1
|
Gao W, Biswal B, Zhou X, Xing J, Yang J, Yuan J. The neural mechanisms subserving the adaptiveness of emotion regulation flexibility and its link to depression. J Affect Disord 2025; 379:332-341. [PMID: 40081594 DOI: 10.1016/j.jad.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Emotion Regulation Flexibility (ERF) is defined as an individual's ability to adaptively respond to changing situations and goals. Deficits in the adaptiveness of ERF have been linked to depression, suggesting a critical relationship between emotional processing and mental health. The objective of the present study was to investigate how variations in situational and goal-related contexts influence the association between ERF adaptiveness and depression. We employed functional magnetic resonance imaging (fMRI) and behavioral tasks to explore this relationship. Participants completed tasks designed to provoke changing situations and changing goals, while fMRI captured neural activity. Our findings revealed a significant negative correlation between depression scores and ERF adaptiveness. Specifically, during changing-situations, activation was observed in temporal and limbic regions, while changing-goals engaged prefrontal and parietal regions. Correlation analyses indicated that the adaptiveness of ERF was supported by distinct neural contributions: the temporoparietal junction (TPJ) in the changing-situations condition and the dorsolateral prefrontal cortex (dlPFC) in the changing-goals condition. Furthermore, the functional coupling between the dlPFC and the ventromedial prefrontal cortex (vmPFC) mediated the relationship between ERF adaptiveness and depression during changing-goals, but not during changing-situations. These findings elucidate the neural mechanisms of ERF adaptiveness and its implications for understanding and addressing depression.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Xinqin Zhou
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | | | - Jiemin Yang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - JiaJin Yuan
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China; Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
2
|
Haker R, Helft C, Natali Shamir E, Shahar M, Solomon H, Omer N, Blumenfeld‐Katzir T, Zlotzover S, Piontkewitz Y, Weiner I, Ben‐Eliezer N. Characterization of Brain Abnormalities in Lactational Neurodevelopmental Poly I:C Rat Model of Schizophrenia and Depression Using Machine-Learning and Quantitative MRI. J Magn Reson Imaging 2025; 61:2281-2291. [PMID: 39466009 PMCID: PMC11987781 DOI: 10.1002/jmri.29634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND A recent neurodevelopmental rat model, utilizing lactational exposure to polyriboinosinic-polyribocytidilic acid (Poly I:C) leads to mimics of behavioral phenotypes resembling schizophrenia-like symptoms in male offspring and depression-like symptoms in female offspring. PURPOSE To identify mechanisms of neuronal abnormalities in lactational Poly I:C offspring using quantitative MRI (qMRI) tools. STUDY TYPE Prospective. ANIMAL MODEL Twenty Poly I:C rats and 20 healthy control rats, age 130 postnatal day. FIELD STRENGTH/SEQUENCE 7 T. Multiflip-angle FLASH protocol for T1 mapping; multi-echo spin-echo T2-mapping protocol; echo planar imaging protocol for diffusion tensor imaging. ASSESSMENT Nursing dams were injected with the viral mimic Poly I:C or saline (control group). In adulthood, quantitative maps of T1, T2, proton density, and five diffusion metrics were generated for the offsprings. Seven regions of interest (ROIs) were segmented, followed by extracting 10 quantitative features for each ROI. STATISTICAL TESTS Random forest machine learning (ML) tool was employed to identify MRI markers of disease and classify Poly I:C rats from healthy controls based on quantitative features. RESULTS Poly I:C rats were identified from controls with an accuracy of 82.5 ± 25.9% for females and 85.0 ± 24.0% for males. Poly I:C females exhibited differences mainly in diffusion-derived parameters in the thalamus and the medial prefrontal cortex (MPFC), while males displayed changes primarily in diffusion-derived parameters in the corpus callosum and MPFC. DATA CONCLUSION qMRI shows potential for identifying sex-specific brain abnormalities in the Poly I:C model of neurodevelopmental disorders. LEVEL OF EVIDENCE NA TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Rona Haker
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Coral Helft
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | | | - Moni Shahar
- The AI and Data Science CenterTel Aviv UniversityTel AvivIsrael
| | - Hadas Solomon
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Noam Omer
- Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
| | | | - Sharon Zlotzover
- Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
| | - Yael Piontkewitz
- School of Psychological SciencesTel Aviv UniversityTel AvivIsrael
| | - Ina Weiner
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- School of Psychological SciencesTel Aviv UniversityTel AvivIsrael
| | - Noam Ben‐Eliezer
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
- Center for Advanced Imaging Innovation and Research (CAI2R)New York University School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
3
|
Liu X, Zhang Y, Chen J, Xie M, Pan L, Hommel B, Yang Y, Zhu X, Wang K, Zhang W. Altered brain structure and function correlate with non-suicidal self-injury in children and adolescents with transdiagnostic psychiatric disorders. J Psychiatr Res 2025; 184:17-26. [PMID: 40036938 DOI: 10.1016/j.jpsychires.2025.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Non-suicidal self-injury (NSSI) is a prevalent mental problem among children and adolescents, cutting across psychiatric disorders. Studies in specific disorders such as depression and ADHD have revealed associations with alterations in brain regions responsible for reward processing and emotion regulation. However, it remains largely unknown whether such associations are shared among different disorders. Here, we aimed to examine brain structural and functional associations with NSSI in a transdiagnostic psychiatric cohort of children and adolescents. A total of 386 patients (age = 10.72 ± 3.53, range = 5.04 to 21.22) diagnosed primarily with ADHD, autism and generalized anxiety disorder from the Healthy Brain Network study were included. Using linear regression models, we examined brain volumes (N = 386) and functional connectivities (N = 277) associated with NSSI and whether potential alterations could moderate/mediate the links between internalizing/externalizing symptoms and NSSI. We found that increased severity of NSSI was associated with decreased bilateral putamen volumes, and reduced connectivities of the left putamen with bilateral regions of temporoparietal junction and of the right putamen with the left temporoparietal junction, demonstrating the role of putamen in NSSI behavior. Moreover, some of these associations played moderating roles: in patients with lower putamen volumes or weaker functional connectivities, increased internalizing/externalizing symptoms were associated with higher NSSI severity. Our findings suggest that transdiagnostic NSSI is linked to structural alterations and functional dysfunctions in putamen, highlighting that putamen may serve as a neural marker of NSSI and as a potential target for neuromodulation treatments across mental conditions.
Collapse
Affiliation(s)
- Xuan Liu
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Yixin Zhang
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Jiahui Chen
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Mingyan Xie
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Lijun Pan
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| | - Ying Yang
- Shandong Mental Health Center, Shandong University, Jinan, 250014, China
| | - Xingxing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8TB, UK.
| | - Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, 250358, China; Shandong Mental Health Center, Shandong University, Jinan, 250014, China.
| | - Wenxin Zhang
- School of Psychology, Shandong Normal University, Jinan, 250358, China
| |
Collapse
|
4
|
Lees T, Gatzke‐Kopp LM. Differences in Consummatory but Not Anticipatory Reward Processing Predict Depressive Symptoms in Young Adult Women. Psychophysiology 2025; 62:e70026. [PMID: 40052559 PMCID: PMC11887006 DOI: 10.1111/psyp.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/10/2025]
Abstract
Depression has been postulated to relate to alterations in both anticipatory (i.e., motivation) and consummatory (i.e., hedonic pleasure) stages of reward processing. However, few studies have concurrently examined the various processes of these stages. Furthermore, little attention has been paid to whether these associations are sex-specific, despite increasing evidence of the sex specificity of neural markers of internalizing disorders. The current study examines event-related potentials (ERPs) of reward processing recorded during a monetary incentive delay task among a community sample of n = 309 emerging adults in relation to self-reported symptoms of depression. Regression modeling indicated that greater depressive symptom scores were associated with reduced responsivity to reward feedback and increased responsivity to non-reward feedback (as indexed by the Feedback-P3) but only for participants who were identified as female at birth. Individual differences in anticipatory processes (as indexed by both the Cue-P3 and CNV) were not associated with depressive symptoms for either sex. Results of these models suggest that depressive symptoms appear to be associated with consummatory reward processing for young women. It is possible that other dimensions of negative affect could be more poignant for male participants or may provide an additional description of the relationship between reward processing and depressive symptoms.
Collapse
Affiliation(s)
- Ty Lees
- Center for Depression, Anxiety and Stress ResearchMcLean HospitalBelmontMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Lisa M. Gatzke‐Kopp
- Human Development and Family StudiesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
5
|
Chesebro AG, Antal BB, Weistuch C, Mujica-Parodi LR. Challenges and Frontiers in Computational Metabolic Psychiatry. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:258-266. [PMID: 39481469 DOI: 10.1016/j.bpsc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
One of the primary challenges in metabolic psychiatry is that the disrupted brain functions that underlie psychiatric conditions arise from a complex set of downstream and feedback processes that span multiple spatiotemporal scales. Importantly, the same circuit can have multiple points of failure, each of which results in a different type of dysregulation, and thus elicits distinct cascades downstream that produce divergent signs and symptoms. Here, we illustrate this challenge by examining how subtle differences in circuit perturbations can lead to divergent clinical outcomes. We also discuss how computational models can perform the spatially heterogeneous integration and bridge in vitro and in vivo paradigms. By leveraging recent methodological advances and tools, computational models can integrate relevant processes across scales (e.g., tricarboxylic acid cycle, ion channel, neural microassembly, whole-brain macrocircuit) and across physiological systems (e.g., neural, endocrine, immune, vascular), providing a framework that can unite these mechanistic processes in a manner that goes beyond the conceptual and descriptive to the quantitative and generative. These hold the potential to sharpen our intuitions toward circuit-based models for personalized diagnostics and treatment.
Collapse
Affiliation(s)
- Anthony G Chesebro
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Botond B Antal
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
6
|
Dagher M, Cahill CM, Andrews AM. Safety in treatment: Classical pharmacotherapeutics and new avenues for addressing maternal depression and anxiety during pregnancy. Pharmacol Rev 2025; 77:100046. [PMID: 40056793 DOI: 10.1016/j.pharmr.2025.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
We aimed to review clinical research on the safety profiles of antidepressant drugs and associations with maternal depression and neonatal outcomes. We focused on neuroendocrine changes during pregnancy and their effects on antidepressant pharmacokinetics. Pregnancy-induced alterations in drug disposition and metabolism impacting mothers and their fetuses are discussed. We considered evidence for the risks of antidepressant use during pregnancy. Teratogenicity associated with ongoing treatment, new prescriptions during pregnancy, or pausing medication while pregnant was examined. The Food and Drug Administration advises caution regarding prenatal exposure to most drugs, including antidepressants, largely owing to a dearth of safety studies caused by the common exclusion of pregnant individuals in clinical trials. We contrasted findings on antidepressant use with the lack of treatment where detrimental effects to mothers and children are well researched. Overall, drug classes such as selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors appear to have limited adverse effects on fetal health and child development. In the face of an increasing prevalence of major mood and anxiety disorders, we assert that individuals should be counseled before and during pregnancy about the risks and benefits of antidepressant treatment given that withholding treatment has possible negative outcomes. Moreover, newer therapeutics, such as ketamine and κ-opioid receptor antagonists, warrant further investigation for use during pregnancy. SIGNIFICANCE STATEMENT: The safety of antidepressant use during pregnancy remains controversial owing to an incomplete understanding of how drug exposure affects fetal development, brain maturation, and behavior in offspring. This leaves pregnant people especially vulnerable, as pregnancy can be a highly stressful experience for many individuals, with stress being the biggest known risk factor for developing a mood or anxiety disorder. This review focuses on perinatal pharmacotherapy for treating mood and anxiety disorders, highlighting the current knowledge and gaps in our understanding of consequences of treatment.
Collapse
Affiliation(s)
- Merel Dagher
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California.
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California
| | - Anne M Andrews
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
7
|
Hahn A, Reed MB, Murgaš M, Vraka C, Klug S, Schmidt C, Godbersen GM, Eggerstorfer B, Gomola D, Silberbauer LR, Nics L, Philippe C, Hacker M, Lanzenberger R. Dynamics of human serotonin synthesis differentially link to reward anticipation and feedback. Mol Psychiatry 2025; 30:600-607. [PMID: 39179904 PMCID: PMC11746133 DOI: 10.1038/s41380-024-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Clemens Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - David Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Tian H, Wang Z, Meng Y, Geng L, Lian H, Shi Z, Zhuang Z, Cai W, He M. Neural mechanisms underlying cognitive impairment in depression and cognitive benefits of exercise intervention. Behav Brain Res 2025; 476:115218. [PMID: 39182624 DOI: 10.1016/j.bbr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Depression is associated with functional brain impairments, although comprehensive studies remain limited. This study reviews neural mechanisms underlying cognitive impairment in depression and identifies associated activation abnormalities in brain regions. The study also explores the underlying neural processes of cognitive benefits of exercise intervention for depression. Executive function impairments, including working memory, inhibitory control and cognitive flexibility are associated with frontal cortex and anterior cingulate areas, especially dorsolateral prefrontal cortex. Depression is associated with certain neural impairments of reward processing, especially orbitofrontal cortex, prefrontal cortex, nucleus accumbens and other striatal regions. Depressed patients exhibit decreased activity in the hippocampus during memory function. Physical exercise has been found to enhance memory function, executive function, and reward processing in depression patients by increasing functional brain regions and the brain-derived neurotrophic factor (BDNF) as a nutritional factor also plays a key role in exercise intervention. The study documents neurophysiological mechanisms behind exercise intervention's improved functions. In summary, the study provides insights into neural mechanisms underlying cognitive impairments in depression and the effectiveness of exercise as a treatment.
Collapse
Affiliation(s)
- Huizi Tian
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Zhifang Wang
- School of Psychology, Capital Normal University, China
| | - Yao Meng
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, China
| | - Lu Geng
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Hao Lian
- Faculty of Psychology, Naval Medical University, Shanghai, China
| | - Zhifei Shi
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Zhidong Zhuang
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Wenpeng Cai
- Faculty of Psychology, Naval Medical University, Shanghai, China.
| | - Mengyang He
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China.
| |
Collapse
|
9
|
König P, Zwiky E, Küttner A, Uhlig M, Redlich R. Brain functional effects of cognitive behavioral therapy for depression: A systematic review of task-based fMRI studies. J Affect Disord 2025; 368:872-887. [PMID: 39299583 DOI: 10.1016/j.jad.2024.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Depressive disorders are associated with alterations in brain function, affecting processes such as affective and reward processing and emotion regulation. However, the influence of Cognitive Behavioral Therapy (CBT) on the neuronal patterns remains inadequately understood. Therefore, this review systematically summarizes longitudinal fMRI brain activity changes in depressive patients treated with CBT and their association with symptom remission. METHODS This systematic review was conducted according to the PRISMA statement. Out of 2149 results of the literature search, N = 14 studies met the inclusion criteria (e.g., diagnosis of a current depressive disorder, assessment of longitudinal task-based fMRI, and the analysis of functional changes before and after CBT). RESULTS The findings reveal (1) diminished limbic reactivity following CBT across various tasks, (2) increased striatal activity during reward processing, but decreased activity during affective processing and future thinking, and (3) alterations in cingulate and prefrontal cortex activity across tasks. Partially, these results are associated with symptom remission, especially in the subgenual anterior cingulate cortex. LIMITATIONS There are heterogenous results especially in cortical areas that might partially be due to methodological issues like differences across the studies in terms of task content, statistical evaluation, and interventions. Thus, future research should focus on the standardization of methodologies. CONCLUSIONS The results indicate that CBT partially normalizes the neural patterns of depressive patients, particularly within regions involved in affective and reward processing and the development of negative cognitive biases. Overall, potential neural mechanisms underlying CBT were identified, underscoring its effectiveness on an objective neurobiological basis.
Collapse
Affiliation(s)
- Philine König
- Department of Psychology, University of Halle, Germany.
| | - Esther Zwiky
- Department of Psychology, University of Halle, Germany
| | | | - Marie Uhlig
- Department of Psychology, University of Halle, Germany; German Center for Mental Health, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits (CIRC), Germany
| | - Ronny Redlich
- Department of Psychology, University of Halle, Germany; Institute of Translational Psychiatry, University of Muenster, Germany; German Center for Mental Health, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits (CIRC), Germany
| |
Collapse
|
10
|
Shen L, Hu YX, Lv QY, Yi ZH, Gong JB, Yan C. Using hierarchical drift diffusion models to elucidate computational mechanisms of reduced reward sensitivity in adolescent major depressive disorder. BMC Psychiatry 2024; 24:933. [PMID: 39695468 DOI: 10.1186/s12888-024-06353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Anhedonia-a core symptom of major depressive disorder (MDD)-is closely related to diminished reward sensitivity. Nonetheless, the psychopathological and computational mechanism underlying anhedonia in young patients with MDD remains unclear. Therefore, this study aims to investigate reward sensitivity in adolescents and young adults with MDD using computational modelling. METHODS Overall, 70 patients with MDD and 54 age- and sex-matched healthy controls (HC) completed a probabilistic reward task (PRT) to assess their general behavioral inclination towards more frequently reinforced stimuli (i.e., "response bias"). Bayesian hierarchical drift diffusion modeling (HDDM) was employed to determine changes in reward sensitivity and computational process during decision-making. RESULTS Adolescents with depression showed a trend toward reduced response bias compared to those in HC. HDDM analysis revealed wider decision thresholds in both adolescents and young adults with MDD group. Adolescents with MDD exhibited significantly lower drift rates and reduced starting point bias compared to those in HC. Higher anhedonia levels were linked to lower drift rates and wider decision thresholds. Additionally, increased discriminability correlated with higher drift rates, while higher response bias was linked to larger starting points. CONCLUSIONS Our findings suggest that reduced reward sensitivity and slower evidence accumulation during reward learning may serve as potential indicators of anhedonia in adolescents with MDD. These findings provided crucial insights into the dysregulated positive affect model, underscoring a dysfunctional reward system as a key factor in anhedonia developmental psychopathology in depression.
Collapse
Affiliation(s)
- Lei Shen
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), School of Psychology and Cognitive Science, Affiliated Mental Health Center (ECNU), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Ya-Xin Hu
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), School of Psychology and Cognitive Science, Affiliated Mental Health Center (ECNU), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Qin-Yu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Bo Gong
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), School of Psychology and Cognitive Science, Affiliated Mental Health Center (ECNU), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China.
| |
Collapse
|
11
|
Phillips RD. Neural and immune interactions linking early life stress and anhedonia. Brain Behav Immun Health 2024; 42:100881. [PMID: 39415844 PMCID: PMC11480252 DOI: 10.1016/j.bbih.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
Early experiences of stress and adversity are associated with blunted reward sensitivity and altered reward learning. Meanwhile, anhedonia is characterized by impairments in reward processing, including motivation, effort, and pleasure. Early life stress (ELS) and anhedonia share psychological, behavioral, and neurobiological correlates, and the system-level interactions that give rise to anhedonia have yet to be fully appreciated. The proposed framework uses a multilevel, multisystem approach to aid in understanding neural-immune interactions that link ELS and anhedonia. The interactions linking anhedonia and ELS presented here include reduced reward sensitivity, alterations in hypothalamic-pituitary-adrenal (HPA) axis response, elevated inflammatory cytokines or physiological markers of stress, and blunted reward circuitry functioning along the mesocorticolimbic pathway. The clinical implications and areas for future research are also discussed. Ultimately, this research may inform the development of more specific and individualized treatments for anhedonia.
Collapse
Affiliation(s)
- Rachel Deanna Phillips
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
12
|
Zhang Y, Wei M, Huang R, Jia S, Li L. College students with depression symptom are more sensitive to task difficulty in reinforcement learning. J Behav Ther Exp Psychiatry 2024; 85:101980. [PMID: 39033577 DOI: 10.1016/j.jbtep.2024.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Depression is usually characterized by impairments in reward function, and shows altered motivation to reward in reinforcement learning. This study further explored whether task difficulty affects reinforcement learning in college students with and without depression symptom. METHODS The depression symptom group (20) and the no depression symptom group (26) completed a probabilistic reward learning task with low, medium, and high difficulty levels, in which task the response bias to reward and the discriminability of reward were analyzed. Additionally, electrophysiological responses to reward and loss feedback were recorded and analyzed while they performed a simple gambling task. RESULTS The depression symptom group showed more response bias to reward than the no depression symptom group when the task was easy and then exhibited more quickly decrease in response bias to reward as task difficulty increased. The no depression symptom group showed a decrease in response bias only in the high-difficulty condition. Further regression analyses showed that, the Feedback-related negativity (FRN) and theta oscillation could predict response bias change in the low-difficulty condition, the FRN and oscillations of theta and delta could predict response bias change in the medium and high-difficulty conditions. LIMITATIONS The electrophysiological responses to loss and reward were not recorded in the same task as the reinforcement learning behaviors. CONCLUSIONS College students with depression symptom are more sensitive to task difficulty during reinforcement learning. The FRN, and oscillations of theta and delta could predict reward leaning behavior.
Collapse
Affiliation(s)
- Yaru Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Meng Wei
- School of Psychology, Shandong Normal University, Jinan, China
| | - Rong Huang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Shiwei Jia
- School of Psychology, Shandong Normal University, Jinan, China
| | - Li Li
- College of International Education, Shandong Normal University, Jinan, China.
| |
Collapse
|
13
|
Del Giacco AC, Morales AM, Jones SA, Barnes SJ, Nagel BJ. Ventral striatal-cingulate resting-state functional connectivity in healthy adolescents relates to later depression symptoms in adulthood. J Affect Disord 2024; 365:205-212. [PMID: 39134157 PMCID: PMC11438492 DOI: 10.1016/j.jad.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Depression is a significant public health concern. Identifying biopsychosocial risk factors for depression is important for developing targeted prevention. Studies have demonstrated that blunted striatal activation during reward processing is a risk factor for depression; however, few have prospectively examined whether adolescent reward-related resting-state functional connectivity (rsFC) predicts depression symptoms in adulthood and how this relates to known risk factors (e.g., childhood trauma). METHODS At baseline, 66 adolescents (mean age = 14.7, SD = 1.4, 68 % female) underwent rsFC magnetic resonance imaging and completed the Children's Depression Inventory (CDI). At follow-up (mean time between adolescent scan and adult follow-up = 10.1 years, SD = 1.6, mean adult age = 24.8 years, SD = 1.7), participants completed the Childhood Trauma Questionnaire (CTQ) and Beck Depression Inventory- Second Edition (BDI-2). Average rsFC was calculated between nodes in mesocorticolimbic reward circuitry: ventral striatum (VS), rostral anterior cingulate cortex (rACC), medial orbitofrontal cortex, and ventral tegmental area. Linear regressions assessed associations between rsFC, BDI-2, and CTQ, controlling for adolescent CDI, sex assigned at birth, and scan age (Bonferroni corrected). RESULTS Greater childhood trauma was associated with higher adulthood depression symptoms. Stronger VS-rACC rsFC during adolescence was associated with greater depression symptoms in adulthood and greater childhood trauma. LIMITATIONS The small sample size, limited depression severity, and seed-based approach are limitations. CONCLUSIONS The associations between adolescent striatal-cingulate rsFC and childhood trauma and adult depression symptoms suggest this connectivity may be an early neurobiological risk factor for depression and that early life experience plays an important role. Increased VS-rACC connectivity may represent an over-regulatory response on the striatum, commonly reported in depression, and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, USA
| |
Collapse
|
14
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
15
|
Zhang H, Zheng R, Yu B, Yu Y, Luo X, Yin S, Zheng Y, Shi J, Ai S. Dissecting shared genetic architecture between depression and body mass index. BMC Med 2024; 22:455. [PMID: 39394142 PMCID: PMC11481102 DOI: 10.1186/s12916-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A growing body of evidence supports the comorbidity between depression (DEP) and obesity, yet the genetic mechanisms underlying this association remain unclear. Our study explored the shared genetic architecture and causal associations of DEP with BMI. METHODS We investigated the multigene overlap and genetic correlation between DEP (N > 1.3 million) and BMI (N = 806,834) based on genome-wide association studies (GWAS) and using the bivariate causal mixture model and linkage disequilibrium score regression (LDSC). The causal association was explored by bi-directional Mendelian randomization (MR). Common risk loci were identified through cross-trait meta-analyses. Stratified LDSC and multi-marker gene annotation analyses were applied to investigate single-nucleotide polymorphisms enrichment across tissue types, cell types, and functional categories. Finally, we explored shared functional genes by Summary Data-Based Mendelian Randomization (SMR) and further detected differential expression genes (DEG) in brain tissues of individuals with depression and obesity. RESULTS We found a positive genetic correlation between DEP and BMI (rg = 0.19, P = 4.07 × 10-26), which was more evident in local genomic regions. Cross-trait meta-analyses identified 16 shared genetic loci, 5 of which were newly identified, and they had influence on both diseases in the same direction. MR analysis showed a bidirectional causal association between DEP and BMI, with comparable effect sizes estimated in both directions. Combined with gene expression information, we found that genetic correlations between DEP and BMI were enriched in 6 brain regions, predominantly in the nucleus accumbens and anterior cingulate cortex. Moreover, 6 specific cell types and 23 functional genes were found to have an impact on both DEP and BMI across the brain regions. Of which, NEGR1 was identified as the most significant functional gene and associated with DEP and BMI at the genome-wide significance level (P < 5 × 10-8). Compared with healthy controls, the expression levels of NEGR1 gene were significant lower in brain tissues of individuals with depression and obesity. CONCLUSIONS Our study reveals shared genetic basis underpinnings between DEP and BMI, including genetic correlations and common genes. These insights offer novel opportunities and avenues for future research into their comorbidities.
Collapse
Affiliation(s)
- Hengyu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Rui Zheng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Binhe Yu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xiaomin Luo
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujuan Yin
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China.
| |
Collapse
|
16
|
Brassard SL, Liu H, Dosanjh J, MacKillop J, Balodis I. Neurobiological foundations and clinical relevance of effort-based decision-making. Brain Imaging Behav 2024; 18:1-30. [PMID: 38819540 DOI: 10.1007/s11682-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Applying effort-based decision-making tasks provides insights into specific variables influencing choice behaviors. The current review summarizes the structural and functional neuroanatomy of effort-based decision-making. Across 39 examined studies, the review highlights the ventromedial prefrontal cortex in forming reward-based predictions, the ventral striatum encoding expected subjective values driven by reward size, the dorsal anterior cingulate cortex for monitoring choices to maximize rewards, and specific motor areas preparing for effort expenditure. Neuromodulation techniques, along with shifting environmental and internal states, are promising novel treatment interventions for altering neural alterations underlying decision-making. Our review further articulates the translational promise of this construct into the development, maintenance and treatment of psychiatric conditions, particularly those characterized by reward-, effort- and valuation-related deficits.
Collapse
Affiliation(s)
- Sarah L Brassard
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Hanson Liu
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jadyn Dosanjh
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Iris Balodis
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Lyu C, Lyu X, Gong Q, Gao B, Wang Y. Neural activation signatures in individuals with subclinical depression: A task-fMRI meta-analysis. J Affect Disord 2024; 362:104-113. [PMID: 38909758 DOI: 10.1016/j.jad.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Previous task-related functional magnetic resonance imaging (task-fMRI) investigations have documented abnormal brain activation associated with subclinical depression (SD), defined as a clinically relevant level of depressive symptoms that does not meet the diagnostic criteria for major depressive disorder. However, these task-fMRI studies have not reported consistent conclusions. Performing a voxel-based meta-analysis of task-fMRI studies may yield reliable findings. METHODS We extracted the peak coordinates and t values of included studies and analyzed brain activation between individuals with SD and healthy controls (HCs) using anisotropic effect-size signed differential mapping (AES-SDM). RESULTS A systematic literature search identified eight studies, including 266 individuals with SD and 281 HCs (aged 14 to 25). The meta-analysis showed that individuals with SD exhibited significantly greater activation in the right lenticular nucleus and putamen according to task-fMRI. The meta-regression analysis revealed a negative correlation between the proportion of females in a group and activation in the right striatum. LIMITATIONS The recruitment criteria for individuals with SD, type of tasks and MRI acquisition parameters of included studies were heterogeneous. The results should be interpreted cautiously due to insufficient included studies. CONCLUSION Our findings suggest that individuals with SD exhibit increased activation in the right lenticular nucleus, putamen and striatum, which may indicate a compensatory increase in response to an impairment of insular and striatal function caused by depression. These results provide valuable insights into the potential pathophysiology of brain dysfunction in SD.
Collapse
Affiliation(s)
- Cui Lyu
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyue Lyu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qiyong Gong
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
18
|
Bore MC, Liu X, Huang X, Kendrick KM, Zhou B, Zhang J, Klugah-Brown B, Becker B. Common and separable neural alterations in adult and adolescent depression - Evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 2024; 164:105835. [PMID: 39084585 DOI: 10.1016/j.neubiorev.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Depression is a highly prevalent and debilitating mental disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or distinct brain dysfunctions during reward processing. We aimed to identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI). Compared with healthy controls, both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC. Adults with depression showed decreased reactivity in the right putamen and subgenual ACC, while adolescents with depression showed decreased activity in the left mid cingulate, right caudate but increased reactivity in the right postcentral gyrus. This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Zhang Q, Du Y, Bao C, Hua L, Yan R, Dai Z, Xia Y, Zou H, He C, Sun H, Lu Q, Yao Z. Aberrant high-beta band functional connectivity during reward processing in melancholic major depressive disorder: An MEG study. Neuroimage Clin 2024; 43:103666. [PMID: 39232415 PMCID: PMC11404173 DOI: 10.1016/j.nicl.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To identify the spatial-temporal pattern variation of whole-brain functional connectivity (FC) during reward processing in melancholic major depressive disorder (MDD) patients, and to determine the clinical correlates of connectomic differences. METHODS 61 MDD patients and 32 healthy controls were enrolled into the study. During magnetoencephalography (MEG) scanning, all participants completed the facial emotion recognition task. The MDD patients were further divided into two groups: melancholic (n = 31) and non-melancholic (n = 30), based on the Mini International Neuropsychiatric Interview (M.I.N.I.) assessment. Melancholic symptoms were examined by using the 6-item melancholia subscale from the Hamilton Depression Rating Scale (HAM-D6). The whole-brain orthogonalized power envelope connections in the high-beta band (20-35 Hz) were constructed in each period after the happy emotional stimuli (0-200 ms, 100-300 ms, 200-400 ms, 300-500 ms, and 400-600 ms). Then, the network-based statistic (NBS) was used to determine the specific abnormal connection patterns in melancholic MDD patients. RESULTS The NBS identified a sub-network difference at the mid-late period (300-500 ms) in response to happy faces among the three groups (corrected P = 0.035). Then, the post hoc and correlation analyses found five FCs were decreased in melancholic MDD patients and were related to HAM-D6 score, including FCs of left fusiform gyrus-right orbital inferior frontal gyrus (r = -0.52, P < 0.001), left fusiform gyrus-left amygdala (r = -0.26, P = 0.049), left posterior cingulate gyrus-right precuneus (r = -0.32, P = 0.025), left precuneus-right precuneus (r = -0.27, P = 0.049), and left precuneus-left inferior occipital gyrus (r = -0.32, P = 0.025). CONCLUSION In response to happy faces, melancholic MDD patients demonstrated a disrupted functional connective pattern (20-35 Hz, 300-500 ms), which involved brain regions in visual information processing and the limbic system. The aberrant functional connective pattern in reward processing might be a biomarker of melancholic MDD.
Collapse
Affiliation(s)
- Qiaoyang Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Psychology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yishan Du
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ciqing Bao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen He
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, 210093, China..
| |
Collapse
|
20
|
Scheggi S. Still controversial issues on assessing anhedonia in experimental modeling of depression. Transl Psychiatry 2024; 14:345. [PMID: 39191774 DOI: 10.1038/s41398-024-03057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
21
|
Noh K, Oh J, Cho WH, Hwang M, Lee SJ. Astrocyte-derived dominance winning reverses chronic stress-induced depressive behaviors. Mol Brain 2024; 17:59. [PMID: 39192323 DOI: 10.1186/s13041-024-01134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Individuals with low social status are at heightened risk of major depressive disorder (MDD), and MDD also influences social status. While the interrelationship between MDD and social status is well-defined, the behavioral causality between these two phenotypes remains unexplored. Here, we investigated the behavioral relationships between depressive and dominance behaviors in male mice exposed to chronic restraint stress and the role of medial prefrontal cortex (mPFC) astrocytes in these behaviors. Chronic restraint stress induced both depressive and submissive behaviors. Chemogenetic mPFC astrocyte activation significantly enhanced dominance in chronic stress-induced submissive mice by increasing the persistence of defensive behavior, although it did not affect depressive behaviors. Notably, repetitive winning experiences following mPFC astrocyte stimulation exerted anti-depressive effects in chronic restraint stress-induced depressive mice. These data indicate that mPFC astrocyte-derived winning experience renders anti-depressive effects, and may offer a new strategy for treating depression caused by low status in social hierarchies by targeting mPFC astrocytes.
Collapse
Affiliation(s)
- Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junyoung Oh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woo-Hyun Cho
- Institute for Neurological Therapeutics Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Minkyu Hwang
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Wang T, Zeng J, Peng P, Yin Q. Social decision-making in major depressive disorder: A three-level meta-analysis. J Psychiatr Res 2024; 176:293-303. [PMID: 38905762 DOI: 10.1016/j.jpsychires.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Major Depressive Disorder (MDD) is frequently associated with social dysfunction and impaired decision-making, but its impact on social decisions remains unclear. Thus, we conducted a series of meta-analyses to examine the effects of MDD on key social decision phenomena, including trust, altruistic punishment, and cooperation. We searched Web of Science, PubMed, PsycINFO, and Embase up to December 2023, using Hedges' g to compare social decision-making between MDD patients and healthy controls (HCs). Meta-analytic results showed that MDD patients exhibited a significant reduction in trust (Hedges' g = -0.347, p < 0.001), no significant difference in altruistic punishment (Hedges' g = 0.232, p = 0.149), and an increase in cooperative behaviors (Hedges' g = 0.361, p = 0.002) compared to HCs. The moderation analysis revealed that age (p = 0.039) and region (p = 0.007) significantly moderated altruistic punishment, with older MDD patients and those from Asian and European regions having larger MDD-HC contrast than others. Regarding cooperation, moderation analysis indicated that age (p = 0.028), years of education (p = 0.054), and treatment coverage (p = 0.042) were significant moderators, indicating larger MDD-HC contrast in older, less-educated and better-treated people. These findings suggest MDD has different impacts on different social decisions, highlighting the need for fine-tuned therapeutic interventions that address these differences. The data also underscores the importance of considering demographic and treatment-related variables in managing MDD, which could inform personalized treatment strategies and improve social functionality and patient outcomes.
Collapse
Affiliation(s)
- Tao Wang
- Sino-Britain Center for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chonqing City, China
| | - Jianmin Zeng
- China Ministry of Education's Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China.
| | - Peiru Peng
- Sino-Britain Center for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chonqing City, China
| | - Qiao Yin
- Sino-Britain Center for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chonqing City, China
| |
Collapse
|
23
|
Smith DE, Long NM. Successful retrieval is its own reward. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605274. [PMID: 39211141 PMCID: PMC11360978 DOI: 10.1101/2024.07.26.605274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The ability to successfully remember past events is critical to our daily lives, yet the neural mechanisms underlying the motivation to retrieve is unclear. Although reward-system activity and feedback-related signals have been observed during memory retrieval, whether this signal reflects intrinsic reward or goal-attainment is unknown. Adjudicating between these two alternatives is crucial for understanding how individuals are motivated to engage in retrieval and how retrieval supports later remembering. To test these two accounts, we conducted between-subjects recognition memory tasks on human participants undergoing scalp electroencephalography and varied test-phase goals (recognize old vs. detect new items). We used an independently validated feedback classifier to measure positive feedback evidence. We find positive feedback following successful retrieval regardless of task goals. Together, these results suggest that successful retrieval is intrinsically rewarding. Such a feedback signal may promote future retrieval attempts as well as bolster later memory for the successfully retrieved events.
Collapse
|
24
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
25
|
Haykin H, Avishai E, Krot M, Ghiringhelli M, Reshef M, Abboud Y, Melamed S, Merom S, Boshnak N, Azulay-Debby H, Ziv T, Gepstein L, Rolls A. Reward system activation improves recovery from acute myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:841-856. [PMID: 39196183 DOI: 10.1038/s44161-024-00491-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls. These effects were mediated through several physiological mechanisms, including alterations in immune activity and reduced adrenergic input to the liver. We further demonstrate an anatomical connection between the reward system and the liver, functionally manifested by altered transcription of complement component 3, which in turn affects vascularization and recovery from AMI. These findings establish a causal connection between a motivational brain network and recovery from AMI, introducing potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- H Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - E Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Ghiringhelli
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Reshef
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Abboud
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Merom
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Gepstein
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
| | - A Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
26
|
Jung M, Han KM. Behavioral Activation and Brain Network Changes in Depression. J Clin Neurol 2024; 20:362-377. [PMID: 38951971 PMCID: PMC11220350 DOI: 10.3988/jcn.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024] Open
Abstract
Behavioral activation (BA) is a well-established method of evidence-based treatment for depression. There are clear links between the neural mechanisms underlying reward processing and BA treatment for depressive symptoms, including anhedonia; however, integrated interpretations of these two domains are lacking. Here we examine brain imaging studies involving BA treatments to investigate how changes in brain networks, including the reward networks, mediate the therapeutic effects of BA, and whether brain circuits are predictors of BA treatment responses. Increased activation of the prefrontal and subcortical regions associated with reward processing has been reported after BA treatment. Activation of these regions improves anhedonia. Conversely, some studies have found decreased activation of prefrontal regions after BA treatment in response to cognitive control stimuli in sad contexts, which indicates that the therapeutic mechanism of BA may involve disengagement from negative or sad contexts. Furthermore, the decrease in resting-state functional connectivity of the default-mode network after BA treatment appears to facilitate the ability to counteract depressive rumination, thereby promoting enjoyable and valuable activities. Conflicting results suggest that an intact neural response to rewards or defective reward functioning is predictive of the efficacy of BA treatments. Increasing the benefits of BA treatments requires identification of the unique individual characteristics determining which of these conflicting findings are relevant for the personalized treatment of each individual with depression.
Collapse
Affiliation(s)
- Minjee Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
Thng G, Shen X, Stolicyn A, Adams MJ, Yeung HW, Batziou V, Conole ELS, Buchanan CR, Lawrie SM, Bastin ME, McIntosh AM, Deary IJ, Tucker-Drob EM, Cox SR, Smith KM, Romaniuk L, Whalley HC. A comprehensive hierarchical comparison of structural connectomes in Major Depressive Disorder cases v. controls in two large population samples. Psychol Med 2024; 54:2515-2526. [PMID: 38497116 DOI: 10.1017/s0033291724000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity. METHODS We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case-control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection. RESULTS In UKB, reductions in network efficiency were observed in MDD cases globally (d = -0.076, pFDR = 0.033), across all tiers (d = -0.069 to -0.079, pFDR = 0.020), and in hubs (d = -0.080 to -0.113, pFDR = 0.013-0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample. CONCLUSION Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.
Collapse
Affiliation(s)
- Gladi Thng
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hon Wah Yeung
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Venia Batziou
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor L S Conole
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Colin R Buchanan
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas, Austin, TX, USA
- Population Research Center and Center on Aging and Population Sciences, University of Texas, Austin, TX, USA
| | - Simon R Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Keith M Smith
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - Liana Romaniuk
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Xia J, Lin X, Yu T, Yu H, Zou Y, Luo Q, Peng H. Aberrant functional connectivity of the globus pallidus in the modulation of the relationship between childhood trauma and major depressive disorder. J Psychiatry Neurosci 2024; 49:E218-E232. [PMID: 38960625 PMCID: PMC11230669 DOI: 10.1503/jpn.240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Childhood trauma plays a crucial role in the dysfunctional reward circuitry in major depressive disorder (MDD). We sought to explore the effect of abnormalities in the globus pallidus (GP)-centric reward circuitry on the relationship between childhood trauma and MDD. METHODS We conducted seed-based dynamic functional connectivity (dFC) analysis among people with or without MDD and with or without childhood trauma. We explored the relationship between abnormal reward circuitry, childhood trauma, and MDD. RESULTS We included 48 people with MDD and childhood trauma, 30 people with MDD without childhood trauma, 57 controls with childhood trauma, and 46 controls without childhood trauma. We found that GP subregions exhibited abnormal dFC with several regions, including the inferior parietal lobe, thalamus, superior frontal gyrus (SFG), and precuneus. Abnormal dFC in these GP subregions showed a significant correlation with childhood trauma. Moderation analysis revealed that the dFC between the anterior GP and SFG, as well as between the anterior GP and the precentral gyrus, modulated the relationship between childhood abuse and MDD severity. We observed a negative correlation between childhood trauma and MDD severity among patients with lower dFC between the anterior GP and SFG, as well as higher dFC between the anterior GP and precentral gyrus. This suggests that reduced dFC between the anterior GP and SFG, along with increased dFC between the anterior GP and precentral gyrus, may attenuate the effect of childhood trauma on MDD severity. LIMITATIONS Cross-sectional designs cannot be used to infer causality. CONCLUSION Our findings underscore the pivotal role of reward circuitry abnormalities in MDD with childhood trauma. These abnormalities involve various brain regions, including the postcentral gyrus, precentral gyrus, inferior parietal lobe, precuneus, superior frontal gyrus, thalamus, and middle frontal gyrus. CLINICAL TRIAL REGISTRATION ChiCTR2300078193.
Collapse
Affiliation(s)
- Jinrou Xia
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| | - Xiaohui Lin
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| | - Tong Yu
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| | - Huiwen Yu
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| | - Yurong Zou
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| | - Qianyi Luo
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| | - Hongjun Peng
- From the Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China (Xia, Lin, Yu T, Yu H, Zou, Luo, Peng); the Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China (Luo, Peng)
| |
Collapse
|
29
|
Kryza-Lacombe M, Spaulding I, Ku CK, Pearson N, Stein MB, Taylor CT. Amplification of positivity for depression and anxiety: Neural prediction of treatment response. Behav Res Ther 2024; 178:104545. [PMID: 38714105 DOI: 10.1016/j.brat.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/09/2024]
Abstract
Psychosocial treatments targeting the positive valence system (PVS) in depression and anxiety demonstrate efficacy in enhancing positive affect (PA), but response to treatment varies. We examined whether individual differences in neural activation to positive and negative valence incentive cues underlies differences in benefitting from a PVS-targeted treatment. Individuals with clinically elevated depression and/or anxiety (N = 88, ages 18 to 55) participated in one of two randomized, waitlist-controlled trials of Amplification of Positivity (AMP; NCT02330627, NCT03196544), a cognitive and behavioral intervention targeting the PVS. Participants completed a monetary incentive delay (MID) task during fMRI acquisition at baseline measuring neural activation to the possibility of gaining or losing money. Change in PA from before to after treatment was assessed using the Positive and Negative Affect Schedule. No significant associations were observed between baseline neural activation during gain anticipation and AMP-related changes in PA in regions of interest (striatum and insula) or whole-brain analyses. However, higher baseline striatal and insula activation during loss anticipation was associated with greater increases in PA post-AMP. This study provides preliminary evidence suggesting neural reactivity to negative valence cues may inform who stands to benefit most from treatments targeting the PVS.
Collapse
Affiliation(s)
- Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, USA
| | - Isabella Spaulding
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, USA
| | - Cheuk King Ku
- Department of Psychiatry, University of California, San Diego, USA
| | - Nana Pearson
- Department of Psychiatry, University of California, San Diego, USA
| | - Murray B Stein
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, USA; Department of Psychiatry, University of California, San Diego, USA
| | - Charles T Taylor
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, USA; Department of Psychiatry, University of California, San Diego, USA.
| |
Collapse
|
30
|
Lowe CJ, Bodell LP. Examining neural responses to anticipating or receiving monetary rewards and the development of binge eating in youth. A registered report using data from the Adolescent Brain Cognitive Development (ABCD) study. Dev Cogn Neurosci 2024; 67:101377. [PMID: 38615556 PMCID: PMC11026734 DOI: 10.1016/j.dcn.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
Binge eating is characterized as eating a large amount of food and feeling a loss of control while eating. However, the neurobiological mechanisms associated with the onset and maintenance of binge eating are largely unknown. Recent neuroimaging work has suggested that increased responsivity within reward regions of the brain to the anticipation or receipt of rewards is related to binge eating; however, limited longitudinal data has precluded understanding of the role of reward responsivity in the development of binge eating. The current study used data from the Adolescent Brain and Cognitive Development® (ABCD) longitudinal study dataset to assess whether heightened neural responses to different phases of reward processing (reward anticipation and receipt) (1) differentiated individuals with binge eating from matched controls, and (2) predicted the onset of binge eating in an "at risk" sample. Consistent with hypotheses, heightened neural responsivity in the right caudate and bilateral VS during reward anticipation differentiated youth with and without binge eating. Moreover, greater VS response to reward anticipation predicted binge eating two years later. Neural responses to reward receipt also were consistent with hypotheses, such that heightened VS and OFC responses differentiated youth with and without binge eating and predicted the presence of binge eating two years later. Findings from the current study suggest that hypersensitivity to rewards may contribute to the development of binge eating during early adolescence.
Collapse
Affiliation(s)
- Cassandra J Lowe
- Department of Psychology, University of Western Ontario, London, ON, Canada; Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay P Bodell
- Department of Psychology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
31
|
Lau D, Gamble JM. Suicidality among users of glucagon-like peptide-1 receptor agonists: An emerging signal? Diabetes Obes Metab 2024; 26:1150-1156. [PMID: 38229461 DOI: 10.1111/dom.15459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Affiliation(s)
- Darren Lau
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John-Michael Gamble
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
| |
Collapse
|
32
|
Kijima R, Watanabe K, Okamoto N, Ikenouchi A, Tesen H, Kakeda S, Yoshimura R. Fronto-striato network function is reduced in major depressive disorder. Front Psychiatry 2024; 15:1336370. [PMID: 38510800 PMCID: PMC10950964 DOI: 10.3389/fpsyt.2024.1336370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a major cause of poor quality of life and disability and is highly prevalent worldwide. Various pathological mechanisms are implicated in MDD, including the reward system. The human brain is equipped with a reward system that is involved in aspects such as motivation, pleasure, and learning. Several studies including a meta-analysis have been reported on the reward system network and MDD. However, to our knowledge, no studies have examined the relationship between the reward system network of drug-naïve, first-episode MDD patients and the detailed symptoms of MDD or age. The fronto-striato network (FSN) is closely related to the reward system network. The present study primarily aimed to elucidate this point. Methods A total of 89 drug-naïve first-episode MDD patients and 82 healthy controls (HCs) patients were enrolled in the study. The correlation between the FSN and age and the interaction between age and illness in the FSN were investigated in 75 patients in the MDD group and 79 patients in the HC group with available information on the FSN and age. In addition, the association between the FSN and the total scores on the 17-item Hamilton Rating Scale for Depression (HAMD-17) and scores in each symptom item was analyzed in 76 MDD subjects with information on the FSN and HAMD-17. The significance of each result was evaluated according to a p-value of <0.05. Results Age was inversely correlated with the FSN (p=2.14e-11) in the HC group but not in the MDD group (p=0.79). FSN varied with the presence of MDD and with age, particularly showing an interaction with MDD and age (p=1.04e-08). Specifically, age and the presence or absence of MDD each affected FSN, but the effect of age on FSN changed in the presence of depression. FSN did not correlate with total HAMD-17 scores or scores in each item. Discussion The reward system may be dysfunctional in patients with MDD. In addition, the effect could be greater in younger patients. Meanwhile, there is no correlation between the function of the reward system and the severity of MDD or the severity of each symptom. Thus, the reward system network may be an important biological marker of MDD, although careful consideration should be given to age and its association with the severity of the disorder. Conclusion The reward system function is decreased in MDD patients, and this decrease may be more pronounced in younger patients, although further research is still needed.
Collapse
Affiliation(s)
- Reoto Kijima
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Keita Watanabe
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Hirofumi Tesen
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
33
|
Zhang J, Wu X, Si Y, Liu Y, Wang X, Geng Y, Chang Q, Jiang X, Zhang H. Abnormal caudate nucleus activity in patients with depressive disorder: Meta-analysis of task-based functional magnetic resonance imaging studies with behavioral domain. Psychiatry Res Neuroimaging 2024; 338:111769. [PMID: 38141592 DOI: 10.1016/j.pscychresns.2023.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/25/2023]
Abstract
During task-based functional magnetic resonance imaging (t-fMRI) patients with depressive disorder (DD) have shown abnormal caudate nucleus activation. There have been no meta-analyses that are conducted on the caudate nucleus using Activation Likelihood Estimation (ALE) in patients with DD, and the relationships between abnormal caudate activity and different behavior domains in patients with DD remain unclear. There were 24 previously published t-fMRI studies included in the study with the caudate nucleus as the region of interest. Meta-analyses were performed using the method of ALE. Included five ALE meta-analyses: (1) the hypoactivated caudate nucleus relative to healthy controls (HCs); (2) the hyper-activated caudate nucleus; (3) the abnormal activation in the caudate nucleus in the emotion domain; (4) the abnormal activation in cognition domain; (5) the abnormal activation in the affective cognition domain. Results revealed that the hypo-/hyper-activity in the caudate subregions is mainly located in the caudate body and head, while the relationships between abnormal caudate subregions and different behavior domains are complex. The hypoactivation of the caudate body and head plays a key role in the emotions which indicates there is a positive relationship between the decreased caudate activity and depressed emotional behaviors in patients with DD.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yahui Liu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Xueke Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Yibo Geng
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Qiaohua Chang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Xiaoxiao Jiang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China.
| |
Collapse
|
34
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
35
|
Bore MC, Liu X, Gan X, Wang L, Xu T, Ferraro S, Li L, Zhou B, Zhang J, Vatansever D, Biswal B, Klugah-Brown B, Becker B. Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression - a neuroimaging meta-analysis. Psychol Med 2024; 54:639-651. [PMID: 37997708 DOI: 10.1017/s0033291723003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
van Houtum LAEM, Wever MCM, van Schie CC, Janssen LHC, Wentholt WGM, Tollenaar MS, Will GJ, Elzinga BM. Sticky criticism? Affective and neural responses to parental criticism and praise in adolescents with depression. Psychol Med 2024; 54:507-516. [PMID: 37553965 DOI: 10.1017/s0033291723002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND Parent-adolescent interactions, particularly parental criticism and praise, have previously been identified as factors relevant to self-concept development and, when negative, to adolescent depression. Yet, whether adolescents with depression show aberrant emotional and neural reactivity to parental criticism and praise is understudied. METHODS Adolescents with depression (n = 20) and healthy controls (n = 59) received feedback supposedly provided by their mother or father in the form of negative ('untrustworthy'), neutral ('chaotic'), and positive ('respectful') personality evaluations while in an MRI-scanner. After each feedback word, adolescents reported their mood. Beforehand, adolescents had rated whether these personality evaluations matched their self-views. RESULTS In both groups, mood decreased after criticism and increased after praise. Adolescents with depression reported blunted mood responses after praise, whereas there were no mood differences after criticism. Neuroimaging analyses revealed that adolescents with depression (v. healthy controls) exhibited increased activity in response to criticism in the subgenual anterior cingulate cortex, temporal pole, hippocampus, and parahippocampal gyrus. Praise consistent with adolescents' self-views improved mood independent of depression status, while criticism matching self-views resulted in smaller mood increases in adolescents with depression (v. healthy controls). Exploratory analyses indicated that adolescents with depression recalled criticism (v. praise) more. CONCLUSIONS Adolescents with depression might be especially attentive to parental criticism, as indexed by increased sgACC and hippocampus activity, and memorize this criticism more. Together with lower positive impact of praise, these findings suggest that cognitive biases in adolescent depression may affect how parental feedback is processed, and may be fed into their self-views.
Collapse
Affiliation(s)
- Lisanne A E M van Houtum
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Mirjam C M Wever
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Charlotte C van Schie
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
- Illawarra Health and Medical Research Institute and School of Psychology, University of Wollongong, Wollongong, Australia
| | - Loes H C Janssen
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Wilma G M Wentholt
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Geert-Jan Will
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| | - Bernet M Elzinga
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| |
Collapse
|
37
|
Pegg S, Kujawa A. The effects of stress on reward responsiveness: a systematic review and preliminary meta-analysis of the event-related potential literature. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:42-59. [PMID: 38093157 PMCID: PMC10872339 DOI: 10.3758/s13415-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Exposure to stressful events is associated with a range of negative physical and mental health outcomes, including depression. It is critical to understand the mechanisms through which stress impacts mental health to identify promising targets for prevention and intervention efforts. Low-reward responsiveness is thought to be a mechanism of effects of stress on negative health outcomes and can be reliably measured at the neurophysiological level by using event-related potentials (ERPs), such as the reward positivity (RewP) component. The goal of this systematic review and preliminary meta-analysis was to examine evidence of associations between stress and alterations in reward responsiveness measured using ERPs. Through a systematic review of the literature, 23 studies examining the effects of laboratory-induced stressors and naturalistic stressors or perceived stress on reward responsiveness met study criteria, 13 of which were included in the meta-analysis. Most studies were conducted in undergraduate and community samples, with three selected for specific conditions, and primarily in adults. The systematic review supported evidence of associations between laboratory-induced stressors and blunted reward responsiveness as measured by the RewP but there were more mixed results when considering direct associations between naturalistic stressors/perceived stress and reward-related ERPs. Given that all studies examined the RewP, the meta-analysis focused on this component and indicated that there was a weak, nonsignificant negative association between stress and RewP. Results emphasize the complex nature of relations between stress and reward-related ERPs and the need to consider alternative models in future research. We also provide reporting recommendations for ERP researchers to facilitate future meta-analyses.
Collapse
Affiliation(s)
- Samantha Pegg
- Department of Psychology and Human Development, Vanderbilt University, Peabody College #552, 230 Appleton Place, Nashville, TN, 37203-5721, USA.
| | - Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, Peabody College #552, 230 Appleton Place, Nashville, TN, 37203-5721, USA
| |
Collapse
|
38
|
Lv R, Cai M, Tang N, Shi Y, Zhang Y, Liu N, Han T, Zhang Y, Wang H. Active versus sham DLPFC-NAc rTMS for depressed adolescents with anhedonia using resting-state functional magnetic resonance imaging (fMRI): a study protocol for a randomized placebo-controlled trial. Trials 2024; 25:44. [PMID: 38218932 PMCID: PMC10787505 DOI: 10.1186/s13063-023-07814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Anhedonia, which is defined as the inability to feel pleasure, is considered a core symptom of major depressive disorder (MDD). It can lead to several adverse outcomes in adolescents, including heightened disease severity, resistance to antidepressants, recurrence of MDD, and even suicide. Specifically, patients who suffer from anhedonia may exhibit a limited response to selective serotonin reuptake inhibitors (SSRIs) and cognitive behavioral therapy (CBT). Previous researches have revealed a link between anhedonia and abnormalities within the reward circuitry, making the nucleus accumbens (NAc) a potential target for treatment. However, since the NAc is deep within the brain, repetitive transcranial magnetic stimulation (rTMS) has the potential to modulate this specific region. Recent advances have enabled treatment technology to precisely target the left dorsolateral prefrontal cortex (DLPFC) and modify the functional connectivity (FC) between DLPFC and NAc in adolescent patients with anhedonia. Therefore, we plan to conduct a study to explore the safety and effectiveness of using resting-state functional connectivity magnetic resonance imaging (fcMRI)-guided rTMS to alleviate anhedonia in adolescents diagnosed with MDD. METHODS The aim of this article is to provide a study protocol for a parallel-group randomized, double-blind, placebo-controlled experiment. The study will involve 88 participants who will be randomly assigned to receive either active rTMS or sham rTMS. The primary object is to measure the percentage change in the severity of anhedonia, using the Snaith-Hamilton Pleasure Scale (SHAPS). The assessment will be conducted from the baseline to 8-week post-treatment period. The secondary outcome includes encompassing fMRI measurements, scores on the 17-item Hamilton Rating Scale for Depression (HAMD-17), the Montgomery Asberg Depression Rating Scale (MADRS), the Chinese Version of Temporal Experience of Pleasure Scale (CV-TEPS), and the Chinese Version of Beck Scale for Suicide Ideation (BSI-CV). The Clinical Global Impression (CGI) scores will also be taken into account, and adverse events will be monitored. These evaluations will be conducted at baseline, as well as at 1, 2, 4, and 8 weeks. DISCUSSION If the hypothesis of the current study is confirmed, (fcMRI)-guided rTMS could be a powerful tool to alleviate the core symptoms of MDD and provide essential data to explore the mechanism of anhedonia. TRIAL REGISTRATION ClinicalTrials.gov NCT05544071. Registered on 16 September 2022.
Collapse
Affiliation(s)
- Runxin Lv
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Min Cai
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Nailong Tang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
- Department of Psychiatry, 907 Hospital, No. 99 Binjiang North Road, Yanping District, Nanping City, Fujian Province, China
| | - Yifan Shi
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Yuyu Zhang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Nian Liu
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Tianle Han
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Yaochi Zhang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Huaning Wang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China.
| |
Collapse
|
39
|
Kaiser RH, Moser AD, Neilson C, Jones J, Peterson EC, Ruzic L, Rosenberg BM, Hough CM, Sandman C, Schneck CD, Miklowitz DJ. Neurocognitive risk phenotyping to predict mood symptoms in adolescence. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2024; 133:90-102. [PMID: 38059934 PMCID: PMC10752243 DOI: 10.1037/abn0000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Predicting mood disorders in adolescence is a challenge that motivates research to identify neurocognitive predictors of symptom expression and clinical profiles. This study used machine learning to test whether neurocognitive variables predicted future manic or anhedonic symptoms in two adolescent samples risk-enriched for lifetime mood disorders (Sample 1, n = 73, ages = 13-25, M [SD] = 19.22 [2.49] years, 68% lifetime mood disorder) or familial mood disorders (Sample 2, n = 154, ages = 13-21, M [SD] = 16.46 [1.95] years, 62% first-degree family history of mood disorder). Participants completed cognitive testing and functional magnetic resonance imaging at baseline, for behavioral and neural measures of reward processing and executive functioning. Next, participants completed a daily diary procedure for 8-16 weeks. Penalized mixed-effects models identified neurocognitive predictors of future mood symptoms and stress-reactive changes in mood symptoms. Results included the following. In both samples, adolescents showing ventral corticostriatal reward hyposensitivity and lower reward performance reported more severe stress-reactive anhedonia. Poorer executive functioning behavior was associated with heightened anhedonia overall in Sample 1, but lower stress-reactive anhedonia in both samples. In Sample 1, adolescents showing ventral corticostriatal reward hypersensitivity and poorer executive functioning reported more severe stress-reactive manic symptoms. Clustering analyses identified, and replicated, five neurocognitive subgroups. Adolescents characterized by neural or behavioral reward hyposensitivities together with average-to-poor executive functioning reported unipolar symptom profiles. Adolescents showing neural reward hypersensitivity together with poor behavioral executive functioning reported a bipolar symptom profile (Sample 1 only). Together, neurocognitive phenotypes may hold value for predicting symptom expression and profiles of mood pathology. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Roselinde H Kaiser
- Research on Affective Disorders and Development (RADD) Lab, Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Amelia D Moser
- Research on Affective Disorders and Development (RADD) Lab, Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Chiara Neilson
- Institute of Cognitive Science, University of Colorado Boulder
| | - Jenna Jones
- Institute of Cognitive Science, University of Colorado Boulder
| | - Elena C Peterson
- Research on Affective Disorders and Development (RADD) Lab, Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Luke Ruzic
- Institute of Cognitive Science, University of Colorado Boulder
| | | | | | | | | | - David J Miklowitz
- Department of Psychiatry, Semel Institute, University of California, Los Angeles
| |
Collapse
|
40
|
Chen C, Okubo R, Hagiwara K, Mizumoto T, Nakagawa S, Tabuchi T. The association of positive emotions with absenteeism and presenteeism in Japanese workers. J Affect Disord 2024; 344:319-324. [PMID: 37844779 DOI: 10.1016/j.jad.2023.10.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Negative emotions such as depression have been associated with increased absenteeism and presenteeism, contributing to substantial economic loss. However, no study has investigated if positive emotions such as happiness influence absenteeism and presenteeism. METHODS Using data from the Japan COVID-19 and Society Internet Survey (JACSIS), a nationwide survey conducted in September-October 2022 (n = 19,214), we investigated if two major, representative positive emotions (happiness and gratitude) are associated with absenteeism and presenteeism. Absenteeism was defined as reporting more than one day of sick leave in the past one month. Presenteeism was measured with the Work Functioning Impairment Scale. Logistic regression was used to estimate odds ratios. RESULTS 12.4 % and 21.8 % of subjects reported absenteeism and presenteeism, respectively. Logistic regression estimated that after adjusting covariates, happiness was associated with lower odds of absenteeism (OR = 0.792, 95 % CI [0.706, 0.888]) and presenteeism (OR = 0.531, 95 % CI [0.479, 0.588]) while gratitude was associated with lower odds of presenteeism only (OR = 0.705, 95 % CI [0.643, 0.774]). Furthermore, simultaneous presence of both happiness and gratitude was associated with further lower odds of presenteeism (OR = 0.385, 95%CI [0.338, 0.439]), indicating a synergetic relation. DISCUSSION This study is the first to investigate the association between positive emotions and absenteeism and presenteeism. Given the substantial economic loss due to absenteeism and presenteeism, strategies to enhance positive emotions are necessary.
Collapse
Affiliation(s)
- Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Ryo Okubo
- Department of Psychiatry, National Hospital Organization Obihiro Hospital, Obihiro, Japan
| | - Kosuke Hagiwara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tomohiro Mizumoto
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Tabuchi
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
41
|
Shen Q, Fu S, Jiang X, Huang X, Lin D, Xiao Q, Khadijah S, Yan Y, Xiong X, Jin J, Ebstein RP, Xu T, Wang Y, Feng J. Factual and counterfactual learning in major adolescent depressive disorder, evidence from an instrumental learning study. Psychol Med 2024; 54:256-266. [PMID: 37161677 DOI: 10.1017/s0033291723001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND The incidence of adolescent depressive disorder is globally skyrocketing in recent decades, albeit the causes and the decision deficits depression incurs has yet to be well-examined. With an instrumental learning task, the aim of the current study is to investigate the extent to which learning behavior deviates from that observed in healthy adolescent controls and track the underlying mechanistic channel for such a deviation. METHODS We recruited a group of adolescents with major depression and age-matched healthy control subjects to carry out the learning task with either gain or loss outcome and applied a reinforcement learning model that dissociates valence (positive v. negative) of reward prediction error and selection (chosen v. unchosen). RESULTS The results demonstrated that adolescent depressive patients performed significantly less well than the control group. Learning rates suggested that the optimistic bias that overall characterizes healthy adolescent subjects was absent for the depressive adolescent patients. Moreover, depressed adolescents exhibited an increased pessimistic bias for the counterfactual outcome. Lastly, individual difference analysis suggested that these observed biases, which significantly deviated from that observed in normal controls, were linked with the severity of depressive symoptoms as measured by HAMD scores. CONCLUSIONS By leveraging an incentivized instrumental learning task with computational modeling within a reinforcement learning framework, the current study reveals a mechanistic decision-making deficit in adolescent depressive disorder. These findings, which have implications for the identification of behavioral markers in depression, could support the clinical evaluation, including both diagnosis and prognosis of this disorder.
Collapse
Affiliation(s)
- Qiang Shen
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education), 201620, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 201620, Shanghai, China
- Joint Lab of Finance and Business Intelligence, Guangdong Institute of Intelligence Science and Technology, 519031, Zhuhai, China
| | - Shiguang Fu
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education), 201620, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 201620, Shanghai, China
- Joint Lab of Finance and Business Intelligence, Guangdong Institute of Intelligence Science and Technology, 519031, Zhuhai, China
| | - Xiaoying Jiang
- Hangzhou Mental Health Center of Children and Adolescents, Hangzhou Seventh People's Hospital, 310006, Hangzhou, China
| | - Xiaoyu Huang
- Hangzhou Mental Health Center of Children and Adolescents, Hangzhou Seventh People's Hospital, 310006, Hangzhou, China
| | - Doudou Lin
- School of Management, Zhejiang University of Technology, 310023, Hangzhou, China
| | - Qingyan Xiao
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education), 201620, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 201620, Shanghai, China
- Joint Lab of Finance and Business Intelligence, Guangdong Institute of Intelligence Science and Technology, 519031, Zhuhai, China
| | - Sitti Khadijah
- School of Management, Zhejiang University of Technology, 310023, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, 310009, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Jia Jin
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education), 201620, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 201620, Shanghai, China
- Joint Lab of Finance and Business Intelligence, Guangdong Institute of Intelligence Science and Technology, 519031, Zhuhai, China
| | - Richard P Ebstein
- China Center for Behavioral Economics and Finance, Southwestern University of Finance & Economics, 611130, Chengdu, China
| | - Ting Xu
- School of Business, University of Ningbo, 315210, Ningbo, China
| | - Yiquan Wang
- Hangzhou Mental Health Center of Children and Adolescents, Hangzhou Seventh People's Hospital, 310006, Hangzhou, China
| | - Jun Feng
- School of Economics, Hefei University of Technology, 230601, Hefei, China
| |
Collapse
|
42
|
Mielacher C, Scheele D, Kiebs M, Schmitt L, Dellert T, Philipsen A, Lamm C, Hurlemann R. Altered reward network responses to social touch in major depression. Psychol Med 2024; 54:308-316. [PMID: 37272345 DOI: 10.1017/s0033291723001617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Social touch is an integral part of social relationships and has been associated with reward. Major depressive disorder (MDD) is characterized by severe impairments in reward processing, but the neural effects of social touch in MDD are still elusive. In this study, we aimed to determine whether the neural processing of social touch is altered in MDD and to assess the impact of antidepressant therapy. METHODS Before and after antidepressant treatment, 53 MDD patients and 41 healthy controls underwent functional magnetic resonance imaging (fMRI) while receiving social touch. We compared neural responses to social touch in the reward network, behavioral ratings of touch comfort and general aversion to interpersonal touch in patients to controls. Additionally, we examined the effect of treatment response on those measures. RESULTS Clinical symptoms decreased after treatment and 43.4% of patients were classified as responders. Patients reported higher aversion to interpersonal touch and lower comfort ratings during the fMRI paradigm than controls. Patients showed reduced responses to social touch in the nucleus accumbens, caudate nucleus and putamen than controls, both before and after treatment. Contrary to our hypotheses, these effects were independent of touch velocity. Non-responders exhibited blunted response in the caudate nucleus and the insula compared to responders, again irrespective of time. CONCLUSIONS These findings suggest altered striatal processing of social touch in MDD. Persistent dysfunctional processing of social touch despite clinical improvements may constitute a latent risk factor for social withdrawal and isolation.
Collapse
Affiliation(s)
- Clemens Mielacher
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Dirk Scheele
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Bad Zwischenahn, Germany
| | - Maximilian Kiebs
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Laura Schmitt
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - René Hurlemann
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Bad Zwischenahn, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
43
|
Stoyanov D, Paunova R, Dichev J, Kandilarova S, Khorev V, Kurkin S. Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale. World J Clin Cases 2023; 11:8458-8474. [PMID: 38188204 PMCID: PMC10768520 DOI: 10.12998/wjcc.v11.i36.8458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders. AIM To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD). METHODS 60 patients were recruited with SCZ and MDD. All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm, comprised of block design, including blocks with items from diagnostic paranoid (DP), depression specific (DS) and DN from general interest scale. We performed a two-sample t-test between the two groups-SCZ patients and depressive patients. Our purpose was to observe different brain networks which were activated during a specific condition of the task, respectively DS, DP, DN. RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task. We identified one component that is task-related and independent of condition (shared between all three conditions), composed by regions within the temporal (right superior and middle temporal gyri), frontal (left middle and inferior frontal gyri) and limbic/salience system (right anterior insula). Another component is related to both diagnostic specific conditions (DS and DP) e.g. It is shared between DEP and SCZ, and includes frontal motor/language and parietal areas. One specific component is modulated preferentially by to the DP condition, and is related mainly to prefrontal regions, whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus, several occipital areas, including lingual and fusiform gyrus, as well as parahippocampal gyrus. Finally, component 12 appeared to be unique for the neutral condition. In addition, there have been determined circuits across components, which are either common, or distinct in the preferential processing of the sub-scales of the task. CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Julian Dichev
- Faculty of Medicine, Medical University, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
44
|
Kenwood MM, Souaiaia T, Kovner R, Fox AS, French DA, Oler JA, Roseboom PH, Riedel MK, Mueller SAL, Kalin NH. Gene expression in the primate orbitofrontal cortex related to anxious temperament. Proc Natl Acad Sci U S A 2023; 120:e2305775120. [PMID: 38011550 PMCID: PMC10710052 DOI: 10.1073/pnas.2305775120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Relative to other psychiatric disorders, anxiety disorders tend to emerge early in life, supporting the importance of developmental mechanisms in their emergence and maintenance. Behavioral inhibition (BI) is a temperament that emerges early in life and, when stable and extreme, is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology. Understanding the neural systems and molecular mechanisms underlying this dispositional risk could provide insight into treatment targets for anxiety disorders. Nonhuman primates (NHPs) have an anxiety-related temperament, called anxious temperament (AT), that is remarkably similar to BI in humans, facilitating the design of highly translational models for studying the early risk for stress-related psychopathology. Because of the recent evolutionary divergence between humans and NHPs, many of the anxiety-related brain regions that contribute to psychopathology are highly similar in terms of their structure and function, particularly with respect to the prefrontal cortex. The orbitofrontal cortex plays a critical role in the flexible encoding and regulation of threat responses, in part through connections with subcortical structures like the amygdala. Here, we explore individual differences in the transcriptional profile of cells within the region, using laser capture microdissection and single nuclear sequencing, providing insight into the molecules underlying individual differences in AT-related function of the pOFC, with a particular focus on previously implicated cellular systems, including neurotrophins and glucocorticoid signaling.
Collapse
Affiliation(s)
- Margaux M. Kenwood
- Neuroscience Training Program, University of Wisconsin, Madison, WI53705
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
| | - Tade Souaiaia
- Department of Cell Biology, State University of New York Downstate, New York, NY11228
| | - Rothem Kovner
- Yale School of Medicine, Yale University, New Haven, CT06510
| | - Andrew S. Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, CA95616
| | | | - Jonathan A. Oler
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
| | | | | | | | - Ned H. Kalin
- Neuroscience Training Program, University of Wisconsin, Madison, WI53705
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| |
Collapse
|
45
|
Thibaut P, Mwamuka R, Nyamayaro P, Rubin LH, Nakasujja N, Langenecker S, Abas M. Cognitive performance in depression in low- and middle-income countries: A systematic review with meta-analytic components. J Affect Disord 2023; 342:16-32. [PMID: 37690541 DOI: 10.1016/j.jad.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Depression is highly prevalent in low- and middle- income countries (LMIC) and associated with significant cognitive dysfunction across multiple domains. However, little is known about neurocognitive tests used in people with depression in LMIC. We aimed to investigate cognitive performance and cognitive tests in depression research in LMIC. METHODS APA PsycInfo, Embase, Ovid MEDLINE, and Global Health were systematically searched for studies that implemented a cognitive performance test in a depressed, LMIC population. Tool quality was assessed using an adapted scale for quality of measures in cross-cultural settings. Data extracted included demographics, depression and cognitive performance measures, and cognitive performance comparisons between depression and control groups. RESULTS 29 studies met eligibility criteria, involving a total of 19,100 participants from 11 LMIC. 93.1 % of studies were conducted in upper middle-income countries. 67 cognitive performance tools were implemented. Reliability was reported for 5.6 % of cognitive performance tests and validity was reported for 8.3 %. 36.1 % of tests used were culturally adapted. 75.9 % of included studies implemented at least one memory test. Cognitive deficits were observed in all depressed groups, especially in memory (Cohen's d = -1.60, 95 % CI -2.02 to -1.18). LIMITATIONS Heterogeneity between studies; averaged results across memory subtypes; no assessment of depression severity and cognitive deficits associations; restrictive search terms. CONCLUSIONS Cognitive impairments in depression, especially in memory, are prevalent in LMIC. This research has drawn attention to the burden of cognitive dysfunction in depression in LMIC, and to the disparate research gap in LMIC. PROSPERO registration CRD42022315397.
Collapse
Affiliation(s)
- Pauline Thibaut
- Department of Health Service & Population Research, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Rukudzo Mwamuka
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Primrose Nyamayaro
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Leah H Rubin
- Department of Psychiatry and Behavioural Sciences, John Hopkins University, MD, USA
| | - Noeline Nakasujja
- Department of Psychiatry, College of Health Sciences, Makerere University, Uganda
| | | | - Melanie Abas
- Department of Health Service & Population Research, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
46
|
Hou L, Long F, Zhou W, Zhou R. Working memory training for reward processing in university students with subsyndromal depression: The influence of baseline severity of depression. Biol Psychol 2023; 184:108710. [PMID: 37820850 DOI: 10.1016/j.biopsycho.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have tentatively suggested that working memory training (WMT) has the potential to improve reward processing, but it is not known how long this improvement lasts, whether there is a lag effect, or whether it is reflected in neurophysiological indicators. In this study, 40 university students with subsyndromal depression were randomly assigned to a training group or a control group and completed a 20-day working memory training task and a simple memory task, respectively. All participants completed the Temporal Experience of Pleasure Scale (TEPS) and a doors task with electroencephalogram (EEG) signals recorded simultaneously on a pre- and post-test and a 3-month follow-up. The reward-related positivity (RewP) amplitude, theta power, and their differences between conditions (i.e., ΔRewP and Δtheta power, respectively) in the doors task were the primary outcomes, and the score on TEPS was the secondary outcome. The results indicated no group-related effects were demonstrated in primary and secondary outcomes at post-test and 3-month follow-up. Furthermore, the differences in the pre- and post-test in Δtheta power were moderated by the baseline severity of depression. This was primarily driven by the fact that the change values in the control group increased with the severity of depression, while the change values in the training group had high homogeneity. Our findings did not provide support for the effect of WMT on reward processing across the whole sample, but without intervention, there would be high heterogeneity in the change in the cognitive control ability to loss feedback, which is detrimental to individuals with high depression severity.
Collapse
Affiliation(s)
- Lulu Hou
- School of Psychology, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Fangfang Long
- Department of Psychology, Nanjing University, Nanjing 210023, China
| | - Weiyi Zhou
- Department of Psychology, Nanjing University, Nanjing 210023, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing 210023, China; State Key Laboratory of Media Convergence Production Technology and Systems, Beijing 100803, China; Department of Radiology, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
47
|
Li Y, Zhang B, Liu Z, Wang R. Neural energy computations based on Hodgkin-Huxley models bridge abnormal neuronal activities and energy consumption patterns of major depressive disorder. Comput Biol Med 2023; 166:107500. [PMID: 37797488 DOI: 10.1016/j.compbiomed.2023.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Limited by the current experimental techniques and neurodynamical models, the dysregulation mechanisms of decision-making related neural circuits in major depressive disorder (MDD) are still not clear. In this paper, we proposed a neural coding methodology using energy to further investigate it, which has been proven to strongly complement the neurodynamical methodology. We augmented the previous neural energy calculation method, and applied it to our VTA-NAc-mPFC neurodynamical H-H models. We particularly focused on the peak power and energy consumption of abnormal ion channel (ionic) currents under different concentrations of dopamine input, and investigated the abnormal energy consumption patterns for the MDD group. The results revealed that the energy consumption of medium spiny neurons (MSNs) in the NAc region were lower in the MDD group than that of the normal control group despite having the same firing frequencies, peak action potentials, and average membrane potentials in both groups. Dopamine concentration was also positively correlated with the energy consumption of the pyramidal neurons, but the patterns of different interneuron types were distinct. Additionally, the ratio of mPFC's energy consumption to total energy consumption of the whole network in MDD group was lower than that in normal control group, revealing that the mPFC region in MDD group encoded less neural information, which matched the energy consumption patterns of BOLD-fMRI results. It was also in line with the behavioral characteristics that MDD patients demonstrated in the form of reward insensitivity during decision-making tasks. In conclusion, the model in this paper was the first neural network energy computational model for MDD, which showed success in explaining its dynamical mechanisms with an energy consumption perspective. To build on this, we demonstrated that energy consumption levels can be used as a potential indicator for MDD, which also showed a promising pipeline to use an energy methodology for studying other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuanxi Li
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, Shanghai, China; Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Bing Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhiqiang Liu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China.
| | - Rubin Wang
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
48
|
Palacios-Barrios EE, Patel K, Hanson JL. Early life interpersonal stress and depression: Social reward processing as a potential mediator. Prog Neuropsychopharmacol Biol Psychiatry 2023; 129:110887. [PMID: 39492470 DOI: 10.1016/j.pnpbp.2023.110887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Experiencing stressful events early in life is lamentably very common and widespread across the globe. Despite the strong link between experiencing such stress and developing depression, the mechanisms underlying this association remain unclear. This review addresses this critical question by drawing focus to "early life interpersonal stress" (ELIS), or stressful experiences that occur within the context of a relationship where there is close, direct interaction. Recent evidence suggests that ELIS uniquely relates to depression. A growing body of work demonstrates that ELIS impacts how youth respond to social reward (e.g., positive social stimuli/ feedback). Similar social reward-related impairments are noted in youth with depression. The current review synthesizes these two disparate, yet related, bodies of literature examining the relations between a) ELIS and neurobehavioral alterations in social reward processing; and b) behavioral and neural processing of social reward in depression. A preliminary model presents neurobehavioral disruptions in social reward processing as one mediating factor underlying the connection between ELIS and depression. Key limitations and future directions are discussed.
Collapse
Affiliation(s)
| | - Kunal Patel
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Berk M, Köhler-Forsberg O, Turner M, Penninx BWJH, Wrobel A, Firth J, Loughman A, Reavley NJ, McGrath JJ, Momen NC, Plana-Ripoll O, O'Neil A, Siskind D, Williams LJ, Carvalho AF, Schmaal L, Walker AJ, Dean O, Walder K, Berk L, Dodd S, Yung AR, Marx W. Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023; 22:366-387. [PMID: 37713568 PMCID: PMC10503929 DOI: 10.1002/wps.21110] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Populations with common physical diseases - such as cardiovascular diseases, cancer and neurodegenerative disorders - experience substantially higher rates of major depressive disorder (MDD) than the general population. On the other hand, people living with MDD have a greater risk for many physical diseases. This high level of comorbidity is associated with worse outcomes, reduced adherence to treatment, increased mortality, and greater health care utilization and costs. Comorbidity can also result in a range of clinical challenges, such as a more complicated therapeutic alliance, issues pertaining to adaptive health behaviors, drug-drug interactions and adverse events induced by medications used for physical and mental disorders. Potential explanations for the high prevalence of the above comorbidity involve shared genetic and biological pathways. These latter include inflammation, the gut microbiome, mitochondrial function and energy metabolism, hypothalamic-pituitary-adrenal axis dysregulation, and brain structure and function. Furthermore, MDD and physical diseases have in common several antecedents related to social factors (e.g., socioeconomic status), lifestyle variables (e.g., physical activity, diet, sleep), and stressful live events (e.g., childhood trauma). Pharmacotherapies and psychotherapies are effective treatments for comorbid MDD, and the introduction of lifestyle interventions as well as collaborative care models and digital technologies provide promising strategies for improving management. This paper aims to provide a detailed overview of the epidemiology of the comorbidity of MDD and specific physical diseases, including prevalence and bidirectional risk; of shared biological pathways potentially implicated in the pathogenesis of MDD and common physical diseases; of socio-environmental factors that serve as both shared risk and protective factors; and of management of MDD and physical diseases, including prevention and treatment. We conclude with future directions and emerging research related to optimal care of people with comorbid MDD and physical diseases.
Collapse
Affiliation(s)
- Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Megan Turner
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Wrobel
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Amy Loughman
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola J Reavley
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Natalie C Momen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Adrienne O'Neil
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lana J Williams
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Adam J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lesley Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Seetal Dodd
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alison R Yung
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
50
|
Li W, Hu Z, Wang C, Lan X, Zhang M, Zhang F, You Z, Ye Y, Liu H, Luo Z, Zeng Y, Chen Y, Chen Y, Wu K, Lao G, Chen J, Li G, Zhou Y, Ning Y. Altered Reward Circuit Function Moderates the Relationship between Childhood Maltreatment and Depression Severity in Adolescents. Depress Anxiety 2023; 2023:4084004. [PMID: 40224590 PMCID: PMC11921849 DOI: 10.1155/2023/4084004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 04/15/2025] Open
Abstract
Background The role of childhood maltreatment (CM) is believed to be crucial in the aberrant function of reward circuit in adolescent-onset major depressive disorder (AO-MDD). Nevertheless, the impact of abnormalities in the GP-based reward circuit on the association between CM and the severity of AO-MDD remains largely unknown. Methods The GP-based resting-state functional connectivity (RSFC) was analyzed in a sample of 75 patients with AO-MDD and 80 healthy controls in order to identify potential abnormalities in the GP-based reward circuit in AO-MDD patients. Furthermore, we investigated the possible associations between aberrant GP-based reward circuit functioning, CM and its subtypes (namely, childhood abuse and childhood neglect), and the severity of AO-MDD. Results Compared to the healthy control group, patients with AO-MDD demonstrated a reduction in RSFC between the left posterior GP and the right dorsomedial prefrontal cortex (DMPFC). Our moderation analysis revealed that the abnormal RSFC between the posterior GP and DMPFC had a moderating effect on the relationship between CM and the severity of AO-MDD. Furthermore, upon further interaction decomposition, we observed a positive correlation between CM and AO-MDD severity exclusively in patients with AO-MDD who exhibited lower RSFC between the posterior GP and DMPFC. For AO-MDD patients with higher RSFC between posterior GP and DMPFC, the relationship between CM and AO-MDD severity was not discernible. Conclusions Our findings underscore the crucial role of anomalies in the reward circuit in AO-MDD and furnish novel leads for probing the relationship among CM, malfunctioning of the reward circuit, and AO-MDD.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhibo Hu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zerui You
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhanjie Luo
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yexian Zeng
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiying Chen
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yifang Chen
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Guohui Lao
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jun Chen
- Guangdong Institute of Medical Instruments, Guangzhou, China
| | - Guixiang Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|