1
|
Zhou T, Shen G, Zhong L, Chen G, Meng L, He W, Liu J, Yang S, Luo Y, Wang X. crRNA array-mediated CRISPR/Cas12a coupling with dual RPA for highly sensitive detection of Streptomyces aureofaciens Tü117 from hypertension with multi-signal output. Biosens Bioelectron 2025; 282:117493. [PMID: 40252377 DOI: 10.1016/j.bios.2025.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Accurate and sensitive detection of Streptomyces aureofaciens Tü117 is crucial for hypertension classification and early warning. To achieve this, a dual recombinase polymerase amplification coupled with a crRNA array-mediated CRISPR/Cas12a assay (DR-CAMCas) was developed, enabling multi-signal output for precise identification and detection of S. aureofaciens Tü117. The 16S rDNA and LipReg4 genes of S. aureofaciens Tü117 are amplified simultaneously via one-step dual RPA, activating the crRNA array-mediated CRISPR/Cas12a system to cleave exogenous FQ-reporters, releasing fluorescent signals. DR-CAMCas offers high amplification efficiency, multi-site recognition through crRNA array signal superposition, and the programmability of CRISPR/Cas12a, achieving ultrasensitive detection with a linear range of 10 to 108 cfu/mL and a limit of detection of approximately 3 cfu/mL. DR-CAMCas successfully detected S. aureofaciens Tü117 in fecal samples from high-salt diet-induced hypertensive mice and hypertensive patients, matching qPCR results and demonstrating high reliability and practicality. Additionally, target-induced cleavage of a DNA linker by DR-CAMCas dispersed AuNPs-DNA probes, enabling colorimetric detection. Integrated onto lateral flow sensors, DR-CAMCas allows point-of-care testing via simple visual strip analysis. Its triple signal output meets diverse detection needs, offering a promising tool for diagnosing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Gongle Shen
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Linling Zhong
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Genchang Chen
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Liyuan Meng
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Wenyin He
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jing Liu
- School of Public Health, Southwest Medical University, Sichuan, 646000, PR China
| | - Sen Yang
- Department of General Practice, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China.
| | - Yang Luo
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 401147, PR China.
| | - Xianfeng Wang
- Wuxi School of Medicine, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
2
|
Lau CH, Huang S, Zhu H. Amplification-free nucleic acids detection with next-generation CRISPR/dx systems. Crit Rev Biotechnol 2025; 45:859-886. [PMID: 39307577 DOI: 10.1080/07388551.2024.2399560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 05/23/2025]
Abstract
CRISPR-based diagnostics (CRISPR/Dx) have revolutionized the field of molecular diagnostics. It enables home self-test, field-deployable, and point-of-care testing (POCT). Despite the great potential of CRISPR/Dx in diagnoses of biologically complex diseases, preamplification of the template often is required for the sensitive detection of low-abundance nucleic acids. Various amplification-free CRISPR/Dx systems were recently developed to enhance signal detection at sufficient sensitivity. Broadly, these amplification-free CRISPR/Dx systems are classified into five groups depending on the signal enhancement strategies employed: CRISPR/Cas12a and/or CRISPR/Cas13a are integrated with: (1) other catalytic enzymes (Cas14a, Csm6, Argonaute, duplex-specific nuclease, nanozyme, or T7 exonuclease), (2) rational-designed oligonucleotides (multivalent aptamer, tetrahedral DNA framework, RNA G-quadruplexes, DNA roller machine, switchable-caged guide RNA, hybrid locked RNA/DNA probe, hybridized cascade probe, or "U" rich stem-loop RNA), (3) nanomaterials (nanophotonic structure, gold nanoparticle, micromotor, or microbeads), (4) electrochemical and piezoelectric plate biosensors (SERS nanoprobes, graphene field-effect transistor, redox probe, or primer exchange reaction), or (5) cutting-edge detection technology platforms (digital bioanalysis, droplet microfluidic, smartphone camera, or single nanoparticle counting). Herein, we critically discuss the advances, pitfalls and future perspectives for these amplification-free CRISPR/Dx systems in nucleic acids detection. The continued refinement of these CRISPR/Dx systems will pave the road for rapid, cost-effective, ultrasensitive, and ultraspecific on-site detection without resorting to target amplification, with the ultimate goal of establishing CRISPR/Dx as the paragon of diagnostics.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Siping Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
3
|
Xu C, Zhang Y, Zhu X, Hua D, Yang L, Huang X, Gao H, Luo A, Deng R, Xia X. Preamplification-Free Detection of Viable Microorganisms in Fermentation Using Tandem CRISPR Nuclease Probe. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12488-12496. [PMID: 40331919 DOI: 10.1021/acs.jafc.5c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Accurate detection of viable bacteria is crucial for evaluating and monitoring the fermentation process. However, the complexity of fermentation samples presents challenges to developing precise and rapid detection tools. Here, we present a Cas13a-Csm6 tandem nuclease probe capable of the one-pot detection of viable microorganisms during fermentation, eliminating the need for nucleic acid preamplification. The RNA-activated CRISPR-Cas13a generates cleavage substrates that serve as activators for the CRISPR/Cas III-A Csm6 system. Leveraging the high specificity and efficient amplification capacity of the CRISPR cascade, this nuclease probe can detect 1% of viable Lactobacillus and Bacillus, facilitating the monitoring of bacterial populations throughout fermentation. This approach completes detection within 30 min and improves sensitivity for bacterial profiling by 16-fold compared with using Cas13 alone. The Cas13a-Csm6 tandem nuclease probe offers a precise and rapid analytical tool for the on-site quality monitoring of fermented foods.
Collapse
Affiliation(s)
- Chunmiao Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xianglin Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dimin Hua
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xuejiao Huang
- Sichuan Institute of Food Inspection, Sichuan University, Chengdu 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Aimin Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials State Administration for Market Regulation, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials State Administration for Market Regulation, Chengdu 610065, China
| |
Collapse
|
4
|
Kim J, Orozaliev A, Sahloul S, Van AD, Dang VT, Pham VS, Oh Y, Chehade I, Al-Sayegh M, Song YA. Accelerating Cleavage Activity of CRISPR-Cas13 System on a Microfluidic Chip for Rapid Detection of RNA. Anal Chem 2025; 97:9858-9865. [PMID: 40304259 PMCID: PMC12079638 DOI: 10.1021/acs.analchem.5c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
It is extremely advantageous to detect nucleic acid levels in the early phases of disease management; such early detection facilitates timely treatment, and it can prevent altogether certain cancers and infectious diseases. A simple, rapid, and versatile detection platform without enzymatic amplification for both short and long sequences would be highly desirable in this regard. Our study addresses this need by introducing IMACC, an ICP-based Microfluidic Accelerator Combined with CRISPR, for amplification-free nucleic acid detection. It exploits electrokinetically induced ion concentration polarization (ICP) to concentrate target nucleic acids and CRISPR reagents near the depletion zone boundary within a microfluidic channel. This localized accumulation accelerates the CRISPR-guided promiscuous cleavage of reporter molecules while enhancing their fluorescence signals simultaneously. Simultaneous accumulation of RNA and ribonucleoproteins (RNP) in confined spaces was validated experimentally and numerically, showing overlapping regions. IMACC enabled detection of miRNA-21 (22 bp) down to 10 pM within 2 min of ICP. IMACC ensured CRISPR specificity (single mismatch (N = 1) sensitivity) during ICP, as shown by off-target and mismatch sequence experiments. IMACC was applied to long RNA samples (i.e., SARS-CoV-2), but it statistically remained challenging at this point due to nonlinear intensity trends with copy numbers and large deviations. IMACC enabled rapid detection of short RNAs such as microRNAs using only basic CRISPR reagents in a single microfluidic channel, eliminating the need for extra enzymes or buffer sets, streamlining workflow and reducing turnaround time. IMACC has the potential to advance CRISPR diagnostics and holds promise for improved detection and future prescreening applications.
Collapse
Affiliation(s)
- Jongmin Kim
- Division
of Engineering, New York University Abu
Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Ajymurat Orozaliev
- Division
of Engineering, New York University Abu
Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Sarah Sahloul
- Division
of Engineering, New York University Abu
Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Anh-Duc Van
- Division
of Engineering, New York University Abu
Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- Department
of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, New York, New York 11201, United States
| | - Van-Truong Dang
- School
of Mechanical Engineering, Hanoi University
of Science and Technology, No. 1 Daicoviet Road, Hanoi 100000, Vietnam
| | - Van-Sang Pham
- School
of Mechanical Engineering, Hanoi University
of Science and Technology, No. 1 Daicoviet Road, Hanoi 100000, Vietnam
| | - Yujeong Oh
- Division
of Science, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Ibrahim Chehade
- Division
of Science, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Mohamed Al-Sayegh
- Division
of Science, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Yong-Ak Song
- Division
of Engineering, New York University Abu
Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department
of Biomedical Engineering, New York University
Tandon School of Engineering, Brooklyn, New York 11201, United States
| |
Collapse
|
5
|
Proal AD, Aleman S, Bomsel M, Brodin P, Buggert M, Cherry S, Chertow DS, Davies HE, Dupont CL, Deeks SG, Ely EW, Fasano A, Freire M, Geng LN, Griffin DE, Henrich TJ, Hewitt SM, Iwasaki A, Krumholz HM, Locci M, Marconi VC, Mehandru S, Muller-Trutwin M, Painter MM, Pretorius E, Price DA, Putrino D, Qian Y, Roan NR, Salmon D, Tan GS, VanElzakker MB, Wherry EJ, Van Weyenbergh J, Yonker LM, Peluso MJ. Targeting the SARS-CoV-2 reservoir in long COVID. THE LANCET. INFECTIOUS DISEASES 2025; 25:e294-e306. [PMID: 39947217 DOI: 10.1016/s1473-3099(24)00769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 03/15/2025]
Abstract
There are no approved treatments for post-COVID-19 condition (also known as long COVID), a debilitating disease state following SARS-CoV-2 infection that is estimated to affect tens of millions of people. A growing body of evidence shows that SARS-CoV-2 can persist for months or years following COVID-19 in a subset of individuals, with this reservoir potentially driving long-COVID symptoms or sequelae. There is, therefore, an urgent need for clinical trials targeting persistent SARS-CoV-2, and several trials of antivirals or monoclonal antibodies for long COVID are underway. However, because mechanisms of SARS-CoV-2 persistence are not yet fully understood, such studies require important considerations related to the mechanism of action of candidate therapeutics, participant selection, duration of treatment, standardisation of reservoir-associated biomarkers and measurables, optimal outcome assessments, and potential combination approaches. In addition, patient subgroups might respond to some interventions or combinations of interventions, making post-hoc analyses crucial. Here, we outline these and other key considerations, with the goal of informing the design, implementation, and interpretation of trials in this rapidly growing field. Our recommendations are informed by knowledge gained from trials targeting the HIV reservoir, hepatitis C, and other RNA viruses, as well as precision oncology, which share many of the same hurdles facing long-COVID trials.
Collapse
Affiliation(s)
- Amy D Proal
- PolyBio Research Foundation, Medford, MA, USA.
| | - Soo Aleman
- Department of Infectious Diseases and Unit of Post-COVID Huddinge, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Morgane Bomsel
- HIV entry and Laboratory of Mucosal Immunity, Institut Cochin, Paris, France; Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, London, UK; Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Cardiff, UK; University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Christopher L Dupont
- Division of Genomic Medicine, Environment & Sustainability, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - E Wes Ely
- The Critical Illness, Brain Dysfunction, Survivorship Center at Vanderbilt University Medical Center, Nashville, TN, USA; Veteran's Affairs Tennessee Valley Geriatric Research Education Clinical Center, Nashville, TN, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcelo Freire
- Department of Infectious Diseases, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Linda N Geng
- J Craig Venter Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Diane E Griffin
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Harlan M Krumholz
- Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vincent C Marconi
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Henry D Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michaela Muller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Mark M Painter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Qian
- Department of Informatics, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA
| | - Dominique Salmon
- Department of Infectious Diseases, Institut Fournier, Paris, France; Direction of International Relations Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gene S Tan
- Department of Infectious Diseases, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Michael B VanElzakker
- PolyBio Research Foundation, Medford, MA, USA; Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lael M Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Chen H, Song F, Wang B, Huang H, Luo Y, Han X, He H, Lin S, Wan L, Huang Z, Fu Z, Ledesma-Amaro R, Yin D, Mao H, He L, Yang T, Chen Z, Ma Y, Xue EY, Wan Y, Mao C. Ultrasensitive detection of clinical pathogens through a target-amplification-free collateral-cleavage-enhancing CRISPR-CasΦ tool. Nat Commun 2025; 16:3929. [PMID: 40280947 PMCID: PMC12032082 DOI: 10.1038/s41467-025-59219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Clinical pathogen diagnostics detect targets by qPCR (but with low sensitivity) or blood culturing (but time-consuming). Here we leverage a dual-stem-loop DNA amplifier to enhance non-specific collateral enzymatic cleavage of an oligonucleotide linker between a fluophore and its quencher by CRISPR-CasΦ, achieving ultrasensitive target detection. Specifically, the target pathogens are lysed to release DNA, which binds its complementary gRNA in CRISPR-CasΦ to activate the collateral DNA-cleavage capability of CasΦ, enabling CasΦ to cleave the stem-loops in the amplifier. The cleavage product binds its complementary gRNA in another CRISPR-CasΦ to activate more CasΦ. The activated CasΦ collaterally cleaves the linker, releasing the fluophore to recover its fluorescent signal. The cycle of stem-loop-cleavage/CasΦ-activation/fluorescence-recovery amplifies the detection signal. Our target amplification-free collateral-cleavage-enhancing CRISPR-CasΦ method (TCC), with a detection limit of 0.11 copies/μL, demonstrates enhanced sensitivity compared to qPCR. It can detect pathogenic bacteria as low as 1.2 CFU/mL in serum within 40 min.
Collapse
Affiliation(s)
- Huiyou Chen
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Fengge Song
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Buhua Wang
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Huang
- Microbial Medical Laboratory, People's Hospital of Haikou, Haikou, 570208, China
| | - Yanchi Luo
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaosheng Han
- Microbial Medical Laboratory, People's Hospital of Haikou, Haikou, 570208, China
| | - Hewen He
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | - Shaolu Lin
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | - Liudang Wan
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | | | - Zhaoyong Fu
- Hainan Viewkr Biotechnology Co., Ltd, Haikou, 570228, China
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Dapeng Yin
- Hainan Center for Disease Control and Prevention, Haikou, 570228, China
| | - Haimei Mao
- Products Quality Supervision and Testing Institute of Hainan Province, Haikou, 570003, China
| | - Linwen He
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China
| | - Tao Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zijing Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yubin Ma
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Evelyn Y Xue
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wan
- State key laboratory of digital medical engineering, Hainan University, Haikou, 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
7
|
Cao L, Wang Z, Lei C, Nie Z. Engineered CRISPR/Cas Ribonucleoproteins for Enhanced Biosensing and Bioimaging. Anal Chem 2025; 97:5866-5879. [PMID: 40066952 DOI: 10.1021/acs.analchem.4c06789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
CRISPR-Cas systems represent a highly programmable and precise nucleic acid-targeting platform, which has been strategically engineered as a versatile toolkit for biosensing and bioimaging applications. Nevertheless, their analytical performance is constrained by inherent functional and activity limitations of natural CRISPR/Cas systems, underscoring the critical role of molecular engineering in enhancing their capabilities. This review comprehensively examines recent advancements in engineering CRISPR/Cas ribonucleoproteins (RNPs) to enhance their functional capabilities for advanced molecular detection and cellular imaging. We explore innovative strategies for developing enhanced CRISPR/Cas RNPs, including Cas protein engineering through protein mutagenesis and fusion techniques, and guide RNA engineering via chemical and structural modifications. Furthermore, we evaluate these engineered RNPs' applications in sensitive biomarker detection and live-cell genomic DNA and RNA monitoring, while analyzing the current challenges and prospective developments in CRISPR-Cas RNP engineering for advanced biosensing and bioimaging.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zeyuan Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemial Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
8
|
Luo S, Yin L, Liu X, Wang X. Advances in Virus Biorecognition and Detection Techniques for the Surveillance and Prevention of Infectious Diseases. BIOSENSORS 2025; 15:198. [PMID: 40136995 PMCID: PMC11940537 DOI: 10.3390/bios15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Viral infectious diseases pose a serious threat to global public health due to their high transmissibility, rapid mutation rates, and limited treatment options. Recent outbreaks of diseases such as plague, monkeypox, avian influenza, and coronavirus disease 2019 (COVID-19) have underscored the urgent need for efficient diagnostic and surveillance technologies. Focusing on viral infectious diseases that seriously threaten human health, this review summarizes and analyzes detection techniques from the perspective of combining viral surveillance and prevention advice, and discusses applications in improving diagnostic sensitivity and specificity. One of the major innovations of this review is the systematic integration of advanced biorecognition and detection technologies, such as bionanosensors, rapid detection test strips, and microfluidic platforms, along with the exploration of artificial intelligence in virus detection. These technologies address the limitations of traditional methods and enable the real-time monitoring and early warning of viral outbreaks. By analyzing the application of these technologies in the detection of pathogens, new insights are provided for the development of next-generation diagnostic tools to address emerging and re-emerging viral threats. In addition, we analyze the current progress of developed vaccines, combining virus surveillance with vaccine research to provide new ideas for future viral disease prevention and control and vaccine development, and call for global attention and the development of new disease prevention and detection technologies.
Collapse
Affiliation(s)
- Shuwen Luo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| |
Collapse
|
9
|
Chai HX, Bamert RS, Knott GJ. Methods for Cas13a expression and purification for use in CRISPR diagnostics. Methods Enzymol 2025; 712:225-244. [PMID: 40121074 DOI: 10.1016/bs.mie.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The threat of emerging infectious diseases (e.g., SARS-CoV-2 the RNA virus responsible for the COVID-19 pandemic) has highlighted the importance of accurate and rapid testing for screening, patient diagnosis, and effective treatment of infectious disease. Nucleic acid diagnostic tools such as qPCR are considered the gold standard, providing a sensitive, accurate, and robust method of detection. However, these conventional diagnostic platforms are resource intensive, limited in some applications, and are almost always confined to laboratory settings. With the increasing demand for low-cost, rapid, and accurate point-of-care diagnostics, CRISPR-based systems have emerged as powerful tools to augment detection capabilities. Of note is the potent RNA detection enzyme, Leptotrichia buccalis (Lbu) Cas13a, which is capable of rapid RNA detection in complex mixtures with or without pre-amplification. To support its wide-spread use, we describe a detailed method for the expression, purification, and validation of LbuCas13a for use in molecular diagnostics.
Collapse
Affiliation(s)
- Her Xiang Chai
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rebecca S Bamert
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gavin J Knott
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Yin N, Yu H, Zhang L, Luo F, Wang W, Han X, He Y, Zhang Y, Wu Y, Pu J, Feng T, Yang G, Chen T, Xie G. Regulation of CRISPR trans-cleavage activity by an overhanging activator. Nucleic Acids Res 2025; 53:gkaf117. [PMID: 39995038 PMCID: PMC11850226 DOI: 10.1093/nar/gkaf117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system exhibits extraordinary capability in the field of molecular diagnosis and biosensing, attributed to its trans-cleavage ability. The precise modulation of performance has emerged as a significant challenge in advancing CRISPR technology to the next stage of development. Herein, we reported a CRISPR/Cas12a regulation strategy based on an overhanging activator. The presence of overhanging domains in activators creates steric hindrances that have a substantial impact on the trans-cleavage activity and activation timing of Cas12a. The trans-cleavage activity of Cas12a can be finely tuned by adjusting the position, length, and complementarity of the overhanging domains. Moreover, specific structures exhibit characteristics of automatic delayed activation. The presence of overhanging domains enables precise and timely activation of Cas12a, facilitating multifunctional applications. This system effectively accomplishes dynamic regulation, programmable release of cargo, logical operations, and multi-enzyme detection. The flexibility and versatility of this simple and powerful CRISPR regulatory strategy will pave the way for expanded applications of CRISPR/Cas in biotechnology, bioengineering, and biomedicine.
Collapse
Affiliation(s)
- Na Yin
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fei Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu He
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiqi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiu Pu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, P.R. China
| |
Collapse
|
11
|
Fu R, Hou J, Wang Z, Zhu C, Xianyu Y. A CRISPR-Cas and Argonaute-Driven Two-Factor Authentication Strategy for Information Security. ACS NANO 2025; 19:4983-4992. [PMID: 39853972 DOI: 10.1021/acsnano.4c17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Pyrococcus furiosus Argonaute. In this strategy, the output of authentication entity 1 acted as a component to operate authentication entity 2, thus enabling a role-based molecular model that implemented access control for the three roles. To further enhance information security, we designed knowledge suppression factors to constitute the command library and possession suppression factors to resist brute-force attacks. This study will promote the development of advanced molecular access control and its applications in biomedical diagnostics and data security.
Collapse
Affiliation(s)
- Ruijie Fu
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Jinjie Hou
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Zexiang Wang
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Chenggong Zhu
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital and Department Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350108, People's Republic of China
| | - Yunlei Xianyu
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| |
Collapse
|
12
|
Qiu Y, Chen S, Li J, Liu DA, Hu R, Xu Y, Chen K, Yuan J, Zhang X, Li X. Crispr-cas biosensing for rapid detection of viral infection. Clin Chim Acta 2025; 567:120071. [PMID: 39638020 DOI: 10.1016/j.cca.2024.120071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
With the frequent outbreaks of viral diseases globally, accurate and rapid diagnosis of viral infections is of significant importance for disease prevention and control. The CRISPR-Cas combined biosensing strategy, as an emergent nucleic acid detection technology, exhibits notable advantages including high specificity, elevated sensitivity, operational simplicity, and cost-effectiveness, thereby demonstrating significant potential in the domain of rapid viral diagnostics. This paper summarizes the principles of the CRISPR-Cas system, the novel biotechnologies, and the latest research progress in virus detection using the combined biosensing strategy. Additionally, this paper discusses the challenges faced by CRISPR-Cas biosensing strategies and outlines future development directions, which provides a reference for further research and clinical applications in the rapid diagnosis of viral infections.
Collapse
Affiliation(s)
- Yuting Qiu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Shiyu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Juezhuo Li
- Wycombe Abbey School Hangzhou, Hangzhou, 311261, PR China
| | - Dong-Ang Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Ruiyao Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Yue Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Keyi Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jinghua Yuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Xinling Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| |
Collapse
|
13
|
Grimm MS, Myhrvold C. Using CRISPR for viral nucleic acid detection. Methods Enzymol 2025; 712:245-275. [PMID: 40121076 DOI: 10.1016/bs.mie.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Pathogenic microorganisms, such as viruses, have threatened human health and will continue to contribute to future epidemics and pandemics, highlighting the importance of developing effective diagnostics. To contain viral outbreaks within populations, fast and early diagnosis of infected individuals is essential. Although current standard methods are highly sensitive and specific, like RT-qPCR, some can have slow turnaround times, which can hinder the prevention of viral transmission. The discovery of CRISPR-Cas systems in bacteria and archaea initially revolutionized the world of genome editing. Intriguingly, CRISPR-Cas enzymes also have the ability to detect nucleic acids with high sensitivity and specificity, which sparked the interest of researchers to also explore their potential in diagnosis of viral pathogens. In particular, the CRISPR-Cas13 system has been used as a tool for detecting viral nucleic acids. Cas13's capability to detect both target RNA and non-specific RNAs has led to the development of detection methods that leverage these characteristics through designing specific detection read-outs. Optimization of viral sample collection, amplification steps and the detection process within the Cas13 detection workflow has resulted in assays with high sensitivity, rapid turnaround times and the capacity for large-scale implementation. This review focuses on the significant innovations of various CRISPR-Cas13-based viral nucleic acid detection methods, comparing their strengths and weaknesses while highlighting Cas13's great potential as a tool for viral diagnostics.
Collapse
Affiliation(s)
- Maaike S Grimm
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, United States; Department of Chemistry, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
14
|
Nafari NB, Zamani M, Mosayyebi B. Recent advances in lateral flow assays for MicroRNA detection. Clin Chim Acta 2025; 567:120096. [PMID: 39681230 DOI: 10.1016/j.cca.2024.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Lateral flow assays (LFAs) have emerged as pivotal tools for the rapid and reliable detection of microRNAs (miRNAs). It is believed that these biomarkers are crucial for the diagnosis and prognosis of various diseases, particularly cancer. Traditional miRNA detection techniques, such as quantitative PCR, are highly sensitive but have limited efficacy due to their complexity, high cost, and technical requirements. LFAs are valuable due to their simplicity, affordability, and portability, making them ideal for point-of-care testing in low-resource environments. However, challenges remain in developing highly sensitive and accurate LFA devices for miRNA detection. This review explores recent advancements in LFAs to improve miRNA detection sensitivity and specificity. Key innovations include signal amplification using isothermal methods, the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas systems for direct targeting of miRNAs, and the incorporation of nanomaterials, such as gold nanoparticles and nanorods, to enhance signal intensity. Using artificial intelligence (AI) algorithms enables precise, automated, and rapid quantification of miRNAs. Moreover, this review examines the ability of LFA-based devices to detect multiple miRNAs simultaneously. One of the most significant advancements is the detection of miR-21 levels as low as 20 pM and let-7a levels as low as 40 pM within ten minutes. This highlights the potential of these devices for clinical diagnostics.
Collapse
Affiliation(s)
- Nasim Barzegar Nafari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Doctor Y, Sanghvi M, Mali P. A Manual for Genome and Transcriptome Engineering. IEEE Rev Biomed Eng 2025; 18:250-267. [PMID: 39514364 PMCID: PMC11875898 DOI: 10.1109/rbme.2024.3494715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.
Collapse
Affiliation(s)
| | | | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, CA 92039, USA
| |
Collapse
|
16
|
Fu Y, Zhang P, Chen F, Xie Z, Xiao S, Huang Z, Lau CH, Zhu H, Luo J. CRISPR detection of cardiac tumor-associated microRNAs. Mol Biol Rep 2025; 52:114. [PMID: 39797940 DOI: 10.1007/s11033-024-10205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA). Dysregulation of miRNA expressions has been associated with cardiac tumors such as atrial myxoma and angiosarcoma. Diverse CRISPR-Dx systems have been developed to detect miRNA in recent years. These CRISPR-Dx systems are generally classified into four classes, depending on the Cas proteins used (Cas9, Cas12, Cas13, or Cas12f). CRISPR/Cas systems are integrated with various isothermal amplifications to detect low-abundance miRNAs. Amplification-free CRISPR-Dx systems have also been recently developed to detect miRNA directly. Herein, we critically discuss the advances, pitfalls, and future perspectives for these CRISPR-Dx systems in detecting miRNA, focusing on the diagnosis and prognosis of cardiac tumors.
Collapse
Affiliation(s)
- Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Peng Zhang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Feng Chen
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Ziqiang Xie
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Shihui Xiao
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zhihao Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, 515063, Guangdong, China
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
| |
Collapse
|
17
|
Jiang H, Qian C, Deng Y, Lv X, Liu Y, Li A, Li X. Novel Multimode Assay Based on Asymmetrically Competitive CRISPR and Raman Barcode Spectra for Multiple Hepatocellular Carcinoma Biomarkers Detection. Anal Chem 2024; 96:20004-20014. [PMID: 39641617 DOI: 10.1021/acs.analchem.4c04593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Commercial pregnancy test strips (PTS) possess the advantages of lower price, higher stability, and better repeatability and have been popularized to integrate with novel sensing strategies to detect other disease biomarkers, which accelerates the commercialization process of those novel sensing strategies. However, the current integration of novel sensing strategies into commercial PTS still faced the problems of insufficient quantification, low sensitivity, and lack of multiple detection capabilities. Hence, we proposed the concept of "visual classification recognition, spectral signal subdivision" for multiple hepatocellular carcinoma biomarkers (miRNA122 and miRNA233) detection with dual signals based on asymmetric competitive CRISPR (acCRISPR) and surface-enhanced Raman spectroscopy coupling with PTS, named the acCRISPR-PTS-SERS assay. In this assay, acCRISPR was used as a nonamplified cascaded signal amplification method to improve the sensitivity of detection. Two AuNPs-based core-shell Raman tags, each corresponding to different miRNA biomarkers, were used to achieve both visual recognition and spectral segmentation to enhance the quantification of PTS detection and the capability for multiple detection. Under the optimal conditions, the LOD for miRNA122 and miRNA223 were 10.36 and 4.65 fM, respectively. The sensitivity was enhanced by nearly 2 orders of magnitude. In the future, simultaneous hand-held detection for fingerprint barcodes of different cancers can be achieved with the assistance of a microfluidic chip and smartphone.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
19
|
Ahamed MA, Politza AJ, Liu T, Khalid MAU, Zhang H, Guan W. CRISPR-based strategies for sample-to-answer monkeypox detection: current status and emerging opportunities. NANOTECHNOLOGY 2024; 36:042001. [PMID: 39433062 PMCID: PMC11533882 DOI: 10.1088/1361-6528/ad892b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability. Here, we reviewed the latest developments in CRISPR-based POC devices and testing strategies for Mpox detection. We explored the crucial role of genetic sequencing in designing crRNA for CRISPR reaction and understanding Mpox transmission and mutations. Additionally, we showed the integration of CRISPR-Cas12 strategy with pre-amplification and amplification-free methods. Our study also focused on the significant role of Cas12 proteins and the effectiveness of Cas12 coupled with recombinase polymerase amplification (RPA) for Mpox detection. We envision the future prospects and challenges, positioning CRISPR-Cas12-based POC devices as a frontrunner in the next generation of molecular biosensing technologies.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Muhammad Asad Ullah Khalid
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Huanshu Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
20
|
Gattani A, Mandal S, Agrawal A, Patel P, Jain AK, Singh P, Garg A, Mishra A. CRISPR-based electrochemical biosensors for animal health: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:7-18. [PMID: 39237013 DOI: 10.1016/j.pbiomolbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Animal diseases are a major concern to animal welfare, human health and the global economy. Early detection, prevention and control of these animal diseases are crucial to ensure sustainability of livestock sector, to reduce farm losses and protecting public health. Points of care (POC) devices are small, portable instruments that provide rapid results thus reduce the risk of disease transmission and enable early intervention. CRISPR based diagnostics offer more accurate and efficient solution for monitoring animal health due to their quick response, can detect very low level of pathogenic organism or disease markers and specificity. These diagnostics are particularly useful in the in area with limited resources or access to common diagnostic methods, especially in developing countries. The ability of electrochemical sensors to detect accurately very low analyte concentration makes them suitable for POC diagnostics and field application. CRISPR base electrochemical biosensors show great potential in revolutionizing disease detection and diagnosis including animal health. However, challenges, such as achieving selectivity and sensitivity, need to be addressed to enhance the competitiveness of these biosensors. Currently, most CRISPR based bioassay research focuses on nucleic acid target detection, but researchers exploring to monitor small organic/inorganic non-nucleic acid molecules like toxins and proteins. Emerging diagnostics would be centered on CRISPR-Cas system will offer great potential as an accurate, specific and effective means to identify microorganism, virus, toxins, small molecules, peptides and nucleic acid related to various animal health disorders particularly when integrated into electrochemical biosensing platform.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India.
| | - Sanju Mandal
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Aditya Agrawal
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, India
| | - Pragati Patel
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Anand Kumar Jain
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Purnima Singh
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Akshay Garg
- Directorate of Research Services, NDVSU, Jabalpur, India
| | - Aditya Mishra
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| |
Collapse
|
21
|
Xie S, Yue Y, Yang F. Recent Advances in CRISPR/Cas System-Based Biosensors for the Detection of Foodborne Pathogenic Microorganisms. MICROMACHINES 2024; 15:1329. [PMID: 39597141 PMCID: PMC11596558 DOI: 10.3390/mi15111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Foodborne pathogens pose significant risks to food safety. Conventional biochemical detection techniques are facing a series of challenges. In recent years, with the gradual development of CRISPR (clustered regularly interspaced short palindromic repeats) technology, CRISPR/Cas system-based biosensors, a newly emerging technology, have received much attention from researchers because of their supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have a broad application in the field of environmental monitoring, food safety, and point-of-care diagnosis, they remain in high demand to summarize recent advances in CRISPR/Cas system-based biosensors for foodborne pathogen detection. In this paper, we briefly classify and discuss the working principles of CRISPR/Cas systems with trans-cleavage activity in applications for the detection of foodborne pathogenic microorganisms. We highlight the current status, the unique feature of each CRISPR system and CRISPR-based biosensing platforms, and the integration of CRISPR-Cas with other techniques, concluding with a discussion of the advantages, disadvantages, and future directions.
Collapse
Affiliation(s)
- Sanlei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yuehong Yue
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| |
Collapse
|
22
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
23
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
24
|
Wang Y, Peng Y, Liu S, Li M, Pei X, Tong Y. CRISPR/Cas12a coupled with loop-mediated isothermal amplification and lateral flow assay for SARS-CoV-2 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5971-5981. [PMID: 39158842 DOI: 10.1039/d4ay00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Point-of-care testing (POCT) is rapid, exhibits highly sensitive performance, can facilitate home self-testing and avoids cross-contamination. Herein, we developed a biosensor that combines Si-OH magnetic bead (MB)-based fast RNA extraction, reverse transcription-loop-mediated isothermal amplification (RT-LAMP), CRISPR-Cas12a, and lateral flow assay (LFA) for rapid detection of SARS-CoV-2 RNA within 1.5 h. In the presence of the SARS-CoV-2 LAMP amplicon, the trans-cleavage activity of Cas12a was activated to cleave the probe, separating streptavidin from the AuNPs-digoxin (Dig) antibody, resulting in the inability of the test line to capture the AuNPs-Dig antibody. The method can distinguish SARS-CoV-2 from other RNA viruses, with a limit-of-detection (LOD) of 6.2 × 102 copies per mL. Therefore, LAMP-CRISPR-LFA has high specificity and sensitivity and is convenient to develop into commercial assay kits, which could have a broad prospect for practical application.
Collapse
Affiliation(s)
- Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yadan Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Sitong Liu
- College of Chemistry and Materials Engineering, Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering, Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
25
|
Dong JX, Zhang SM, Zhang YL, Fan YJ, Li YL, Su M, Wang ZG, Shen SG, Gao ZF, Wei Q, Xia F. Precisely Manipulating Steric Hindrance Effect on DNA Walker for Tunable Detection of MicroRNA Using Enzymatic Strand Displacement Amplification. Anal Chem 2024; 96:14471-14479. [PMID: 39185581 DOI: 10.1021/acs.analchem.4c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The spatial constraints imposed by the DNA structure have significant implications for the walking efficiency of three-dimensional DNA walkers. However, accurately quantifying and manipulating steric hindrance remains a challenging task. This study presents a steric hindrance-controlled DNA walker utilizing an enzymatic strand displacement amplification (ESDA) strategy for detecting microRNA-21 (miR-21) with tunable dynamic range and sensitivity. The steric hindrance of the DNA walker was precisely manipulated by varying the length of empty bases from 6.5 Å to 27.4 Å at the end of the track strand and adjusting the volumetric dimensions of the hairpin structure from 9.13 nm3 to 26.2 nm3 at the terminus of the single-foot DNA walking strand. This method demonstrated a tunable limit of detection for miR-21 ranging from 3.6 aM to 35.6 nM, along with a dynamic range from ∼100-fold to ∼166 000-fold. Impressively, it exhibited successful identification of cancer cells and clinical serum samples with high miR-21 expression. The proposed novel strategy not only enables tunable detection of miRNA through the regulation of steric hindrance but also achieves accurate and quantitative analysis of the steric hindrance effect, promising broader applications in personalized medicine, early disease detection, and drug development.
Collapse
Affiliation(s)
- Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Sai Mei Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Yi Lin Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Zhen Guang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shi Gang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding 071002, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
26
|
Rösch EL, Sack R, Chowdhury MS, Wolgast F, Zaborski M, Ludwig F, Schilling M, Viereck T, Rand U, Lak A. Amplification- and Enzyme-Free Magnetic Diagnostics Circuit for Whole-Genome Detection of SARS-CoV-2 RNA. Chembiochem 2024; 25:e202400251. [PMID: 38709072 DOI: 10.1002/cbic.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Polymerase chain reaction (PCR) requires thermal cycling and enzymatic reactions for sequence amplification, hampering their applications in point-of-care (POC) settings. Magnetic bioassays based on magnetic particle spectroscopy (MPS) and magnetic nanoparticles (MNPs) are isothermal, wash-free, and can be quantitative. Realizing them amplification- and enzyme-free on a benchtop device, they will become irreplaceable for POC applications. Here we demonstrate a first-in-class magnetic signal amplification circuit (MAC) that enables detection of whole genome of SARS-CoV-2 by combining the specificity of toehold-mediated DNA strand displacement with the magnetic response of MNPs to declustering processes. Using MAC, we detect the N gene of SARS-CoV-2 samples at a concentration of 104 RNA copies/μl as determined by droplet digital PCR. Further, we demonstrate that MAC can reliably distinguish between SARS-CoV-2 and other human coronaviruses. Being a wash-, amplification- and enzyme-free biosensing concept and working at isothermal conditions (25 °C) on a low-cost benchtop MPS device, our MAC biosensing concept offers several indispensable features for translating nucleic acid detection to POC applications.
Collapse
Affiliation(s)
- Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Rebecca Sack
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Florian Wolgast
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Margarete Zaborski
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Ulfert Rand
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| |
Collapse
|
27
|
Kaur R, Gupta S, Chauhan A, Mishra V, Sharma MK, Singh J. Harnessing the power of clustered regularly interspaced short palindromic repeats (CRISPR) based microfluidics for next-generation molecular diagnostics. Mol Biol Rep 2024; 51:896. [PMID: 39115550 DOI: 10.1007/s11033-024-09840-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 02/06/2025]
Abstract
CRISPR-based (Clustered regularly interspaced short palindromic repeats-based) technologies have revolutionized molecular biology and diagnostics, offering unprecedented precision and versatility. However, challenges remain, such as high costs, demanding technical expertise, and limited quantification capabilities. To overcome these limitations, innovative microfluidic platforms are emerging as powerful tools for enhancing CRISPR diagnostics. This review explores the exciting intersection of CRISPR and microfluidics, highlighting their potential to revolutionize healthcare diagnostics. By integrating CRISPR's specificity with microfluidics' miniaturization and automation, researchers are developing more sensitive and portable diagnostic tools for a range of diseases. These microfluidic devices streamline sample processing, improve diagnostic performance, and enable point-of-care applications, allowing for rapid and accurate detection of pathogens, genetic disorders, and other health conditions. The review discusses various CRISPR/Cas systems, including Cas9, Cas12, and Cas13, and their integration with microfluidic platforms. It also examines the advantages and limitations of these systems, highlighting their potential for detecting DNA and RNA biomarkers. The review also explores the key challenges in developing and implementing CRISPR-driven microfluidic diagnostics, such as ensuring robustness, minimizing cross-contamination, and achieving robust quantification. Finally, it highlights potential future directions for this rapidly evolving field, emphasizing the transformative potential of these technologies for personalized medicine and global health.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India.
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India
| | - Vidhi Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Ayodhya, 224001, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, 462020, Madhya Pradesh, India
| |
Collapse
|
28
|
He Y, Wang S, Wen J, Feng N, Ma R, Zhang H, Chen G, Chu X, Chen Y. Redesigned Guide DNA Enhanced Clostridium butyricum Argonaute Activity for Amplification-Free and Multiplexed Detection of Pathogens. NANO LETTERS 2024; 24:9750-9759. [PMID: 39052067 DOI: 10.1021/acs.nanolett.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Clostridium butyricum (CbAgo)-based bioassays are popular due to their programmability and directional cleavage capabilities. However, the relatively compact protein structure of CbAgo limits its cleavage activity (even at the optimal temperature), thus restricting its wider application. Here, we observed that guide DNA (gDNA) with specific structural features significantly enhanced CbAgo cleavage efficiency. Then, we invented a novel gDNA containing DNAzyme segments (gDNAzyme) that substantially enhanced the CbAgo cleavage efficency (by 100%). Using a molecular dynamics simulation system, we found that the augmented cleavage efficiency might be attributed to the large-scale global movement of the PIWI domain of CbAgo and an increased number of cleavage sites. Moreover, this gDNAzyme feature allowed us to create a biosensor that simultaneously and sensitively detected three pathogenic bacteria without DNA extraction and amplification. Our work not only dramatically expands applications of the CbAgo-based biosensor but also provides unique insight into the protein-DNA interactions.
Collapse
Affiliation(s)
- Yongqiang He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shuai Wang
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Junping Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ruxiang Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hetong Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guoxun Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
29
|
He Q, Chen Q, Lian L, Qu J, Yuan X, Wang C, Xu L, Wei J, Zeng S, Yu D, Dong Y, Zhang Y, Deng L, Du K, Zhang C, Pandey V, Gul I, Qin P. Unraveling the influence of CRISPR/Cas13a reaction components on enhancing trans-cleavage activity for ultrasensitive on-chip RNA detection. Mikrochim Acta 2024; 191:466. [PMID: 39017814 DOI: 10.1007/s00604-024-06545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The CRISPR/Cas13 nucleases have been widely documented for nucleic acid detection. Understanding the intricacies of CRISPR/Cas13's reaction components is pivotal for harnessing its full potential for biosensing applications. Herein, we report on the influence of CRISPR/Cas13a reaction components on its trans-cleavage activity and the development of an on-chip total internal reflection fluorescence microscopy (TIRFM)-powered RNA sensing system. We used SARS-CoV-2 synthetic RNA and pseudovirus as a model system. Our results show that optimizing Mg2+ concentration, reporter length, and crRNA combination significantly improves the detection sensitivity. Under optimized conditions, we detected 100 fM unamplified SARS-CoV-2 synthetic RNA using a microtiter plate reader. To further improve sensitivity and provide a new amplification-free RNA sensing toolbox, we developed a TIRFM-based amplification-free RNA sensing system. We were able to detect RNA down to 100 aM. Furthermore, the TIRM-based detection system developed in this study is 1000-fold more sensitive than the off-coverslip assay. The possible clinical applicability of the system was demonstrated by detecting SARS-CoV-2 pseudovirus RNA. Our proposed sensing system has the potential to detect any target RNA with slight modifications to the existing setup, providing a universal RNA detection platform.
Collapse
Affiliation(s)
- Qian He
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lijin Lian
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Jiuxin Qu
- Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518115, Guangdong Province, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Chuhui Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lidan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Shaoling Zeng
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, 518010, Guangdong Province, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, 264209, Shandong, China
| | - Yuhan Dong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Yongbing Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, USA
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Ijaz Gul
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| | - Peiwu Qin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
30
|
Hoikkala V, Graham S, White MF. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families. Nucleic Acids Res 2024; 52:7129-7141. [PMID: 38808661 PMCID: PMC11229360 DOI: 10.1093/nar/gkae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Recognition of RNA from invading mobile genetic elements (MGE) prompts type III CRISPR systems to activate an HD nuclease domain and/or a nucleotide cyclase domain in the Cas10 subunit, eliciting an immune response. The cyclase domain can generate a range of nucleotide second messengers, which in turn activate a diverse family of ancillary effector proteins. These provide immunity by non-specific degradation of host and MGE nucleic acids or proteins, perturbation of membrane potentials, transcriptional responses, or the arrest of translation. The wide range of nucleotide activators and downstream effectors generates a complex picture that is gradually being resolved. Here, we carry out a global bioinformatic analysis of type III CRISPR loci in prokaryotic genomes, defining the relationships of Cas10 proteins and their ancillary effectors. Our study reveals that cyclic tetra-adenylate is by far the most common signalling molecule used and that many loci have multiple effectors. These typically share the same activator and may work synergistically to combat MGE. We propose four new candidate effector protein families and confirm experimentally that the Csm6-2 protein, a highly diverged, fused Csm6 effector, is a ribonuclease activated by cyclic hexa-adenylate.
Collapse
Affiliation(s)
- Ville Hoikkala
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
31
|
Zhou Z, Lau CH, Wang J, Guo R, Tong S, Li J, Dong W, Huang Z, Wang T, Huang X, Yu Z, Wei C, Chen G, Xue H, Zhu H. Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a. ACS OMEGA 2024; 9:28866-28878. [PMID: 38973832 PMCID: PMC11223203 DOI: 10.1021/acsomega.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.
Collapse
Affiliation(s)
- Zhongqi Zhou
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Cia-Hin Lau
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Jianchao Wang
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Rui Guo
- Animal
Husbandry and Veterinary Institute, Hubei
Academy of Agricultural Science, Wuhan, Hubei 430064, China
- Key
Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, Wuhan, Hubei 430064, China
| | - Sheng Tong
- Department
of Biomedical Engineering, University of
Kentucky, Lexington, Kentucky 40506-0503, United States
| | - Jiaqi Li
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Wenjiao Dong
- Department
of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhihao Huang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Tao Wang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Xiaojun Huang
- Xiamen
Fly Gene Biomedical Technology CO., LTD, Biomedical Industrial Park, Xiamen, Fujian 361000, China
| | - Ziqing Yu
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chiju Wei
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Gang Chen
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Hongman Xue
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haibao Zhu
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| |
Collapse
|
32
|
Zhang YB, Arizti-Sanz J, Bradley A, Huang Y, Kosoko-Thoroddsen TSF, Sabeti PC, Myhrvold C. CRISPR-Based Assays for Point-of-Need Detection and Subtyping of Influenza. J Mol Diagn 2024; 26:599-612. [PMID: 38901927 DOI: 10.1016/j.jmoldx.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 06/22/2024] Open
Abstract
The high disease burden of influenza virus poses a significant threat to human health. Optimized diagnostic technologies that combine speed, sensitivity, and specificity with minimal equipment requirements are urgently needed to detect the many circulating species, subtypes, and variants of influenza at the point of need. Here, we introduce such a method using Streamlined Highlighting of Infections to Navigate Epidemics (SHINE), a clustered regularly interspaced short palindromic repeats (CRISPR)-based RNA detection platform. Four SHINE assays were designed and validated for the detection and differentiation of clinically relevant influenza species (A and B) and subtypes (H1N1 and H3N2). When tested on clinical samples, these optimized assays achieved 100% concordance with quantitative RT-PCR. Duplex Cas12a/Cas13a SHINE assays were also developed to detect two targets simultaneously. This study demonstrates the utility of this duplex assay in discriminating two alleles of an oseltamivir resistance (H275Y) mutation as well as in simultaneously detecting influenza A and human RNAse P in patient samples. These assays have the potential to expand influenza detection outside of clinical laboratories for enhanced influenza diagnosis and surveillance.
Collapse
Affiliation(s)
- Yibin B Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Jon Arizti-Sanz
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts
| | - A'Doriann Bradley
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Yujia Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts; Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey; Department of Chemistry, Princeton University, Princeton, New Jersey.
| |
Collapse
|
33
|
Zhou L, Simonian AL. CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics. Annu Rev Biomed Eng 2024; 26:247-272. [PMID: 38346278 DOI: 10.1146/annurev-bioeng-081723-013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.
Collapse
Affiliation(s)
- Lang Zhou
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| | - Aleksandr L Simonian
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
34
|
Tong X, Zhang K, Han Y, Li T, Duan M, Ji R, Wang X, Zhou X, Zhang Y, Yin H. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat Chem Biol 2024; 20:885-893. [PMID: 38332130 DOI: 10.1038/s41589-023-01534-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Despite the great potential of CRISPR-based detection, it has not been competitive with other market diagnostics for on-site and in-home testing. Here we dissect the rate-limiting factors that undermine the performance of Cas12b- and Cas13a-mediated detection. In one-pot testing, Cas12b interferes with loop-mediated isothermal amplification by binding to and cleaving the amplicon, while Cas13a directly degrades the viral RNA, reducing its amplification. We found that the protospacer-adjacent motif-interacting domain engineered Cas12b accelerated one-pot testing with 10-10,000-fold improved sensitivity, and detected 85 out of 85 SARS-CoV-2 clinical samples with a sensitivity of 0.5 cp μl-1, making it superior to wild-type Cas12b. In parallel, by diminishing the interference of Cas13a with viral RNA, the optimized Cas13a-based assay detected 86 out of 87 SARS-CoV-2 clinical samples at room temperature in 30 min with a sensitivity of 0.5 cp μl-1. The relaxed reaction conditions and improved performance of CRISPR-based assays make them competitive for widespread use in pathogen detection.
Collapse
Affiliation(s)
- Xiaohan Tong
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kun Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Tianle Li
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Min Duan
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Ruijin Ji
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xianguang Wang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
35
|
Tanifuji Y, Suzuki H, Tong G, Hiruta Y, Citterio D. Basic evaluation of the CRISPR/Cas system stability for application to paper-based analytical devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4143-4149. [PMID: 38864392 DOI: 10.1039/d4ay00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite the promising features of the CRISPR/Cas system for application to point-of-care nucleic acid tests, there are only a few reports on its integration into paper-based analytical devices (PADs) for the purpose of assay simplification. In most cases, paper platforms have only been used for the final signal readout in an assay otherwise performed in a test tube. Therefore, there is very limited information on the suitability of the CRISPR/Cas system for on-device reagent storage. To fill this gap, the current work primarily investigated the influence of various factors, including the type of paper, reagent drying method, effect of stabilizers, and storage condition on the storage stability of reagents necessary for CRISPR-based assays on paper substrates, by comparing the fluorescence signal emitted by the trans-cleavage of the dsDNA-activated Cas12a complex. The results obtained in the form of fluorescence signals emitted after trans-cleavage of a ssDNA probe through a dsDNA-activated Cas12a complex on paper substrates showed that CRISPR-related reagents spontaneously dried at room temperature on BSA blocked paper retained over 70% of their initial activity when stored at -20 °C for 28 days, independent of the type of paper substrates, which was improved by the addition of sucrose as a stabilizer. In addition, reagents dried on paper substrates under the optimized conditions exhibited stronger heat tolerance at temperatures above 65 °C compared to their corresponding solutions. This work is expected to contribute to the future development of fully integrated PADs relying on CRISPR/Cas systems for point-of-care applications requiring no additional reagent handling.
Collapse
Affiliation(s)
- Yohei Tanifuji
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Hikaru Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Guodong Tong
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
36
|
Yang H, Patel DJ. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol 2024; 20:673-688. [PMID: 38702571 PMCID: PMC11375968 DOI: 10.1038/s41589-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
37
|
Xia Y, Rao R, Xiong M, He B, Zheng B, Jia Y, Li Y, Yang Y. CRISPR-Powered Strategies for Amplification-Free Diagnostics of Infectious Diseases. Anal Chem 2024; 96:8091-8108. [PMID: 38451204 DOI: 10.1021/acs.analchem.3c04363] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Yupiao Xia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruotong Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiu Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bingxin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
38
|
Xiang X, Ren X, Wen Q, Xing G, Liu Y, Xu X, Wei Y, Ji Y, Liu T, Song H, Zhang S, Shang Y, Song M. Automatic Microfluidic Harmonized RAA-CRISPR Diagnostic System for Rapid and Accurate Identification of Bacterial Respiratory Tract Infections. Anal Chem 2024; 96:6282-6291. [PMID: 38595038 DOI: 10.1021/acs.analchem.3c05682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Respiratory tract infections (RTIs) pose a grave threat to human health, with bacterial pathogens being the primary culprits behind severe illness and mortality. In response to the pressing issue, we developed a centrifugal microfluidic chip integrated with a recombinase-aided amplification (RAA)-clustered regularly interspaced short palindromic repeats (CRISPR) system to achieve rapid detection of respiratory pathogens. The limitations of conventional two-step CRISPR-mediated systems were effectively addressed by employing the all-in-one RAA-CRISPR detection method, thereby enhancing the accuracy and sensitivity of bacterial detection. Moreover, the integration of a centrifugal microfluidic chip led to reduced sample consumption and significantly improved the detection throughput, enabling the simultaneous detection of multiple respiratory pathogens. Furthermore, the incorporation of Chelex-100 in the sample pretreatment enabled a sample-to-answer capability. This pivotal addition facilitated the deployment of the system in real clinical sample testing, enabling the accurate detection of 12 common respiratory bacteria within a set of 60 clinical samples. The system offers rapid and reliable results that are crucial for clinical diagnosis, enabling healthcare professionals to administer timely and accurate treatment interventions to patients.
Collapse
Affiliation(s)
- Xinran Xiang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaoqing Ren
- Beijing Xiangxin Biotechnology Co., Ltd, Beijing 100084, China
| | - Qianyu Wen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Gaowa Xing
- Xining Urban Vocational & Technical College, Xining 810000, China
| | - Yuting Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaowei Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuhuan Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuhan Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Tingting Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China
| | - Yuting Shang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Minghui Song
- Hainan Hospital of Chinese PLA General Hospital, Sanya 572000, China
| |
Collapse
|
39
|
Shi C, Yang D, Ma X, Pan L, Shao Y, Arya G, Ke Y, Zhang C, Wang F, Zuo X, Li M, Wang P. A Programmable DNAzyme for the Sensitive Detection of Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202320179. [PMID: 38288561 DOI: 10.1002/anie.202320179] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 02/17/2024]
Abstract
Nucleic acids in biofluids are emerging biomarkers for the molecular diagnostics of diseases, but their clinical use has been hindered by the lack of sensitive detection assays. Herein, we report the development of a sensitive nucleic acid detection assay named SPOT (sensitive loop-initiated DNAzyme biosensor for nucleic acid detection) by rationally designing a catalytic DNAzyme of endonuclease capability into a unified one-stranded allosteric biosensor. SPOT is activated once a nucleic acid target of a specific sequence binds to its allosteric module to enable continuous cleavage of molecular reporters. SPOT provides a highly robust platform for sensitive, convenient and cost-effective detection of low-abundance nucleic acids. For clinical validation, we demonstrated that SPOT could detect serum miRNAs for the diagnostics of breast cancer, gastric cancer and prostate cancer. Furthermore, SPOT exhibits potent detection performance over SARS-CoV-2 RNA from clinical swabs with high sensitivity and specificity. Finally, SPOT is compatible with point-of-care testing modalities such as lateral flow assays. Hence, we envision that SPOT may serve as a robust assay for the sensitive detection of a variety of nucleic acid targets enabling molecular diagnostics in clinics.
Collapse
Affiliation(s)
- Chenzhi Shi
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuanchuan Shao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
40
|
Li T, Yang N, Xiao Y, Liu Y, Pan X, Wang S, Jiang F, Zhang Z, Zhang X. Virus detection light diffraction fingerprints for biological applications. SCIENCE ADVANCES 2024; 10:eadl3466. [PMID: 38478608 PMCID: PMC10936869 DOI: 10.1126/sciadv.adl3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 11/02/2024]
Abstract
The transmission of viral diseases is highly unstable and highly contagious. As the carrier of virus transmission, cell is an important factor to explore the mechanism of virus transmission and disease. However, there is still a lack of effective means to continuously monitor the process of viral infection in cells, and there is no rapid, high-throughput method to assess the status of viral infection. On the basis of the virus light diffraction fingerprint of cells, we applied the gray co-occurrence matrix, set the two parameters effectively to distinguish the virus status and infection time of cells, and visualized the virus infection process of cells in high throughput. We provide an efficient and nondestructive testing method for the selection of excellent livestock and poultry breeds at the cellular level. Meanwhile, our work provides detection methods for the recessive transmission of human-to-human, animal-to-animal, and zoonotic diseases and to inhibit and block their further development.
Collapse
Affiliation(s)
- Tongge Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yan Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Xiaoqing Pan
- Institute of Livestock Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shihui Wang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feiyang Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoyuan Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Yang B, Wang H, Kong J, Fang X. Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles. Nat Commun 2024; 15:1936. [PMID: 38431675 PMCID: PMC10908814 DOI: 10.1038/s41467-024-46215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Real-time and continuous monitoring of nucleic acid biomarkers with wearable devices holds potential for personal health management, especially in the context of pandemic surveillance or intensive care unit disease. However, achieving high sensitivity and long-term stability remains challenging. Here, we report a tetrahedral nanostructure-based Natronobacterium gregoryi Argonaute (NgAgo) for long-term stable monitoring of ultratrace unamplified nucleic acids (cell-free DNAs and RNAs) in vivo for sepsis on wearable device. This integrated wireless wearable consists of a flexible circuit board, a microneedle biosensor, and a stretchable epidermis patch with enrichment capability. We comprehensively investigate the recognition mechanism of nucleic acids by NgAgo/guide DNA and signal transformation within the Debye distance. In vivo experiments demonstrate the suitability for real-time monitoring of cell-free DNA and RNA with a sensitivity of 0.3 fM up to 14 days. These results provide a strategy for highly sensitive molecular recognition in vivo and for on-body detection of nucleic acid.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Haonan Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
42
|
Zhou J, Li Z, Seun Olajide J, Wang G. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon 2024; 10:e26179. [PMID: 38390187 PMCID: PMC10882038 DOI: 10.1016/j.heliyon.2024.e26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
CRISPR/Cas systems have become integral parts of nucleic acid detection apparatus and biosensors. Various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/Cas12, CRISPR/Cas13, CRISPR/Cas14 and CRISPR/Cas3 utilize different mechanisms to detect or differentiate biological activities and nucleotide sequences. Usually, CRISPR/Cas-based nucleic acid detection systems are combined with polymerase chain reaction, loop-mediated isothermal amplification, recombinase polymerase amplification and transcriptional technologies for effective diagnostics. Premised on these, many CRISPR/Cas-based nucleic acid biosensors have been developed to detect nucleic acids of viral and bacterial pathogens in clinical samples, as well as other applications in life sciences including biosecurity, food safety and environmental assessment. Additionally, CRISPR/Cas-based nucleic acid detection systems have showed better specificity compared with other molecular diagnostic methods. In this review, we give an overview of various CRISPR/Cas-based nucleic acid detection methods and highlight some advances in their development and components. We also discourse some operational challenges as well as advantages and disadvantages of various systems. Finally, important considerations are offered for the improvement of CRISPR/Cas-based nucleic acid testing.
Collapse
Affiliation(s)
- Jian Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
- Department of Laboratory Medicines, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, People's Republic of China
| | - Zhuo Li
- Department of Laboratory Medicines, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, People's Republic of China
| | - Joshua Seun Olajide
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
| | - Gang Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
43
|
Sun T, Wang W, Wang F, Shen W, Geng L, Zhang Y, Bi M, Gong T, Liu C, Guo C, Yao Z, Wang T, Bai J. A novel universal small-molecule detection platform based on antibody-controlled Cas12a switching. Biosens Bioelectron 2024; 246:115897. [PMID: 38064994 DOI: 10.1016/j.bios.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Molecular diagnostics play an important role in illness detection, prevention, and treatment, and are vital in point-of-care test. In this investigation, a novel CRISPR/Cas12a based small-molecule detection platform was developed using Antibody-Controlled Cas12a Biosensor (ACCBOR), in which antibody would control the trans-cleavage activity of CRISPR/Cas12a. In this system, small-molecule was labeled around the PAM sites of no target sequence(NTS), and antibody would bind on the labeled molecule to prevent the combination of CRISPR/Cas12a, resulting the decrease of trans-cleavage activity. Biotin-, digoxin-, 25-hydroxyvitamin D3 (25-OH-VD3)-labeled NTS and corresponding binding protein were separately used to verify its preformance, showing great universality. Finally, one-pot detection of 25-OH-VD3 was developed, exhibiting high sensitivity and excellent specificity. The limit of detection could be 259.86 pg/mL in serum within 30 min. This assay platform also has the advantages of low cost, easy operation (one-pot method), and fast detection (∼30 min), would be a new possibilities for the highly sensitive detection of other small-molecule targets.
Collapse
Affiliation(s)
- Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Wen Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Public Health and Management, Binzhou Medical College, Shandong, 264003, PR China
| | - Feng Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Weili Shen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Lu Geng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yiyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Meng Bi
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Tingting Gong
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Cong Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Changjiang Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Public Health and Management, Binzhou Medical College, Shandong, 264003, PR China
| | - Zhanxin Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Tianhui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| |
Collapse
|
44
|
Montagud‐Martínez R, Márquez‐Costa R, Heras‐Hernández M, Dolcemascolo R, Rodrigo G. On the ever-growing functional versatility of the CRISPR-Cas13 system. Microb Biotechnol 2024; 17:e14418. [PMID: 38381083 PMCID: PMC10880580 DOI: 10.1111/1751-7915.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
CRISPR-Cas systems evolved in prokaryotes to implement a powerful antiviral immune response as a result of sequence-specific targeting by ribonucleoproteins. One of such systems consists of an RNA-guided RNA endonuclease, known as CRISPR-Cas13. In very recent years, this system is being repurposed in different ways in order to decipher and engineer gene expression programmes. Here, we discuss the functional versatility of the CRISPR-Cas13 system, which includes the ability for RNA silencing, RNA editing, RNA tracking, nucleic acid detection and translation regulation. This functional palette makes the CRISPR-Cas13 system a relevant tool in the broad field of systems and synthetic biology.
Collapse
Affiliation(s)
- Roser Montagud‐Martínez
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Rosa Márquez‐Costa
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - María Heras‐Hernández
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
45
|
Li J, Zhang K, Lin G, Li J. CRISPR-Cas system: A promising tool for rapid detection of SARS-CoV-2 variants. J Med Virol 2024; 96:e29356. [PMID: 38180237 DOI: 10.1002/jmv.29356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
COVID-19, caused by SARS-CoV-2, remains a global health crisis. The emergence of multiple variants with enhanced characteristics necessitates their detection and monitoring. Genome sequencing, the gold standard, faces implementation challenges due to complexity, cost, and limited throughput. The CRISPR-Cas system offers promising potential for rapid variant detection, with advantages such as speed, sensitivity, specificity, and programmability. This review provides an in-depth examination of the applications of CRISPR-Cas in mutation detection specifically for SARS-CoV-2. It begins by introducing SARS-CoV-2 and existing variant detection platforms. The principles of the CRISPR-Cas system are then clarified, followed by an exploration of three CRISPR-Cas-based mutation detection platforms, which are evaluated from different perspectives. The review discusses strategies for mutation site selection and the utilization of CRISPR-Cas, offering valuable insights for the development of mutation detection methods. Furthermore, a critical analysis of the clinical applications, advantages, disadvantages, challenges, and prospects of the CRISPR-Cas system is provided.
Collapse
Affiliation(s)
- Jing Li
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
46
|
Du L, Zhu Q, Lin Z. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate. EMBO J 2024; 43:304-315. [PMID: 38177499 PMCID: PMC10897365 DOI: 10.1038/s44318-023-00017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Type III CRISPR systems are innate immune systems found in bacteria and archaea, which produce cyclic oligoadenylate (cOA) second messengers in response to viral infections. In these systems, Csm6 proteins serve as ancillary nucleases that degrade single-stranded RNA (ssRNA) upon activation by cOA. In addition, Csm6 proteins also possess cOA-degrading activity as an intrinsic off-switch to avoid degradation of host RNA and DNA that would eventually lead to cell dormancy or cell death. Here, we present the crystal structures of Thermus thermophilus (Tt) Csm6 alone, and in complex with cyclic tetra-adenylate (cA4) in both pre- and post-cleavage states. These structures establish the molecular basis of the long-range allosteric activation of TtCsm6 ribonuclease by cA4. cA4 binding induces significant conformational changes, including closure of the CARF domain, dimerization of the HTH domain, and reorganization of the R-X4-6-H motif within the HEPN domain. The cleavage of cA4 by the CARF domain restores each domain to a conformation similar to its apo state. Furthermore, we have identified hyperactive TtCsm6 variants that exhibit sustained cA4-activated RNase activity, showing great promise for their applications in genome editing and diagnostics.
Collapse
Affiliation(s)
- Liyang Du
- College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Qinwei Zhu
- College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
| |
Collapse
|
47
|
Tian B, Wang Y, Tang W, Chen J, Zhang J, Xue S, Zheng S, Cheng G, Gu B, Chen M. Tandem CRISPR nucleases-based lateral flow assay for amplification-free miRNA detection via the designed "locked RNA/DNA" as fuels. Talanta 2024; 266:124995. [PMID: 37524043 DOI: 10.1016/j.talanta.2023.124995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Currently, available biosensors based on CRISPR/Cas typically depend on coupling with nucleic acid amplification technologies to enhance their sensitivity. However, this approach often involves intricate amplification processes, which could be time-consuming and susceptible to contamination. In addition, signal readouts often require sophisticated and cumbersome equipment, obstructing the applicability of CRISPR/Cas assays in resource-limited regions. Herein, a tandem CRISPR/Cas13a/Cas12a mechanism (tanCRISPR) has been developed via the designed "Locked RNA/DNA" probe as fuels for the trans-cleavage nucleic acid of Cas13a and activated nucleic acid of Cas12a. Meanwhile, a lateral flow assay (LFA) is designed to combine with this tandem CRISPR/Cas13a/Cas12a mechanism (termed tanCRISPR-LFA), realizing the portable monitoring of miRNA-21. The tanCRISPR could realize the limit of detection at pM levels (266 folds lower than Cas13a-based miRNA testing alone) without the resort to target amplification procedures. Furthermore, the miRNA-21 levels of MDA-MB-231 cell extracts are sensed by tanCRISPR-LFA, which is comparable to qRT-PCR. With the virtues of portability, rapidity, sensitivity, and low cost, tanCRISPR-LFA is amenable for CRISPR/Cas-based biosensing and potential applications in the clinical diagnosis of miRNA-associated diseases.
Collapse
Affiliation(s)
- Benshun Tian
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221006, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Wuyue Tang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Jiali Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Jingwen Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Siyi Xue
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221006, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
48
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
49
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Li HD, Fang GH, Ye BC, Yin BC. RNase H-Driven crRNA Switch Circuits for Rapid and Sensitive Detection of Various Analytical Targets. Anal Chem 2023; 95:18549-18556. [PMID: 38073045 DOI: 10.1021/acs.analchem.3c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR/Cas12a) system has exhibited great promise in the rapid and sensitive molecular diagnostics for its trans-cleavage property. However, most CRISPR/Cas system-based detection methods are designed for nucleic acids and require target preamplification to improve sensitivity and detection limits. Here, we propose a generic crRNA switch circuit-regulated CRISPR/Cas sensor for the sensitive detection of various targets. The crRNA switch is engineered and designed in a blocked state but can be activated in the presence of triggers, which are target-induced association DNA to initiate the trans-cleavage activity of Cas12a for signal reporting. Additionally, RNase H is introduced to specifically hydrolyze RNA duplexed with the DNA trigger, resulting in the regeneration of the trigger to activate more crRNA switches. Such a combination provides a generic and sensitive strategy for the effective sensing of the p53 sequence, thrombin, and adenosine triphosphate. The design is incorporated with nucleic acid nanotechnology and extensively broadens the application scope of the CRISPR technology in biosensing.
Collapse
Affiliation(s)
- Hua-Dong Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Guan-Hua Fang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
| |
Collapse
|