific CD8 subsets trended toward association. The AUROC for discriminating pCR based on TcellinfGEP was 0.55 (95% CI 0.25-0.85); when detrended by TcellinfGEP, AUROC varied for the non-TcellinfGEP signatures. TcellinfGEP expression trended higher in responders than in nonresponders when evaluating pCR. CONCLUSIONS Myeloid cell populations within the tumor compartment at baseline and TcellinfGEP show a promising trend toward an association with pCR in a small subgroup of patients with early-stage TNBC treated with neoadjuvant pembrolizumab plus chemotherapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT02622074; registration date, December 2, 2015.
Collapse
Affiliation(s)
- Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore.
| | - Javier Cortés
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
- International Breast Cancer Center, Quironsalud Group, Barcelona, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Yeon Hee Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eva Muñoz-Couselo
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron Hospital, Barcelona, Spain
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joohyuk Sohn
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Esther Holgado
- Medical Oncology Service, Ramón y Cajal University Hospital, Madrid, Spain
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Comprehensive Cancer Center, Karolinska Institute and Breast Cancer Centre, Cancer Theme, Karolinska University Hospital, Solna, Sweden
| | - Sherko Kümmel
- Interdisciplinary Breast Unit, Essen-Mitte Clinics, Essen, and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| |
Collapse
|
41
|
Wan H, Ling Z, Xie Y, Jiang H, Ruan Z, Yang D, Yang X, Pei J. Single-cell and transcriptome analyses revealed CTHRC1 a potential therapeutic target mediating invasion and tumor microenvironment in TNBC: experimental validation. Front Immunol 2025; 16:1534981. [PMID: 40134434 PMCID: PMC11933001 DOI: 10.3389/fimmu.2025.1534981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Background Investigating the pivotal role of CTHRC1 in the tumor microenvironment of triple-negative breast cancer (TNBC). Method The RNA transcriptomic data obtained from the Cancer Genome Atlas and single-cell sequencing data from TNBC in Gene Expression Omnibus (GEO) were acquired and subjected to analysis. A comprehensive investigation was conducted with a specific focus on characterizing CTHRC1 in TNBC and its correlation with invasive genes. Furthermore, additional analyses were performed to explore the relationship between CTHRC1, tumor immune cell infiltration, and immunotherapy in TNBC. The expression of CTHRC1 in the tumor microenvironment, cellular differentiation, and cellular communication was systematically analyzed using single-cell data from TNBC. Result The expression of CTHRC1 in patients with TNBC gradually increases concomitantly with the progression of tumor T-stage and N-stage. Simultaneously, there is a concurrent increase in the expression of most invasive gene sets. Furthermore, there is a significant augmentation in both infiltration abundance and activity of M2-type macrophages associated with elevated levels of CTHRC1 expression. Single-cell data reveal an upregulated expression of the invasive gene set in CTHRC1-positive cancer associated fibroblasts (CAFs), thereby modulating their interaction with M2-type macrophages. Multiple immunofluorescence analyses confirmed that CTHRC1 modulates immune cell infiltration and tumor cell invasion through the mediation of CAFs. Conclusion CTHRC1 was a molecule that exhibits characteristic expression in TNBC. CTHRC1 positive CAFs exert regulatory effects within the immunosuppressive microenvironment of TNBC by modulating M2-type macrophages.
Collapse
Affiliation(s)
- Hong Wan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zichen Ling
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuwei Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhifan Ruan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaowei Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Pei
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Liu M, Qian M, Sun W, Sun X, Sun Y, Yu M, Tang X, Mao X, Sun C, Qi Q, Zhang W, Ling P, Pang Z, Li W, Pan H, Wang S, Zhou W. Immunosuppressive microenvironment of liver restrains chemotherapeutic efficacy in triple-negative breast cancer. J Immunother Cancer 2025; 13:e010871. [PMID: 40050043 DOI: 10.1136/jitc-2024-010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Patients with liver metastases of triple-negative breast cancer (TNBC) show poor prognosis compared with other metastases. Chemotherapy is the primary treatment for advanced TNBC. Tumor cell diversity and the tumor microenvironment could affect therapeutic effect. However, whether liver metastases of TNBC exhibit differential chemotherapy efficacy compared with the primary tumors remains inadequately understood. The specific mechanisms that modulate chemotherapy efficacy in liver metastases need further investigation. METHODS Single-cell RNA sequencing data from public databases were leveraged to contrast the immune profiles of liver metastases and primary tumors in TNBC. Murine models bearing liver tumors or primary tumors of TNBC were used to evaluate chemotherapy efficacy. Techniques such as immunohistochemistry, wound healing assays, and colony formation assays were employed to account for tumor heterogeneity. Intratumoral T lymphocytes and macrophages were quantified and characterized using RNA sequencing, immunohistochemistry, and flow cytometry. Antibody-mediated depletion of CD8+T cells or macrophages in mice substantiated their impact on chemotherapy responses. RESULTS Single-cell RNA sequencing data showed the immune microenvironments of liver metastases and primary tumors exhibited significant differences, which may critically influence chemotherapy outcomes. Mouse models confirmed that chemotherapy was less effective against liver tumors compared with subcutaneous tumors. After excluding the influence of tumor cell heterogeneity, the weaker responsiveness in liver tumors was mediated by the impeded infiltration of CD8+T cells, attributed to the decreased activation of macrophages. Augmenting macrophage activation can improve the chemotherapeutic efficacy in liver tumors. Moreover, chemotherapy drove the immune microenvironment towards increased suppression through distinct mechanisms, with neutrophil extracellular traps (NETs) accumulating in liver tumors and impaired functionality of macrophages at the primary site. The combination of NET inhibitors or macrophage activators with chemotherapy enhanced treatment effectiveness. CONCLUSIONS These findings disclose the compromised chemotherapeutic efficacy in liver tumors of TNBC and elucidate the underlying immune-related mechanisms within the tumor microenvironment. Targeting the specific underpinnings of immune suppression at different tumor sites with selective drugs could optimize chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Mingduo Liu
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mengjia Qian
- Department of Thyroid and Breast Surgery, The Affiliated JiangNing Hospital with Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaowei Sun
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Sun
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Muxin Yu
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Tang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinrui Mao
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chang Sun
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiya Zhang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peiwen Ling
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Pang
- Shanghai Shengdi Pharmaceutical Co Ltd, Shanghai, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Hong Pan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenbin Zhou
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Wu S, Jiang B, Li Z, Tang Y, Luo L, Feng W, Jiang Y, Tan Y, Li Y. Unveiling the key mechanisms of FOLR2+ macrophage-mediated antitumor immunity in breast cancer using integrated single-cell RNA sequencing and bulk RNA sequencing. Breast Cancer Res 2025; 27:31. [PMID: 40045365 PMCID: PMC11881325 DOI: 10.1186/s13058-025-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Breast cancer (BRCA) is a common malignant tumor, and its immune microenvironment plays a crucial role in disease progression. In this research, we utilized single-cell RNA sequencing and bulk RNA sequencing technologies, combined with in vivo and in vitro experiments, to thoroughly investigate the immunological functions and mechanisms of FOLR2+ macrophages in BRCA. Our findings demonstrate a significant enhancement in the interaction between FOLR2+ macrophages and CD8+ T cells within the tumor tissues of BRCA patients. FOLR2 is closely associated with T cell infiltration in the tumor microenvironment of BRCA patients, particularly with CD8+ T cells. By secreting CXCL9 and engaging with CXCR3, FOLR2+ macrophages can activate the functionality of CD8+ T cells, thereby promoting cancer cell apoptosis. Further animal experiments confirm that FOLR2+ macrophages activate CD8+ T cells through the CXCL9-CXCR3 axis, exhibiting an antitumor immunity effect in BRCA. FOLR2+ macrophages play a crucial role in antitumor immunity in BRCA through the CXCL9-CXCR3 axis.
Collapse
Affiliation(s)
- Sixuan Wu
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, People's Republic of China
| | - Baohong Jiang
- Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Zhimin Li
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yuanbin Tang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lunqi Luo
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Wenjie Feng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yiling Jiang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yeru Tan
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| | - Yuehua Li
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
44
|
Song J, Wei R, Liu C, Zhao Z, Liu X, Wang Y, Liu F, Liu X. Antigen-presenting cancer associated fibroblasts enhance antitumor immunity and predict immunotherapy response. Nat Commun 2025; 16:2175. [PMID: 40038297 PMCID: PMC11880398 DOI: 10.1038/s41467-025-57465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Cancer-associated fibroblasts (CAF) play a crucial role in tumor progression and immune regulation. However, the functional heterogeneity of CAFs remains unclear. Here, we identify antigen-presenting CAFs (apCAF), characterized by high MHC II expression, in gastric cancer (GC) tumors and find that apCAFs are preferentially located near tertiary lymphoid structures. Both in vivo and in vitro experiments demonstrate that apCAFs promote T cell activation and enhances its cytotoxic and proliferative capacities, thereby strengthening T cell-mediated anti-tumor immunity. Additionally, apCAFs facilitate the polarization of macrophages toward a pro-inflammatory phenotype. These polarized macrophages, in turn, promote the formation of apCAFs, creating a positive feedback loop that amplifies anti-tumor immune responses. Notably, baseline tumors in immunotherapy responders across various cancer types exhibit higher levels of apCAFs infiltration. This study advances the understanding of CAFs heterogeneity in GC and highlights apCAFs as a potential biomarker for predicting immunotherapy response in pan-cancer.
Collapse
Affiliation(s)
- Junquan Song
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xuanjun Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Fenglin Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S, Bian X, Wong MH, Cao Q, Cheng L, Lu G, Leung KS. STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes. Genome Med 2025; 17:18. [PMID: 40033360 PMCID: PMC11874447 DOI: 10.1186/s13073-025-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Here we present STModule, a Bayesian method developed to identify tissue modules from spatially resolved transcriptomics that reveal spatial components and essential characteristics of tissues. STModule uncovers diverse expression signals in transcriptomic landscapes such as cancer, intraepithelial neoplasia, immune infiltration, outcome-related molecular features and various cell types, which facilitate downstream analysis and provide insights into tumor microenvironments, disease mechanisms, treatment development, and histological organization of tissues. STModule captures a broader spectrum of biological signals compared to other methods and detects novel spatial components. The tissue modules characterized by gene sets demonstrate greater robustness and transferability across different biopsies. STModule: https://github.com/rwang-z/STModule.git .
Collapse
Affiliation(s)
- Ran Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yan Qian
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiaojing Guo
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Fangda Song
- School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Zhiqiang Xiong
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiuwu Bian
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Lixin Cheng
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Department of Applied Data Science, Hong Kong Shue Yan University, North Point, Hong Kong Island, Hong Kong, 999077, China.
| |
Collapse
|
46
|
DeWitt JT, Jimenez-Tovar D, Mazumder A, Haricharan S. Advances in diagnostic and therapeutic applications of mismatch repair loss in cancer. DNA Repair (Amst) 2025; 147:103822. [PMID: 40068557 DOI: 10.1016/j.dnarep.2025.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Mismatch repair (MMR) is a highly conserved, fundamental DNA damage repair pathway that maintains genomic fidelity during cell replication. MMR dysregulation contributes to tumor formation by promoting genomic instability thereby increasing the frequency of potentially oncogenic mutational events. Therefore, MMR dysregulation, in its tumor suppressor role, is largely studied in the context of genomic instability and associated response to immune checkpoint blockade therapies. However, a growing body of literature suggests that the impact of MMR dysregulation on tumor phenotypes is more nuanced than a concerted impact on genomic stability. Rather, loss of individual MMR genes promotes distinct cancer-relevant biological phenotypes, and these phenotypes are further modulated by the tissue of tumor origin. Here, we explore relevant literature and review the prognostic and predictive significance of these non-canonical discoveries.
Collapse
Affiliation(s)
- J T DeWitt
- Dept of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - D Jimenez-Tovar
- Dept of Biology, San Diego State University, San Diego, CA, USA
| | - A Mazumder
- Dept of Biology, San Diego State University, San Diego, CA, USA
| | - S Haricharan
- Dept of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
47
|
Lu J, Ding F, Sun Y, Zhao Y, Ma W, Zhang H, Shi B. Unveiling the role of MDH1 in breast cancer drug resistance through single-cell sequencing and schottenol intervention. Cell Signal 2025; 127:111608. [PMID: 39818404 DOI: 10.1016/j.cellsig.2025.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC). The study also analyzed myeloid cells and tumor-infiltrating lymphocytes (TILs) within the breast cancer immune microenvironment, identifying 14 TIL subpopulations and assessing their proportion variations across different patients. The CellChat tool revealed a complex cellular communication network within the tumor microenvironment, showing notable differences in communication intensity and patterns between TNBC and NTNBC patients. Additionally, the key regulatory role of the senescence-associated gene MDH1 in breast cancer was confirmed, and its impact on drug sensitivity was explored. Finally, it was discovered that the phytosterol Schottenol inhibits breast cancer cell proliferation by downregulating MDH1 expression and enhances sensitivity to paclitaxel. These findings provide new insights into MDH1 as a therapeutic target and suggest Schottenol as a potential strategy to overcome breast cancer drug resistance.
Collapse
Affiliation(s)
- Jian Lu
- Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong, China.; Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Feng Ding
- Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Yongjie Sun
- Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Yu Zhao
- Department of Stomatology, Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Wenbiao Ma
- Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China
| | - Huan Zhang
- Department of Anesthesiology, The Qinghai Provincial People's Hospital, Xining 810007, China
| | - Bo Shi
- Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China.
| |
Collapse
|
48
|
Johri S, Bi K, Titchen BM, Fu J, Conway J, Crowdis JP, Vokes NI, Fan Z, Fong L, Park J, Liu D, He MX, Van Allen EM. Dissecting tumor cell programs through group biology estimation in clinical single-cell transcriptomics. Nat Commun 2025; 16:2090. [PMID: 40025015 PMCID: PMC11873288 DOI: 10.1038/s41467-025-57377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
With the growth of clinical cancer single-cell RNA sequencing studies, robust differential expression methods for case/control analyses (e.g., treatment responders vs. non-responders) using gene signatures are pivotal to nominate hypotheses for further investigation. However, many commonly used methods produce a large number of false positives, do not adequately represent the patient-specific hierarchical structure of clinical single-cell RNA sequencing data, or account for sample-driven confounders. Here, we present a nonparametric statistical method, BEANIE, for differential expression of gene signatures between clinically relevant groups that addresses these issues. We demonstrate its use in simulated and real-world clinical datasets in breast cancer, lung cancer and melanoma. BEANIE outperforms existing methods in specificity while maintaining sensitivity, as demonstrated in simulations. Overall, BEANIE provides a methodological strategy to inform biological insights into unique and shared differentially expressed gene signatures across different tumor states, with utility in single-study, meta-analysis, and cross-validation across cell types.
Collapse
Affiliation(s)
- Shreya Johri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kevin Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Breanna M Titchen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Graduate Program in Biological and Biomedical Sciences, Boston, MA, USA
| | - Jingxin Fu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jake Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Graduate Program in Bioinformatics and Integrative Genomics, Boston, MA, USA
| | - Jett P Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Natalie I Vokes
- Department of Thoracic and Head and Neck Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Zenghua Fan
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
49
|
Neo SY, Shuen TWH, Khare S, Chong J, Lau M, Shirgaonkar N, Chua L, Zhao J, Lee K, Tan C, Ba R, Lim J, Chua J, Cheong HS, Chai HM, Chan CY, Chung AYF, Cheow PC, Jeyaraj PR, Teo JY, Koh YX, Chok AY, Chow PKH, Goh B, Wan WK, Leow WQ, Loh TJZ, Tang PY, Karunanithi J, Ngo NT, Lim TKH, Xu S, Dasgupta R, Toh HC, Lam KP. Atypical memory B cells acquire Breg phenotypes in hepatocellular carcinoma. JCI Insight 2025; 10:e187025. [PMID: 39998891 PMCID: PMC11981623 DOI: 10.1172/jci.insight.187025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The functional plasticity of tumor-infiltrating lymphocyte B-cells (TIL-B) spans from antitumor responses to noncanonical immune suppression. Yet, how the tumor microenvironment (TME) influences TIL-B development is still underappreciated. Our current study integrated single-cell transcriptomics and B cell receptor (BCR) sequencing to profile TIL-B phenotypes and clonalities in hepatocellular carcinoma (HCC). Using trajectory and gene regulatory network analysis, we were able to characterize plasma cells and memory and naive B cells within the HCC TME and further revealed a downregulation of BCR signaling genes in plasma cells and a subset of inflammatory TNF+ memory B cells. Within the TME, a nonswitched memory B cell subset acquired an age-associated B cell phenotype (TBET+CD11c+) and expressed higher levels of PD-L1, CD25, and granzyme B. We further demonstrated that the presence of HCC tumor cells could confer suppressive functions on peripheral blood B cells that in turn, dampen T cell costimulation. To the best of our knowledge, these findings represent novel mechanisms of noncanonical immune suppression in HCC. While previous studies identified atypical memory B cells in chronic hepatitis and across several solid cancer types, we further highlighted their potential role as regulatory B cells (Bregs) within both the TME and peripheral blood of HCC patients.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Shruti Khare
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maichan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Levene Chua
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Junzhe Zhao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Keene Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Charmaine Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Janice Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joelle Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Shi Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Min Chai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Alexander Yaw Fui Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Prema Raj Jeyaraj
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Jin Yao Teo
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Ye Xin Koh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Aik Yong Chok
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Pierce Kah Hoe Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - Brian Goh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Wei Keat Wan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tracy Jie Zhen Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Po Yin Tang
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ramanuj Dasgupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
50
|
Wang Y, Haase S, Whitman A, Beltran A, Spanheimer PM, Brunk E. A Multimodal Framework to Uncover Drug-Responsive Subpopulations in Triple-Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638274. [PMID: 40027670 PMCID: PMC11870422 DOI: 10.1101/2025.02.14.638274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding how individual cancer cells adapt to drug treatment is a fundamental challenge limiting precision medicine cancer therapy strategies. While single-cell technologies have advanced our understanding of cellular heterogeneity, efforts to connect the behavior of individual cells to broader tumor drug responses and uncover global trends across diverse systems remain limited. There is a growing availability of single-cell and bulk omics data, but a lack of centralized tools and repositories makes it difficult to study drug response globally, especially at the level of single-cell adaptation. To address this, we present a multimodal framework that integrates bulk and single-cell treated and untreated transcriptomics data to identify drug responsive cell populations in triple-negative breast cancer (TNBC). Our framework leverages population-scale bulk transcriptomics data from TNBC samples to define seven main "identities", each representing unique combinations of biologically relevant genes. These identities are dynamic and trackable, allowing us to map them onto single cells and uncover global patterns of how cell populations respond to drug treatment. Unlike static classifications, this approach captures the evolving nature of cellular states, revealing that a select few identities dominate and drive population-level responses during treatment. Crucially, our ability to decode these trends through the inherent noise of single-cell data provides a clearer picture of how heterogeneous cell populations adapt to therapy. By identifying the dominant identities and their dynamics, we can better predict how entire tumors respond to treatment. This insight is essential for designing precise combination therapies tailored to the unique heterogeneity of patient tumors, addressing the single-cell variations that ultimately determine therapeutic outcomes.
Collapse
|