1
|
Jiang S, Bao H. Exploring the mechanism of esculetin extracted from Chroogomphus rutilus in treating liver cancer based on network pharmacology, molecular docking, and in vivo experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119837. [PMID: 40254108 DOI: 10.1016/j.jep.2025.119837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chroogomphus rutilus (C. rutilus) is a traditional Chinese medicine recorded in the book Illustrations of Medicinal Fungi in China that possesses a long history of use for the treatment of various diseases, including cancer. Esculetin (ES), the primary pharmacologically active ingredient of C. rutilus, exerts significant therapeutic effects against liver cancer (LC). Nonetheless, the underlying therapeutic mechanisms of ES against LC remain poorly understood. AIM OF THE STUDY To investigate the mechanisms of ES in LC treatment. MATERIALS AND METHODS ES was isolated and identified from C. rutilus. Subsequently, related targets and mechanism of ES against LC were predicted through network pharmacology and molecular docking. The antitumor effect of ES was examined using H22 tumor-bearing mouse models. The antitumor mechanism of ES was elucidated and validated using TUNEL, enzyme-linked immunosorbent assay (ELISA), immunofluorescence analysis, Western blot (WB), and quantitative real-time polymerase chain reaction (qPCR). RESULTS The chemical structure was determined using NMR carbon and hydrogen spectra. Network pharmacology analysis indicated that ES exerted anti-LC effects via the PI3K/AKT signaling pathway and associated proteins. TUNEL and ELISA revealed that ES exhibited an obvious antitumor effect in vivo and that the levels of TNF-α, IFN-γ, IL-2, and IL-6 were significantly increased. Immunofluorescence, WB, and qPCR analyses showed that ES upregulated the protein expression of Bax, caspase-3, and caspase-9 and downregulated the protein expression of Bcl-2, VEGF, and p-AKT. CONCLUSION This study demonstrates that the mechanisms of ES in LC treatment include enhancing immunity, inhibiting angiogenesis, and promoting apoptosis of tumor cells.
Collapse
Affiliation(s)
- Shuang Jiang
- Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, No. 2888 Xincheng Street, Nanguan District, Changchun, Jilin, 130118, China; College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Haiying Bao
- Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, No. 2888 Xincheng Street, Nanguan District, Changchun, Jilin, 130118, China; College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Chen W, Li Y, Zhou Q, Peng W, Cao M, Zhao Y, Yang Z, Xiong S, Huang H, Liu L, Bai S, Cheng B. The cancer-associated fibroblast facilitates YAP liquid-liquid phase separation to promote cancer cell stemness in HCC. Cell Commun Signal 2025; 23:238. [PMID: 40413530 PMCID: PMC12103779 DOI: 10.1186/s12964-025-02256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer stem cells (CSCs) are strongly associated with the refractory characteristics of Hepatocellular carcinoma (HCC). However, the complex interaction between CSCs and the tumor microenvironment remains incompletely understood. In this study, we identified a novel long non-coding RNA (lncRNA) NEAT1 in cancer-associated fibroblast (CAFs)-derived extracellular vesicles (EVs) that play a critical role in the induction of CSCs and HCC tumorigenesis. NEAT1 was significantly overexpressed in human HCC tissues. Furthermore, high expression of lncRNA NEAT1 in EVs was found to be associated with poor prognosis. Knockdown of NEAT1 in CAFs inhibited invasion, migration, and tumor growth. Mechanistically, NEAT1 promoted cancer cell stemness, including 3D spheroid formation, by facilitating the liquid-liquid phase separation (LLPS) of the transcription factor YAP. Specifically, NEAT1 is directly bound to the intrinsic disordered region in the YAP protein, promoting the formation of LLPS biomolecular condensates. Additionally, a positive correlation between NEAT1 and Nanog was observed in clinical HCC tissues. In conclusion, our findings reveal that NEAT1 promotes HCC carcinogenesis and CSC induction by facilitating the LLPS of the YAP protein.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Qiaodan Zhou
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Mengdie Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Zihan Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Hai Huang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Luyao Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China.
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430022, Hubei, China.
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430030, China.
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No.1095, Wuhan, 430022, Hubei, China.
| |
Collapse
|
3
|
Zhao J, Li Y, Zhu J, Li H, Jin X. Ubiquitination in hepatocellular carcinoma immunity. J Transl Med 2025; 23:574. [PMID: 40410880 PMCID: PMC12102898 DOI: 10.1186/s12967-025-06592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent malignancy worldwide, and represents a major global health challenge. While surgical resection at early stages offers favorable prognosis with 5-year survival rates exceeding 70%, the clinical reality in China reveals a contrasting scenario, where over 60% of patients present with advanced disease, resulting in a dramatic decline in 5-year survival to below 12.5%. The immunological landscape plays a pivotal role in HCC pathogenesis and progression, comprising two complementary arms: the innate immune system's rapid-response mechanism for immediate tumor surveillance and the adaptive immune system's antigen-specific targeting with immunological memory capabilities. Emerging evidence has highlighted ubiquitination, a sophisticated post-translational modification system, as a critical regulator of immune homeostasis in HCC pathogenesis. This molecular process exerts precise control through three primary mechanisms: (1) Modulation of immune cell activation thresholds via proteasomal degradation of signaling proteins, (2) Orchestrating immune cell differentiation through stability regulation of transcriptional factors, and (3) Maintenance of immune tolerance by dynamic modification of checkpoint regulators. Such multifaceted regulation affects both innate immune recognition pathways (e.g., NF-κB and STING signaling) and adaptive immune effectors (particularly T cell receptor signaling cascades). This comprehensive review establishes a threefold Objective: First, to elucidate the mechanistic interplay between ubiquitination networks and HCC-related immune dysregulation; Second, to systematically analyze how innate immune-associated ubiquitination events drive hepatocarcinogenesis through chronic inflammation modulation; and third, to critically evaluate recent clinical advances combining ubiquitination-targeted therapies (e.g., proteasome inhibitors and E3 ligase modulators) with immunotherapeutic regimens. Our synthesis revealed that strategic manipulation of ubiquitination pathways can potentiate PD-1/PD-L1 blockade efficacy while mitigating therapeutic resistance, particularly through modulation of tumor-associated macrophages and exhausted T cell populations. By integrating fundamental mechanistic insights with translational clinical data, this review provides a conceptual framework for the development of next-generation diagnostic biomarkers and rational therapeutic combinations. The proposed strategy of ubiquitination-immune axis modulation holds significant potential to transform current HCC management paradigms, offering new avenues for precision immunotherapy for this challenging malignancy.
Collapse
Affiliation(s)
- Jianan Zhao
- Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, P. R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yuxuan Li
- Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, P. R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Jie Zhu
- Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, P. R. China
| | - Hong Li
- Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, P. R. China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Xiaofeng Jin
- Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, P. R. China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| |
Collapse
|
4
|
Reierson MM, Acharjee A. Unsupervised machine learning-based stratification and immune deconvolution of liver hepatocellular carcinoma. BMC Cancer 2025; 25:853. [PMID: 40349011 PMCID: PMC12066050 DOI: 10.1186/s12885-025-14242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and a leading cause of cancer-related deaths globally. The tumour microenvironment (TME) influences treatment response and prognosis, yet its heterogeneity remains unclear. METHODS The unsupervised machine learning methods- agglomerative hierarchical clustering, Multi-Omics Factor Analysis with K-means++, and an autoencoder with K-means++ - stratified patients using microarray data from HCC samples. Immune deconvolution algorithms estimated the proportions of infiltrating immune cells across identified clusters. RESULTS Thirteen genes were found to influence HCC subtyping in both primary and validation datasets, with three genes-TOP2A, DCN, and MT1E-showing significant associations with survival and recurrence. DCN, a known tumour suppressor, was significant across datasets and associated with improved survival, potentially by modulating the TME and promoting an anti-tumour immune response. CONCLUSIONS The discovery of the 13 conserved genes is an important step toward understanding HCC heterogeneity and the TME, potentially leading to the identification of more reliable biomarkers and therapeutic targets. We have stratified and validated the liver cancer populations. The findings suggest further research is needed to explore additional factors influencing the TME beyond gene expression, such as tumour microbiome and stromal cell interactions.
Collapse
Affiliation(s)
- Mae Montserrat Reierson
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Animesh Acharjee
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK.
- MRC Health Data Research UK (HDR), Midlands Site, UK.
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Chang Z, Wang Z, Chen Y, Liu Y, Gao Y, Cui Y, Wang L, Liu Y, Cheng R, Liu R, Zhang L. Metabolism profiles of tannins in Phyllanthus emblica L. and its immunotherapeutic potential against hepatocellular carcinoma by re-educating tumor microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156576. [PMID: 40085988 DOI: 10.1016/j.phymed.2025.156576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Tumor-associated macrophages (TAMs) are key components of the immunosuppressive tumor microenvironment and represent significant obstacles to effective immunotherapy. Phyllanthus emblica L. (PE), a medicinal plant traditionally used in Tibet, has shown therapeutic promise. This study investigates the effects of the tannin fraction of PE (PE-TF) on HCC and its ability to modulate the tumor immunosuppressive microenvironment. METHODS We evaluated the antitumor efficacy of PE-TF using H22 xenografts and Hepa1-6 orthotopic mouse models. Transcriptomic analysis was performed to identify molecular targets underlying PE-TF suppression of HCC growth. Additionally, UPLC-MS/MS analysis identified the prototypic and metabolic components of PE-TF present in serum, tumor tissues, and adjacent normal liver tissues in the orthotopic HCC model. RESULTS PE-TF significantly suppressed tumor growth in both subcutaneous and orthotopic HCC models and promoted reprogramming of TAMs toward an antitumor M1 phenotype in vivo. Furthermore, PE-TF counteracted the protumoral effects mediated by bone marrow-derived macrophages (BMDMs) exposed to Hepa1-6-derived conditioned medium (HCM). Although TBH promoted macrophage M2 polarization, the reactive oxygen species (ROS)-scavenging activity of PE-TF effectively inhibited this process. Modulation of the tumor microenvironment by PE-TF-enhanced CD8+T cell infiltration and bolstered their antitumor response, as evidenced by increased transcription of perforin, IFN-γ, and IL-2. Transcriptomic analysis further revealed that T-cell receptor and cytotoxic T-cell signaling pathways are critical mediators of PE-TF' therapeutic effects. Moreover, we preliminarily characterized 79 components across serum, liver, and tumor tissues, and identified metabolic pathways for PE-TF ingredients-including methylation and glycosylation modifications of tumor-enriched constituents. Notably, seven components, such as corilagin and urolithin D, are hypothesized to possess immunomodulatory properties. CONCLUSION Our findings underscore the potential of PE-TF as an adjuvant immunotherapy for HCC. By scavenging ROS, PE-TF reverses the immunosuppressive M2-TAM phenotype and remodels the tumor microenvironment, thereby enhancing antitumor immunity. Additionally, integrating chemical and metabolic profiling offers a promising strategy for refining candidate selection in future drug discovery endeavors.
Collapse
Affiliation(s)
- Zihao Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Zhaohui Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yinxin Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yuqi Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ye Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yitong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Le Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yue Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Runping Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Lanzhen Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
6
|
Wu J, Yang F, Huang G. Single-cell sequencing combined with bulk RNA seq reveals the roles of natural killer cell in prognosis and immunotherapy of hepatocellular carcinoma. Sci Rep 2025; 15:15314. [PMID: 40312525 PMCID: PMC12046010 DOI: 10.1038/s41598-025-99638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of highly heterogeneous tumor characterized by a high mortality rate and poor prognosis. Natural Killer cells (NK cells) are important immune cells that play an important role in anti-tumor activities, antiviral responses, and immune regulation. The relationship between NK cells and HCC remains unclear. It would be valuable to identify a NK-related prognostic signature for HCC. WGCNA and single-cell sequencing RNA were performed to identify NK cell related genes. Gene Enrichment Analysis were used to identify the potential signal pathway. After combing genes from WGCNA and scRNA, Unicox, LASSO + StepCox and Multicox analysis were used to filter prognostic-related gene and construct a prognostic model. Then we performed Proposed time analysis to identify the developmental trajectories of NK cells. Finally, ssGSEA and estimate methods were used to evaluate the immune microenvironment and sensitivity drugs. Using the scRNA-seq data, we identified 1396 genes with high NK cell scores. Based on the results of scRNA-seq, 250 NK-related genes were identified from WGCNA. We identified 223 intersecting genes between the scRNA-seq and WGCNA. After integrating clinical data with the bulk RNA-seq data of these intersecting genes, we constructed a prognostic model to accurately predict the prognosis of HCC patients. Eventually, we found that high-risk HCC patients exhibited worse survival outcomes and lower sensitivity to immunotherapy. We constructed a risk model based on NK cell-related genes that can predict the prognosis of HCC patients accurately. This model can also predict the immunotherapy response of HCC effectively.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Single-Cell Analysis/methods
- Prognosis
- Immunotherapy/methods
- RNA-Seq
- Gene Expression Regulation, Neoplastic
- Tumor Microenvironment/immunology
- Sequence Analysis, RNA
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Male
Collapse
Affiliation(s)
- Jiahao Wu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, China
| | - Guanqun Huang
- Guangzhou Twelfth People's Hospital, Guangzhou, China.
| |
Collapse
|
7
|
Wang X, Gao M, Zhang Z, Ao X, Luo A, Wen Z, Pan X, Sun M, Wang T, Jia Z. Potential diagnostic marker gene set for non-alcoholic steatohepatitis associated hepatocellular carcinoma with lymphocyte infiltration. Transl Cancer Res 2025; 14:2274-2289. [PMID: 40386252 PMCID: PMC12079610 DOI: 10.21037/tcr-2024-2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 05/20/2025]
Abstract
Background Non-alcoholic steatohepatitis (NASH), a prominent driver of hepatocellular carcinoma (HCC) besides virus and alcohol, induces a series of complex liver structural and immune microenvironment changes, which make the early diagnosis and treatment of NASH-associated HCC (NASH-HCC) more challenging. This study aims to identify signature genes and explore the role of immune cell infiltration in NASH-HCC to improve early detection and prognosis assessment. Methods Differential gene and immune cell infiltration are important indicators for predicting the progress of oncology and responsiveness of tumor patients to immunotherapy, usually confirmed through biopsy tests with poor patient compliance. To obtain a highly correlated signature gene set and validate immune cell infiltration status, the GSE164760 and GSE102079 datasets from the Gene Expression Omnibus (GEO) database were analyzed using machine learning algorithms. Feature genes were identified based on differentially expressed genes and key modular genes identified by weighted gene co-expression network analysis (WGCNA). The signature genes were screened using the least absolute shrinkage and selection operator (LASSO), random forest, and support vector machine recursive feature elimination (SVM-RFE) machine learning algorithms. Subsequently, the signature genes were subjected to diagnostic efficacy tests, gene set enrichment analysis, immune cell infiltration assessment and real-time reverse transcription polymerase chain reaction (RT-qPCR) validation. Results Six signature genes were identified, including C-C motif chemokine ligand 14 (CCL14), C-type lectin domain family 4 member G (CLEC4G), ficolin-2 (L-ficolin, FCN2), insulin-like growth factor binding protein 3 (IGFBP3), C-X-C motif chemokine ligand 14 (CXCL14), and vasoactive intestinal polypeptide type I receptor (VIPR1). The area under the receiver operating characteristic (ROC) curve for the six signature genes was between 0.927-0.958, and the calibration curves also indicated that they had high prediction accuracy. Six signature genes were positively associated with NASH pathological process pathways including butyric acid metabolism and fatty acid degradation. The infiltration of immune cells such as M2-type macrophages was significantly positively correlated with the signature genes. RT-qPCR revealed a significant decrease in the expression of CLEC4G and IGFBP3 in the NASH-HCC model. Conclusions CLEC4G and IGFBP3 hold potential as biomarkers for clinical surveillance, offering new insights for early detection and prognosis evaluation.
Collapse
Affiliation(s)
- Xueyun Wang
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Mengzhou Gao
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Zexi Zhang
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xiang Ao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - An Luo
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Zhenguo Wen
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xingquan Pan
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Mengge Sun
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Teng Wang
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Zhaojun Jia
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
8
|
Li Y, Zhai F, Kong L, Zhu J, Li H, Jin X. Analysis and identification of PTBP2 as an oncogene in hepatocellular carcinoma. Discov Oncol 2025; 16:520. [PMID: 40220253 PMCID: PMC11993520 DOI: 10.1007/s12672-025-02216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
PURPOSE Liver cancer, also known as hepatocellular carcinoma (HCC), is one of the most prevalent and lethal malignancies in the world. The management of HCC depends on the underlying hepatic function and histological stage of the neoplasm, potentially encompassing locoregional therapies, surgical resection, hepatic transplantation, targeted drug therapies, and immunotherapy. However, the outlook for advanced HCC remains poor, with global 5-year survival rates below 15%. Consequently, it is imperative to identify novel tumor biomarkers for HCC prediction. METHODS Multiple public databases were used to analyze PTBP2 expression, potential biological functions, and immune infiltration levels in HCC. In addition, immunohistochemical staining, phenotypic experiments, flow cytometry, and mouse subcutaneous tumors were used to verify the elevated PTBP2 expression and its oncogenic effect in HCC. RESULTS The expression of PTBP2 is abnormally high in liver cancer and promoted the occurrence and development of HCC. CONCLUSIONS Our study demonstrated that HCC tissues exhibited increased levels of PTBP2 expression compared to normal liver tissues. Elevated PTBP2 expression has been identified as closely linked to low survival in patients with HCC and could be a clinically independent prognostic factor. Additionally, PTBP2 may influence the development and forecasting of patients with HCC by altering the TME. Moreover, we confirmed the association between PTBP2 expression and HCC, both in vivo and in vitro.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Wang J, Gong P, Liu Q, Wang M, Wu D, Li M, Zheng S, Wang H, Long Q. Stimulation of regulatory dendritic cells suppresses cytotoxic T cell function and alleviates DEN-induced liver injury, fibrosis and hepatocellular carcinoma. Front Immunol 2025; 16:1565486. [PMID: 40264769 PMCID: PMC12011597 DOI: 10.3389/fimmu.2025.1565486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
Background Dendritic cells (DCs) are versatile professional antigen-presenting cells and play an instrumental role in the generation of antigen-specific T-cell responses. Modulation of DC function holds promise as an effective strategy to improve anti-tumor immunotherapy efficacy and enhance self-antigen tolerance in autoimmune diseases. Methods Wild-type (WT) and TLR2 knockout (KO) mice at 2 weeks of age were injected intraperitoneally (i.p.) with a single dose of diethylnitrosamine (DEN) to induce hepatocellular carcinoma (HCC). Four weeks later, WT and KO mice were randomly divided into control and treatment groups and treated once every two days for 30 weeks with phosphate buffered saline (PBS) and a mix of 4 TLR2-activating lactic acid-producing probiotics (LAP), respectively. Mice were euthanized after 30 weeks of LAP treatment and their liver tissues were collected for gene expression, histological, flow cytometric and single-cell RNA sequencing analyses. Results We demonstrate here that oral administration of a mix of TLR2-activating LAP triggers a marked accumulation of regulatory DCs (rDCs) in the liver of mice. LAP-treated mice are protected from DEN-induced liver injury, fibrosis and HCC in a TLR2-dependent manner. Single-cell transcriptome profiling revealed that LAP treatment determines an immunosuppressive hepatic T-cell program that is characterized by a significantly reduced cytotoxic activity. The observed functional changes of T cells correlated well with the presence of a hepatic DC subset displaying a regulatory or tolerogenic transcriptional signature. Conclusion Overall, these data suggest that stimulation of regulatory dendritic cells (rDCs) in the liver by LAP suppresses cytotoxic T-cell function and alleviates DEN-induced liver damage, fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Junjie Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Pixu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingqing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Menglei Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dengfang Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Mengyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Shujie Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Lv B, Zhang F, Zhang X, Wang Z, Hao S, Ye N, He N. PBK as a novel biomarker performed excellent diagnostic and prognostic value in HCC associated with immune infiltration and methylation. J Mol Histol 2025; 56:129. [PMID: 40178670 PMCID: PMC11968539 DOI: 10.1007/s10735-024-10324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/27/2024] [Indexed: 04/05/2025]
Abstract
Diagnostic and prognosis of hepatocellular carcinoma (HCC) remain major challenge in clinic. This study aimed to explore a gene signature for diagnosis and prognosis prediction of HCC followed by mechanism investigation. Differentially expressed genes (DEGs) in HCC were screened using TCGA. With specific formula, clinic features of prognosis associated DEGs were calculated to obtained a specific model followed by Kaplan-Meier analysis. Protein-protein interaction (PPI) were predicted using STRING and associations between hub gene and clinic features were analyzed using R software. The hub gene was silenced in HCC cell lines followed by cell behaviors analyses. A prognosis associated 14-gene model was identified in this study which could significantly distinguish samples into high-risk and low-risk groups. PBK, BUB1, NUF2, and CDCA8 were the key nodes involved in the 14 gene-coded PPI with high diagnostic values, and only PBK was an independent risk factor of disease specific survival (DSS) of HCC. Moreover, higher PBK was positively correlated with pathological and histological grades, higher AFP, and infiltrations of Th2, T helper cells and aDC of HCC, but negatively correlated with the killer immune cells. Dysregulated methylation might contribute to the higher expression of PBK and silencing PBK significantly suppressed the proliferation, growth, migration, and invasion of HCC cells. PBK, BUB1, NUF2, and CDCA8 played crucial role in prognosis associated 14-gene model with high diagnostic values. Methylation dysregulation-induced PBK accumulation might promote the development of HCC via modulating immune surveillance.
Collapse
Affiliation(s)
- Beibei Lv
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China
| | - Fenna Zhang
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China
| | - Xinyi Zhang
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China
- Office of Graduate Student Affairs, Xi'an Medical University, Han Guang North Road 74#, Beilin District, Xi'an, China
| | - Ziyi Wang
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China
- Office of Graduate Student Affairs, Xi'an Medical University, Han Guang North Road 74#, Beilin District, Xi'an, China
| | - Shuai Hao
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China
- Office of Graduate Student Affairs, Xi'an Medical University, Han Guang North Road 74#, Beilin District, Xi'an, China
| | - Na Ye
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China.
| | - Na He
- The First Affiliated Hospital of Xi'an Medical University, Fenggao Western Road 48#, Lianhu District, Xi'an, China.
| |
Collapse
|
11
|
Xie H, Wu Y, Huang J, Shen Q, Li X, Wang L, Lin J, Chi Z, Ke K, Lin X, Chen R, Liao R, Li Y, Huang N. NK Cell Exosomes Alleviate PD-L1 Expression and Facilitate Tumor Immunity by Repressing PI3K-AKT-mTOR Signaling. Immunol Invest 2025; 54:382-395. [PMID: 39748646 DOI: 10.1080/08820139.2024.2445608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Liver cancer (LC) is a deadly malignancy with limited therapeutic options in recent years. Natural killer cell-derived exosomes (NK-exo), as an important bridge of information transmission between cells, also have a certain killing effect on tumor cells. On this basis, this study investigated the specific regulatory mechanism of NK-exo on LC cells. METHODS NK-exo was collected by differential centrifugation. The diameter and size distribution were characterized by dynamic light scattering (DLS), respectively. Western Blot (WB) assay detected the expression levels of exosome marker protein, PD-L1, and PI3K-AKT-mTOR signal-related proteins. The effect of NK-exo treatment on LC cell viability was measured by the CCK-8. With the use of CFDA·SE, we assessed the proliferation ability of CD8+T cells in direct co-culture with LC cells. The content of cytokines secreted by CD8+T cells in each treatment group was determined by enzyme-linked immunosorbent assay (ELISA) kits. We employed flow cytometry to analyze the expression of PD-L1 protein on the surface of LC cells and CD8 level in mice tumor tissues. RESULTS CCK-8 assay demonstrated that NK-exo repressed the cell viability of LC cells. WB uncovered that the protein expressions of PD-L1, p-AKT, and p-mTOR in NK-exo treated LC cells were decreased, which was returned to the control level after the addition of PI3K agonist. When NK-exo-treated LC cells were directly co-cultivated with CD8+T cells, the proliferation ability and cytokine secretion content of T cells were considerably elevated, and the expression of PD-L1 on LC cell surface was considerably reduced. However, these effects were restored to control levels by PI3K agonists.The in vivo experiments also confirmed that NK-exo could effectively inhibit the progression of LC, and the PI3K agonist could restore this effect to the level of the control group. CONCLUSION This study provided the first evidence that exosomes derived from NK cells inhibited the PI3K-AKT-mTOR signaling pathway in LC cells, and reduced PD-L1 expression, thereby promoting tumor immunity. In comparison to traditional immune checkpoint inhibitors, NK-exo possessed unique mechanisms of action and potential advantages. NK-exo holds the promise of becoming an innovative immunotherapy for the treatment of LC.
Collapse
Affiliation(s)
- Hang Xie
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yujie Wu
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingyao Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Quan Shen
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoyan Li
- Pathology Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lili Wang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhen Chi
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kun Ke
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xin Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Chen
- Fujian Medical University Union Medical College, Fuzhou, China
| | - Rihua Liao
- Radiology Department, The First Hospital Affiliated Longyan, Fujian Medical University, Longyan, China
| | - Yong Li
- Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ning Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
12
|
He H, Feng Z, Duan J, Deng W, Wu Z, He Y, Liang Q, Xie Y. Radiomic features at contrast-enhanced CT predict proliferative hepatocellular carcinoma and its prognosis after transarterial chemoembolization. Sci Rep 2025; 15:10533. [PMID: 40148399 PMCID: PMC11950328 DOI: 10.1038/s41598-025-94684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Proliferative hepatocellular carcinoma (HCC) is an aggressive phenotype associated with unfavorable clinical outcomes. Predicting the preoperative subtype of HCC can aid in the development of individualized treatment. We retrospectively recruited 180 HCC patients who underwent hepatic resection and established a CT-based radiomics model for predicting proliferative HCCs. The evaluation of tumor response to transarterial chemoembolization therapy and progression-free survival (PFS) according to the radiomics model was further performed in internal (n = 54) and external (n = 80) outcome cohorts. In our study, 98 of 180 (54%) patients were confirmed to have proliferative HCCs. The radiomics model comprising 9 radiomic features and exhibited good performance for predicting proliferative HCCs. The nomogram integrated radiomics and serum α-fetoprotein level showed good calibration and discrimination in both the training cohort (AUC = 0.848) and the validation cohort (AUC = 0.825). Predicted proliferative HCCs (high radiomics scores) were associated with lower response rate (P < 0.05) and worse PFS (P < 0.05) compared to predicted non-proliferative HCCs in outcomes cohorts. We linked radiomics model to gene expression, unveiling that activated/immature B cells and tertiary lymphoid structures were downregulated in the high radiomics group. The proposed CT radiomics model exhibited good performance for identifying proliferative HCCs, which may facilitate clinical decision-making. Our findings suggest a potential correlation between proliferative HCC and immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Haifeng He
- Department of Radiology, The Third Xinagya Hospital Central South University, Changsha, China
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhichao Feng
- Department of Radiology, The Third Xinagya Hospital Central South University, Changsha, China
| | - Junhong Duan
- Department of Radiology, The Third Xinagya Hospital Central South University, Changsha, China
| | - Wenzhi Deng
- Department of Pathology, The Third Xinagya Hospital Central South University, Changsha, China
| | - Zuowei Wu
- Department of Radiology, The Third Xinagya Hospital Central South University, Changsha, China
| | - Yizi He
- Department of Lymphoma and Hematology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xinagya Hospital Central South University, Changsha, China.
| | - Yongzhi Xie
- Department of Radiology, The Third Xinagya Hospital Central South University, Changsha, China.
| |
Collapse
|
13
|
Zhang J, Tian T, Tian S, Yao J, Zhang Y, Xie R, Yang T, Han B. Study on the Mechanism of QRICH1 Mediating PRMT1 to Regulate the Arginine Methylation Modification of cGAS to Promote Arsenics-Induced Pyroptosis in Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2025; 12:597-614. [PMID: 40124968 PMCID: PMC11930257 DOI: 10.2147/jhc.s505266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose This study aims to investigate the mechanism of action of arsenic-based agents against hepatocellular carcinoma (HCC) and to identify effective drug targets for HCC treatment. Methods Huh7 and HepG2 cells treated with NaAsO2 were assessed for cell viability, pyroptosis, migration, and invasion after undergoing lentiviral transfection. An orthotopic liver tumor model was established and divided into a model group and a treatment group. Proteins associated with QRICH1, PRMT1, cGAS-STING, and the classical pyroptosis pathway were quantified using Western blotting. The intracellular expression and localization of PRMT1 and NLRP3 in HCC were analyzed through cellular immunofluorescence. Co-immunoprecipitation (Co-IP) was performed to examine the protein interactions between PRMT1 and cGAS, as well as between STING and NLRP3. Chromatin immunoprecipitation (ChIP) was used to confirm QRICH1 enrichment in the PRMT1 promoter region. Results NaAsO2 treatment significantly inhibited the proliferation of Huh7 and HepG2 cells and effectively blocked their migration and invasion capabilities, while promoting cellular pyroptosis. Quantitative polymerase chain reaction(QRCR) and ChIP assays confirmed that NaAsO2 regulates PRMT1 expression by down-regulate QRICH1 binding in the PRMT1 promoter region. Additionally, NaAsO2 decreased the expression of the QRICH1-PRMT1 complex and upregulated the cGAS-STING signaling pathway, activating the downstream NLRP3-dependent classical pyroptosis pathway. Overexpression of QRICH1 reversed these effects. Conclusion NaAsO2 inhibits the expression of the QRICH1-PRMT1 axis, activates cGAS-STING signaling pathway transduction, and induces pyroptosis in HCC cells, thereby increasing the infiltration of immune cells in liver cancer tissues.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Tian Tian
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, 550003, People’s Republic of China
| | - Shanshan Tian
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Jinhai Yao
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Yingwan Zhang
- Qianxinan People’s Hospital, Qianxinan Affiliated Hospital of Zunyi Medical University, Xingyi, Guizhou, 562400, People’s Republic of China
| | - Rujia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Ting Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
14
|
Muhammed TM, Jasim SA, Zwamel AH, Rab SO, Ballal S, Singh A, Nanda A, Ray S, Hjazi A, Yasin HA. T lymphocyte-based immune response and therapy in hepatocellular carcinoma: focus on TILs and CAR-T cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04035-9. [PMID: 40100377 DOI: 10.1007/s00210-025-04035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The primary therapies for HCC are liver transplantation, hepatic tumor excision, radiofrequency ablation, and molecular-targeted medicines. An unfavorable prognosis marks HCC and has limited pharmacological response in therapeutic studies. The tumor immune microenvironment (TME) imposes significant selection pressure on HCC, resulting in its evolution and recurrence after various treatments. As the principal cellular constituents of tumor-infiltrating lymphocytes (TILs), T cells have shown both anti-tumor and protumor actions in HCC. T cell-mediated immune responses are pivotal in cancer monitoring and elimination. TILs are recognized for their critical involvement in the progression, prognosis, and immunotherapeutic management of HCC. Foxp3 + , CD8 + , CD3 + , and CD4 + T cells are the extensively researched subtypes of TILs. This article examines the functions and processes of several subtypes of TILs in HCC. Emerging T cell-based therapies, including TILs and chimeric antigen receptor (CAR)-T cell therapy, have shown tumor regression in several clinical and preclinical studies. Herein, it also delves into the existing T cell-based immunotherapies in HCC, with emphasis on TILs and CAR-T cells.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Biology Department, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
15
|
Cheng SL, Wu CH, Tsai YJ, Song JS, Chen HM, Yeh TK, Shen CT, Chiang JC, Lee HM, Huang KW, Chen Y, Qiu JT, Yen YT, Shia KS, Chen Y. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release 2025; 379:967-981. [PMID: 39863023 DOI: 10.1016/j.jconrel.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC. 807-NPs enhance the pharmacokinetics and improve the tumor availability of BPRCX807 without causing systemic toxicity. Our findings show that 807-NPs block the CXCR4/CXCL12 pathway, inhibiting Akt and mTOR activation in HCC cells and M2 macrophages and promoting their repolarization toward the antitumor M1 phenotype. In orthotopic murine HCC models, systemic administration of 807-NPs significantly remodeled the immunosuppressive TME by reprogramming tumor-associated macrophages (TAMs) toward an immunostimulatory phenotype and promoting cytotoxic T-cell infiltration into tumors. This led to suppressed primary tumor growth and metastasis, while enhancing the efficacy of cancer immunotherapies, including PD-1 blockade and whole-cancer cell vaccines, by promoting T-cell activation. Our work demonstrates the potential of using nanotechnology to deliver CXCR4 antagonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Tung Shen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jou-Chien Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuling Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Timothy Qiu
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Ting Yen
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
16
|
Liang X, Yang H, Hu P, Gan Z, Long S, Wang S, Yang X. Decoding the possible mechanism of action of Paeoniflorigenone in combating Aflatoxin B1-induced liver cancer: an investigation using network pharmacology and bioinformatics analysis. Toxicol Mech Methods 2025; 35:292-304. [PMID: 39350351 DOI: 10.1080/15376516.2024.2411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Moutan cortex has demonstrated antitumor properties attributed to its bioactive compound Paeoniflorigenone (PA). Nevertheless, there is limited research on the efficacy of PA in the prevention and treatment of hepatocellular carcinoma (HCC). We aimed to investigate the potential pharmacological mechanisms of PA in the treatment of Aflatoxin B1 (AFB1)-induced hepatocarcinogenesis using network pharmacology and bioinformatics analysis approaches. Through various databases and bioinformatics analysis approaches, 34 shared targets were identified as potential candidate genes for PA in fighting liver cancer caused by AFB1. Pathway analysis revealed involvement in cell cycle, HIF-1, and Rap1 pathways. A risk assessment model was developed using LASSO regression, showing an association between the identified genes and the tumor immune microenvironment. The genes within the risk model were found to be linked to the immune response in liver cancer. Molecular docking studies indicated that PA interacts with its targets through hydrogen bonding and hydrophobic interactions. This study provides insights into the possible mechanisms of PA in liver cancer treatment and offers a predictive model for assessing the risk level of individuals with liver cancer. These findings have significant implications for the therapeutic strategies in managing liver cancer patients.
Collapse
Affiliation(s)
- Xiaocong Liang
- Interventional Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Huiling Yang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Pengrong Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ziyan Gan
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Shunqin Long
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Sumei Wang
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xiaobing Yang
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
17
|
Qin K, Xiong DD, Qin Z, Li MJ, Li Q, Huang ZG, Tang YX, Li JD, Zhan YT, He RQ, Luo J, Wang HQ, Zhang SQ, Chen G, Wei DM, Dang YW. Overexpression and clinicopathological significance of zinc finger protein 71 in hepatocellular carcinoma. World J Hepatol 2025; 17:101914. [PMID: 40027564 PMCID: PMC11866156 DOI: 10.4254/wjh.v17.i2.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive forms of liver cancer, with high morbidity and poor prognosis due to late diagnosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective biomarkers for early detection and targeted therapy remain scarce. Zinc finger protein 71 (ZNF71), a zinc-finger protein, has been implicated in various cancers, yet its role in HCC remains largely unexplored. This gap in knowledge underscores the need for further investigation into the ZNF71 of potential as a diagnostic or therapeutic target in HCC. AIM To explore the expression levels, clinical relevance, and molecular mechanisms of ZNF71 in the progression of HCC. METHODS The study evaluated ZNF71 expression in 235 HCC specimens and 13 noncancerous liver tissue samples using immunohistochemistry. High-throughput datasets were employed to assess the differential expression of ZNF71 in HCC and its association with clinical and pathological features. The impact of ZNF71 on HCC cell line growth was examined through clustered regularly interspaced short palindromic repeat knockout screens. Co-expressed genes were identified and analyzed for enrichment using LinkedOmics and Sangerbox 3.0, focusing on significant correlations (P < 0.01, correlation coefficient ≥ 0.3). Furthermore, the relationship between ZNF71 expression and immune cell infiltration was quantified using TIMER2.0. RESULTS ZNF71 showed higher expression in HCC tissues vs non-tumorous tissues, with a significant statistical difference (P < 0.05). Data from the UALCAN platform indicated increased ZNF71 levels across early to mid-stage HCC, correlating with disease severity (P < 0.05). High-throughput analysis presented a standardized mean difference in ZNF71 expression of 0.55 (95% confidence interval [CI]: 0.34-0.75). The efficiency of ZNF71 mRNA was evaluated, yielding an area under the curve of 0.78 (95%CI: 0.75-0.82), a sensitivity of 0.63 (95%CI: 0.53-0.72), and a specificity of 0.82 (95%CI: 0.73-0.89). Diagnostic likelihood ratios were positive at 3.61 (95%CI: 2.41-5.41) and negative at 0.45 (95%CI: 0.36-0.56). LinkedOmics analysis identified strong positive correlations of ZNF71 with genes such as ZNF470, ZNF256, and ZNF285. Pathway enrichment analyses highlighted associations with herpes simplex virus type 1 infection, the cell cycle, and DNA replication. Negative correlations involved metabolic pathways, peroxisomes, and fatty acid degradation. TIMER2.0 analysis demonstrated positive correlations of high ZNF71 expression with various immune cell types, including CD4+ T cells, B cells, regulatory T cells, monocytes, macrophages, and myeloid dendritic cells. CONCLUSION ZNF71 is significantly upregulated in HCC, correlating with the disease's clinical and pathological stages. It appears to promote HCC progression through mechanisms involving the cell cycle and metabolism and is associated with immune cell infiltration. These findings suggest that ZNF71 could be a novel target for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Kai Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ming-Jie Li
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jie Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Quan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shu-Qi Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
18
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Liu L, Yu P, Zhao Z, Yang H, Yu R. Pharmacological mechanisms of carvacrol against hepatocellular carcinoma by network pharmacology and molecular docking. Technol Health Care 2025:9287329241306192. [PMID: 39973856 DOI: 10.1177/09287329241306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Preclinical studies have demonstrated that carvacrol possesses various biological and pharmacological properties, including anti-hepatocellular carcinoma (HCC) effects. However, the molecular basis of its therapeutic action on HCC remains unclear. OBJECTIVE The aim of this study was to investigate and further validate the multi-target therapeutic mechanism of carvacrol against HCC. METHODS The chemical structure of carvacrol was obtained from the PubChem database, and its potential targets were identified using SwissTargetPrediction, HERB, and BATMAN-TCM. HCC-specific genes were screened from the TCGA-LIHC cohort. The therapeutic targets of carvacrol against HCC were determined through the intersection of these datasets. Subsequently, a multivariate Cox regression prognostic model was established. Molecular docking was performed to analyze the interactions between carvacrol and its therapeutic targets. Additionally, molecular dynamics simulations were conducted to validate the molecular docking results using Discovery Studio 2019 software. RESULTS A total of 223 carvacrol targets and 882 HCC-specific genes were identified. Fifteen therapeutic targets of carvacrol against HCC were obtained, including CA2, AR, ALB, AURKA, ALPL, EPHX2, BCHE, IL1RN, AGRN, CRP, DMGDH, APOA1, SOX9, HPX, and CHKA. The prognostic model accurately and independently predicted survival outcomes. AGRN and AURKA were significantly associated with HCC overall survival. Molecular docking and molecular dynamics simulations demonstrated that carvacrol exhibited strong potential for stable binding to the therapeutic targets AGRN and AURKA. CONCLUSION Our findings elucidate the multi-target mechanism of action of carvacrol against HCC, providing a foundation for future research on its application in HCC management.
Collapse
Affiliation(s)
- Lu Liu
- Cancer Center, Zhejiang University, Lishui Hospital, Lishui City, Zhejiang Province, China
- Cancer Center, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province, China
- Cancer Center, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Ping Yu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, China
- Department of Pharmacy, Shaoxing Hospital Affiliated Zhejiang University School of Medicine, Shaoxing City, Zhejiang Province, China
| | - Zhongwei Zhao
- Cancer Center, Zhejiang University, Lishui Hospital, Lishui City, Zhejiang Province, China
- Cancer Center, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province, China
- Cancer Center, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Hongyuan Yang
- Cancer Center, Zhejiang University, Lishui Hospital, Lishui City, Zhejiang Province, China
- Cancer Center, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province, China
- Cancer Center, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang, China
| |
Collapse
|
20
|
Yu S, Zhao Y, Liu Q, Wang J, Fu J, Li R, Yuan Y, Yan X, Su J. Spermidine synthase promotes liver cancer progression in a paracrine manner by altering the macrophage immunometabolic state. Bioorg Chem 2025; 155:108135. [PMID: 39793221 DOI: 10.1016/j.bioorg.2025.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
PURPOSE Understanding the molecular mechanisms of adaptive regulation in the tumor microenvironment is crucial for precision therapy in hepatocellular carcinoma (HCC). We hypothesized that cargo proteins carried by extracellular vesicles (EVs) released in a hypoxic microenvironment might promote HCC progression by remodeling tumor-associated macrophages (TAMs). METHODS EV protein analysis by label-free proteomics mass spectrometry of HCC cell lines of different tumor grades was performed. The promotional effect if spermidine synthase(SRM) on M2 polarized TAMs was further investigated using various biological approaches. RESULTS SRM expression was positively correlated with liver cancer progression in HCC cell lines, liver cancer samples, and nude mouse models. In a mouse model, SRM expression was positively correlated with TAM infiltration and liver cancer progression. Pan-cancer dataset analysis confirmed that SRM overexpression in HCC tumors is correlated with poor patient prognosis. However, a hypoxic microenvironment is an internal driving factor for exosomal SRM that participates in microenvironmental modifications. Moreover, we defined a hitherto unknown pattern of microenvironmental crosstalk involving SRM in EVs, whereby macrophages complete the phenotypic fate of M2 tumor-associated macrophages through SRM uptake. CONCLUSION SRM regulation within the immune microenvironment is metabolically driven. By upregulating spermidine, which serves as a substrate for eIF5A hypusination, excessive oxidative phosphorylation (OXPHOS) assembly is achieved. This, in turn, leads to the expression of immunosuppressive marker molecules and ultimately promotes liver cancer progression. SRM, which is enriched in the EVs of HCC cells under hypoxic conditions, acts as a potent regulator linking polyamine and energy metabolism in TAMs, thereby promoting liver cancer progression.
Collapse
Affiliation(s)
- Sihang Yu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Qingqing Liu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Jian Wang
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Jiaying Fu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Runyuan Li
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Yuan Yuan
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Jing Su
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China.
| |
Collapse
|
21
|
Zhang Q, Cao Z, He Y, Liu Z, Guo W. Exploration of the mechanism of 5-Methylcytosine promoting the progression of hepatocellular carcinoma. Transl Oncol 2025; 52:102257. [PMID: 39733743 PMCID: PMC11743813 DOI: 10.1016/j.tranon.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
5-Methylcytosine (m5C) is a ubiquitous RNA modification that is closely related to various cellular functions. However, no studies have comprehensively demonstrated the role of m5C in hepatocellular carcinoma (HCC) progression. In this study, six pairs of HCC and adjacent tissue samples were subjected to methylated RNA immunoprecipitation sequencing to identify precise m5C loci. Non-negative matrix factorization (NMF) was used to identify HCC subtypes in TCGA-LIHC cohort. Immune, metabolic, and tumor-related pathways in HCC subtypes with differences in methylation status were analyzed and a prognostic model based on m5C-related genes was constructed. Finally, using RIP and molecular interaction analysis, we demonstrated that YBX1 binds to TPM3 in an m5C dependent manner and regulates HCC progression. Widespread m5C sites were identified and found to be differentially distributed in HCC compared with adjacent tissues. Metabolic processes were inhibited in hypermethylated HCC, whereas immune checkpoint and multiple classical tumor pathways were significantly upregulated. More importantly, we have identified an m5C dependent regulatory axis. The m5C reader YBX1 binds to TPM3 in an M5C dependent manner and promotes the progression of hepatocellular carcinoma. These results provide new evidence for further understanding the comprehensive role of m5C in HCC and the regulatory mechanism of m5C.
Collapse
Affiliation(s)
- Qiyao Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; General Surgery Department of Peking Union Medical College Peking Union Medical College Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730
| | - Zhen Cao
- General Surgery Department of Peking Union Medical College Peking Union Medical College Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730
| | - Yuting He
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| | - Ziwen Liu
- General Surgery Department of Peking Union Medical College Peking Union Medical College Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730.
| | - Wenzhi Guo
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
22
|
Kong D, Zhang Y, Jiang L, Long N, Wang C, Qiu M. Comprehensive analysis reveals the tumor suppressor role of macrophage signature gene FCER1G in hepatocellular carcinoma. Sci Rep 2025; 15:3995. [PMID: 39893200 PMCID: PMC11787346 DOI: 10.1038/s41598-025-88071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) progression is closely linked to the role of macrophages. This study utilized single-cell RNA sequencing and genomic analysis to explore the characteristic genes of macrophages in HCC and their impact on patient prognosis. We obtained single-cell se-quencing data from seven HCC samples in the GEO database. Through principal component analysis and t-SNE dimensionality reduction, we identified 2,000 highly variable genes and per-formed clustering and annotation of 17 cell clusters, revealing 482 macrophage-related feature genes. A LASSO regression model based on these genes was developed to predict the prognosis of HCC patients, with validation in the TCGA-LIHC cohort demonstrating model accuracy (AUC = 0.78, 0.72, 0.71 for 1-, 3-, and 5-year survival rates, respectively). Additionally, patients in the high-risk group exhibited elevated tumor stemness scores, although no significant differences were observed in microsatellite instability (MSI) and tumor mutational burden (TMB) scores. Immune-related analyses revealed that FCER1G expression was downregulated in HCC and was associated with key pathways such as apoptosis and ferroptosis. Reduced FCER1G expression significantly affected HCC cell proliferation and migration. Our prognostic model provides new insights into precision and immunotherapy for HCC and holds significant implications for future clinical applications.
Collapse
Affiliation(s)
- Deyu Kong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Yiping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Linxin Jiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Nana Long
- Sichuan Integrative Medicine Hospital, 610041, Chengdu, Sichuan, China
| | - Chengcheng Wang
- Sichuan Integrative Medicine Hospital, 610041, Chengdu, Sichuan, China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
23
|
Wang G, Qiao Y, Zhao Y, Li M, Song Y, Jin M, Yang D, Shi D, Li H, Chen T, Zhou S, Yang Z, Li J, Liu W. Beaveria bassiana (Balsamo) Vuillemin combined with cinnamaldehyde enhances anti-hepatocellular carcinoma effects of T cells by the PGC-1α/DRP1-regulated mitochondrial biogenesis and fission. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119216. [PMID: 39643019 DOI: 10.1016/j.jep.2024.119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Beaveria bassiana (Balsamo) Vuillemin (BEA) and cinnamaldehyde (CA), primarily derived from traditional Chinese medicine (TCM) named Bombyx batryticatus and Cinnamomum cassia, play an immunomodulatory role in different disease. AIM OF THE STUDY Hepatocellular carcinoma (HCC) is a prevalent malignant tumor characterized by immune dysfunction. In this study, we investigated BEA and CA's regulate ability on T cell mitochondrial metabolism and anti-HCC effect. MATERIALS AND METHODS We used RT-qPCR, Western blot, Enzyme-linked immune sorbent assay (ELISA), Flow CytoMetry (FCM) methods to examine BEA and CA's regulation of T cell mitochondrial function and anti-HCC ability. Furthermore, the mechanism of PGC-1α/DRP1 pathway on the morphology and function of T cell mitochondria was investigated. RESULTS Our data demonstrated that the administration of BEA and CA, either alone or in combination, effectively suppressed HCC growth and mitigated T cell apoptosis and mitochondrial dysfunction, assessed by mitochondrial reactive oxygen species (mitoROS), mitochondrial membrane potential (MMP) and ATP level. Moreover, BEA and CA could enhance the release of tumor-killing factors (Perforin (PF) and Granzyme B (Gzm B)) from T cells, inducing H22 cell apoptosis. Additionally, BEA and CA-treated T cell reinfusion into BALB/c nude HCC mice could significantly inhibited HCC growth by promoting T cell infiltration into tumor tissue. T cell mitochondrial biogenesis/fission balance and apoptosis in tumor mice were regulated by PGC-1α/DRP1 pathway. CONCLUSIONS Our findings reveal that BEA and CA enhance anti-HCC effects of T cells by regulating mitochondrial biogenesis and fission through the PGC-1α/DRP1 pathway.
Collapse
Affiliation(s)
- Gui Wang
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Yamei Qiao
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Yunyan Zhao
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Mengyang Li
- Military Medical Sciences Acadamy, Tianjin, China; School of Public Health and Management, Binzhou Medical University, Yantai, Shandong China, China.
| | | | - Min Jin
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Dong Yang
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Danyang Shi
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Haibei Li
- Military Medical Sciences Acadamy, Tianjin, China.
| | | | - Shuqing Zhou
- Military Medical Sciences Acadamy, Tianjin, China.
| | | | - Junwen Li
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Weili Liu
- Military Medical Sciences Acadamy, Tianjin, China.
| |
Collapse
|
24
|
Ju L, Wang H, Luo Y, Wang Y, Chen L, Han X, Lu R. Overexpression of MCM3 as a prognostic biomarker correlated with cell proliferation, cell cycle and immune regulation in hepatocellular carcinoma. J Cancer 2025; 16:1538-1554. [PMID: 39991578 PMCID: PMC11843239 DOI: 10.7150/jca.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common malignant tumor and has a poor prognosis. Minichromosome maintenance 3 (MCM3) protein is upregulated in several cancers, but the biological function, molecular mechanisms and the relationship with tumor immunity of MCM3 in HCC remain poorly understood. Methods: The expression levels and prognosis role of MCM3 in HCC were analyzed based on TCGA, GEO and LIHC databases, and 40 paired tissue samples. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses on these DEGs to explore the potential impact of MCM3 on the biological behavior of HCC. In addition, flow cytometry, CCK-8, EdU, colony formation and nude mice xenograft models were employed to investigate the biological functions of MCM3. Furthermore, immune cell infiltration, markers and checkpoint-associated genes were analyzed by TIMER 2.0, ACLBI and TCGA database. Results: In this study, we investigated the expression and function of MCM3 in HCC. MCM3 was highly expressed in a variety of tumors including HCC, and high MCM3 expression was positively associated with various clinicopathological parameters and acted as an independent factor of the poor prognosis for overall survival in HCC. Meanwhile, immune characteristics analysis indicated that high MCM3 expression was related to the level of immune cell infiltration and immune checkpoints in HCC. Our functional enrichment analysis indicated that MCM3 is mainly involved in the cell cycle and cell metabolic related pathways. Moreover, in vitro and in vivo experiments further confirmed that MCM3 could promote the proliferation of HCC by regulating cell cycle progression. Conclusions: Our results indicated that MCM3 was up-regulated in HCC and might become a biomarker in the diagnosis and treatment of patients with HCC.
Collapse
Affiliation(s)
- Linling Ju
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Huixuan Wang
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Yunfeng Luo
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Yichen Wang
- Ulink High School of Suzhou Industrial Park, Suzhou 215006, Jiangsu, China
| | - Lin Chen
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Xudong Han
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Rujian Lu
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| |
Collapse
|
25
|
Zhu GQ, Tang Z, Chu TH, Wang B, Chen SP, Tao CY, Cai JL, Yang R, Qu WF, Wang Y, Zhao QF, Huang R, Tian MX, Fang Y, Gao J, Wu XL, Zhou J, Liu WR, Dai Z, Shi YH, Fan J. Targeting SRSF1 improves cancer immunotherapy by dually acting on CD8 +T and tumor cells. Signal Transduct Target Ther 2025; 10:25. [PMID: 39837814 PMCID: PMC11751439 DOI: 10.1038/s41392-024-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Serine arginine-rich splicing factor 1 (SRSF1) is a key oncogenic splicing factor in various cancers, promoting abnormal gene expression through post-translational regulation. Although the protumoral function of SRSF1 is well-established, the effects of inhibiting tumor-intrinsic SRSF1 on the tumor microenvironment and its impact on CD8+ T cell-mediated antitumor immunity remain unclear. Our findings indicate that depleting SRSF1 in CD8+ T cells improve antitumor immune function, glycolytic metabolism, and the efficacy of adoptive T cell therapy. The inactivation of SRSF1 in tumor cells reduces transcription factors, including c-Jun, c-myc, and JunB, facilitating glycolytic metabolism reprogramming, which restores CD8+ T cell function and inhibits tumor growth. The small-molecule inhibitor TN2008 targets SRSF1, boosting antitumor immune responses and improving immunotherapy effectiveness in mouse models. We therefore introduce a paradigm targeting SRSF1 that simultaneously disrupts tumor cell metabolism and enhances the antitumor immunity of CD8+ T cells.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Hao Chu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Ping Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen-Yang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-Liang Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Feng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian-Fu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Xin Tian
- Department of General Surgery, Gastric cancer center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Ling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Li M, Tian H, Zhuang Y, Zhang Z. New insights into N6-methyladenosine in hepatocellular carcinoma immunotherapy. Front Immunol 2025; 16:1533940. [PMID: 39911396 PMCID: PMC11794227 DOI: 10.3389/fimmu.2025.1533940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
N6-methylation is a modification in which a methyl group is added to the adenine base of a nucleotide. This modification is crucial for controlling important functions that are vital for gene expression, including mRNA splicing, stability, and translation. Due to its intricate participation in both normal cellular processes and the course of disease, as well as its critical role in determining cell fate, N6-methyladenosine (m6A) alteration has recently attracted a lot of interest. The formation and progression of many diseases, especially cancer, can be attributed to dysregulated m6A alteration, which can cause disturbances in a variety of cellular functions, such as immunological responses, cell proliferation, and differentiation. In this study, we examine how m6A dysregulation affects hepatocellular carcinoma (HCC), with a particular emphasis on how it contributes to immunological evasion and carcinogenesis. We also investigate its potential as a novel therapeutic target, providing new perspectives on potential therapeutic approaches meant to enhance clinical results for patients with HCC.
Collapse
Affiliation(s)
- Mengran Li
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hu Tian
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| | - Yanshuang Zhuang
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| | - Zili Zhang
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Bai H, Zhu X, Gao L, Feng S, Li H, Gu X, Xu J, Zong C, Hou X, Yang X, Jiang J, Zhao Q, Wei L, Zhang L, Han Z, Liu W, Qian J. ERG mediates the differentiation of hepatic progenitor cells towards immunosuppressive PDGFRα + cancer-associated fibroblasts during hepatocarcinogenesis. Cell Death Dis 2025; 16:26. [PMID: 39827226 PMCID: PMC11743139 DOI: 10.1038/s41419-024-07270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
Cancer-associated fibroblasts (CAFs) play important roles in the occurrence and development of hepatocellular carcinoma (HCC) and are a key component of the immunosuppressive microenvironment. However, the origin of CAFs has not been fully elucidated. We employed single-cell sequencing technology to identify the dynamic changes in different subsets of fibroblasts at different time points in rat primary HCC model. Inflammation-associated CAFs (Pdgfrα+ CAFs) were subsequently identified, which demonstrated a significant correlation with the survival duration of HCC patients and a dual role in the tumour microenvironment (TME). On the one hand, they secrete the chemokines CCL3 and CXCL12, which recruit macrophages to the tumour site. On the other hand, they produce TGFβ, inducing the polarization of these macrophages towards an immunosuppressive phenotype. According to the in vitro and in vivo results, hepatic progenitor cells (HPCs) can aberrantly differentiate into PDGFRα+ CAFs upon stimulation with inflammatory cytokine. This differentiation is mediated by the activation of the MAPK signaling pathway and the downstream transcription factor ERG via the TLR4 receptor. Downregulating the expression of ERG in HPCs significantly reduces the number of PDGFRα+ CAFs and the infiltration of tumour-associated macrophages in HCC, thereby suppressing hepatocarcinogenesis. Collectively, our findings elucidate the distinct biological functions of PDGFRα+ cancer-associated fibroblasts (PDGFRα+ CAFs) within the TME. These insights contribute to our understanding of the mechanisms underlying the establishment of an immunosuppressive microenvironment in HCC, paving the way for the exploration of novel immunotherapeutic strategies tailored for HCC treatment.
Collapse
Affiliation(s)
- Haoran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Lu Gao
- National Center for Liver Cancer, Shanghai, China
| | - Shiyao Feng
- Department of Urology, Chaohu Hospital of Anhui Medical University, HeFei, Anhui, China
| | - Hegen Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zong
- National Center for Liver Cancer, Shanghai, China
| | - Xiaojuan Hou
- National Center for Liver Cancer, Shanghai, China
| | - Xue Yang
- National Center for Liver Cancer, Shanghai, China
| | | | - Qiudong Zhao
- National Center for Liver Cancer, Shanghai, China
| | - Lixin Wei
- National Center for Liver Cancer, Shanghai, China
| | - Li Zhang
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China.
| | - Zhipeng Han
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- National Center for Liver Cancer, Shanghai, China.
| | - Wenting Liu
- National Center for Liver Cancer, Shanghai, China.
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jianxin Qian
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
28
|
Ding Y, Feng M, Chi W, Wang X, An B, Liu K, Lou S, Wang X, Wang H. The expression landscape and clinical significance of methyltransferase-like 17 in human cancer and hepatocellular carcinoma: a pan-cancer analysis using multiple databases. Cancer Cell Int 2025; 25:15. [PMID: 39825447 PMCID: PMC11740614 DOI: 10.1186/s12935-024-03616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood. METHODS All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals. First, we comprehensively analyzed RNA-seq data from the HPA database of 25 human tissues. An array of bioinformatics methods was employed to explore the potential oncogenic roles of METTL17, including analyzing its related prognosis, mutation, landscapes, tumor stemness index, immune cell infiltration, and other factors among different tumors. Additionally, gene set enrichment analysis (GSEA) was used to analyze pathways associated with METTL17 in HCC. Immunohistochemistry (IHC) was performed on clinical samples to validate the differential expression of METTL17 in HCC and normal tissues. Ultimately, we constructed a METTL17-related risk-score model of HCC and validated its prognostic classification efficiency. Survival rates were calculated using the Kaplan-Meier method. Statistical significance was defined as P < 0.05. RESULTS METTL17 was differentially expressed in various cancers. METTL17 maintained strong correlations with the cancer patient's prognosis, genetic alterations, tumor stemness index, and immune-infiltrated cells, etc. In addition, IHC experiments verified that METTL expression was significantly decreased in liver tissues of HCC patients compared to normal liver tissue. GESA analysis indicated METTL17 mainly involves oncogenic and immune-related pathways among HCC. MRPS5, CHCHD2, NCBP1, LRPPRC, DAP3, and BMS1 were included in a prognostic model based on METTL17's interaction networks. Kaplan-Meier survival analysis of the prognostic model showed that the overall survival (OS) of the low-risk group was significantly better than that of the high-risk group (P < 0.001). The area under the receiver operating characteristic (ROC) curve (AUC) of the 1-year, 3-year, and 5-year OS were 0.747, 0.671, and 0.631, respectively. CONCLUSIONS METTL17 may serve as a novel prognostic marker and therapeutic target for human tumors, offering a theoretical foundation for formulating more effective and tailored clinical treatment options for cancers, particularly HCC.
Collapse
Affiliation(s)
- Yezhou Ding
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China
| | - Mingyang Feng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China
| | - Wanqing Chi
- Epidemiology of Microbial Diseases Department, Yale University School of Public Health, New Haven, Connecticut, CT, USA
| | - Xiaoyin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China
| | - Baoyan An
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China
| | - Kehui Liu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China
| | - Shike Lou
- Department of Infectious Diseases, East Hospital, Tongji University, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
| |
Collapse
|
29
|
Wang Z, Pan M, Zhu J, Liu C. Mutual causal effects between immune cells and hepatocellular carcinoma: a Mendelian randomization study. Discov Oncol 2025; 16:54. [PMID: 39820843 PMCID: PMC11739439 DOI: 10.1007/s12672-025-01785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a malignant tumor that seriously endangering health, has aroused widespread concern in the field of public health. Previous researches have noted the relationships between immune cells and HCC, but the causal relationship was uncertain. METHODS In this study, a bidirectional two sample Mendelian randomization (MR) analysis was utilized to access the causal relationship between immune cell characteristics and HCC. According to the open-access data, we investigated the causal relationship between 731 immune cell characteristics and HCC risk. RESULTS After screening by IVW approach, increased levels of 8 immune traits and reduced levels of 7 immune traits could lead to changes in HCC risk. These 15 immune cells were distributed in the Monocyte (4 cells), Treg panel (4 cells), TBNK (3 cells), Maturation stages of T cell panel (3 cells), and cDC panel (1 cells). Furthermore, HCC was identified to have causal effects on 21 immunophenotypes. Among these immune cells, hepatocarcinogenesis had the greatest impact on CD4 on EM CD4 + and CD33 on Mo MDSC. CONCLUSIONS This study enhances our comprehension of the interaction between immune cells and HCC risk, furnishing novel avenues to explore the mechanisms of HCC.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengshu Pan
- Primary Care Department, Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Jie Zhu
- Department of Infectious Disease, Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| | - Changhong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
30
|
Wu X, Zhang X, Yu X, Liang H, Tang S, Wang Y. Exploring the association between air pollution and the incidence of liver cancers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117437. [PMID: 39671760 DOI: 10.1016/j.ecoenv.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Liver cancer, namely hepatocellular carcinoma (HCC), is a major global health concern deeply influenced by environmental factors. Air pollutants emerged as significant contributors to its incidence. This review explores the association between air pollution-specifically particulate matter (PM2.5), industrial chemicals like vinyl chloride, and benzene-and the increased risk of liver cancer. Mechanistically, air pollutants may cause liver damage by inducing oxidative stress, inflammation, and genetic mutations, contributing to cancer development. Epidemiological evidence from cohort and geographic studies highlights a positive correlation between long-term exposure to air pollutants and elevated incidence and mortality of liver cancer. Furthermore, air pollution has been shown to worsen survival outcomes in liver cancer patients, particularly those diagnosed at early stages. The review emphasizes the need for stricter air quality regulations and relevant research for underlying mechanisms exposed to air pollution. Addressing air pollution exposure could be crucial for reducing liver cancer risks and improving public health outcomes.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shengyang, China
| | - Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shengyang, China
| | - Xiaopeng Yu
- Oncology Department, Shengjing Hospital of China Medical University, Shengyang, China
| | - Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, Shengyang, China.
| | - Shaoshan Tang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengyang, China.
| | - Yao Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengyang, China.
| |
Collapse
|
31
|
Wang H, Xie X, Du M, Wang X, Wang K, Chen X, Yang H. Deciphering the influence of AP1M2 in modulating hepatocellular carcinoma growth and Mobility through JNK/ErK signaling pathway control. Gene 2025; 933:148955. [PMID: 39303819 DOI: 10.1016/j.gene.2024.148955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common digestive system malignancy, with unclear pathogenesis and low survival rates. AP1M2 is associated with tumor progression, but its role and molecular mechanisms in HCC remain poorly understood and require further investigation. METHODS We utilized the Gene Expression Omnibus (GEO) and Expression Analysis Interactive Hub (XENA) databases to assess AP1M2 mRNA expression levels in HCC patients. Additionally, we employed the Cancer Genome Atlas (TCGA) database to identify pathways associated with both AP1M2 and HCC development. To evaluate the effect of AP1M2 on HCC cell proliferation and migration, we employed various techniques including EdU, CCK-8, Colony formation assay, and Transwell assays. Furthermore, Western blot analysis was conducted to examine the signaling pathways influenced by AP1M2. RESULTS AP1M2 expression was significantly increased at the mRNA level in HCC tissues(P<0.001). Importantly, overall survival (OS) analysis confirmed the association between higher AP1M2 expression and a poorer prognosis in HCC patients compared to those with lower AP1M2 expression (P<0.019).Multivariate Cox regression analysis showed that AP1M2 was an independent prognostic factor and a valid predictor for HCC patients. Furthermore, GSEA results indicated differential enrichment of lipid, metal metabolism, and coagulation processes in HCC samples demonstrating a high AP1M2 expression phenotype. In vitro experiments supported these findings by demonstrating that AP1M2 promotes HCC cell proliferation and migration, while activating the JNK/ERK pathway. CONCLUSION Our findings indicate that AP1M2 expression may serve as a potential molecular marker indicating a poor prognosis for HCC patients. Furthermore, we have demonstrated that AP1M2 significantly influences HCC cell proliferation and migration, with the JNK/ERK signaling pathway playing a key role in AP1M2-mediated regulation in the context of HCC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xin Xie
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Minwei Du
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xintong Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Kunyuan Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xingyuan Chen
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China.
| | - Hui Yang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China.
| |
Collapse
|
32
|
Li H, Li J, Zhang Z, Yang Q, Du H, Dong Q, Guo Z, Yao J, Li S, Li D, Pang N, Li C, Zhang W, Zhou L. Digital Quantitative Detection for Heterogeneous Protein and mRNA Expression Patterns in Circulating Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410120. [PMID: 39556692 PMCID: PMC11727120 DOI: 10.1002/advs.202410120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) exhibit significant phenotypic heterogeneity and diverse gene expression profiles due to epithelial-mesenchymal transition (EMT). However, current detection methods lack the capacity for simultaneous quantification of multidimensional biomarkers, impeding a comprehensive understanding of tumor biology and dynamic changes. Here, the CTC Digital Simultaneous Cross-dimensional Output and Unified Tracking (d-SCOUT) technology is introduced, which enables simultaneous quantification and detailed interpretation of HCC transcriptional and phenotypic biomarkers. Based on self-developed multi-real-time digital PCR (MRT-dPCR) and algorithms, d-SCOUT allows for the unified quantification of Asialoglycoprotein Receptor (ASGPR), Glypican-3 (GPC-3), and Epithelial Cell Adhesion Molecule (EpCAM) proteins, as well as Programmed Death Ligand 1 (PD-L1), GPC-3, and EpCAM mRNA in HCC CTCs, with good sensitivity (LOD of 3.2 CTCs per mL of blood) and reproducibility (mean %CV = 1.80-6.05%). In a study of 99 clinical samples, molecular signatures derived from HCC CTCs demonstrated strong diagnostic potential (AUC = 0.950, sensitivity = 90.6%, specificity = 87.5%). Importantly, by integrating machine learning, d-SCOUT allows clustering of CTC characteristics at the mRNA and protein levels, mapping normalized heterogeneous 2D molecular profiles to assess HCC metastatic risk. Dynamic digital tracking of eight HCC patients undergoing different treatments visually illustrated the therapeutic effects, validating this technology's capability to quantify the treatment efficacy. CTC d-SCOUT enhances understanding of tumor biology and HCC management.
Collapse
Affiliation(s)
- Hao Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Jinze Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Zhiqi Zhang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Qi Yang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Hong Du
- The Second Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Qiongzhu Dong
- Department of General SurgeryHuashan Hospital & Cancer Metastasis InstituteFudan UniversityShanghai200040China
| | - Zhen Guo
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Jia Yao
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Shuli Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Dongshu Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Nannan Pang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Chuanyu Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Wei Zhang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Lianqun Zhou
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| |
Collapse
|
33
|
Miao G, Zhang Z, Wang M, Gu X, Xiang D, Cao H. Berberine in combination with anti-PD-L1 suppresses hepatocellular carcinoma progression and metastasis via Erk signaling pathway. Ann Med Surg (Lond) 2025; 87:103-112. [PMID: 40109642 PMCID: PMC11918555 DOI: 10.1097/ms9.0000000000002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Background Berberine (BBR) is an isoquinoline alkaloid extracted from Huang Lian and other herbal medicines. It has been reported to play a crucial role in multiple metabolic diseases and cancers. Programmed cell death-1 (PD-L1) is known as the immune checkpoint; immunotherapy targeting PD1/PD-L1 axis can effectively block its pro-tumor activity. However, the effect of the combined use of BBR and anti-PD-L1 on hepatocellular carcinoma (HCC) has not been reported. Methods Hep-3B and HCCLM3 cells were chosen as the experimental objects. To determine the potential anti-cancer activity of the combination of BBR and anti-PD-L1, we first treated v cells with BBR. The cell viability of Hep-3B and HCCLM3 with BBR treatment was measured by Cell Count Kit 8 assay. Cytometry by time-of-flight was performed to analyze tumor tissues after treatment with BBR and/or anti-PD-L1. Proliferation-, migration-, and invasion-related markers were measured by western blotting and immunohistochemistry. Results The results showed that BBR significantly inhibited the proliferation of Hep-3B and HCCLM3.The combination treatment of BBR and anti-PD-L1 had a prominent inhibitory effect on HCC tumorigenesis. Cytometry by time-of-flight analysis indicated that BBR affects the immune subsets in the tumors. Besides, BBR and anti-PD-L1 inhibited the migration and invasion of HCC by inactivating the phosphorylation of Erk. Conclusion Our study proposed that the combination treatment of BBR and anti-PD-L1 markedly inhibited the tumorigenesis of HCC by Erk signaling pathway. We hope our research can provide a new strategy for the potential of BBR as a therapeutic agent in the treatment of HCC.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Zhiyu Zhang
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Meiyan Wang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Xingwei Gu
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Dongxiao Xiang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Ma L, Li CC, Wang XW. Roles of Cellular Neighborhoods in Hepatocellular Carcinoma Pathogenesis. ANNUAL REVIEW OF PATHOLOGY 2025; 20:169-192. [PMID: 39854188 DOI: 10.1146/annurev-pathmechdis-111523-023520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis. In this review, we highlight the current research landscape on cellular neighborhoods in chronic liver disease and HCC, as well as the emerging computational approaches applicable to delineate disease-associated cellular neighborhoods, which may offer insights into the molecular mechanisms underlying HCC pathogenesis and pave the way for effective disease interventions.
Collapse
Affiliation(s)
- Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA;
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cherry Caiyi Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA;
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Du Y, Zhang H, Liu J, Duan X, Chen S, Jiang W. HK3: A potential prognostic biomarker with metastasis inhibition capabilities in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 741:151057. [PMID: 39615209 DOI: 10.1016/j.bbrc.2024.151057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as one of the prevalent malignant tumors worldwide. The effectiveness of immunotherapy frequently depends on the intricate dynamics of immunomodulation within the tumor microenvironment (TME). The current study aims to identify prognostically relevant genes and their functional roles in HCC. This is achieved by utilizing immune scores and mutations as the basis, through the application of bioinformatics and molecular biological analysis. METHODS Differentially expressed genes (DEGs) analysis was conducted using the "clusterProfiler" package for functional enrichment. Cox regression analysis and LASSO regression analysis were performed for prognostic gene screening. Kaplan-Meier curve were further utilized to verify the prognostic value of these genes. The relationship between selected genes and immune cells was analyzed using ssGSEA algorithm and TIMER. The HK3 expression in HCC cells was tested by Western blot. Additionally, wound healing and transwell assays were utilized to detect the impact of HK3 on HCC metastasis. RESULTS Patients who had higher ESTIMATE, stromal, and immune scores exhibited more favorable overall survival rates. There are 17 genes that overlap among the DEGs related to the immune-stromal-ESTIMATE scores, mutated genes, and DEGs in HCC tissues compared to normal tissues. Among the DEGs, three genes (STAB1, COL15A1 and HK3) emerged with the most profound association concerning survival outcomes. Notably, the HK3 genes displayed a pronounced correlation with immune infiltration. Concurrently, diminished expression levels of HK3 were observed in HCC tissues and upregulation of HK3 resulted in a significant reduction in HCC cell metastasis in vitro and in vivo. CONCLUSIONS HK3 emerges as a novel prognostic biomarker for HCC, exerting regulatory influence over cellular proliferation, metastasis, and invasiveness. These findings indicate that HK3 holds promise as a potential candidate for treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Yexiang Du
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Jialong Liu
- 65136, Troops Hospital of PLA, Dalian, Liaoning, 116300, China
| | - Xiaodong Duan
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Suhua Chen
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Wenbin Jiang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guizhou, 550002, China.
| |
Collapse
|
36
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Zhou KQ, Zhong YC, Song MF, Sun YF, Zhu W, Cheng JW, Xu Y, Zhang ZF, Wang PX, Tang Z, Zhou J, Zhang LY, Fan J, Yang XR. Distinct immune microenvironment of venous tumor thrombus in hepatocellular carcinoma at single-cell resolution. Hepatology 2024:01515467-990000000-01104. [PMID: 39656099 DOI: 10.1097/hep.0000000000001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/04/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND AND AIMS Portal vein tumor thrombus (PVTT) worsens the prognosis of hepatocellular carcinoma by increasing intrahepatic dissemination and inducing portal vein hypertension. However, the immune characteristics of PVTT remain unclear. Therefore, this study aims to explore the immune microenvironment in PVTT. APPROACH AND RESULTS Time-of-flight mass cytometry revealed that macrophages and monocytes were the dominant immune cell type in PVTT, with a higher proportion than in primary tumor and blood (54.1% vs. 26.3% and 9.1%, p< 0.05). The differentially enriched clustering of inhibitory and regulatory immune cells in PVTT indicated an immune-suppressive environment. According to the single-cell RNA sequencing, TAM-C5AR1 was characterized by leukocyte chemotaxis and was the most common subpopulation in PVTT (36.7%). Multiplex fluorescent immunohistochemistry staining showed that the C5aR + TAM/Mφ were enriched in PVTT compared to both the primary tumor and liver and positively correlated with C5a (r=0.559, p< 0.001). Notably, THP-1 (monocyte cell line) was recruited by CSQT2 (PVTT cell line) and exhibited up-regulation of CD163, CD206, and PD-L1 upon stimulation. C5aR antagonist could reverse this. C5aR + TAMs could also inhibit Granzyme B in CD8 + T cells. High infiltration of C5aR + TAMs in PVTT correlated with poor differentiation ( p< 0.009) and was a risk factor for overall survival ( p= 0.003) and for reformation of PVTT after resection ( p= 0.007). CONCLUSIONS TAMs, especially C5aR + TAMs, were enriched in PVTT. C5aR + TAMs contribute to the development of PVTT and poor prognosis by reshaping the immunosuppressive environment.
Collapse
Affiliation(s)
- Kai-Qian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Department of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Chen Zhong
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Min-Fang Song
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Yun-Fan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wei Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ze-Fan Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Peng-Xiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Li-Ye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
38
|
Al-Bzour NN, Al-Bzour AN, Qasaymeh A, Saeed A, Chen L, Saeed A. Machine learning approach identifies inflammatory gene signature for predicting survival outcomes in hepatocellular carcinoma. Sci Rep 2024; 14:30328. [PMID: 39638834 PMCID: PMC11621542 DOI: 10.1038/s41598-024-81395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, often linked to chronic inflammation. Our study aimed to probe inflammation pathways at the genetic level and pinpoint biomarkers linked to HCC patient survival. METHODS We analyzed gene transcriptome data from 246 resectable stage I and II HCC patients from The Cancer Genome Atlas (TCGA). After selecting 917 inflammation-related genes (IRGs), we identified 104 differentially expressed genes (DEGs) through differential expression analysis. Two significant prognostic DEGs, S100A9 and PBK, were identified using LASSO and Cox regression, forming the basis of a risk score model. We conducted functional enrichment and immune landscape analyses, validated our findings on 170 patients from the GSE14520 dataset, and performed mutational analysis using TCGA somatic mutation data. RESULTS We analyzed 296 samples (246 HCC, 50 normal liver), showing significant survival differences between high and low-risk groups based on our risk score model. Functional enrichment analysis unveiled inflammation-associated pathways. Validation using the GSE14520 dataset confirmed our risk score's predictive ability, and we explored clinical correlations. CONCLUSION Our study delineates inflammation-related genomic changes in HCC, unveiling prognostic biomarkers with potential therapeutic implications. These findings deepen our understanding of HCC molecular mechanisms and may guide personalized therapeutic approaches, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Noor N Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Ayah N Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Abdelrahman Qasaymeh
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Chen L, Wu GZ, Wu T, Shang HH, Wang WJ, Fisher D, Hiens NTT, Musabaev E, Zhao L. Cell Cycle-Related LncRNA-Based Prognostic Model for Hepatocellular Carcinoma: Integrating Immune Microenvironment and Treatment Response. Curr Med Sci 2024; 44:1217-1231. [PMID: 39681799 DOI: 10.1007/s11596-024-2924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/04/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) presents substantial genetic and phenotypic diversity, making it challenging to predict patient outcomes. There is a clear need for novel biomarkers to better identify high-risk individuals. Long non-coding RNAs (lncRNAs) are known to play key roles in cell cycle regulation and genomic stability, and their dysregulation has been closely linked to HCC progression. Developing a prognostic model based on cell cycle-related lncRNAs could open up new possibilities for immunotherapy in HCC patients. METHODS Transcriptomic data and clinical samples were obtained from the TCGA-HCC dataset. Cell cycle-related gene sets were sourced from existing studies, and coexpression analysis identified relevant lncRNAs (correlation coefficient >0.4, P<0.001). Univariate analysis identified prognostic lncRNAs, which were then used in a LASSO regression model to create a risk score. This model was validated via cross-validation. HCC samples were classified on the basis of their risk scores. Correlations between the risk score and tumor mutational burden (TMB), tumor immune infiltration, immune checkpoint gene expression, and immunotherapy response were evaluated via R packages and various methods (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-COUNTER, XCELL, and EPIC). RESULTS Four cell cycle-related lncRNAs (AC009549.1, AC090018.2, PKD1P6-NPIPP1, and TMCC1-AS1) were significantly upregulated in HCC. These lncRNAs were used to create a risk score (risk score=0.492×AC009549.1+1.390×AC090018.2+1.622×PKD1P6-NPIPP1+0.858×TMCC1-AS1). This risk score had superior predictive value compared to traditional clinical factors (AUC=0.738). A nomogram was developed to illustrate the 1-year, 3-year, and 5-year overall survival (OS) rates for individual HCC patients. Significant differences in TMB, immune response, immune cell infiltration, immune checkpoint gene expression, and drug responsiveness were observed between the high-risk and low-risk groups. CONCLUSION The risk score model we developed enhances the prognostication of HCC patients by identifying those at high risk for poor outcomes. This model could lead to new immunotherapy strategies for HCC patients.
Collapse
Affiliation(s)
- Lin Chen
- Department of Infectious Diseases, Tsinghua University Affiliated Chuiyangliu Hospital, Beijing, 100021, China.
| | - Guo-Zhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Tao Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Hu Shang
- Jingchuan County People's Hospital, Jingliang, 744300, China
| | - Wei-Juan Wang
- Department of Infectious Diseases, Tsinghua University Affiliated Chuiyangliu Hospital, Beijing, 100021, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, 7100, South Africa
| | | | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, 100133, Uzbekistan
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
40
|
梁 钰, 李 凌, 刘 柏, 高 洁, 陈 星, 李 进, 柯 阳, 陈 勇. [Research Advances in the Roles of High-Altitude Hypoxic Stress in Hepatocellular Carcinoma]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1436-1445. [PMID: 39990853 PMCID: PMC11839340 DOI: 10.12182/20241160605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 02/25/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent malignant tumors causing the highest mortality globally, imposes an especially heavy burden of disease in China. Individuals living in high-altitude areas have a lower incidence of and mortality resulting from HCC compared with those in low-altitude regions do, potentially due to adaptive evolution in responses to hypoxic stress. Notably, high-altitude hypoxic stress is associated with the development and progression of HCC. Hypoxic stress may be involved in the development and progression of HCC by modulating the senescence, apoptosis, metabolism, tumor microenvironment, and tumor immunity of HCC cells. Additionally, the latest clinical findings indicate that high-altitude hypoxic environment has a significant impact on liver regeneration after HCC resection surgery. However, there is still a debate going on regarding whether high-altitude hypoxic stress promotes or inhibits the progression of HCC. This review covers three main aspects, the impact of adaptive evolution to high-altitude hypoxic stress on the development and progression of HCC in long-term residents of high-altitude areas, the effects of high-altitude hypoxic stress on the senescence, apoptosis, metabolism, tumor microenvironment, tumor metabolism, and tumor immunity of HCC cells, and the effect of high-altitude hypoxic stress on liver regeneration after HCC resection. We discussed the effect of changes in oxygen concentrations, cellular context, and tissue microenvironment on HCC development and progression. Moreover, we highlighted the potential for using research findings on mechanisms underlying high-altitude hypoxic stress to optimize HCC treatment strategies.
Collapse
Affiliation(s)
- 钰博 梁
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 凌娟 李
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 柏杨 刘
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 洁 高
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 星明 陈
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 进 李
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 阳 柯
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 勇彬 陈
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
- 郑州大学第一附属医院 (郑州 450052)The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
41
|
Fan G, Gao R, Xie T, Li L, Tang L, Han X, Shi Y. DKK1+ tumor cells inhibited the infiltration of CCL19+ fibroblasts and plasma cells contributing to worse immunotherapy response in hepatocellular carcinoma. Cell Death Dis 2024; 15:797. [PMID: 39505867 PMCID: PMC11541906 DOI: 10.1038/s41419-024-07195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Intra-tumor immune infiltration plays a pivotal role in the interaction with tumor cells in hepatocellular carcinoma (HCC). However, its phenotype and related spatial structure remained elusive. To address these limitations, we conducted a comprehensive study combining spatial data (38,191 spots from eight samples) and single-cell data (56,022 cells from 20 samples). Our analysis revealed two distinct infiltration patterns: immune exclusion and immune activation. Plasma cells emerged as the primary cell type within intra-tumor immune clusters. Notably, we observed the co-location of CCL19+ fibroblasts with plasma cells, which secrete chemokines and promote T-cell activation and leukocyte migration. Conversely, in immune-exclusion samples, this co-location was primarily observed in the adjacent normal area. This co-localization correlated with T cell infiltration and the formation of tertiary lymphoid structures, validated by multiplex immunofluorescence conducted on twenty HCC samples. Both CCL19+ fibroblasts and plasma cells were associated with favorable survival outcomes. In an immunotherapy cohort, HCC patients who responded favorably exhibited higher infiltration of CCL19+ fibroblasts and plasma cells. Additionally, we observed the accumulation of DKK1+ tumor cells within the tumor area in immune-exclusion samples, particularly at the tumor boundary, which inhibited the infiltration of CCL19+ fibroblasts and plasma cells into the tumor area. Furthermore, in immune-exclusion samples, the SPP1 signaling pathway demonstrated the highest activity in communication between tumor and immune clusters, and CCL19-CCR7 played a pivotal role in the self-communication of immune clusters. This study elucidates immune exclusion and immune activation patterns in HCC and identifies relevant factors contributing to immune resistance.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
42
|
Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J, Atzen S. Interventional Oncology Meets Immuno-oncology: Combination Therapies for Hepatocellular Carcinoma. Radiology 2024; 313:e232875. [PMID: 39560477 PMCID: PMC11605110 DOI: 10.1148/radiol.232875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024]
Abstract
The management of hepatocellular carcinoma (HCC) is undergoing transformational changes due to the emergence of various novel immunotherapies and their combination with image-guided locoregional therapies. In this setting, immunotherapy is expected to become one of the standards of care in both neoadjuvant and adjuvant settings across all disease stages of HCC. Currently, more than 50 ongoing prospective clinical trials are investigating various end points for the combination of immunotherapy with both percutaneous and catheter-directed therapies. This review will outline essential tumor microenvironment mechanisms responsible for disease evolution and therapy resistance, discuss the rationale for combining locoregional therapy with immunotherapy, summarize ongoing clinical trials, and report on developing imaging end points and novel biomarkers that are relevant to both diagnostic and interventional radiologists participating in the management of HCC.
Collapse
Affiliation(s)
- Ryan Bitar
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Riad Salem
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Richard Finn
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Tim F. Greten
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - S. Nahum Goldberg
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Julius Chapiro
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Sarah Atzen
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| |
Collapse
|
43
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
44
|
Gong Q, Zhang L, Guo J, Zhao W, Zhou B, Yang C, Jiang N. FBXO family genes promotes hepatocellular carcinoma via ubiquitination of p53. J Cancer Res Clin Oncol 2024; 150:458. [PMID: 39397119 PMCID: PMC11471714 DOI: 10.1007/s00432-024-05948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
FBXO protein family plays an essential role in the ubiquitination process acting as E3 ligases, which may contribute to the progression of cancers. However, the molecular functions of FBXOs in hepatocellular carcinoma (HCC) remain incompletely understood. Here, we investigated the overlapping genes between the FBXOs and differentially expressed genes (DEGs) of HCC identified by utilizing The Cancer Genome Atlas (TCGA) dataset, then, a prognostic model with effective predictive capacity was constructed based on the uni-cox and LASSO regression analyses. To elucidate the underlying mechanism of the FBXO model genes, KEGG analysis was carried out. Drug metabolism-cytochrome P450 and retinol metabolism were revealed as the potential pathway, which Increased the credibility of subsequent drug prediction research. Meanwhile, patients divided by the prognostic model showed a different immune infiltrating status and we also found FBXO model genes may ubiquitinate P53, inducing TP53 more prone to mutations, thereby promoting the occurrence and development of tumors. Consistent with these findings, the result of immunohistochemistry (IHC) validated an elevated expression of these model genes in HCC tissues than in the adjacent tissues. The primary aim of this investigation is to formulate a prognostic model while exploring the underlying mechanisms associated with FBXO genes in HCC. These findings offer initial research perspectives on the involvement of FBXO genes in HCC and contribute to the discovery of dependable biomarkers for the management, prognostication, and early detection of HCC in patients.
Collapse
Affiliation(s)
- Qingge Gong
- Chongqing Medical University, Chongqing, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Chu X, Wu Q, Kong L, Peng Q, Shen J. Multiomics Analysis Identifies Prognostic Signatures for Sepsis-Associated Hepatocellular Carcinoma in Emergency Medicine. Emerg Med Int 2024; 2024:1999820. [PMID: 39421149 PMCID: PMC11486536 DOI: 10.1155/2024/1999820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives Sepsis, caused by the body's response to infection, poses a life-threatening condition and represents a significant global health challenge. Characterized by dysregulated immune response to infection, sepsis may lead to organ dysfunction and failure, ultimately resulting in high mortality rates. The liver plays a crucial role in sepsis, yet the role of differentially expressed genes in septic patients remains unclear in hepatocellular carcinoma (HCC). In this study, we aim to investigate the significance of differentially expressed genes related to sepsis in the occurrence and prognosis of tumors in HCC. Methods We conducted analyses by obtaining gene transcriptome data and clinical data of HCC cases from The Cancer Genome Atlas (TCGA). Furthermore, we obtained transcriptomic sequencing results of septic patients from the Gene Expression Omnibus (GEO) database, identified intersecting differentially expressed genes between the two, and performed survival analysis on the samples using LASSO and Cox regression analysis. Combining analyses of tumor mutation burden (TMB) and immune function, we further elucidated the mechanisms of sepsis-related genes in the prognosis and treatment of HCC. Results We established a prognostic model consisting of four sepsis-related genes: KRT20, PAEP, CCR3, and ANLN. Both the training and validation sets showed excellent outcomes in the prognosis of tumor patients, with significantly longer survival times observed in the low-risk group based on this model compared to the high-risk group. Furthermore, analyses, such as differential analysis of tumor mutation burden, immune function analysis, GO/KEGG pathway enrichment analysis, and drug sensitivity analysis, also demonstrated the potential mechanisms of action of sepsis-related genes. Conclusions Models constructed based on sepsis-related genes have shown excellent predictive ability in prognosis and differential analysis of drug sensitivity among tumor patients. These predictive models can enhance patient prognosis and inform the creation of early treatment protocols for sepsis, consequently aiding in the prevention of sepsis-induced HCC development through the modulation of the overall immune status. This may play a crucial role in patient management and immunotherapy, providing valuable reference for subsequent research.
Collapse
Affiliation(s)
- Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Linglin Kong
- Department of Infectious Disease, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Peng
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Junhua Shen
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
46
|
Hai L, Bai XY, Luo X, Liu SW, Ma ZM, Ma LN, Ding XC. Prognostic modeling of hepatocellular carcinoma based on T-cell proliferation regulators: a bioinformatics approach. Front Immunol 2024; 15:1444091. [PMID: 39445019 PMCID: PMC11496079 DOI: 10.3389/fimmu.2024.1444091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prognostic value and immune significance of T-cell proliferation regulators (TCRs) in hepatocellular carcinoma (HCC) have not been previously reported. This study aimed to develop a new prognostic model based on TCRs in patients with HCC. Method This study used The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and International Cancer Genome Consortium-Liver Cancer-Riken, Japan (ICGC-LIRI-JP) datasets along with TCRs. Differentially expressed TCRs (DE-TCRs) were identified by intersecting TCRs and differentially expressed genes between HCC and non-cancerous samples. Prognostic genes were determined using Cox regression analysis and were used to construct a risk model for HCC. Kaplan-Meier survival analysis was performed to assess the difference in survival between high-risk and low-risk groups. Receiver operating characteristic curve was used to assess the validity of risk model, as well as for testing in the ICGC-LIRI-JP dataset. Additionally, independent prognostic factors were identified using multivariate Cox regression analysis and proportional hazards assumption, and they were used to construct a nomogram model. TCGA-LIHC dataset was subjected to tumor microenvironment analysis, drug sensitivity analysis, gene set variation analysis, and immune correlation analysis. The prognostic genes were analyzed using consensus clustering analysis, mutation analysis, copy number variation analysis, gene set enrichment analysis, and molecular prediction analysis. Results Among the 18 DE-TCRs, six genes (DCLRE1B, RAN, HOMER1, ADA, CDK1, and IL1RN) could predict the prognosis of HCC. A risk model that can accurately predict HCC prognosis was established based on these genes. An efficient nomogram model was also developed using clinical traits and risk scores. Immune-related analyses revealed that 39 immune checkpoints exhibited differential expression between the high-risk and low-risk groups. The rate of immunotherapy response was low in patients belonging to the high-risk group. Patients with HCC were further divided into cluster 1 and cluster 2 based on prognostic genes. Mutation analysis revealed that HOMER1 and CDK1 harbored missense mutations. DCLRE1B exhibited an increased copy number, whereas RAN exhibited a decreased copy number. The prognostic genes were significantly enriched in tryptophan metabolism pathways. Conclusions This bioinformatics analysis identified six TCR genes associated with HCC prognosis that can serve as diagnostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Long Hai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiao-Yang Bai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai-Wei Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zi-Min Ma
- Weiluo Microbial Pathogens Monitoring Technology Co., Ltd. of Beijing, Beijing, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Tropical Disease & Infectious Disease, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
47
|
Cha JH, Park NR, Cho SW, Nam H, Yang H, Jung ES, Jang JW, Choi JY, Yoon SK, Sung PS, Bae SH. Chitinase 1: a novel therapeutic target in metabolic dysfunction-associated steatohepatitis. Front Immunol 2024; 15:1444100. [PMID: 39381000 PMCID: PMC11459552 DOI: 10.3389/fimmu.2024.1444100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by persistent inflammatory cascades, with macrophage activation playing a pivotal role. Chitinase 1 (CHIT1), produced by activated macrophages, is a key player in this cascade. In this study, we aimed to explore the role of CHIT1 in MASH with progressive liver fibrosis. Methods Fibrotic liver tissue and serum from distinct patient groups were analyzed using nCounter MAX, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay. A MASH mouse model was constructed to evaluate the effectiveness of OATD-01, a chitinase inhibitor. Macrophage profiling was performed using single-nuclei RNA sequencing and flow cytometry. Results CHIT1 expression in fibrotic liver tissues was significantly correlated with the extent of liver fibrosis, macrophages, and inflammation. Single-nuclei RNA sequencing demonstrated a notable increase in macrophages numbers, particularly of lipid-associated macrophages, in MASH mice. Treatment with OATD-01 reduced non-alcoholic fatty liver disease activity score and Sirius red-positive area. Additionally, OATD-01-treated mice had lower CHIT1, F4/80, and α-smooth muscle actin positivity, as well as significantly lower levels of inflammatory markers, pro-fibrotic genes, and matrix remodeling-related mRNAs than vehicle-treated mice. Although the population of F4/80+CD11b+ intrahepatic mononuclear phagocytes remained unchanged, their infiltration and activation (CHIT1+MerTK+) significantly decreased in OATD-01-treated mice, compared with that observed in vehicle-treated mice. Conclusions Our study underscores the pivotal role of CHIT1 in MASH. The observed significant improvement in inflammation and hepatic fibrosis, particularly at higher doses of the CHIT1 inhibitor, strongly suggests the potential of CHIT1 as a therapeutic target in MASH accompanied by progressive liver fibrosis.
Collapse
Affiliation(s)
- Jung Hoon Cha
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Ri Park
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heechul Nam
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Divison of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Divison of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
48
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
49
|
Wang Q, Zhang Z, Zhou H, Qin Y, He J, Li L, Ding X. Eosinophil-Associated Genes are Potential Biomarkers for Hepatocellular Carcinoma Prognosis. J Cancer 2024; 15:5605-5621. [PMID: 39308686 PMCID: PMC11414626 DOI: 10.7150/jca.95138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Eosinophils, a type of white blood cell originating from the bone marrow, are widely believed to play a crucial role in inflammatory processes, including allergic reactions and parasitic infections. However, the relationship between eosinophils and liver cancer is not well understood. Methods: Tumor immune infiltration scores were calculated using single-sample Gene Set Enrichment Analysis (ssGSEA). Key modules and hub genes associated with eosinophils were screened using Weighted Gene Co-expression Network Analysis (WGCNA). Univariate and multivariate Cox analyses, along with LASSO regression, were used to identify prognostic genes and create a risk model. The Tumor Immune Dysfunction and Exclusion (TIDE) score was used to evaluate the immunotherapeutic significance of the eosinophil-associated gene risk score (ERS) model. Experiments such as flow cytometry, immunohistochemical analysis, real-time quantitative PCR (RT-qPCR), and Western blotting were used to determine gene expression levels and the status of eosinophil infiltration in tumors. Results: A risk trait model including 4 eosinophil-associated genes (RAMP3, G6PD, SSRP1, PLOD2) was developed by univariate Cox analysis and Lasso screening. Pathologic grading (p < 0.001) and model risk scores (p < 0.001) were found to be independent predictors of hepatocellular carcinoma (HCC) patient survival. Western blotting revealed higher levels of eosinophil peroxidase (EPX) in HCC tissues compared to adjacent normal tissues. Immunohistochemistry showed that eosinophils mainly infiltrated the connective tissue around HCC. The HCC samples showed low expression of RAMP3 and high expression of G6PD, SSRP1, and PLOD2, as detected by IHC and RT-qPCR analysis. The in vivo mouse experiments showed that IL-33 treatment induced the recruitment of eosinophils and reduced the number of intrahepatic tumor nodules. Conclusion: Overall, eosinophil infiltration in HCC is significantly correlated with patient survival. The risk assessment model based on eosinophil-related genes serves as a reliable clinical prognostic indicator and provides insights for precise treatment of HCC.
Collapse
Affiliation(s)
- Qinghao Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zixin Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yanling Qin
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Limin Li
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- College of Engineering and Design, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
50
|
Qi L, Zhu Y, Li J, Zhou M, Liu B, Chen J, Shen J. CT radiomics-based biomarkers can predict response to immunotherapy in hepatocellular carcinoma. Sci Rep 2024; 14:20027. [PMID: 39198563 PMCID: PMC11358293 DOI: 10.1038/s41598-024-70208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) remains a leading cause of cancer deaths. Despite the rise of immunotherapies, many HCC patients don't benefit. There's a clear need for biomarkers to guide treatment decisions. This research aims to identify such biomarkers by combining radiological data and machine learning. We analyzed clinical and CT imaging data of 54 HCC patients undergoing immunotherapy. Radiologic features were examined to develop a model predicting short-term immunotherapy effects. We utilized 9 machine learning and 2 ensemble learning techniques using RapidMiner for model construction. We conducted the validation of the above feature combination using 29 HCC patients who received immunotherapy from another hospital, and tested and validated it using XGBoost combined with a genetic algorithm. In 54 HCC patients, radiomics features varied significantly between those with partial response (PR) and stable disease (SD). Key features in Gray Level Run Length Matrix (GLRLM) and in adjacent tissues' Intensity Direct, Neighborhood Gray Tone Difference Matrix (NGTDM), and Shape correlated with short-term immunotherapy efficacy. Selected feature combinations of 15, 19, and 8/15 features yielded better outcomes. Deep learning, random forest, and naive bayes outperformed other methods, with Bagging being more reliable than Adaboost. In the validation set of 29 HCC patients, the mentioned feature combination also demonstrated favorable performance. Furthermore, we achieved improved results when employing XGBoost in conjunction with a genetic algorithm for testing and validation. The machine learning model built with CT image features derived from GLCM, GLRLM, IntensityDirect, NGTDM, and Shape can accurately forecast the short-term efficacy of immunotherapy for HCC.
Collapse
Affiliation(s)
- Liang Qi
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China
| | - Yahui Zhu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China
| | - Jinxin Li
- Department of Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Mingzhen Zhou
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
| | - Jie Shen
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|