1
|
Bayram H, Konyalilar N, Elci MA, Rajabi H, Aksoy GT, Mortazavi D, Kayalar Ö, Dikensoy Ö, Taborda-Barata L, Viegi G. Issue 4 - Impact of air pollution on COVID-19 mortality and morbidity: An epidemiological and mechanistic review. Pulmonology 2025; 31:2416829. [PMID: 38755091 DOI: 10.1016/j.pulmoe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Air pollution is a major global environment and health concern. Recent studies have suggested an association between air pollution and COVID-19 mortality and morbidity. In this context, a close association between increased levels of air pollutants such as particulate matter ≤2.5 to 10 µM, ozone and nitrogen dioxide and SARS-CoV-2 infection, hospital admissions and mortality due to COVID 19 has been reported. Air pollutants can make individuals more susceptible to SARS-CoV-2 infection by inducing the expression of proteins such as angiotensin converting enzyme (ACE)2 and transmembrane protease, serine 2 (TMPRSS2) that are required for viral entry into the host cell, while causing impairment in the host defence system by damaging the epithelial barrier, muco-ciliary clearance, inhibiting the antiviral response and causing immune dysregulation. The aim of this review is to report the epidemiological evidence on impact of air pollutants on COVID 19 in an up-to-date manner, as well as to provide insights on in vivo and in vitro mechanisms.
Collapse
Affiliation(s)
- Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | | | - Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - G Tuşe Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Özgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Öner Dikensoy
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Luis Taborda-Barata
- UBIAir - Clinical and Experimental Lung Centre UBIMedical, University of Beira Interior, Covilhã, Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | |
Collapse
|
2
|
Barua S, Iduu NV, Murillo DFB, Tarannum A, Dimino H, Barua S, Shu Y, Johnson C, Miller MR, Chenoweth K, Christopherson P, Huber L, Wood T, Turner K, Wang C. Nationwide seroprevalence of SARS-CoV-2 Delta variant and five Omicron sublineages in companion cats and dogs in the USA: insights into their role in COVID-19 epidemiology. Emerg Microbes Infect 2025; 14:2437246. [PMID: 39635731 PMCID: PMC11636146 DOI: 10.1080/22221751.2024.2437246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Understanding SARS-CoV-2 epidemiology in companion animals is critical for evaluating their role in viral transmission and their potential as sentinels for human infections. This large-scale serosurvey analyzed serum samples from 706 cats and 2,396 dogs collected across the USA in 2023 using a surrogate virus neutralization test (sVNT) to detect SARS-CoV-2 antibodies. Overall, 5.7% of cats and 4.7% of dogs tested positive for antibodies, with younger animals (under 12 months) showing significantly lower seropositivity rates (p = 0.0048). Additionally, we analyzed 153 positive samples for variant-specific antibody responses using six sVNT kits targeting the Delta variant and five Omicron sublineages. Among cats, 67.5% showed antibodies to Delta, with positivity rates for Omicron sublineages as follows: BA.1 (62.5%), BA.2 (42.5%), BA.4/BA.5 (77.5%), XBB (52.5%), and XBB.1.5 (45.0%). In dogs, 55.8% were positive for Delta, and Omicron sublineage rates were BA.1 (46.0%), BA.4/BA.5 (37.2%), XBB (58.4%), BA.2 (13.3%), and XBB.1.5 (9.7%). Given the close contact between companion animals and humans, and the persistence of antibodies against various SARS-CoV-2 variants and sublineages, our findings suggest that seroprevalence in cats and dogs may serve as valuable tool for tracking COVID-19 epidemiology.
Collapse
Affiliation(s)
- Subarna Barua
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | - Asfiha Tarannum
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Hill Dimino
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Suchita Barua
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Yue Shu
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Calvin Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Kelly Chenoweth
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peter Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Theresa Wood
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Kelley Turner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Zhou S, Hui X, Wang W, Zhao C, Jin M, Qin Y, Chen M. SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signalling pathway to facilitate viral replication. Emerg Microbes Infect 2025; 14:2447620. [PMID: 39745173 PMCID: PMC11852242 DOI: 10.1080/22221751.2024.2447620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 02/25/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signalling pathway. Specifically, the viral non-structural protein nsp14 upregulates the expression of S-adenosylmethionine synthase MAT2A in an mTORC1-dependent manner. This mTORC1-MAT2A axis subsequently stimulates the synthesis of S-adenosylmethionine (SAM). The increase of SAM then enhances the m6A methylation of host RNA and facilitates viral replication. Our findings uncover a molecular mechanism by which viruses regulate host m6A methylation and provide insights into how SARS-CoV-2 hijacks host cellular epitranscriptomic modifications to promote its replication.
Collapse
Affiliation(s)
- Shixiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weiwei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Chunbei Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Meilin Jin
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Chen SC, Xu CT, Chang CF, Yang CS, Lin PH, Liu WM, Chen Y, Yu CH. Characterization of the binding features between SARS-CoV-2 5'-proximal transcripts of genomic RNA and nucleocapsid proteins. RNA Biol 2025; 22:1-16. [PMID: 40077853 PMCID: PMC11913385 DOI: 10.1080/15476286.2025.2471643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Packaging signals (PSs) of coronaviruses (CoVs) are specific RNA elements recognized by nucleocapsid (N) proteins that direct the selective packaging of genomic RNAs (gRNAs). These signals have been identified in the coding regions of the nonstructural protein 15 (Nsp 15) in CoVs classified under Embecovirus, a subgenus of betacoronaviruses (beta-CoVs). The PSs in other alpha- and beta-CoVs have been proposed to reside in the 5'-proximal regions of gRNAs, supported by comprehensive phylogenetic evidence. However, experimental data remain limited. In this study, we investigated the interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 5'-proximal gRNA transcripts and N proteins using electrophoretic mobility shift assays (EMSAs). Our findings revealed that the in vitro synthesized 5'-proximal gRNA transcripts of CoVs can shift from a major conformation to alternative conformations. We also observed that the conformer comprising multiple stem-loops (SLs) is preferentially bound by N proteins. Deletions of the 5'-proximal structural elements of CoV gRNA transcripts, SL1 and SL5a/b/c in particular, were found to promote the formation of alternative conformations. Furthermore, we identified RNA-binding peptides from a pool derived from SARS-CoV N protein. These RNA-interacting peptides were shown to preferentially bind to wild-type SL5a RNA. In addition, our observations of N protein condensate formation in vitro demonstrated that liquid-liquid phase separation (LLPS) of N proteins with CoV-5'-UTR transcripts was influenced by the presence of SL5a/b/c. In conclusion, these results collectively reveal previously uncharacterized binding features between the 5'-proximal transcripts of CoV gRNAs and N proteins.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cui-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chuan-Fu Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chia-Shin Yang
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yeh Chen
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
5
|
Singh S, Liu Y, Burke M, Rayaprolu V, Stein SE, Hasan SS. Production and cryo-electron microscopy structure of an internally tagged SARS-CoV-2 spike ecto-domain construct. J Struct Biol X 2025; 11:100123. [PMID: 40046771 PMCID: PMC11880631 DOI: 10.1016/j.yjsbx.2025.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
The SARS-CoV-2 spike protein is synthesized in the endoplasmic reticulum of host cells, from where it undergoes export to the Golgi and the plasma membrane or retrieval from the Golgi to the endoplasmic reticulum. Elucidating the fundamental principles of this bidirectional secretion are pivotal to understanding virus assembly and designing the next generation of spike genetic vaccine with enhanced export properties. However, the widely used strategy of C-terminal affinity tagging of the spike cytosolic tail interferes with proper bidirectional trafficking. Hence, the structural and biophysical investigations of spike protein trafficking have been hindered by a lack of appropriate spike constructs. Here we describe a strategy for the internal tagging of the spike protein. Using sequence analyses and AlphaFold modeling, we identified a site down-stream of the signal sequence for the insertion of a twin-strep-tag, which facilitates purification of an ecto-domain construct from the extra-cellular medium of mammalian Expi293F cells. Mass spectrometry analyses show that the internal tag has minimal impact on N-glycan modifications, which are pivotal for spike-host interactions. Single particle cryo-electron microscopy reconstructions of the spike ecto-domain reveal conformational states compatible for ACE2 receptor interactions, further solidifying the feasibility of the internal tagging strategy. Collectively, these results present a substantial advance towards reagent development for the investigations of spike protein trafficking during coronavirus infection and genetic vaccination.
Collapse
Affiliation(s)
- Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Meghan Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Vamseedhar Rayaprolu
- Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Stephen E. Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville MD 20850, USA
| |
Collapse
|
6
|
Yang Q, Huang X, Zhang H, Sun J, Tang J, Chen Z, Liu L, Liu M, Sun Z, Tang Z, Wei D, Wang D, Wang Y, Yan M, Zhao L, Zhu A, Zhong Y, Yang H, Zhao Y, Dai J, Shi Y, Huang B, Zhang W, Zhao J, Chen X, Rao Z, Peng W. Expanding the utilization of binding pockets proves to be effective for noncovalent small molecule inhibitors against SARS-CoV-2 M pro. Eur J Med Chem 2025; 289:117497. [PMID: 40090296 DOI: 10.1016/j.ejmech.2025.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and continues to pose serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and its conservation, making it an attractive drug target. Here, we employed a structure-based drug design strategy to develop and optimize novel inhibitors targeting SARS-CoV-2 Mpro. By fully exploring occupation of the S1, S2, and S3/S4 binding pockets, we identified eight promising inhibitors with half-maximal inhibitory concentration (IC50) values below 20 nM. The cocrystal structure of Mpro with compound 10 highlighted the crucial roles of the interactions within the S3/S4 pockets in inhibitor potency enhancement. These findings demonstrated that expanding the utilization of these binding pockets was an effective strategy for developing noncovalent small molecule inhibitors that target SARS-CoV-2 Mpro. Compound 4 demonstrated outstanding in vitro antiviral activity against wild-type SARS-CoV-2 with an EC50 of 9.4 nM. Moreover, oral treatment with compounds 1 and 9 exhibited excellent antiviral potency and substantially ameliorated virus-induced tissue damage in the lungs of Omicron BA.5-infected K18-human ACE2 (K18-hACE2) transgenic mice, indicating that these novel noncovalent inhibitors could be potential oral agents for the treatment of COVID-19.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xupeng Huang
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Hongbo Zhang
- Beijing StoneWise Technology Co. Ltd., Beijing, 100080, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jielin Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lijie Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Man Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zeyun Sun
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenhao Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Dandan Wei
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengrong Yan
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Li Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China; Guangzhou Medical University, Guangzhou, 511436, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yihang Zhong
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jun Dai
- Technology Centre, Guangzhou Customs, Guangzhou, 510623, China
| | - Yongxia Shi
- Technology Centre, Guangzhou Customs, Guangzhou, 510623, China
| | - Bo Huang
- Beijing StoneWise Technology Co. Ltd., Beijing, 100080, China.
| | - Wei Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xinwen Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China.
| | - Zihe Rao
- Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China; Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Wei Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou National Laboratory, Guangzhou, 510005, China; Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China; University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Tyagi S, Upadhyay S, Bharara T, Sahai S. Nipah virus: Preventing the next outbreak. World J Clin Cases 2025; 13:99748. [DOI: 10.12998/wjcc.v13.i11.99748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Nipah is a deadly viral infection which has come to the news highlight recently, due to its fresh onslaught in Southern India. As the world continues to recover from coronavirus disease 2019, the World Health Organization has identified a list of high-priority pathogens with the potential to cause future pandemics. Among them is the Nipah virus (NiV), which poses a significant threat. Even a small outbreak could trigger widespread panic among the public. The emergence and re-emergence of NiV among other zoonotic infections is a stern reminder of the importance of One health concept.
Collapse
Affiliation(s)
- Satvik Tyagi
- Department of Microbiology, Amar Shaheed Jodha Singh Ataiya Thakur Dariyao Singh Medical College, Fatehpur 212601, Uttar Pradesh, India
| | - Shalini Upadhyay
- Department of Microbiology, Amar Shaheed Jodha Singh Ataiya Thakur Dariyao Singh Medical College, Fatehpur 212601, Uttar Pradesh, India
| | - Tanisha Bharara
- Department of Microbiology, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, New Delhi 110007, India
| | - Sanjeev Sahai
- Department of Microbiology, Amar Shaheed Jodha Singh Ataiya Thakur Dariyao Singh Medical College, Fatehpur 212601, Uttar Pradesh, India
| |
Collapse
|
8
|
Bao H, Meng H, Gong S, Gong Y, Tu G, Du Z, Wang Y, Wu J, Ma C, Ma Q, Yao X. Design, synthesis and activity evaluation of 4-(quinoline-2-yl)aniline derivatives as SARS-CoV‑2 main protease inhibitors. Bioorg Med Chem 2025; 121:118135. [PMID: 40024142 DOI: 10.1016/j.bmc.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Since 2020, numerous compounds have been investigated for their potential use in treating SARS-CoV-2 infections. By identifying the molecular targets during the virus replication process, rationally designed anti-SARS-CoV-2 agents are developed. Among these targets, the main protease (Mpro) is a crucial enzyme required for virus replication, and its highly conserved characteristic make it an important drug target for the development of anti-SARS-CoV-2 drugs. Herein, we utilized warhead-based design strategy to conduct the structural optimization of M-1 developed through virtual screening, leading to a series of novel Mpro inhibitors with 4-(quinolin-2-yl)aniline scaffold. Among them, M-32 exhibited good SARS-CoV-2 Mpro inhibitory activity (IC50 = 5.2 μM) with a nearly 25-fold increase. Isothermal titration calorimetry (ITC) directly proved that M-32 binds directly to SARS-CoV-2 Mpro in an entropy-driven manner. Mass spectrometry (MS) further confirmed the covalent binding ability of M-32 to Mpro. Meanwhile, M-32 effectively inhibited the replication of SARS-CoV-2 in Vero E6 cells (EC50 = 5.29 μM).
Collapse
Affiliation(s)
- Honglei Bao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shilin Gong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yaguo Gong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Gao Tu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Zhenya Du
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China; Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Yuwei Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Jianlin Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Chunhua Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
9
|
Menezes Pinto N, das Chagas Mendonça MR, da Silva Santos J, Dos Santos Ferraz CM, Santos Oliveira D, Dos Santos LVB, de Souza Araújo AA, José Quintans Júnior L, Lyra Júnior D, de Oliveira Filho AD, Lira AAM, Russo Serafini M, de Souza Nunes R. Lessons Learned from the COVID-19 Pandemic: The Intranasal Administration as a route for treatment - A Patent Review. Pharm Dev Technol 2025:1-33. [PMID: 40186505 DOI: 10.1080/10837450.2025.2487575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic exposed the fragility of today's marketed treatments for respiratory infections. As a primary site of infection, the upper airways may represent a key access route for the control and treatment for these conditions. The present study aims to explore and identify, through a patent review, the novelty of therapies for COVID-19 that use the intranasal route for drug administration. A search was carried out in Wipo and Espacenet, using the descriptors "COVID-19 OR SARS-CoV 2" AND "treatment OR therapy" AND NOT "vaccine OR immunizing" and the classification "A61K9/0043". Of the 151 patents identified, we excluded 73 duplicates, and 36 documents that meet the criteria adopted for exclusion (not nasally administered formulations, vaccines, post COVID-19 treatments, uncertain route of administration or form). We identified 78 unique patents on patent databases, of which 42 were selected for this review. The documents revealed the use of the intranasal pathway not only for drug repositioning but also for using plant-derived and biological molecules. Overall, the new formulations explore a variety of known drugs and natural products incorporated in drug carrier systems and devices for drug delivery and administration. Thus, the intranasal route remains a promising strategy for drug delivery, offering direct access to the primary infection site and warranting further exploration.
Collapse
Affiliation(s)
- Nicole Menezes Pinto
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | | | - Jeferson da Silva Santos
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | | | - Daniela Santos Oliveira
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Lívia Vilas Boas Dos Santos
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Adriano Antunes de Souza Araújo
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Lucindo José Quintans Júnior
- Department of Physiology, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Divaldo Lyra Júnior
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Alfredo Dias de Oliveira Filho
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Ana Amélia Moreira Lira
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| | - Rogéria de Souza Nunes
- Department of Pharmacy, Federal University of Sergipe, Av. Marcelo Deda Chagas s/n, São Cristóvão, Sergipe, Brazil, 491.00-000
| |
Collapse
|
10
|
Hamel LP, Poirier-Gravel F, Paré MÈ, Tardif R, Comeau MA, Lavoie PO, Langlois A, Goulet MC, Michaud D, D'Aoust MA. Molecular changes in agroinfiltrated leaves of Nicotiana benthamiana expressing suppressor of silencing P19 and coronavirus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40185497 DOI: 10.1111/pbi.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
The production of coronavirus disease 2019 vaccines can be achieved by transient expression of the spike (S) protein of severe acute respiratory syndrome coronavirus 2 in agroinfiltrated leaves of Nicotiana benthamiana. Relying on bacterial vector Agrobacterium tumefaciens, this process is favoured by co-expression of viral silencing suppressor P19. Upon expression, the S protein enters the cell secretory pathway, before being trafficked to the plasma membrane where formation of coronavirus-like particles (CoVLPs) occurs. We previously characterized the effects of influenza virus hemagglutinin forming VLPs through similar processes. However, leaf samples were only collected after 6 days of expression, and it is unknown whether influenza VLPs (HA-VLPs) and CoVLPs induce similar responses. Here, time course sampling was used to profile responses of N. benthamiana leaf cells expressing P19 only, or P19 and the S protein. The latter triggered early but transient activation of the unfolded protein response and waves of transcription factor genes involved in immunity. Accordingly, defence genes were induced with different expression kinetics, including those promoting lignification, terpene biosynthesis, and oxidative stress. Cross-talk between stress hormone pathways also occurred, including repression of jasmonic acid biosynthesis genes after agroinfiltration, and dampening of salicylic acid responses upon S protein accumulation. Overall, HA-VLP- and CoVLP-induced responses broadly overlapped, suggesting nanoparticle production to have the most effects on plant immunity, regardless of the virus surface proteins expressed. Taking advantage of RNAseq inferences, we finally show the co-expression of Kunitz trypsin inhibitors to reduce CoVLP-induced defence and leaf symptoms, with no adverse effect on plant productivity.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Medicago Inc., Montréal, Québec, Canada
- Direction Générale de la Recherche, des Programmes et des Partenariats, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, Quebec, Québec, Canada
| | | | | | | | | | - Pierre-Olivier Lavoie
- Medicago Inc., Montréal, Québec, Canada
- Aramis Biotechnologies Inc., Quebec, Québec, Canada
| | - Andréane Langlois
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Marc-André D'Aoust
- Medicago Inc., Montréal, Québec, Canada
- Aramis Biotechnologies Inc., Quebec, Québec, Canada
| |
Collapse
|
11
|
Wang S, Mei Z, Chen J, Zhao K, Kong R, McClements L, Zhang H, Liao A, Liu C. Maternal Immune Activation: Implications for Congenital Heart Defects. Clin Rev Allergy Immunol 2025; 68:36. [PMID: 40175706 DOI: 10.1007/s12016-025-09049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Congenital heart defects (CHD) are the most common major birth defects and one of the leading causes of death from congenital defects after birth. CHD can arise in pregnancy from the combination of genetic and non-genetic factors. The maternal immune activation (MIA) hypothesis is widely implicated in embryonic neurodevelopmental abnormalities. MIA has been found to be associated with the development of asthma, diabetes mellitus, and other diseases in the offspring. Given the important role of cardiac immune cells and cytokines in embryonic heart development, it is hypothesized that MIA may play a significant role in embryonic heart development. This review aims to stimulate further investigation into the relationship between MIA and CHD and to highlight the gaps in the knowledge. It evaluates the impact of MIA on CHD in the context of pregnancy complications, immune-related diseases, infections, and environmental and lifestyle factors. The review outlines the mechanisms by which immune cells and their secretome indirectly regulate the immuno-microenvironment of the embryonic heart by influencing placental development. Furthermore, the inflammatory cytokines cross the placenta to induce related reactions including oxidative stress in the embryonic heart directly. This review delineates the role of MIA in CHD and underscores the impact of maternal factors, especially immune factors, as well as the embryonic cardiac immuno-microenvironment, on embryonic heart development. This review extends our understanding of the importance of MIA in the pathogenesis of CHD and provides important insights into prenatal prevention and treatment strategies for this congenital condition.
Collapse
Affiliation(s)
- Sixing Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zilin Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ruize Kong
- Department of Vascular Surgery, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China First People'S Hospital of Yunnan Province, Kunming, PR China
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
12
|
Ferrarezi AA, de Souza JVP, Maigret B, Kioshima ÉS, Moura S, de Oliveira AJB, Rosa FA, Gonçalves RAC. Rational design and synthesis of pyrazole derivatives as potential SARS-CoV-2 M pro inhibitors: An integrated approach merging combinatorial chemistry, molecular docking, and deep learning. Bioorg Med Chem 2025; 120:118095. [PMID: 39929031 DOI: 10.1016/j.bmc.2025.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/12/2025]
Abstract
The global impact of SARS-CoV-2 has highlighted the urgent need for novel antiviral therapies. This study integrates combinatorial chemistry, molecular docking, and deep learning to design, evaluate and synthesize new pyrazole derivatives as potential inhibitors of the SARS-CoV-2 main protease (Mpro). A library of over 60,000 pyrazole-based structures was generated through scaffold decoration to enhance chemical diversity. Virtual screening employed molecular docking (ChemPLP scoring) and deep learning (DeepPurpose), with consensus ranking to identify top candidates. Binding free energy calculations refined the selection, revealing critical structural features such as tryptamine and N-phenyl fragments for Mpro binding. High-temperature solvent-free amidation allowed the synthesis of a selected derivative. Final compounds demonstrated favorable drug-likeness properties based on Lipinski's and Veber's rules. This work highlights the integration of computational and synthetic strategies to accelerate the discovery of Mpro inhibitors and provides a framework for future antiviral development.
Collapse
Affiliation(s)
- Arthur Antunes Ferrarezi
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - João Vítor Perez de Souza
- Division of Translational Health Sciences, Department of Emergency Medicine, Duke University School of Medicine, United States of America
| | - Bernard Maigret
- Université de Lorraine, Centre Nationale de la Recherche Scientifique, Nancy, France
| | - Érika Seki Kioshima
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Sidnei Moura
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil
| | - Arildo José Braz de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Fernanda Andreia Rosa
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| | | |
Collapse
|
13
|
Soni DK, Cabrera-Luque J, Kar S, Ahmed A, Sen C, Devaney J, Biswas R. Suppression of miR-155 Attenuates Lung Cytokine Storm Induced by SARS-CoV-2 Infection. J Interferon Cytokine Res 2025; 45:150-161. [PMID: 39950973 DOI: 10.1089/jir.2024.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a deadly human viral disease with a high rate of infection, morbidity, and mortality. Although vaccines and antiviral treatments are available, hospitalizations remain steady, and concerns about long-term consequences persist. Therefore, there is a great urgency to develop novel therapies. Here, we analyzed the role of miR-155, one of the most powerful drivers of host antiviral responses including immune and inflammatory responses, in the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Endogenous microRNAs (miRNAs, miRs) are key molecules in preventing viral entry and replication while building an antiviral cellular defense. Our study reveals that miR-155 expression is elevated in patients with COVID-19. Using a mouse model transgenic for human angiotensin-converting enzyme receptor 2, we evaluated the potential of anti-miR-155 therapy. Treating SARS-CoV-2-infected mice with anti-miR-155 significantly reduced miR-155 expression, improved survival, and slightly increased body weight. Notably, these mice showed altered expression of cytokines in the lungs. These findings suggest anti-miR-155 could be a promising therapy to mitigate the cytokine storm and long-lasting symptoms induced by SARS-CoV-2 infection, improving public health outcomes and enhancing global pandemic preparedness.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | - Anwar Ahmed
- Department of Preventive Medicine and Biostatistics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Chaitali Sen
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Singh S, Gangopadhyay A, D S, Chakravarty M. Phenothiazine-linked glutamic acid dendrons: an easy access and a new class of SARS-CoV-2 main protease inhibitors. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241628. [PMID: 40177100 PMCID: PMC11961260 DOI: 10.1098/rsos.241628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/29/2025] [Indexed: 04/05/2025]
Abstract
In this report, a structurally unique phenothiazine (PTZ) core is linked with glutamic acid-based dendrons through a solid-phase peptide synthesis approach to access a variety of PTZ-linked dendrons conveniently. Inferior cytotoxicity of anionic surface-linked second-generation glutamic acid-based dendrons would be more desirable for various applications than respective lysine-based dendrons. Solid-phase synthesis of PTZ-linked glutamic acid-based dendrons would be a novel approach to access this class of molecules. These newly synthesized dendrons were screened as an inhibitor against the main protease (Mpro) enzyme, proposed to be the best target against SARS-CoV-2. The preliminary assay studies designated a moderate response for the Mpro inhibition, specifically by tryptophan (Trp)-enriched dendron, among other analogues, which play a vital role in combating COVID-19. Further, the experimental studies realize the essential contribution of the PTZ core in interacting with the Mpro enzyme. Molecular dynamics (MD) simulations revealed that the active dendrons formed stable complexes with Mpro, and the binding affinity of the Trp-based PTZ-linked dendrons was higher than that of the decoy dendron analogue.
Collapse
Affiliation(s)
- Sameer Singh
- Department of Chemistry, Birla Institute of Technology & Science Pilani - Hyderabad Campus, Hyderabad, Telangana, India
| | - Aditi Gangopadhyay
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Sriram D
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, Telangana, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology & Science Pilani - Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Lu W, Yang X, Wang B. Carbon monoxide potentiates the effect of corticosteroids in suppressing inflammatory responses in cell culture. Bioorg Med Chem 2025; 120:118092. [PMID: 39904198 DOI: 10.1016/j.bmc.2025.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Inflammation is a pathology implicated in a wide range of human diseases. Recent years have seen tremendous progress in developing new types of anti-inflammatory agents for the treatment of inflammation of various origins. However, each has its own strengths and weaknesses. The very fact that there needs to have multiple types of anti-inflammatory agents underlines the complexity of inflammatory diseases and conditions, their molecular origins, and their treatment. Such complexity dictates the need to search for new approaches with improved potency and efficacy as well as reduced side effects. For these reasons, we are interested in exploring the possibility of generating synergy between carbon monoxide (CO), an endogenously produced cytoprotective agent, and known anti-inflammatory agents. Herein, we report the potentiating actions of CO on the anti-inflammatory effects of cortisone and dexamethasone as demonstrated in their ability to suppress the expression of TNF-α and IL-6 induced by either LPS or the S protein of SARS-CoV-2. Such effects are reflected in the substantially increased potency as well efficacy, when the efficacy of the corticosteroid alone does not allow for complete suppression of the expression of these cytokines. Further, increased attenuation of p65 phosphorylation is at least part of the molecular mechanism for the observed potentiating effects. We hope our work will stimulate a high level of activity along the same direction, leading to anti-inflammatory strategies with improved potency and efficacy and reduced side effects.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
16
|
Du Y, Gao J, He M, Yi M, Wu J, Feng L, Zeng B, Li Y, He R, Wang Y, Qin CF, Cui Z, Wang C. Simultaneous Blockade of CD209 and CD209L by Monoclonal Antibody Does Not Provide Sufficient Protection Against Multiple Viral Infections In Vivo. Immunology 2025; 174:411-422. [PMID: 39783143 DOI: 10.1111/imm.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1. We show that 7-H7-B1 effectively blocks multiple pseudotyped or live viral infections in vitro, including SARS-CoV, SARS-CoV-2, Ebola virus, Marburg virus, ZIKV and DENV infections. However, the 7-H7-B1 mAb does not provide favourable protection against Zaire Ebola virus or ZIKV infection in hCD209 knock-in mice in vivo. Thus, our findings indicate that although CD209 and CD209L are critical for multiple viral infections in vitro, they may play only a partial role in viral infections in vivo.
Collapse
Affiliation(s)
- Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiawang Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Mengjiao He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiaqi Wu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bo Zeng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yangyang Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Schwarze M, Brakel A, Hoffmann R, Krizsan A. Peptides Corresponding to the Receptor-Binding Domain (RBD) of Several SARS-CoV-2 Variants Of Concern Prevent Recognition of the Human ACE2 Receptor and Consecutive Cell Infections. ChemMedChem 2025; 20:e202400973. [PMID: 39996354 DOI: 10.1002/cmdc.202400973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 02/26/2025]
Abstract
New strategies are needed to prevent and control upcoming outbreaks of SARS-CoV-2 infections, independent of vaccination. SARS-CoV-2 binds to the human ACE-2 receptor through the receptor binding domain (RBD) of the spike (S) protein, allowing the virus to enter human cells and begin replication. When peptides corresponding to four regions of RBD containing previously reported ACE-2 interaction sites were explored, the sequence 392 to 421, peptide p392wt, bound strongly to ACE-2 and inhibited wild-type RBD binding to ACE-2. Interestingly, p392 peptides corresponding to mutated sequences from different SARS-CoV-2 VOCs, including the current VOC BA.5 and KP.3, bound less strongly to ACE-2, but showed partially better inhibition of the ACE-2 interaction of all tested RBDs. When studied in a SARS-CoV-2 pseudovirus assay, the p392 peptides showed a good inhibition rate of 98.8±8.1 % at a peptide concentration of ~244 μmol/L, while none of the p392 peptides inhibited antibody binding to the RBD, suggesting that peptide treatment is sufficient in the presence of anti-RBD antibodies. Interestingly these peptides were active in the presence of diluted human serum and non-toxic to human cell lines.
Collapse
Affiliation(s)
- Mandy Schwarze
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Alexandra Brakel
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
18
|
Srivastava R, Panda SK, Sen Gupta PS, Chaudhary A, Naaz F, Yadav AK, Ram NK, Rana MK, Singh RK, Srivastava R. In silico evaluation of S-adenosyl-L-homocysteine analogs as inhibitors of nsp14-viral cap N7 methyltranferase and PLpro of SARS-CoV-2: synthesis, molecular docking, physicochemical data, ADMET and molecular dynamics simulations studies. J Biomol Struct Dyn 2025; 43:3258-3275. [PMID: 38147408 DOI: 10.1080/07391102.2023.2297005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
A series of S-adenosyl-L-homosysteine (SAH) analogs, with modification in the base and sugar moiety, have been designed, synthesized and screened as nsp14 and PLpro inhibitors of severe acute respiratory syndrome corona virus (SARS-CoV-2). The outcomes of ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) studies demonstrated that the physicochemical properties of all analogs were permissible for development of these SAH analogs as antiviral agents. All molecules were screened against different SARS-CoV-2 targets using molecular docking. The docking results revealed that the SAH analogs interacted well in the active site of nsp14 protein having H-bond interactions with the amino acid residues Arg289, Val290, Asn388, Arg400, Phe401 and π-alkyl interactions with Arg289, Val290 and Phe426 of Nsp14-MTase site. These analogs also formed stable H-bonds with Leu163, Asp165, Arg167, Ser246, Gln270, Tyr274 and Asp303 residues of PLpro proteins and found to be quite stable complexes therefore behaved as probable nsp14 and PLpro inhibitors. Interestingly, analog 3 showed significant in silico activity against the nsp14 N7 methyltransferase of SARS-CoV-2. The molecular dynamics (MD) and post-MD results of analog 3 unambiguously established the higher stability of the nsp14 (N7 MTase):3 complex and also indicated its behavior as probable nsp14 inhibitor like the reference sinefungin. The docking and MD simulations studies also suggested that sinefungin did act as SARS-CoV-2 PLpro inhibitor as well. This study's findings not only underscore the efficacy of the designed SAH analogs as potent inhibitors against crucial SARS-CoV-2 proteins but also pinpoint analog 3 as a particularly promising candidate. All the study provides valuable insights, paving the way for potential advancements in antiviral drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, India
| | - Anvita Chaudhary
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Nand Kumar Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Richa Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
19
|
Peng W, Tai W, Li B, Wang H, Wang T, Guo S, Zhang X, Dong P, Tian C, Feng S, Yang L, Cheng G, Zheng B. Inhalable nanocatalytic therapeutics for viral pneumonia. NATURE MATERIALS 2025; 24:637-648. [PMID: 39592721 DOI: 10.1038/s41563-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/04/2024] [Indexed: 11/28/2024]
Abstract
Pneumonia is a ubiquitous disease caused by viral and bacterial infections, characterized by high levels of reactive oxygen species in inflamed areas. Therapeutic strategies targeting reactive oxygen species levels in pneumonia have limited success due to the intricate nature of lung tissues and lung inflammatory responses. Here we describe an inhalable, non-invasive therapeutic platform composed of engineered cerium-based tannic acid nanozymes bound to a self-assembling peptide. In vitro and in vivo studies show that the nanozyme is internalized mostly by activated macrophages and epithelial cells in the inflamed sites. In the oxidative environments of a mouse model of viral pneumonia, nanozyme aggregates into catalytically active structures that reduce reactive oxygen species levels and inflammatory cytokine production and promote macrophage polarization to the prohealing (M2) phenotype. Moreover, the nanozyme attenuates bacterial inflammation and reduces tissue damage in a mouse viral pneumonia model with secondary bacterial infection. Overall, this nanozyme platform is a promising strategy for treating pneumonia and its associated conditions.
Collapse
Affiliation(s)
- Wenchang Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Wanbo Tai
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hua Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Shuyue Guo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Pengyuan Dong
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chongyu Tian
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Southwest United Graduate School, Kunming, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
20
|
Wang R, Zhou P, Xu W, Li D, Xue S, Guo Z, Li J, Jin L, Zuo C, Chen H, Li R, Li X, Lou J. An Auger electron-loaded theranostic biosensor triggered by the ACE2-mediated virus/host endocytosis. Talanta 2025; 285:127288. [PMID: 39632316 DOI: 10.1016/j.talanta.2024.127288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Accurate diagnosis and effective antiviral strategies are critical to combat acute infection and to avoid damage to the host. Due to their restricted radiation range and energy, Auger electron emitters have shown potential as a RNA-destructing radionuclide therapy in oncology and infection. Focusing on the process of angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis, Technetium-99m-labeled DX600 (99mTc-DX600) was synthesized as an Auger electron vector to specifically bind to surface-expressed ACE2 proteins on 293T-hACE2 cells (293T cells stably expressing human ACE2), and Technetium-99m-loaded microvesicles (99mTc-MVs) served as an antiviral tracer and effector in pseudovirus infection. The whole-body ACE2 expression evaluation was non-invasive, meanwhile, the enhanced green fluorescent protein expression of pseudoviruses was substantially inhibited as a result of the 99mTc-DX600 loading of microvesicles, though the mitochondrial and DNA stabilities of the host cells were not affected. Furthermore, the in vivo distribution of 99mTc-DX600 in humanized ACE2 mice was demonstrated to be both ACE2-specific and long-lasting, and an antiviral effect was fully exhibited with two cycles of intravenous injection at a dosage of 37 MBq. Taking advantage of the ACE2-mediated interaction and natural trigger mechanism of virus-induced endocytosis, 99mTc-MV represents a theranostic biosensor of Auger electrons that can expose viral RNA to lethal amounts of radiation, with the host cells receiving no detrimental radiation.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Pan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Wen Xu
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Shuai Xue
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Zhongqiu Guo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Jie Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Hui Chen
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China.
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China; Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Jingjing Lou
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
21
|
Ghimire R, Shrestha R, Amaradhi R, Liu L, More S, Ganesh T, Ford AK, Channappanavar R. Toll-like receptor 7 (TLR7)-mediated antiviral response protects mice from lethal SARS-CoV-2 infection. J Virol 2025:e0166824. [PMID: 40162785 DOI: 10.1128/jvi.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced impaired antiviral immunity and excessive inflammatory responses cause lethal pneumonia. However, the in vivo roles of key pattern recognition receptors that elicit protective antiviral and fatal inflammatory responses, specifically in the lungs, are not well described. Coronaviruses possess single-stranded RNA genome that activates TLR7/8 to induce an antiviral interferon (IFN) and robust inflammatory cytokine response. Here, using wild-type and TLR7-deficient (TLR7-/-) mice infected with mouse-adapted SARS-CoV-2 (MA-CoV-2), we examined the role of TLR7 in the lung antiviral and inflammatory response and severe pneumonia. We showed that TLR7 deficiency significantly increased lung virus loads and morbidity/mortality, which correlated with reduced levels of type I IFNs (Ifna/b), type III IFNs (Ifnl), and IFN-stimulated genes (ISGs) in the lungs. A detailed evaluation of MA-CoV-2-infected lungs revealed increased neutrophil accumulation and lung pathology in TLR7-/- mice. We further showed that blocking type I IFN receptor (IFNAR) signaling enhanced SARS-CoV-2 replication in the lungs and caused severe lung pathology, leading to 100% mortality compared to infected control mice. Moreover, immunohistochemical assessment of the lungs revealed increased numbers of SARS-CoV-2 antigen-positive macrophages, pneumocytes, and bronchial epithelial cells in TLR7-/- and IFNAR-deficient mice compared to control mice. In summary, we conclusively demonstrated that despite TLR7-induced robust lung inflammation, TLR7-induced IFN/ISG responses suppress lung virus replication and pathology and provide protection against SARS-CoV-2-induced fatal pneumonia. Additionally, given the similar disease outcomes in control, TLR7-/-, and IFNAR-deficient MA-CoV-2-infected mice and coronavirus disease 2019 (COVID-19) patients, we propose that MA-CoV-2-infected mice constitute an excellent model for studying COVID-19.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is caused by a delicate balance between a strong antiviral and an exuberant inflammatory response. A robust antiviral immunity and regulated inflammation are protective, while a weak antiviral response and excessive inflammation are detrimental. However, the key host immune sensors that elicit protective antiviral and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are poorly defined. Here, we examined the role of viral RNA-mediated TLR7 activation in the lung antiviral and inflammatory responses in SARS-CoV-2-infected mice. We demonstrate that TLR7 deficiency led to a high rate of morbidity and mortality, which correlated with an impaired antiviral interferon (IFN)-I/III response, enhanced lung virus replication, and severe lung pathology. Furthermore, we show that blocking IFN-I signaling using anti-IFN receptor antibody promoted SARS-CoV-2 replication in the lungs and caused severe disease. These results provide conclusive evidence that TLR7 and IFN-I receptor deficiencies lead to severe disease in mice, replicating clinical features observed in COVID-19 patients.
Collapse
Affiliation(s)
- Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lin Liu
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandra K Ford
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
22
|
Zhang M, Zhu Y, Li N, Aishanjiang K, Zhu S, Tang A, Li G, Liu G. Development of a monoclonal antibody-based colloidal gold immunochromatographic strip for rapid detection of feline coronavirus. Int J Biol Macromol 2025; 309:142683. [PMID: 40169048 DOI: 10.1016/j.ijbiomac.2025.142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/02/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV), is a fatal disease with no effective vaccine. Early detection is crucial for FIP management, and a rapid, accurate diagnostic method is urgently needed. Hence, the purpose of this study was to establish a rapid, sensitive, specific immunochromatographic strip (ICS) for clinical detection of FIP. We selected the highly conserved N protein of FIPV and expressed recombinant N protein as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs specific to FIPV were produced. The antigenic epitopes recognized by the 2B10 and 10E7 mAbs used for ICS preparation were identified, and the structure and conservation of the epitopes were analyzed. Subsequently, we paired the 2B10 and 10E7 mAbs, assembled the ICS, and implemented several optimization measures. The specificity of the ICS was confirmed by positive reactions with FIPV-positive samples and negative reactions with FHV, FPV, and FCV. Sensitivity testing detected FIPV suspensions (TCID₅₀ = 106.5/mL) diluted to 1: 512. The ICS showed 98.3 % agreement with RT-PCR results in detecting 60 suspected samples and remained stable for 6 months at room temperature. In conclusion, this study developed a simple, sensitive, and specific ICS for the detection of FIPV.
Collapse
Affiliation(s)
- Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yingqi Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Na Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Kelimujiang Aishanjiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shiqiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| |
Collapse
|
23
|
Leoni G, Petrillo M, Ruiz-Serra V, Querci M, Coecke S, Wiesenthal T. PathoSeq-QC: a decision support bioinformatics workflow for robust genomic surveillance. Bioinformatics 2025; 41:btaf102. [PMID: 40053686 PMCID: PMC11961196 DOI: 10.1093/bioinformatics/btaf102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/10/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
MOTIVATION Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health pathogenic threats and insights on their evolution, to monitor pathogens spread, and to evaluate the effectiveness of countermeasures. From a decision-making policy perspective, it is essential to ensure the entire process's quality before relying on analysis results as evidence. Available workflows usually offer quality assessment tools that are primarily focused on the quality of raw NGS reads but often struggle to keep pace with new technologies and threats, and fail to provide a robust consensus on results, necessitating manual evaluation of multiple tool outputs. RESULTS We present PathoSeq-QC, a bioinformatics decision support workflow developed to improve the trustworthiness of genomic surveillance analyses and conclusions. Designed for SARS-CoV-2, it is suitable for any viral threat. In the specific case of SARS-CoV-2, PathoSeq-QC: (i) evaluates the quality of the raw data; (ii) assesses whether the analysed sample is composed by single or multiple lineages; (iii) produces robust variant calling results via multi-tool comparison; (iv) reports whether the produced data are in support of a recombinant virus, a novel or an already known lineage. The tool is modular, which will allow easy functionalities extension. AVAILABILITY AND IMPLEMENTATION PathoSeq-QC is a command-line tool written in Python and R. The code is available at https://code.europa.eu/dighealth/pathoseq-qc.
Collapse
Affiliation(s)
- Gabriele Leoni
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | | | | | - Maddalena Querci
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Tobias Wiesenthal
- European Commission, Joint Research Centre (JRC), Geel, 2440, Belgium
| |
Collapse
|
24
|
Pietà AD, Genova B, Penna A, Sinigaglia A, Vogiatzis S, Barzon L, Pagliari M, Bonfante F, Torrigiani F, Sofia T, Verin R, Tosi A, Carpanese D, Sommaggio R, Barbieri V, Santa SD, Zuccolotto G, Grigoletto A, Pasut G, Rosato A. On the adjuvanticity of hyaluronan: The case of a SARS-CoV-2 vaccine. J Control Release 2025:113674. [PMID: 40164435 DOI: 10.1016/j.jconrel.2025.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Vaccines based on mRNA have been fundamental in facing the COVID-19 pandemic, however, they still raise concerns about stability and long-term efficacy. Thus, protein-based vaccines remain valid options and hence the study of effective adjuvants is crucial. Here, we developed a COVID-19 vaccine based on the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein, which is covalently conjugated to the natural polymer hyaluronan (HA) that acts as an immunological adjuvant. Vaccination of K18-hACE2 mice with HA-RBD was well tolerated, and elicited high and sustained titres of RBD-binding antibodies and SARS-CoV-2-neutralizing antibodies, without the addition of other immunostimulatory compounds. Most importantly, HA-RBD vaccination conferred long-term protection to K18-hACE2 mice after challenge with SARS-CoV-2, also in the case of two consequent infections driven by different variants. These findings demonstrate the efficacy of HA-based vaccination against COVID-19 disease, and support the promising use of HA as an efficient and well tolerated adjuvant.
Collapse
Affiliation(s)
- Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128 Padua, Italy
| | - Beatrice Genova
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128 Padua, Italy
| | - Alessandro Penna
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Stefania Vogiatzis
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pagliari
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, PD, Italy
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, PD, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Tomasoni Sofia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Debora Carpanese
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128 Padua, Italy; Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128 Padua, Italy
| | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128 Padua, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Francesco Marzolo 5, 35131 Padua, Italy.
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128 Padua, Italy; Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy.
| |
Collapse
|
25
|
Anyaegbunam NJ, Okpe KE, Bello AB, Ajanaobionye TI, Mgboji CC, Olonade A, Anyaegbunam ZKG, Mba IE. Leveraging innovative diagnostics as a tool to contain superbugs. Antonie Van Leeuwenhoek 2025; 118:63. [PMID: 40140116 DOI: 10.1007/s10482-025-02075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
The evolutionary adaptation of pathogens to biological materials has led to an upsurge in drug-resistant superbugs that significantly threaten public health. Treating most infections is an uphill task, especially those associated with multi-drug-resistant pathogens, biofilm formation, persister cells, and pathogens that have acquired robust colonization and immune evasion mechanisms. Innovative diagnostic solutions are crucial for identifying and understanding these pathogens, initiating efficient treatment regimens, and curtailing their spread. While next-generation sequencing has proven invaluable in diagnosis over the years, the most glaring drawbacks must be addressed quickly. Many promising pathogen-associated and host biomarkers hold promise, but their sensitivity and specificity remain questionable. The integration of CRISPR-Cas9 enrichment with nanopore sequencing shows promise in rapid bacterial diagnosis from blood samples. Moreover, machine learning and artificial intelligence are proving indispensable in diagnosing pathogens. However, despite renewed efforts from all quarters to improve diagnosis, accelerated bacterial diagnosis, especially in Africa, remains a mystery to this day. In this review, we discuss current and emerging diagnostic approaches, pinpointing the limitations and challenges associated with each technique and their potential to help address drug-resistant bacterial threats. We further critically delve into the need for accelerated diagnosis in low- and middle-income countries, which harbor more infectious disease threats. Overall, this review provides an up-to-date overview of the diagnostic approaches needed for a prompt response to imminent or possible bacterial infectious disease outbreaks.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation Unit, Science Education Department, University of Nigeria Nsukka, Nsukka, Nigeria
| | | | - Aisha Bisola Bello
- Department of Biological Sciences, Federal Polytechnic Bida Niger State, Bida, Nigeria
| | | | | | - Aanuoluwapo Olonade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukk, Nsukka, 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukk, Nsukka, 410001, Nigeria.
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, 200005, Nigeria.
| |
Collapse
|
26
|
Santa Ardisson J, Vedovatti Monfardini Sagrillo M, Ramos Athaydes B, Corredor Vargas AM, Torezani R, Ribeiro-Rodrigues R, Cruz Spano L, Gaburro Paneto G, Delatorre E, Ventorin von Zeidler S, Freire Bastos Filho T. Comparative spatial-temporal analysis of SARS-CoV-2 lineages B.1.1.33 and BQ.1.1 Omicron variant across pandemic phases. Sci Rep 2025; 15:10319. [PMID: 40133656 PMCID: PMC11937565 DOI: 10.1038/s41598-025-95140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
The evolution of COVID-19 pandemic has been characterized by the rapid emergence of new SARS-CoV-2 variants, each of which poses unique challenges to public health. This study analyzes the dispersion profiles during the Pre-Omicron and Post-Omicron phases in different epidemiological contexts. The Brazilian state of Espirito Santo, despite its low population density, plays a critical role as a commercial hub due to its intense port activity, which may have contributed to COVID-19 cases and mortality rates being higher than the national average. The state recorded 34,000 confirmed cases and 377 deaths per 100,000 inhabitants. Genomic surveillance revealed that the Pre-Omicron phase was dominated by the B.1.1.33 lineage, characterized by localized intraregional circulation. In contrast, the Post-Omicron phase, dominated by the BQ.1.1 lineage, exhibited greater diversity in circulating lineages, increased international interactions, and rapid viral dissemination, highlighting distinct transmission dynamics between such periods. This study highlights the need for adaptive public health strategies that account for both viral behavior and regional socioeconomic factors, while highlighting the strategic importance of Espirito Santo in monitoring SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Juliana Santa Ardisson
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil.
| | | | - Brena Ramos Athaydes
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
- Department of Pathology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
| | | | - Renata Torezani
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
| | - Rodrigo Ribeiro-Rodrigues
- Postgraduate Program in Infectious Diseases, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
- Department of Pathology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
- Central Public Health Laboratory of the State of Espirito Santo (LACEN-ES), Vitoria, 29050-260, Brazil
| | - Liliana Cruz Spano
- Postgraduate Program in Infectious Diseases, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
| | - Greiciane Gaburro Paneto
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
| | - Edson Delatorre
- Postgraduate Program in Infectious Diseases, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
- Department of Pathology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
| | - Sandra Ventorin von Zeidler
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
- Department of Pathology, Federal University of Espirito Santo, Vitoria, 29047-105, Brazil
| | | |
Collapse
|
27
|
Rao J, Luo H, An D, Liang X, Peng L, Chen F. Performance evaluation of structural variation detection using DNBSEQ whole-genome sequencing. BMC Genomics 2025; 26:299. [PMID: 40133825 PMCID: PMC11938577 DOI: 10.1186/s12864-025-11494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND DNBSEQ platforms have been widely used for variation detection, including single-nucleotide variants (SNVs) and short insertions and deletions (INDELs), which is comparable to Illumina. However, the performance and even characteristics of structural variations (SVs) detection using DNBSEQ platforms are still unclear. RESULTS In this study, we assessed the detection of SVs using 40 tools on eight DNBSEQ whole-genome sequencing (WGS) datasets and two Illumina WGS datasets of NA12878. Our findings confirmed that the performance of SVs detection using the same tool on DNBSEQ and Illumina datasets was highly consistent, with correlations greater than 0.80 on metrics of number, size, precision and sensitivity, respectively. Furthermore, we constructed a "DNBSEQ" SV set (4,785 SVs) from the DNBSEQ datasets and an "Illumina" SV set (6,797 SVs) from the Illumina datasets. We found that these two SV sets were highly consistent of SV sites and genomic characteristics, including repetitive regions, GC distribution, difficult-to-sequence regions, and gene features, indicating the robustness of our comparative analysis and highlights the value of both platforms in understanding the genomic context of SVs. CONCLUSIONS Our study systematically analyzed and characterized germline SVs detected on WGS datasets sequenced from DNBSEQ platforms, providing a benchmark resource for further studies of SVs using DNBSEQ platforms.
Collapse
Affiliation(s)
- Junhua Rao
- MGI Tech, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | | | - Dan An
- MGI Tech, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Xinming Liang
- MGI Tech, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | | | - Fang Chen
- MGI Tech, Shenzhen, 518083, China.
- BGI, Shenzhen, 518083, China.
| |
Collapse
|
28
|
Wu H, Liu Z, Li Y. Intestinal microbiota and respiratory system diseases: Relationships with three common respiratory virus infections. Microb Pathog 2025; 203:107500. [PMID: 40139334 DOI: 10.1016/j.micpath.2025.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In recent years, the role of the intestinal microbiota in regulating host health and immune balance has attracted widespread attention. This study provides an in-depth analysis of the close relationship between the intestinal microbiota and respiratory system diseases, with a focus on three common respiratory virus infections, including respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and influenza virus. The research indicates that during RSV infection, there is a significant decrease in intestinal microbial diversity, suggesting the impact of the virus on the intestinal ecosystem. In SARS-CoV-2 infection, there are evident alterations in the intestinal microbiota, which are positively correlated with the severity of the disease. Similarly, influenza virus infection is associated with dysbiosis of the intestinal microbiota, and studies have shown that the application of specific probiotics exhibits beneficial effects against influenza virus infection. Further research indicates that the intestinal microbiota exerts a wide and profound impact on the occurrence and development of respiratory system diseases through various mechanisms, including modulation of the immune system and production of short-chain fatty acids (SCFAs). This article comprehensively analyzes these research advances, providing new perspectives and potential strategies for the prevention and treatment of future respiratory system diseases. This study not only deepens our understanding of the relationship between the intestinal microbiota and respiratory system diseases but also offers valuable insights for further exploring the role of host-microbiota interactions in the development of diseases.
Collapse
Affiliation(s)
- Haonan Wu
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- The First Hospital of Jilin University, Changchun, China.
| | - Yanan Li
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Brügger M, Machahua C, Zumkehr T, Cismaru C, Jandrasits D, Trüeb B, Ezzat S, Oliveira Esteves BI, Dorn P, Marti TM, Zimmer G, Thiel V, Funke-Chambour M, Alves MP. Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human precision-cut lung slices. Respir Res 2025; 26:112. [PMID: 40128814 PMCID: PMC11934781 DOI: 10.1186/s12931-025-03190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favoring the development of severe pneumonia. METHODS In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determining the pro-inflammatory and antiviral responses of the distal lung tissue. RESULTS Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 Early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a suboptimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to H5N1 IAV infection by an induction of IL-6 and IP10/CXCL10, both at the mRNA and protein levels, and to H1N1 IAV infection by induction of IP10/CXCL10 mRNA. Finally, while SARS-CoV-2 and H1N1 IAV infection were not causing detectable cell death, H5N1 IAV infection led to more cytotoxicity and induced significant early interferon responses. CONCLUSIONS In summary, our findings suggest that aged lung tissue might not favor viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Trix Zumkehr
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christiana Cismaru
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Virology, Freie Universitaet Berlin, Berlin, Germany
| | - Damian Jandrasits
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Bettina Trüeb
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Ezzat
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Anraku Y, Kita S, Onodera T, Sato A, Tadokoro T, Ito S, Adachi Y, Kotaki R, Suzuki T, Sasaki J, Shiwa-Sudo N, Iwata-Yoshikawa N, Nagata N, Kobayashi S, Kazuki Y, Oshimura M, Nomura T, Sasaki M, Orba Y, Suzuki T, Sawa H, Hashiguchi T, Fukuhara H, Takahashi Y, Maenaka K. Structural and virological identification of neutralizing antibody footprint provides insights into therapeutic antibody design against SARS-CoV-2 variants. Commun Biol 2025; 8:483. [PMID: 40121330 PMCID: PMC11929858 DOI: 10.1038/s42003-025-07827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Medical treatments using potent neutralizing SARS-CoV-2 antibodies have achieved remarkable improvements in clinical symptoms, changing the situation for the severity of COVID-19 patients. We previously reported an antibody, NT-108 with potent neutralizing activity. However, the structural and functional basis for the neutralizing activity of NT-108 has not yet been understood. Here, we demonstrated the therapeutic effects of NT-108 in a hamster model and its protective effects at low doses. Furthermore, we determined the cryo-EM structure of NT-108 in complex with SARS-CoV-2 spike. The single-chain Fv construction of NT-108 improved the cryo-EM maps because of the prevention of preferred orientations induced by Fab orientation. The footprints of NT-108 illuminated how escape mutations such as E484K evade from class 2 antibody recognition without ACE2 affinity attenuation. The functional and structural basis for the potent neutralizing activity of NT-108 provides insights into the rational design of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Sato
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souta Kobayashi
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
31
|
Pérez-Sanz F, Tyrkalska SD, Álvarez-Santacruz C, Moreno-Docón A, Mulero V, Cayuela ML, Candel S. Age- and disease severity-associated changes in the nasopharyngeal microbiota of COVID-19 patients. iScience 2025; 28:112091. [PMID: 40124494 PMCID: PMC11930106 DOI: 10.1016/j.isci.2025.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Although many studies have associated changes in the nasopharyngeal microbiota to patient's susceptibility to COVID-19, their results are highly variable and contradictory. Addressing the limitations in previous research responsible for that variability, this study uses 16S rRNA gene sequencing to analyze the nasopharyngeal microbiota of 395 subjects, 117 controls, and 278 COVID-19 patients, of different age groups that cover the entire lifespan and across varying disease severities. This revealed that bacterial alpha diversity decreases progressively throughout life but only in severely ill COVID-19 patients, in whose nasopharynx, moreover, several opportunistic pathogen bacterial genera are overrepresented. Notably, Scardovia wiggsiae appears only in severe COVID-19 patients over 60 years of age, suggesting its potential utility as a COVID-19 severity biomarker in the elderly, who are the most susceptible individuals to suffer from serious forms of the disease. Thus, our results provide valuable insights into age-associated dynamics within nasopharyngeal microbiota during severe COVID-19.
Collapse
Affiliation(s)
- Fernando Pérez-Sanz
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
| | - Sylwia D. Tyrkalska
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Álvarez-Santacruz
- Servicio de Otorrinolaringología, Hospital de la Vega Lorenzo Guirao, Cieza 30530, Murcia, Spain
| | - Antonio Moreno-Docón
- Servicio de Microbiología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento, Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Sergio Candel
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
32
|
Park YJ, Liu C, Lee J, Brown JT, Ma CB, Liu P, Gen R, Xiong Q, Zepeda SK, Stewart C, Addetia A, Craig CJ, Tortorici MA, Alshukairi AN, Starr TN, Yan H, Veesler D. Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses. Cell 2025; 188:1711-1728.e21. [PMID: 39922192 DOI: 10.1016/j.cell.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
DPP4 was considered a canonical receptor for merbecoviruses until the recent discovery of African bat-borne MERS-related coronaviruses using ACE2. The extent and diversity of ACE2 utilization among merbecoviruses and their receptor species tropism remain unknown. Here, we reveal that HKU5 enters host cells utilizing Pipistrellus abramus (P.abr) and several non-bat mammalian ACE2s through a binding mode distinct from that of any other known ACE2-using coronaviruses. We defined the molecular determinants of receptor species tropism and identified a single amino acid mutation enabling HKU5 to utilize human ACE2, providing proof of principle for machine-learning-assisted outbreak preparedness. We show that MERS-CoV and HKU5 have markedly distinct antigenicity and identified several HKU5 inhibitors, including two clinical compounds. Our findings profoundly alter our understanding of coronavirus evolution, as several merbecovirus clades independently evolved ACE2 utilization, and pave the way for developing countermeasures against viruses poised for human emergence.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caroline J Craig
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Chen J, Zhang W, Li Y, Liu C, Dong T, Chen H, Wu C, Su J, Li B, Zhang W, Hu B, Jia J, Ma CB, Zhu Y, He X, Li A, Pan K, Lin H, Guo Z, Li C, Zhang L, Yan H, Zhou P, Peng W, Shi ZL. Bat-infecting merbecovirus HKU5-CoV lineage 2 can use human ACE2 as a cell entry receptor. Cell 2025; 188:1729-1742.e16. [PMID: 39970913 DOI: 10.1016/j.cell.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Merbecoviruses comprise four viral species with remarkable genetic diversity: MERS-related coronavirus, Tylonycteris bat coronavirus HKU4, Pipistrellus bat coronavirus HKU5, and Hedgehog coronavirus 1. However, the potential human spillover risk of animal merbecoviruses remains to be investigated. Here, we reported the discovery of HKU5-CoV lineage 2 (HKU5-CoV-2) in bats that efficiently utilize human angiotensin-converting enzyme 2 (ACE2) as a functional receptor and exhibits a broad host tropism. Cryo-EM analysis of HKU5-CoV-2 receptor-binding domain (RBD) and human ACE2 complex revealed an entirely distinct binding mode compared with other ACE2-utilizing merbecoviruses with RBD footprint largely shared with ACE2-using sarbecoviruses and NL63. Structural and functional analyses indicate that HKU5-CoV-2 has a better adaptation to human ACE2 than lineage 1 HKU5-CoV. Authentic HKU5-CoV-2 infected human ACE2-expressing cell lines and human respiratory and enteric organoids. This study reveals a distinct lineage of HKU5-CoVs in bats that efficiently use human ACE2 and underscores their potential zoonotic risk.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yang Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianyi Dong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiyu Chen
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chunguang Wu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Su
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ben Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingkun Jia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yan Zhu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ang Li
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Kaiyi Pan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haofeng Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zishuo Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cong Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Peng Zhou
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Wei Peng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zheng-Li Shi
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
34
|
Ma CB, Liu C, Park YJ, Tang J, Chen J, Xiong Q, Lee J, Stewart C, Asarnow D, Brown J, Tortorici MA, Yang X, Sun YH, Chen YM, Yu X, Si JY, Liu P, Tong F, Huang ML, Li J, Shi ZL, Deng Z, Veesler D, Yan H. Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses. Cell 2025; 188:1693-1710.e18. [PMID: 39922191 DOI: 10.1016/j.cell.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor is shared by various coronaviruses with distinct receptor-binding domain (RBD) architectures, yet our understanding of these convergent acquisition events remains elusive. Here, we report that two bat MERS-related coronaviruses (MERSr-CoVs) infecting Pipistrellus nathusii (P.nat)-MOW15-22 and PnNL2018B-use ACE2 as their receptor, with narrow ortholog specificity. Cryoelectron microscopy structures of the MOW15-22/PnNL2018B RBD-ACE2 complexes unveil an unexpected and entirely distinct binding mode, mapping >45 Å away from that of any other known ACE2-using coronaviruses. Functional profiling of ACE2 orthologs from 105 mammalian species led to the identification of host tropism determinants, including an ACE2 N432-glycosylation restricting viral recognition, and the design of a soluble P.nat ACE2 mutant with potent viral neutralizing activity. Our findings reveal convergent acquisition of ACE2 usage for merbecoviruses found in European bats, underscoring the extraordinary diversity of ACE2 recognition modes among coronaviruses and the promiscuity of this receptor.
Collapse
Affiliation(s)
- Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jingjing Tang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Xiao Yang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jun-Yu Si
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Fei Tong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jing Li
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zheng-Li Shi
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China.
| | - Zengqin Deng
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430207, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
35
|
Arunsiripate TT, Groeltz-Thrush J, Saeng-Chuto K, Guo B, Michael A, Siepker C, Derscheid RJ, Rahe MC, Zhang J, Burrough E, Piñeyro PE. Diagnostic investigation of porcine hemagglutinating encephalomyelitis virus as potential pathogen associated with respiratory clinical signs and pulmonary lesions in pigs. Microb Pathog 2025; 203:107493. [PMID: 40120700 DOI: 10.1016/j.micpath.2025.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the genus Betacoronavirus, known for its impact on the central and peripheral nervous systems in pigs. Traditionally associated with vomiting and wasting disease (VWD) and encephalomyelitis, PHEV was first reported in Canada in the late 1950s and has since been identified in numerous countries. Although serologic studies indicate global dissemination, the prevalence of PHEV remains unclear due to sporadic reporting and lack of active surveillance. Neonatal pigs are particularly vulnerable, with outbreaks resulting in high morbidity and mortality. Histopathological findings typically include non-suppurative encephalomyelitis and lymphoplasmacytic perivascular cuffs, gliosis, and neuronal degeneration. Recent observations have suggested a potential role for PHEV in respiratory disease, a hypothesis prompted by cases of influenza-like symptoms in pigs in Michigan in 2015 and corroborated by subsequent reports. This study aims to explore this possibility through a combination of clinical outbreak analysis and retrospective investigation. PHEV was confirmed via qPCR in 83.33 % of pigs examined for respiratory disease, with histological lesions such as necrotizing bronchitis and bronchiolitis. In-situ hybridization (ISH) confirmed the presence of PHEV mRNA in respiratory epithelium, and immunohistochemical analysis revealed significant macrophage infiltration in affected lung. Phylogenetic analysis indicated that PHEV strains from respiratory cases cluster closely with historical respiratory strains, though distinct from neurologic strains. This genetic differentiation suggests possible phenotypic variation contributing to respiratory tropism. The retrospective study identified PHEV in 7.62 % of cases with necrotizing bronchitis or bronchiolitis, reinforcing the virus's potential role in respiratory disease. Notably, PHEV co-infection with other respiratory pathogens such as PRRSV was observed, suggesting it may contribute to the porcine respiratory disease complex (PRDC). These findings suggest that PHEV is a significant respiratory pathogen in swine, warranting its inclusion in the differential diagnosis for respiratory disease in nursery pigs. Future research should focus on elucidating the pathogenesis of PHEV in respiratory disease, host-virus interactions, and the virus's impact on immune response and secondary infections. Understanding these factors will be crucial in developing effective preventive and therapeutic strategies against PHEV in swine.
Collapse
Affiliation(s)
- Trevor T Arunsiripate
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Jennifer Groeltz-Thrush
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Kepalee Saeng-Chuto
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Baoqing Guo
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Alyona Michael
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Christopher Siepker
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Rachel J Derscheid
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Michael C Rahe
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA; Department of Population Health and Pathobiology, North Caroline State University, NC, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Eric Burrough
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA
| | - Pablo E Piñeyro
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, IA, USA.
| |
Collapse
|
36
|
Milon TI, Sarkar T, Chen Y, Grider JM, Chen F, Ji JY, Jois SD, Kousoulas KG, Raghavan V, Xu W. Development of the TSR-based computational method to investigate spike and monoclonal antibody interactions. Front Chem 2025; 13:1395374. [PMID: 40177350 PMCID: PMC11962798 DOI: 10.3389/fchem.2025.1395374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Monoclonal antibody (mAb) drug treatments have proven effective in reducing COVID-19-related hospitalizations or fatalities, particularly among high-risk patients. Numerous experimental studies have explored the structures of spike proteins and their complexes with ACE2 or mAbs. These 3D structures provide crucial insights into the interactions between spike proteins and ACE2 or mAb, forming a basis for the development of diagnostic tools and therapeutics. However, the field of computational biology has faced substantial challenges due to the lack of methods for precise protein structural comparisons and accurate prediction of molecular interactions. In our previous studies, we introduced the Triangular Spatial Relationship (TSR)-based algorithm, which represents a protein's 3D structure using a vector of integers (keys). These earlier studies, however, were limited to individual proteins. Purpose This study introduces new extensions of the TSR-based algorithm, enhancing its ability to study interactions between two molecules. We apply these extensions to gain a mechanistic understanding of spike - mAb interactions. Method We expanded the basic TSR method in three novel ways: (1) TSR keys encompassing all atoms, (2) cross keys for interactions between two molecules, and (3) intra-residual keys for amino acids. This TSR-based representation of 3D structures offers a unique advantage by simplifying the search for similar substructures within structural datasets. Results The study's key findings include: (i) The method effectively quantified and interpreted conformational changes and steric effects using the newly introduced TSR keys. (ii) Six clusters for CDRH3 and three clusters for CDRL3 were identified using all-atom keys. (iii) We constructed the TSR-STRSUM (TSR-STRucture SUbstitution Matrix), a matrix that represents pairwise similarities between amino acid structures, providing valuable applications in protein sequence and structure comparison. (iv) Intra-residual keys revealed two distinct Tyr clusters characterized by specific triangle geometries. Conclusion This study presents an advanced computational approach that not only quantifies and interprets conformational changes in protein backbones, entire structures, or individual amino acids, but also facilitates the search for substructures induced by molecular binding across protein datasets. In some instances, a direct correlation between structures and functions was successfully established.
Collapse
Affiliation(s)
- Tarikul I. Milon
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Titli Sarkar
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Yixin Chen
- Department of Computer and Information Science, The University of Mississippi, University, MS, United States
| | - Jordan M. Grider
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, LA, United States
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vijay Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
37
|
Zhang Y, Ji X, Huang D, Lu G, Chen X. The SARS-CoV-2 3CL protease inhibits pyroptosis through the cleavage of gasdermin D. Virol Sin 2025:S1995-820X(25)00028-8. [PMID: 40118151 DOI: 10.1016/j.virs.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019, can cause acute respiratory symptoms and even death globally. However, the immune escape mechanism and viral pathogenesis remain poorly understood. Here, we report that the SARS-CoV-2 3C-like (3CL) protease specifically cleaves gasdermin D (GSDMD) at Q29 and Q193, producing two N-terminal fragments, GSDMD1-29 and GSDMD1-193. We also found that SARS-CoV-2 infection induced the cleavage of GSDMD. Then, we demonstrated that the ability to cleave GSDMD was dependent on the protease activity of the 3CL protease. Interestingly, unlike the GSDMD1-275 fragment cleaved by caspase-1, GSDMD1-29 and GSDMD1-193 did not trigger pyroptosis or inhibit SARS-CoV-2 replication. Additionally, various RNA viral proteases display different preferences for cleaving GSDMD at Q29 and Q193. Our findings reveal a mechanism by which SARS-CoV-2 and other RNA viruses inhibit pyroptosis, highlighting the critical role of the 3CL protease in immune evasion and viral replication.
Collapse
Affiliation(s)
- Yecheng Zhang
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xinlei Ji
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Dan Huang
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Gen Lu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Xinwen Chen
- Guangzhou Laboratory, Guangzhou 510005, China.
| |
Collapse
|
38
|
Ozawa T, Chubachi S, Namkoong H, Nemoto S, Ikegami R, Asakura T, Tanaka H, Lee H, Fukushima T, Azekawa S, Otake S, Nakagawara K, Watase M, Masaki K, Kamata H, Harada N, Ueda T, Ueda S, Ishiguro T, Arimura K, Saito F, Yoshiyama T, Nakano Y, Muto Y, Suzuki Y, Edahiro R, Murakami K, Sato Y, Okada Y, Koike R, Ishii M, Hasegawa N, Kitagawa Y, Tokunaga K, Kimura A, Miyano S, Ogawa S, Kanai T, Fukunaga K, Imoto S. Predicting coronavirus disease 2019 severity using explainable artificial intelligence techniques. Sci Rep 2025; 15:9459. [PMID: 40108236 PMCID: PMC11923144 DOI: 10.1038/s41598-025-85733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025] Open
Abstract
Predictive models for determining coronavirus disease 2019 (COVID-19) severity have been established; however, the complexity of the interactions among factors limits the use of conventional statistical methods. This study aimed to establish a simple and accurate predictive model for COVID-19 severity using an explainable machine learning approach. A total of 3,301 patients ≥ 18 years diagnosed with COVID-19 between February 2020 and October 2022 were included. The discovery cohort comprised patients whose disease onset fell before October 1, 2020 (N = 1,023), and the validation cohort comprised the remaining patients (N = 2,278). Pointwise linear and logistic regression models were used to extract 41 features. Reinforcement learning was used to generate a simple model with high predictive accuracy. The primary evaluation was the area under the receiver operating characteristic curve (AUC). The predictive model achieved an AUC of ≥ 0.905 using four features: serum albumin levels, lactate dehydrogenase levels, age, and neutrophil count. The highest AUC value was 0.906 (sensitivity, 0.842; specificity, 0.811) in the discovery cohort and 0.861 (sensitivity, 0.804; specificity, 0.675) in the validation cohort. Simple and well-structured predictive models were established, which may aid in patient management and the selection of therapeutic interventions.
Collapse
Affiliation(s)
- Takuya Ozawa
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shota Nemoto
- Industrial and Digital Business Unit, Hitachi, Ltd, Tokyo, Japan
| | - Ryo Ikegami
- Industrial and Digital Business Unit, Hitachi, Ltd, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mayuko Watase
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Soichiro Ueda
- JCHO (Japan Community Health Care Organization, Internal Medicine, Saitama Medical Center, Saitama, Japan
| | - Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Ken Arimura
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fukuki Saito
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Osaka, Japan
| | | | - Yasushi Nakano
- Department of Internal Medicine, Kawasaki Municipal Ida Hospital, Kawasaki, Kanagawa, Japan
| | - Yoshikazu Muto
- Department of Infectious Diseases, Tosei General Hospital, Aichi, Japan
| | - Yusuke Suzuki
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasunori Sato
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ryuji Koike
- Health Science Research and Development Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan.
| |
Collapse
|
39
|
Wang X, Dong M, Wu X, Schnepf D, Thiel J, Sun W, Wolfrum C, Li S, Jin W, Staeheli P, Ye L. Single-cell transcriptomics reveals a compartmentalized antiviral interferon response in the nasal epithelium of mice. J Virol 2025; 99:e0141324. [PMID: 39902863 PMCID: PMC11915831 DOI: 10.1128/jvi.01413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Type III interferons (IFNs) primarily act on epithelial cells and protect against virus infection of the mucosa, whereas type I IFNs act more systemically. To date, it has been unknown which epithelial subtypes in the upper airways, the primary site for initial infection for most respiratory viruses, primarily rely on type III IFN or type I IFNs for antiviral protection. To address this question, we performed a single-cell transcriptomics analysis of the epithelial IFN-mediated response focusing on the upper airways of mice. This work identified nine distinct cell types derived from the olfactory epithelium and thirteen distinct cell types from the respiratory epithelium. Interestingly, type I IFNs induced a stronger antiviral transcriptional response than type III IFN in respiratory epithelial cells, whereas in olfactory epithelial cells, including sustentacular (SUS) and Bowman's gland cells (BGC), type III IFN was more dominant compared to type I IFN. SUS and BGC, which provide structural support and maintain the integrity of olfactory sensory neurons, were highly susceptible to infection with a mouse-adapted variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 MA20) but were protected against infection if the animals were prophylactically treated with type III IFN. These findings demonstrate a high degree of cell type heterogeneity in terms of interferon-mediated antiviral responses and reveal a potent role for type III IFNs in protecting the olfactory epithelium.IMPORTANCESARS-CoV-2 infects SUS and BGC in the olfactory epithelium, causing an impairment of structural support and integrity of olfactory sensory neurons that can result in severe olfactory dysfunctions. We observed an unexpected compartmentalization of the IFN-mediated transcriptional response within the airway epithelium, and we found that olfactory epithelial cells preferentially respond to type III IFN, which resulted in robust antiviral protection of SUS and BGC. Given the proximity of the olfactory epithelium to the central nervous system, we hypothesize that evolution favored a type III IFN-biased antiviral immune response in this tissue to limit inflammatory responses in the brain. Cell type-specific antiviral responses in the upper airways, triggered by the different types of IFNs, should be investigated in more detail and carefully taken into consideration during the development of IFN-based antivirals for clinical use.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Key Laboratory of Gene Regulation, Department of Systems Biology School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Meng Dong
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Xinchao Wu
- Shenzhen Key Laboratory of Gene Regulation, Department of Systems Biology School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Julia Thiel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Sisi Li
- Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
40
|
Hong L, Chen X, Liu Y, Liang H, Zhao Y, Guo P. The relationship between ferroptosis and respiratory infectious diseases: a novel landscape for therapeutic approach. Front Immunol 2025; 16:1550968. [PMID: 40170865 PMCID: PMC11959089 DOI: 10.3389/fimmu.2025.1550968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory infectious diseases, particularly those caused by respiratory viruses, have the potential to lead to global pandemics, thereby posing significant threats to public and human health. Historically, the primary treatment for respiratory bacterial infections has been antibiotic therapy, while severe cases of respiratory viral infections have predominantly been managed by controlling inflammatory cytokine storms. Ferroptosis is a novel form of programmed cell death that is distinct from apoptosis and autophagy. In recent years, Recent studies have demonstrated that ferroptosis plays a significant regulatory role in various respiratory infectious diseases, indicating that targeting ferroptosis may represent a novel approach for the treatment of these conditions. This article summarized the toxic mechanisms underlying ferroptosis, its relationship with respiratory infectious diseases, the mechanisms of action, and current treatment strategies. Particular attentions were given to the interplay between ferroptosis and Mycobacterium tuberculosis, Epstein-Barr virus, severe acute respiratory syndrome coronavirus-2, Pseudomonas aeruginosa, dengue virus, influenza virus and herpes simplex virus type1infection. A deeper understanding of the regulatory mechanisms of ferroptosis in respiratory infections will not only advance our knowledge of infection-related pathophysiology but also provide a theoretical foundation for the development of novel therapeutic strategies. Targeting ferroptosis pathways represents a promising therapeutic approach for respiratory infections, with significant clinical and translational implications.
Collapse
Affiliation(s)
- Longyan Hong
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiangyu Chen
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yiming Liu
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hao Liang
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinghui Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pengbo Guo
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
41
|
Soultsioti M, de Jong AWM, Blomberg N, Tas A, Giera M, Snijder EJ, Bárcena M. Perturbation of de novo lipogenesis hinders MERS-CoV assembly and release, but not the biogenesis of viral replication organelles. J Virol 2025; 99:e0228224. [PMID: 39976449 PMCID: PMC11915874 DOI: 10.1128/jvi.02282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Coronaviruses hijack host cell metabolic pathways and resources to support their replication. They induce extensive host endomembrane remodeling to generate viral replication organelles and exploit host membranes for assembly and budding of their enveloped progeny virions. Because of the overall significance of host membranes, we sought to gain insight into the role of host factors involved in lipid metabolism in cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV). We employed a single-cycle infection approach in combination with pharmacological inhibitors, biochemical assays, lipidomics, and light and electron microscopy. Pharmacological inhibition of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN), key host factors in de novo fatty acid biosynthesis, led to pronounced inhibition of MERS-CoV particle release. Inhibition of ACC led to a profound metabolic switch in Huh7 cells, altering their lipidomic profile and inducing lipolysis. However, despite the extensive changes induced by the ACC inhibitor, the biogenesis of viral replication organelles remained unaffected. Instead, ACC inhibition appeared to affect the trafficking and post-translational modifications of the MERS-CoV envelope proteins. Electron microscopy revealed an accumulation of nucleocapsids in early budding stages, indicating that MERS-CoV assembly is adversely impacted by ACC inhibition. Notably, inhibition of palmitoylation resulted in similar effects, while supplementation of exogenous palmitic acid reversed the compound's inhibitory effects, possibly reflecting a crucial need for palmitoylation of the MERS-CoV spike and envelope proteins for their role in virus particle assembly.IMPORTANCEMiddle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a zoonotic respiratory disease of limited transmissibility between humans. However, MERS-CoV is still considered a high-priority pathogen and is closely monitored by WHO due to its high lethality rate of around 35% of laboratory-confirmed infections. Like other positive-strand RNA viruses, MERS-CoV relies on the host cell's endomembranes to support various stages of its replication cycle. However, in spite of this general reliance of MERS-CoV replication on host cell lipid metabolism, mechanistic insights are still very limited. In our study, we show that pharmacological inhibition of acetyl-CoA carboxylase (ACC), a key enzyme in the host cell's fatty acid biosynthesis pathway, significantly disrupts MERS-CoV particle assembly without exerting a negative effect on the biogenesis of viral replication organelles. Furthermore, our study highlights the potential of ACC as a target for the development of host-directed antiviral therapeutics against coronaviruses.
Collapse
Affiliation(s)
- M Soultsioti
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - A W M de Jong
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - N Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - A Tas
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - M Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - E J Snijder
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - M Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
42
|
Oh MJ, Moon JM, Ko SC, Kim MJ, Sung KS, Lee JW, Hong JY, Lee JS, Kim YH. A New Method Proposed for Analyzing Airflow Dynamics in Negative Pressure Isolation Chambers Using Particle Image Velocimetry. Bioengineering (Basel) 2025; 12:302. [PMID: 40150766 PMCID: PMC11939688 DOI: 10.3390/bioengineering12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The COVID-19 pandemic has highlighted the significant infection risks posed by aerosol generating procedures (AGPs). We developed a hood that covers the patient's respiratory area, incorporating a negative pressure system to contain aerosols. This study analyzed the movement and containment of aerosols within a developed negative pressure isolation chamber. Using particle image velocimetry (PIV) technology, in the optimized design, the characteristics of aerosols were analyzed under both negative and non-negative pressure conditions. The results demonstrated that in the absence of negative pressure, droplets dispersed widely, with diffusion angles ranging from 26.9° to 34.2°, significantly increasing the risk of external leakage. When negative pressure was applied, the diffusion angles narrowed to 20.0-35.1° and inward airflow effectively directed droplets away from the chamber boundary, preventing external dispersion. Additionally, sensor data measuring particle concentrations confirmed that droplets smaller than 10 µm were fully contained under negative pressure, strongly supporting the chamber's effectiveness. The strong agreement between PIV flow patterns and sensor measurements underscores the reliability of the experimental methodology. These findings highlight the chamber's ability to suppress external leakage while offering superior flexibility and portability compared to conventional isolation systems, making it ideal for emergency responses, mobile healthcare units, and large-scale infectious disease outbreaks.
Collapse
Affiliation(s)
- Min Jae Oh
- AI &Energy Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea; (M.J.O.); (J.M.M.)
| | - Jung Min Moon
- AI &Energy Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea; (M.J.O.); (J.M.M.)
| | - Seung Cheol Ko
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea; (S.C.K.); (J.S.L.)
| | - Min Ji Kim
- Emergency Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Ki Sub Sung
- SS-ENG Co., Ltd., Bucheon 14449, Republic of Korea; (K.S.S.); (J.W.L.)
| | - Jung Woo Lee
- SS-ENG Co., Ltd., Bucheon 14449, Republic of Korea; (K.S.S.); (J.W.L.)
| | - Ju Young Hong
- Emergency Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Joon Sang Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea; (S.C.K.); (J.S.L.)
| | - Yong Hyun Kim
- AI &Energy Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea; (M.J.O.); (J.M.M.)
| |
Collapse
|
43
|
Cui J, Xiang S, Zhang Q, Xiao S, Yuan G, Liu C, Li S. Design, Synthesis, and Biological Evaluation of 5,8-Dimethyl Shikonin Oximes as SARS-CoV-2 M pro Inhibitors. Molecules 2025; 30:1321. [PMID: 40142096 PMCID: PMC11945236 DOI: 10.3390/molecules30061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
We have designed, synthesized, and characterized a small library of shikonin derivatives and demonstrated their inhibitory activity against the main protease, Mpro, of SARS-CoV-2. One analog, 5,8-dimethyl shikonin oxime (15), exhibited the highest activity against SARS-CoV-2 Mpro with an IC50 value of 12.53 ± 3.59 μM. It exhibited much less toxicity as compared with the parent compound, shikonin, in both in vitro and in vivo models. Structure-activity relationship analysis indicated that the oxime moieties on the naphthalene ring and the functional groups attached to the oxygen atom on the side chain play a pivotal role in enzymatic inhibitory activity. Molecular docking results implied that the inhibitor 15 is perfectly settled in the core of the substrate-binding pocket of Mpro by possibly interacting with three catalytic residues, His41, Cys145, and Met165. Overall, the shikonin oxime derivative 15 deserves further investigation as an antiviral agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (S.X.); (G.Y.); (C.L.)
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Shouyan Xiang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (S.X.); (G.Y.); (C.L.)
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Qijing Zhang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China; (Q.Z.); (S.L.)
| | - Shangqing Xiao
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (S.X.); (G.Y.); (C.L.)
| | - Gaoyang Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (S.X.); (G.Y.); (C.L.)
| | - Chenwu Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (S.X.); (G.Y.); (C.L.)
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China; (Q.Z.); (S.L.)
| |
Collapse
|
44
|
Usserbayev B, Sultankulova KT, Burashev Y, Melisbek A, Shirinbekov M, Myrzakhmetova BS, Zhunushov A, Smekenov I, Kerimbaev A, Nurabaev S, Chervyakova O, Kozhabergenov N, Kutumbetov LB. Genetic Variations of Three Kazakhstan Strains of the SARS-CoV-2 Virus. Viruses 2025; 17:415. [PMID: 40143342 PMCID: PMC11945512 DOI: 10.3390/v17030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Prompt determination of the etiological agent is important in an outbreak of pathogens with pandemic potential, particularly for dangerous infectious diseases. Molecular genetic methods allow for arriving at an accurate diagnosis, employing timely preventive measures, and controlling the spread of the disease-causing agent. In this study, whole-genome sequencing of three SARS-CoV-2 strains was performed using the Sanger method, which provides high accuracy in determining nucleotide sequences and avoids errors associated with multiple DNA amplification. Complete nucleotide sequences of samples, KAZ/Britain/2021, KAZ/B1.1/2021, and KAZ/Delta020/2021 were obtained, with sizes of 29.751 bp, 29.815 bp, and 29.840 bp, respectively. According to the COVID-19 Genome Annotator, 127 mutations were detected in the studied samples compared to the reference strain. The strain KAZ/Britain/2021 contained 3 deletions, 7 synonymous mutations, and 27 non-synonymous mutations, the second strain KAZ/B1.1/2021 contained 1 deletion, 5 synonymous mutations, and 31 non-synonymous mutations, and the third strain KAZ/Delta020/2021 contained 1 deletion, 5 synonymous mutations, and 37 non-synonymous mutations, respectively. The variations C241T, F106F, P314L, and D614G found in the 5' UTR, ORF1ab, and S regions were common to all three studied samples, respectively. According to PROVEAN data, the loss-of-function mutations identified in strains KAZ/Britain/2021, KAZ/B1.1/2021, and KAZ/Delta020/2021 include 5 mutations (P218L, T716I, W149L, R52I, and Y73C), 2 mutations (S813I and Q992H), and 8 mutations (P77L, L452R, I82T, P45L, V82A, F120L, F120L, and R203M), respectively. Phylogenetic analysis showed that the strains studied (KAZ/Britain/2021, KAZ/B1.1/2021, and KAZ/Delta020/2021) belong to different SARS-CoV-2 lineages, which are closely related to samples from Germany (OU141323.1 and OU365922.1), Mexico (OK432605.1), and again Germany (OV375251.1 and OU375174.1), respectively. The nucleotide sequences of the studied SARS-CoV-2 virus strains were registered in the Genbank database with the accession numbers: ON692539.1, OP684305, and OQ561548.1.
Collapse
Affiliation(s)
- Bekbolat Usserbayev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
- Institute of Biotechnology, National Academy of Science of Kyrgyzstan, Bishkek 720071, Kyrgyzstan
| | - Kulyaisan T. Sultankulova
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Yerbol Burashev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Aibarys Melisbek
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Meirzhan Shirinbekov
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Balzhan S. Myrzakhmetova
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Asankadir Zhunushov
- Institute of Biotechnology, National Academy of Science of Kyrgyzstan, Bishkek 720071, Kyrgyzstan
| | - Izat Smekenov
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Aslan Kerimbaev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Sergazy Nurabaev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Olga Chervyakova
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Nurlan Kozhabergenov
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Lesbek B. Kutumbetov
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| |
Collapse
|
45
|
Wang J, Ma Y, Li Z, Yuan H, Liu B, Li Z, Su M, Habib G, Liu Y, Fu L, Wang P, Li M, He J, Chen J, Zhou P, Shi Z, Chen X, Xiong X. SARS-related coronavirus S-protein structures reveal synergistic RBM interactions underpinning high-affinity human ACE2 binding. SCIENCE ADVANCES 2025; 11:eadr8772. [PMID: 40085715 PMCID: PMC11908486 DOI: 10.1126/sciadv.adr8772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
High-affinity and specific binding toward the human angiotensin-converting enzyme 2 (hACE2) receptor by severe acute respiratory syndrome coronavirus (SARS)-related coronaviruses (SARSr-CoVs) remains incompletely understood. We report cryo-electron microscopy structures of eight different S-proteins from SARSr-CoVs found across Asia, Europe, and Africa. These S-proteins all adopt tightly packed, locked, prefusion conformations. These structures enable the classification of SARSr-CoV S-proteins into three types, based on their receptor-binding motif (RBM) structures and ACE2 binding characteristics. Type-2 S-proteins often preferentially bind bat ACE2 (bACE2) over hACE2. We report a structure of a type-2 BtKY72-RBD in complex with bACE2 to understand ACE2 specificity. Structure-guided mutagenesis of BtKY72-RBD reveals that multiple synergistic mutations in four different regions of RBM are required to achieve high-affinity hACE2 binding. Similar RBM changes can also confer hACE2 binding to another type-2 BM48-31 S-protein, which is primarily non-ACE2 binding. These results provide an understanding of how high-affinity hACE2 binding may be acquired by SARSr-CoV S-proteins.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Graduate School of Guangzhou Medical University, Guangzhou, China
| | - Hang Yuan
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zexuan Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengzhen Su
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Gul Habib
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yutong Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lutang Fu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Mei Li
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Peng Zhou
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhengli Shi
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
46
|
Feng Z, Zhao H, Li Z, Lin M, Huang W, Liu C, Shen Y, Chen Q. The Infectivity and Pathogenicity Characteristics of a Recombinant Porcine Epidemic Diarrhea Virus, CHFJFQ. Viruses 2025; 17:401. [PMID: 40143328 PMCID: PMC11945473 DOI: 10.3390/v17030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) presents a substantial challenge to the global swine industry. However, the origin, host range, and potential cross-species transmission of PEDV remain poorly understood. This study characterizes a novel PEDV strain, CHFJFQ, isolated from diarrheic piglets in Fuqing, Fujian, China. Through sequencing and phylogenetic analysis, we determined that CHFJFQ belongs to the GIIa subgroup and is a recombinant with CH/HNXX/2016 as the major parent and NW17 as the minor parent. Compared to CV777, CHFJFQ exhibits multiple base deletions and insertions across the 5'UTR, ORF1a/b, S, and ORF3 genes. Phylogenetic analysis indicates shared ancestry with bat coronaviruses, though a direct zoonotic origin remains uncertain. Interestingly, CHFJFQ demonstrated its ability to infect human and mouse cell lines in vitro and, more significantly, caused in vivo infection in both pigs and mice. The primary target organs were the intestines, lungs, and spleen, resulting in 100% mortality in suckling piglets. PEDV CHFJFQ was detected in mouse tissues, but no clinical signs were observed, indicating limited cross-species pathogenicity. Overall, these findings offer crucial insights into the epidemiology, genetics, infectivity, and pathogenicity of PEDV and provide valuable information for vaccine development.
Collapse
Affiliation(s)
- Zhihua Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350117, China;
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Minhua Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Weili Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Qi Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350117, China;
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (H.Z.); (M.L.); (W.H.); (C.L.)
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
47
|
Das S, Jain D, Chaudhary P, Quintela-Tizon RM, Banerjee A, Kesavardhana S. Bat adaptations in inflammation and cell death regulation contribute to viral tolerance. mBio 2025; 16:e0320423. [PMID: 39982110 PMCID: PMC11898699 DOI: 10.1128/mbio.03204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Bats are reservoirs for multiple viruses, some of which are known to cause global disease outbreaks. Virus spillovers from bats have been implicated in zoonotic transmission. Some bat species can tolerate viral infections, such as infections with coronaviruses and paramyxoviruses, better than humans and with less clinical consequences. Bat species are speculated to have evolved alongside these viral pathogens, and adaptations within the bat immune system are considered to be associated with viral tolerance. Inflammation and cell death in response to zoonotic virus infections prime human immunopathology. Unlike humans, bats have evolved adaptations to mitigate virus infection-induced inflammation. Inflammatory cell death pathways such as necroptosis and pyroptosis are associated with immunopathology during virus infections, but their regulation in bats remains understudied. This review focuses on the regulation of inflammation and cell death pathways in bats. We also provide a perspective on the possible contribution of cell death-regulating proteins, such as caspases and gasdermins, in modulating tissue damage and inflammation in bats. Understanding the role of these adaptations in bat immune responses can provide valuable insights for managing future disease outbreaks, addressing human disease severity, and improving pandemic preparedness.
Collapse
Affiliation(s)
- Subham Das
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Disha Jain
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Priyansh Chaudhary
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rita M. Quintela-Tizon
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sannula Kesavardhana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
48
|
Ruan W, Gao P, Qu X, Jiang J, Zhao Z, Qiao S, Zhang H, Yang T, Li D, Du P, Lu X, Wang Q, Zhao X, Gao GF. SARS-CoV-2 serotyping based on spike antigenicity and its implications for host immune evasion. EBioMedicine 2025; 114:105634. [PMID: 40080947 PMCID: PMC11951033 DOI: 10.1016/j.ebiom.2025.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND As SARS-CoV-2 continues to spread and evolve, new variants/sub-variants emerge, raising concerns about vaccine-induced immune escape. Here, we conducted a systematic analysis of the serology and immunogenicity of major circulating variants/sub-variants of SARS-CoV-2 since the outbreak. METHODS We expressed and purified trimeric S proteins from 21 SARS-CoV-2 variants, with SARS-CoV included as an outgroup. Mice were immunized, and the resulting antisera were tested for binding antibodies after the third dose injection, and for neutralizing antibodies (NAbs) after both the second and third doses. Using pseudovirus neutralization assays, we evaluated cross-neutralization among major circulating variants. By integrating serological classification, antigenic mapping, and 3D landscape analysis, we explored the antigenic relationships among different SARS-CoV-2 variants and their impact on serological responses. FINDINGS Based on the cross-neutralization activities of the sera from different S protein vaccinations and antigenicity analyses, we grouped the 21 lineages into six serotypes. Particularly, BA.2.86 and JN.1 had very weak cross-neutralization with all other SARS-CoV-2 sub-variants tested and were grouped into a separate serotype, Serotype VI. INTERPRETATION This systematic study contributes to a better understanding of the evolution of SARS-CoV-2 and its antigenic characteristics and provides valuable insights for vaccine development. FUNDING This study was supported by the National Key R&D Program of China (2023YFC2307801, 2020YFA0509202 and 2021YFA1300803), the National Natural Science Foundation of China (82222040 and 82072289), CAS Project for Young Scientists in Basic Research (YSBR-083) and Beijing Nova Program of Science and Technology (20220484181).
Collapse
Affiliation(s)
- Wenjing Ruan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyue Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junlan Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Life Science Academy, Beijing 102209, China
| | - He Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Ting Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
49
|
Iqbal Z, Asim M, Khan UA, Sultan N, Ali I. Computational electrostatic engineering of nanobodies for enhanced SARS-CoV-2 receptor binding domain recognition. Front Mol Biosci 2025; 12:1512788. [PMID: 40129869 PMCID: PMC11931142 DOI: 10.3389/fmolb.2025.1512788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel computational approach for engineering nanobodies (Nbs) for improved interaction with receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD (7VYR_R) was selected and refined for subsequent Nb-RBD interactions. By leveraging electrostatic complementarity (EC) analysis, we engineered and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5) based on the CeVICA library's SR6c3 Nb. Through targeted modifications in the complementarity-determining regions (CDR) and framework regions (FR), we optimized electrostatic interactions to improve binding affinity and specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1 and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and AS2, respectively, due to a preference for residues that conferred superior binding complementarities. Furthermore, ECSbs significantly outperformed SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior binding free energies of -182.58 kcal.mol-1 and -119.07 kcal.mol-1, respectively, compared to SR6c3 (-105.50 kcal.mol-1). ECSbs exhibited significantly higher thermostability (100.4-148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1). Similarly, enhanced electrostatic complementarity was also observed for ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-RBD (0.233). Surface analyses confirmed optimized electrostatic patches and reduced aggregation propensity in the engineered Nb. This integrated EC and structural engineering approach successfully developed engineered Nbs with enhanced binding specificity, increased thermostability, and reduced aggregation, laying the groundwork for novel therapeutic applications targeting the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al Hofuf, Saudi Arabia
| | - Muhammad Asim
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Umair Ahmad Khan
- Medical and Allied Department, Faisalabad Medical University, Faisalabad, Pakistan
| | - Neelam Sultan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
50
|
Hu S, Zhong Q, Xie X, Zhang S, Wang J, Liu H, Dai W. Research progress on critical viral protease inhibitors for coronaviruses and enteroviruses. Bioorg Med Chem Lett 2025; 122:130168. [PMID: 40074013 DOI: 10.1016/j.bmcl.2025.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Viral infectious diseases have been seriously affecting human life and health. SARS-CoV-2 was the pathogen that caused Coronavirus Disease 2019 (COVID-19), and the impact of COVID-19 is still existing. Enterovirus 71 (EV71) is the primary pathogen of hand, foot, and mouth disease (HFMD), and no effective direct-acting antiviral drugs targeting EV71 has been approved yet. Innate antiviral strategies play an important role in preventing virus infections depending on the powerful immune regulatory system of body, while viruses have evolved to exploit diverse methods to overcome immune response. Viral proteases, which are known in cleaving viral polyproteins, have also been found to modulate the innate immunity of host cells, thereby promoting viral proliferation. Herein, we reviewed the current development of SARS-CoV-2 3CLpro, PLpro, and EV71 3Cpro and 2Apro, mainly including structure, function, modulation of immune response, and inhibitors of these four proteases, to further deepen the understanding of viral pathogenesis and provide a new perspective for subsequent corresponding drug development.
Collapse
Affiliation(s)
- Shulei Hu
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qiuyu Zhong
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shurui Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jinlin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|