1
|
Sahu M, Jain U. Activation, interaction and intimation of Nrf2 pathway and their mutational studies causing Nrf2 associated cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167764. [PMID: 40088576 DOI: 10.1016/j.bbadis.2025.167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Responses against infection trigger several signaling pathways that lead to the production of cytokines, these cytokines release ROS and RNS, damaging DNA and proteins turn into various diseases including cancer. To combat these harmful cytokines, the Nrf2 pathway is activated. The gene NFE2L2 encodes Nrf2, which is divided into seven conserved domains (Neh1-7). The DLG and ETGE motifs, conserved sequences of amino acid in the Neh2 domain of Nrf2, bind to the BTB domain of Keap1. BTB domain promotes Keap1's homodimerization resulting in Cul3 recruitment providing scaffold formation to E2 ubiquitin ligase to form ubiquitin complex. Under normal conditions, this complex regularly degrades Nrf2. However, once the cell is exposed to oxidative stress by ROS interaction with Keap1 resulting in conformational changes that stabilize the Nrf2. Nrf2 further concentrates on the nucleus where it binds with the transcriptional factor to perform the desired genes transcription for synthesizing SOD, GSH, CAT, and various other proteins which reduce the ROS levels preventing certain diseases. To prevent cells from oxidative stress, molecular hydrogen activates the Nrf2 pathway. To activate the Nrf2 pathway, molecular hydrogen oxidizes the iron porphyrin which acts as an electrophile and interacts with Keap1's cysteine residue.
Collapse
Affiliation(s)
- Mridul Sahu
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India.
| |
Collapse
|
2
|
Li G, He W, Wang DW. Immune cell dynamics in heart failure: implicated mechanisms and therapeutic targets. ESC Heart Fail 2025; 12:1739-1758. [PMID: 39905753 PMCID: PMC12055366 DOI: 10.1002/ehf2.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
The relationship between heart failure (HF) and immune activation has garnered significant interest. Studies highlight the critical role of inflammation in HF, affecting cardiac structure and function. Despite promising anti-inflammatory therapies, clinical trials have faced challenges, indicating an incomplete understanding of immune mechanisms in HF. Immune cells, which are key cytokine sources, are pivotal in HF progression. In this review, the authors provide a comprehensive overview of the complex role of different types of immune cells and their cell subtypes in HF. In addition, the authors summarize the available targets and animal experimental evidence for targeting immune cells for the treatment of HF. Future research directions will focus on the roles of immune cells and their interrelationships at different stages of HF, aiming to develop more targeted therapeutic strategies that can achieve more precise interventions in the pathological process of HF.
Collapse
Affiliation(s)
- Gen Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhan430000China
| | - Wu He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhan430000China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhan430000China
| |
Collapse
|
3
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Wang Z, Jiao Y, Diao W, Shi T, Geng Q, Wen C, Xu J, Deng T, Li X, Zhao L, Gu J, Deng T, Xiao C. Neutrophils: a Central Point of Interaction Between Immune Cells and Nonimmune Cells in Rheumatoid Arthritis. Clin Rev Allergy Immunol 2025; 68:34. [PMID: 40148714 DOI: 10.1007/s12016-025-09044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease involving activation of the immune system and the infiltration of immune cells. As the first immune cells to reach the site of inflammation, neutrophils perform their biological functions by releasing many active substances and forming neutrophil extracellular traps (NETs). The overactivated neutrophils in patients with RA not only directly damage tissues but also, more importantly, interact with various other immune cells and broadly activate innate and adaptive immunity, leading to irreversible joint damage. However, owing to the pivotal role and complex influence of neutrophils in maintaining homoeostasis, the treatment of RA by targeting neutrophils is very difficult. Therefore, a comprehensive understanding of the interaction pathways between neutrophils and various other immune cells is crucial for the development of neutrophils as a new therapeutic target for RA. In this study, the important role of neutrophils in the pathogenesis of RA through their crosstalk with various other immune cells and nonimmune cells is highlighted. The potential of epigenetic modification of neutrophils for exploring the pathogenesis of RA and developing therapeutic approaches is also discussed. In addition, several models for studying cell‒cell interactions are summarized to support further studies of neutrophils in the context of RA.
Collapse
Affiliation(s)
- Zhaoran Wang
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yi Jiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenya Diao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tong Shi
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaoying Wen
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Tiantian Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100193, China
| | - Lu Zhao
- China-Japan Friendship Clinical Medical College, Capital Medical University, Beijing, 100029, China
| | - Jienan Gu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China.
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
5
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Xue H, Xie R, Wang Z, Fan W, Wei Y, Zhang L, Zhao D, Song Z. Coordination of Neutrophil and Apoptosis-Inducing Ligand in Inflammatory Diseases. J Inflamm Res 2025; 18:3607-3621. [PMID: 40099000 PMCID: PMC11911651 DOI: 10.2147/jir.s506807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
As the most abundant innate immune cells, neutrophils play a key role in host's anti-infective activity and tissue damage/repair process of sterile inflammation. Due to the restriction of apoptosis and other regulatory mechanisms, neutrophils have a short survival time in vivo. Because of the death domain of cytoplasmic regions, some members of tumor necrosis factor receptor superfamily (TNFRSF) are defined as death receptors, such as TNFR-I, Fas and DR4/DR5. TNF-α, FasL and TRAIL, which are known as apoptosis-inducing ligand, can bind to death receptors and activate intracellular apoptosis pathways to induce apoptosis. Accumulating studies found that these three apoptosis-inducing ligands play an important role in the immune system by coordinating with neutrophil, which including neutrophil recruitment/infiltration and function performing. In this review, we summarize existing studies targeting neutrophils as diagnosis and treatment for diseases, and focus on the involvement of neutrophils which regulated by apoptosis-inducing ligands in inflammatory diseases under current cognition.
Collapse
Affiliation(s)
- Hanyu Xue
- The First Affiliated Hospital of Henan University, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Ran Xie
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476000, People's Republic of China
| | - Zhiwei Wang
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, 475000, People's Republic of China
| | - Wenqian Fan
- School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lijie Zhang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, 475004, People's Republic of China
| | - Dan Zhao
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhiming Song
- Department of Cardiology, the First Affiliated Hospital, Henan University, Kaifeng, 475004, People's Republic of China
- Kaifeng Key Laboratory for Modulation and Rehabilitation of Cardiac Function, The First Affiliated Hospital, Henan University, Kaifeng, 475004, People's Republic of China
| |
Collapse
|
7
|
Nelson S, Gaza J, Ajayebi S, Masse R, Pho R, Scutero C, Martinusen S, Long L, Menezes A, Perez A, Denard C. PERRC: Protease Engineering with Reactant Residence Time Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641063. [PMID: 40093119 PMCID: PMC11908129 DOI: 10.1101/2025.03.02.641063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Proteases with engineered specificity hold great potential for targeted therapeutics, protein circuit construction, and biotechnology applications. However, many proteases exhibit broad substrate specificity, limiting their applications. Engineering protease specificity remains challenging because evolving a protease to recognize a new substrate, without counterselecting against its native substrate, often results in high residual activity on the original substrate. To address this, we developed Protease Engineering with Reactant Residence Time Control (PERRC), a platform that exploits the correlation between endoplasmic reticulum (ER) retention sequence strength and ER residence time. PERRC allows precise control over the stringency of protease evolution by adjusting counterselection to selection substrate ratios. Using PERRC, we evolved an orthogonal tobacco etch virus protease variant, TEVESNp, that selectively cleaves a substrate (ENLYFES) that differs by only one amino acid from its parent sequence (ENLYFQS). TEVESNp exhibits a remarkable 65-fold preference for the evolved substrate, marking the first example of an engineered orthogonal protease driven by such a slight difference in substrate recognition. Furthermore, TEVESNp functions as a competent protease for constructing orthogonal protein circuits in bacteria, and molecular dynamic simulations analysis reveals subtle yet functionally significant active site rearrangements. PERRC is a modular dual-substrate display system that facilitates precise engineering of protease specificity.
Collapse
Affiliation(s)
- Sage Nelson
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Jokent Gaza
- Department of Chemistry, University of Florida, Gainesville, 32611, USA
| | - Seyednima Ajayebi
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Ronald Masse
- Genetics Institute, University of Florida, Gainesville, 32611, USA
| | - Raymond Pho
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Cianna Scutero
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Samantha Martinusen
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Lawton Long
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Amor Menezes
- Genetics Institute, University of Florida, Gainesville, 32611, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 32611, USA
| | - Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, 32611, USA
| | - Carl Denard
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
8
|
Hussain N, Khan MM, Sharma A, Singh RK, Khan RH. Beyond plaques and tangles: The role of immune cell dysfunction in Alzheimer's disease. Neurochem Int 2025; 184:105947. [PMID: 39956324 DOI: 10.1016/j.neuint.2025.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The interplay between immune cell dysfunction and associated neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease. Neuroinflammation, orchestrated by microglia and peripheral immune cells, exacerbates synaptic dysfunction and neurodegeneration in AD. Emerging evidence suggests a systemic immune response in AD, challenging traditional views of neurocentric pathology. Therapeutic strategies targeting neuroinflammation hold promise, yet translating preclinical findings into clinical success remains elusive. This article presents recent advances in AD scientific studies, highlighting the pivotal role of immune cell dysfunction and signaling pathways in disease progression. We also discussed therapeutic studies targeting immune cell dysregulation, as treatment methods. This advocates for a paradigm shift towards holistic approaches that integrate peripheral and central immune responses, fostering a comprehensive understanding of AD pathophysiology and paving the way for transformative interventions.
Collapse
Affiliation(s)
- Nasif Hussain
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Moin Khan
- Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ayushi Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
10
|
Bollar GE, Keith JD, Stanford DD, Oden AM, Raju SV, Poore TS, Birket SE. Chronic Coinfection with Pseudomonas aeruginosa and Normal Colony Staphylococcus aureus Causes Lung Structural Damage in the Cystic Fibrosis Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:174-187. [PMID: 39476957 PMCID: PMC11773620 DOI: 10.1016/j.ajpath.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/13/2024]
Abstract
Cystic fibrosis (CF) respiratory outcomes are heavily influenced by complications of infection. Pseudomonas aeruginosa and Staphylococcus aureus are the most common colonizers of the cystic fibrosis lung, and frequently overlap to cause chronic and persistent coinfections associated with severe disease. However, the dynamics of P. aeruginosa and S. aureus coinfection and its impacts on the development of CF lung structural damage are poorly understood. Additionally, small colony variants (SCVs) of S. aureus have been associated with P. aeruginosa infections in people with CF, but their role in disease progression is largely unknown. In this work, the CF rat was used to model chronic lung coinfection with P. aeruginosa and S. aureus, using clinically and laboratory-derived normal colony and SCV strains of S. aureus to evaluate the impact of phenotype on clinical outcomes. Rats coinfected with clinically derived S. aureus of both phenotypes experienced increased inflammation in the lung. However, only the combination of P. aeruginosa and clinically normal colony S. aureus led to lung structural decline, including mucus obstruction and bronchiectasis. Regression analyses showed that the damage was associated with a higher burden of P. aeruginosa. These data indicate that chronic coinfection with normal colony S. aureus and P. aeruginosa may support the progression CF lung decline driven by P. aeruginosa, which might be avoided when coinfecting S. aureus exhibits the SCV phenotype.
Collapse
Affiliation(s)
- Gretchen E Bollar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Johnathan D Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Denise D Stanford
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley M Oden
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - S Vamsee Raju
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - T Spencer Poore
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; Division of Pulmonology and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan E Birket
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
11
|
Wang Y, Yan F, Xu DQ, Liu M, Liu ZF, Tang YP. Traditional uses, botany, phytochemistry, pharmacology and applications of Labisia pumila: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118522. [PMID: 38971345 DOI: 10.1016/j.jep.2024.118522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Labisia pumila (Blume) Fern.-Vill, also known as Kacip Fatimah, is a traditional medicinal herb common throughout Southeast Asia. It is primarily used to facilitate childbirth and postpartum recovery in women. Additionally, it can also be used to treat dysentery, rheumatism, gonorrhea, and as an anti-flatulent. AIM OF THIS REVIEW This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application. MATERIALS AND METHODS The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science). RESULTS This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, anti-inflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement. CONCLUSIONS LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China.
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Ming Liu
- White Heron Pharmaceutical Sdn Bhd, Wisma WH, Jalan KIP 9A, Taman Perindustrian KIP, 52200, Kuala Lumpur, Malaysia
| | - Ze-Feng Liu
- White Heron Pharmaceutical Sdn Bhd, Wisma WH, Jalan KIP 9A, Taman Perindustrian KIP, 52200, Kuala Lumpur, Malaysia
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China.
| |
Collapse
|
12
|
Kumar V, Bansal SS. Immunological Regulation of Fibrosis During Heart Failure: It Takes Two to Tango. Biomolecules 2025; 15:58. [PMID: 39858452 PMCID: PMC11763336 DOI: 10.3390/biom15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling. Incomplete resolution coupled with sustained low-grade inflammation during dilated cardiomyopathy precipitates a "frustrated" immune cell response resulting in unconstrained pro-fibrotic and pro-hypertrophic signaling to induce maladaptive structural and functional changes in the myocardium. The aims of this review are to (i) briefly summarize the role of key immune cells that regulate wound healing during MI and fibrosis during LV remodeling; (ii) underscore phenotypic diversities in immune cells and their subsets to underscore their role in regulating fibrotic responses, and, last but not the least, (iii) highlight gaps in our understanding that restrict the translation of immuno-modulatory therapies from the preclinical models to heart failure patients.
Collapse
Affiliation(s)
- Vinay Kumar
- Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA;
- Department of Medicine, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA
| | - Shyam S. Bansal
- Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA;
- Department of Medicine, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA
- Department of Cellular and Molecular Physiology, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
13
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
14
|
Lai C, Chen W, Qin Y, Xu D, Lai Y, He S. Innovative Hydrogel Design: Tailoring Immunomodulation for Optimal Chronic Wound Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412360. [PMID: 39575827 PMCID: PMC11727140 DOI: 10.1002/advs.202412360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 01/14/2025]
Abstract
Despite significant progress in tissue engineering, the full regeneration of chronic wounds persists as a major challenge, with the immune response to tissue damage being a key determinant of the healing process's quality and duration. Post-injury, a crucial aspect is the transition of macrophages from a pro-inflammatory state to an anti-inflammatory. Thus, this alteration in macrophage polarization presents an enticing avenue within the realm of regenerative medicine. Recent advancements have entailed the integration of a myriad of cellular and molecular signals into hydrogel-based constructs, enabling the fine-tuning of immune cell activities during different phases. This discussion explores modern insights into immune cell roles in skin regeneration, underscoring the key role of immune modulation in amplifying the overall efficacy of wounds. Moreover, a comprehensive review is presented on the latest sophisticated technologies employed in the design of immunomodulatory hydrogels to regulate macrophage polarization. Furthermore, the deliberate design of hydrogels to deliver targeted immune stimulation through manipulation of chemistry and cell integration is also emphasized. Moreover, an overview is provided regarding the influence of hydrogel properties on immune traits and tissue regeneration process. Conclusively, the accent is on forthcoming pathways directed toward modulating immune responses in the milieu of chronic healing.
Collapse
Affiliation(s)
- Chun‐Mei Lai
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Wei‐Ji Chen
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yuan Qin
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Di Xu
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yue‐Kun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC‐CFC)College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Shao‐Hua He
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| |
Collapse
|
15
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Yang L, He C, Wang W. Association between neutrophil to high-density lipoprotein cholesterol ratio and disease severity in patients with acute biliary pancreatitis. Ann Med 2024; 56:2315225. [PMID: 38335727 PMCID: PMC10860409 DOI: 10.1080/07853890.2024.2315225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The neutrophil to high-density lipoprotein cholesterol ratio (NHR) is independently associated with the severity of various diseases. However, its association with acute biliary pancreatitis (ABP) remains unknown. METHODS This study included 1335 eligible patients diagnosed with ABP from April 2016 to December 2022. Patients were divided into low- and high-NHR level groups using an optimal cut-off value determined utilizing Youden's index. Multivariate logistic regression analysis was used to investigate the correlation between NHR and ABP severity. Multivariate analysis-based limited restricted cubic spline (RCS) method was used to evaluate the nonlinear relationship between NHR and the risk of developing moderate or severe ABP. RESULTS In this study, multivariate logistic regression analysis indicated an independent association between NHR and ABP severity (p < .001). The RCS analysis showed a linear correlation between NHR and the risk of developing moderate or severe ABP (P for non-linearity > 0.05), and increased NHR was found to be independently associated with a more severe form of the disease. CONCLUSIONS Our study suggests that NHR is a simple and practical independent indicator of disease severity, serving as a potential novel predictor for patients with ABP.
Collapse
Affiliation(s)
- Lin Yang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wei Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
17
|
Vaz CR, Benvenutti L, Goldoni FC, Nunes R, Schneiker GS, Rosa GA, Furtado K, Garcia L, Quintão NLM, Santin JR. Tagetes erecta L.: A traditional medicine effective in inflammatory process treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118558. [PMID: 38996948 DOI: 10.1016/j.jep.2024.118558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tagetes erecta L. (Asteraceae), popularly known as Aztec Marigold, is used in folk medicine to treat several ailments including inflammatory processes. Despite its historical use, the specific mechanisms through which it may modulate inflammation, particularly its effects on neutrophils and macrophages activation, have not yet been completely investigated. AIM OF THE STUDY This study aimed to elucidate the anti-inflammatory mechanism of the hydroalcoholic extract obtained from T. erecta flowers, focusing on its role in the regulation of neutrophil and macrophage functions. MATERIAL AND METHODS The production of TNF, IL-6, CXCL-1, IL-1β, IL-10 (ELISA) and NO (Griess reaction), adhesion molecule expression (CD62L, CD49d and CD18, flow cytometry), and chemotaxis were analyzed in vitro using oyster glycogen-recruited peritoneal neutrophils or macrophages (RAW 264.7) stimulated with lipopolysaccharide (LPS) and treated with the extract (1, 10 or 100 μg/mL). The resolution of inflammation was accessed by efferocytosis assay. The in vivo anti-inflammatory activity was investigated using carrageenan-induced inflammation in the subcutaneous tissue of male Swiss mice orally treated with the T. erecta extract (30, 100 or 300 mg/kg). The leukocyte influx (optical microscopy), secretion of chemical mediators (TNF, IL-6 and IL-1β, ELISA) and protein exudation (Bradford reaction) were quantified in the inflamed exudate. RESULTS In vitro studies demonstrated that the extract inhibited neutrophil chemotaxis and reduced the production and/or release of cytokines (TNF, IL-1β, CXCL1, and IL-6) as well as nitric oxide (NO) by neutrophils and macrophages when stimulated with LPS. Neutrophils treated with LPS and incubated with the extract showed an increase in CD62L expression, which leads to the impairment of neutrophil adhesion. The extract also enhanced efferocytosis of apoptotic neutrophils by macrophages, which was accompanied by increased IL-10 secretion and decreased TNF levels. In vivo studies yielded similar results, showing reduction in neutrophil migration, protein exudation, and cytokine release (TNF, IL-6, and IL-1β). CONCLUSIONS Together, the data herein obtained shows that T. erecta flower extract has anti-inflammatory effects by regulating inflammatory mediators, limiting neutrophil migration, and promoting efferocytosis. The in vivo results suggest that an herbal medicine made with T. erecta could represent an interesting pharmacological tool for the treatment of acute inflammatory condition.
Collapse
Affiliation(s)
- Carlos Rafael Vaz
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Larissa Benvenutti
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Fernanda Capitânio Goldoni
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Gustavo Santin Schneiker
- School of Health Sciences, Pharmacy Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Gabriel Antunes Rosa
- School of Health Sciences, Pharmacy Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Keyla Furtado
- School of Health Sciences, Pharmacy Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Louise Garcia
- School of Health Sciences, Pharmacy Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
18
|
Amason ME, Beatty CJ, Harvest CK, Saban DR, Miao EA. Chemokine expression profile of an innate granuloma. eLife 2024; 13:RP96425. [PMID: 39541153 PMCID: PMC11563579 DOI: 10.7554/elife.96425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2-/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.
Collapse
Affiliation(s)
- Megan E Amason
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Carissa K Harvest
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
19
|
Gómez-Oro C, Latorre MC, Arribas-Poza P, Ibáñez-Escribano A, Baca-Cornejo KR, Gallego-Valle J, López-Escobar N, Mondéjar-Palencia M, Pion M, López-Fernández LA, Mercader E, Pérez-Milán F, Relloso M. Progesterone promotes CXCl2-dependent vaginal neutrophil killing by activating cervical resident macrophage-neutrophil crosstalk. JCI Insight 2024; 9:e177899. [PMID: 39298265 PMCID: PMC11529979 DOI: 10.1172/jci.insight.177899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Vaginal infections in women of reproductive age represent a clinical dilemma with significant socioeconomic implications. The current understanding of mucosal immunity failure during early pathogenic invasions that allows the pathogen to grow and thrive is far from complete. Neutrophils infiltrate most tissues following circadian patterns as part of normal repair, regulation of microbiota, or immune surveillance and become more numerous after infection. Neutrophils are responsible for maintaining vaginal immunity. Specific to the vagina, neutrophils continuously infiltrate at high levels, although during ovulation, they retreat to avoid sperm damage and permit reproduction. Here we show that, after ovulation, progesterone promotes resident vaginal macrophage-neutrophil crosstalk by upregulating Yolk sac early fetal organs (FOLR2+) macrophage CXCl2 expression, in a TNFA-patrolling monocyte-derived macrophage-mediated (CX3CR1hiMHCIIhi-mediated) manner, to activate the neutrophils' capacity to eliminate sex-transmitted and opportunistic microorganisms. Indeed, progesterone plays an essential role in conciliating the balance between the commensal microbiota, sperm, and the threat of pathogens because progesterone not only promotes a flurry of neutrophils but also increases neutrophilic fury to restore immunity after ovulation to thwart pathogenic invasion after intercourse. Therefore, modest progesterone dysregulations could lead to a suboptimal neutrophilic response, resulting in insufficient mucosal defense and recurrent unresolved infections.
Collapse
Affiliation(s)
- Carla Gómez-Oro
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Maria C. Latorre
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Patricia Arribas-Poza
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Katia R. Baca-Cornejo
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Natalia López-Escobar
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mabel Mondéjar-Palencia
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratorio de InmunoRegulación, IiSGM, Madrid, Spain
| | - Luis A. López-Fernández
- Laboratorio de Farmacogenética, Grupo de Farmacia Hospitalaria y Farmacogenómica, IiSGM, Madrid, Spain
| | - Enrique Mercader
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Unidad Cirugía Endocrino-metabólica, Servicio de Cirugía General y Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Federico Pérez-Milán
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Unidad de Reproducción Asistida, Servicio de Obstetricia y Ginecología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel Relloso
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
20
|
Zaraisky AG, Araslanova KR, Shitikov AD, Tereshina MB. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss. Biol Rev Camb Philos Soc 2024; 99:1868-1888. [PMID: 38817123 DOI: 10.1111/brv.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.
Collapse
Affiliation(s)
- Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| |
Collapse
|
21
|
Zi S, Wu X, Tang Y, Liang Y, Liu X, Wang L, Li S, Wu C, Xu J, Liu T, Huang W, Xie J, Liu L, Chao J, Qiu H. Endothelial Cell-Derived Extracellular Vesicles Promote Aberrant Neutrophil Trafficking and Subsequent Remote Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400647. [PMID: 39119837 PMCID: PMC11481253 DOI: 10.1002/advs.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/18/2024] [Indexed: 08/10/2024]
Abstract
The development of acute respiratory distress syndrome (ARDS) in sepsis is associated with substantial morbidity and mortality. However, the molecular pathogenesis underlying sepsis-induced ARDS remains elusive. Neutrophil heterogeneity and dysfunction contribute to uncontrolled inflammation in patients with ARDS. A specific subset of neutrophils undergoing reverse transendothelial migration (rTEM), which is characterized by an activated phenotype, is implicated in the systemic dissemination of inflammation. Using single-cell RNA sequencing (scRNA-seq), it identified functionally activated neutrophils exhibiting the rTEM phenotype in the lung of a sepsis mouse model using cecal ligation and puncture. The prevalence of neutrophils with the rTEM phenotype is elevated in the blood of patients with sepsis-associated ARDS and is positively correlated with disease severity. Mechanically, scRNA-seq and proteomic analys revealed that inflamed endothelial cell (EC) released extracellular vesicles (EVs) enriched in karyopherin subunit beta-1 (KPNB1), promoting abluminal-to-luminal neutrophil rTEM. Additionally, EC-derived EVs are elevated and positively correlated with the proportion of rTEM neutrophils in clinical sepsis. Collectively, EC-derived EV is identified as a critical regulator of neutrophil rTEM, providing insights into the contribution of rTEM neutrophils to sepsis-associated lung injury.
Collapse
Affiliation(s)
- Shuang‐Feng Zi
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiao‐Jing Wu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yun‐Peng Liang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Song‐Li Li
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Chang‐De Wu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Jing‐Yuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjing210009China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Jian‐Feng Xie
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
- Department of PhysiologySchool of MedicineSoutheast UniversityNanjing210009China
| | - Hai‐Bo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| |
Collapse
|
22
|
Annis JL, Brown MG. Inflammation and Macrophage Loss Mark Increased Susceptibility in a Genetic Model of Acute Viral Infection-Induced Tissue Damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:853-864. [PMID: 39046317 PMCID: PMC11371500 DOI: 10.4049/jimmunol.2400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
M.R2k/b mice are identical to the MA/My parent strain aside from a 5.58-Mb C57L-derived region on chromosome 17 (Cmv5s) that causes increased susceptibility to acute murine CMV (MCMV) infection and the development of significant spleen tissue damage. Spleen pathology begins at the marginal zone (MZ), apparent by 2 d postinfection (dpi), and progresses throughout the red pulp by 4 dpi. To better understand how M.R2k/b mice respond to infection and how Cmv5s contributes to tissue damage in the spleen, we assessed the regulation of myeloid cells and inflammation during acute MCMV infection in MA/My and M.R2k/b mice. We found that Cmv5s drove increased neutrophil accumulation and cell death at the MZ, which corresponded with evidence of localized oxidative stress and increased overall spleen IL-6 and TGF-β1 early during infection. Further assessment of MCMV infection dynamics at the early MZ revealed infected SIGNR1+ MZ macrophages as the first apparent cell type lost during infection in these mice and the likely target of early neutrophil recruitment. Spleen macrophages were also identified as the mediators of differential spleen IL-6 and TGF-β1 between MA/My and M.R2k/b mice. Interrogation of MCMV progression past 2 dpi revealed substantial M.R2k/b F480+ red pulp macrophage loss along with buildup of oxidative stress and MZ macrophage debris that was not neutrophil dependent. Together we identify Cmv5s-driven macrophage loss and inflammation during acute MCMV infection corresponding with the spatial and temporal development of spleen tissue damage.
Collapse
Affiliation(s)
- Jessica L. Annis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Michael G. Brown
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, USA
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
24
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
25
|
Liang B, Yuan Y, Jiang Q, Ma T, Liu X, Li Y. How neutrophils shape the immune response of triple-negative breast cancer: Novel therapeutic strategies targeting neutrophil extracellular traps. Biomed Pharmacother 2024; 178:117211. [PMID: 39068851 DOI: 10.1016/j.biopha.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is labeled as an aggressive type of breast cancer and still has limited therapeutic targets despite the advanced development of cancer therapy. Neutrophils, representing the conventional inflammatory response, significantly influence the malignant phenotype of tumors, supported by abundant evidence. As a vital function of neutrophils, NETs are the extracellular fibrous networks including the depolymerized chromatin DNA frames with several antimicrobial proteins. They are produced by activated neutrophils and are involved in host defence or immunological reactions. This review focuses more on the interactions between neutrophils and TNBC, focusing on how neutrophils modulate the immune response within the tumor milieu. Specifically, we delve into the role of NETs, which are involved in promoting tumor growth and metastasis, inhibiting anti-tumor immunity, and promoting tumor-associated thrombosis. Furthermore, we discuss recent advancements in therapeutic strategies aimed at targeting NETs to enhance the efficacy of TNBC treatment. The advances in the knowledge of the dynamics between neutrophils and TNBC may lead to the opportunity to devise new immunotherapeutic strategies targeted to fight this hostile type of breast cancer.
Collapse
Affiliation(s)
- Bing Liang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Ye Yuan
- Department of the Second Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, PR China
| | - Qianheng Jiang
- School of Stomatology, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Tao Ma
- Department of Gastrointestinal Hernia Surgery, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region 028007, PR China
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Yan Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
26
|
Hildebrandt F, Iturritza MU, Zwicker C, Vanneste B, Van Hul N, Semle E, Quin J, Pascini T, Saarenpää S, He M, Andersson ER, Scott CL, Vega-Rodriguez J, Lundeberg J, Ankarklev J. Host-pathogen interactions in the Plasmodium-infected mouse liver at spatial and single-cell resolution. Nat Commun 2024; 15:7105. [PMID: 39160174 PMCID: PMC11333755 DOI: 10.1038/s41467-024-51418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it undergoes massive replication, whilst remaining clinically silent. The coordination of host responses across the complex liver tissue during malaria infection remains unexplored. Here, we perform spatial transcriptomics in combination with single-nuclei RNA sequencing over multiple time points to delineate host-pathogen interactions across Plasmodium berghei-infected liver tissues. Our data reveals significant changes in spatial gene expression in the malaria-infected tissues. These include changes related to lipid metabolism in the proximity to sites of Plasmodium infection, distinct inflammation programs between lobular zones, and regions with enrichment of different inflammatory cells, which we term 'inflammatory hotspots'. We also observe significant upregulation of genes involved in inflammation in the control liver tissues of mice injected with mosquito salivary gland components. However, this response is considerably delayed compared to that observed in P. berghei-infected mice. Our study establishes a benchmark for investigating transcriptome changes during host-parasite interactions in tissues, it provides informative insights regarding in vivo study design linked to infection and offers a useful tool for the discovery and validation of de novo intervention strategies aimed at malaria liver stage infection.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| | - Miren Urrutia Iturritza
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Elisa Semle
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Jaclyn Quin
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Sami Saarenpää
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Mengxiao He
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Joakim Lundeberg
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Johan Ankarklev
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
27
|
Ni Q, Li G, Chen Y, Bao C, Wang T, Li Y, Ruan X, Wang H, Sun W. LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection. Mucosal Immunol 2024; 17:723-738. [PMID: 38754839 DOI: 10.1016/j.mucimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well-studied. In three murine models: imiquimod-induced skin inflammation, Staphylococcus aureus-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of interleukin (IL)-17A and tumor necrosis factor (TNF)-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, in vitro stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretions. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting nuclear factor-kappa B signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated nuclear factor-kappa B signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreERT2 mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.
Collapse
Affiliation(s)
- Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Gen Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyi Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
28
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
29
|
Honório da Silva JV, Erthal RP, Vercellone IC, Santos DPD, Ferraz CR, de Matos RLN, Gonçalves LED, Bracarense APFRL, Verri WA, Câmara NOS, de Andrade FG, Fernandes GSA. Lisdexamfetamine dimesylate-exposition in male rats during the peripubertal period impairs inflammatory mechanisms, antioxidant activity, and apoptosis process in kidneys of male pubertal rats. J Biochem Mol Toxicol 2024; 38:e23781. [PMID: 39051179 DOI: 10.1002/jbt.23781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Lisdexamfetamine dimesylate (LDX) is a prodrug of dextroamphetamine, which has been widely recommended for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). There are still no data in the literature relating the possible toxic effects of LDX in the kidney. Therefore, the present study aims to evaluate the effects of LDX exposure on morphological, oxidative stress, cell death and inflammation parameters in the kidneys of male pubertal Wistar rats, since the kidneys are organs related to the excretion of most drugs. For this, twenty male Wistar rats were distributed randomly into two experimental groups: LDX group-received 11,3 mg/kg/day of LDX; and Control group-received tap water. Animals were treated by gavage from postnatal day (PND) 25 to 65. At PND 66, plasma was collected to the biochemical dosage, and the kidneys were collected for determinations of the inflammatory profile, oxidative status, cell death, and for histochemical, and morphometric analyses. Our results show that there was an increase in the number of cells marked for cell death, and a reduction of proximal and distal convoluted tubules mean diameter in the group that received LDX. In addition, our results also showed an increase in MPO and NAG activity, indicating an inflammatory response. The oxidative status showed that the antioxidant system is working undisrupted and avoiding oxidative stress. Therefore, LDX-exposition in male rats during the peripubertal period causes renal changes in pubertal age involving inflammatory mechanisms, antioxidant activity and apoptosis process.
Collapse
Affiliation(s)
- João Vinícius Honório da Silva
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Rafaela Pires Erthal
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Isadora Chagas Vercellone
- Department of Histology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Dayane Priscila Dos Santos
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Camila Rodrigues Ferraz
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | | | | | | | - Waldiceu Aparecido Verri
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo - USP, São Paulo, Brazil
| | - Fábio Goulart de Andrade
- Department of Histology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | | |
Collapse
|
30
|
Ignes-Romeu A, Weppner HK, Kaur T, Singh M, Hind LE. THP-1 Macrophages Limit Neutrophil Transendothelial Migration in a Model Infection. Cell Mol Bioeng 2024; 17:279-293. [PMID: 39372553 PMCID: PMC11450111 DOI: 10.1007/s12195-024-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Dysregulated neutrophil function plays a significant role in the pathology of infections, cancer, cardiovascular diseases, and autoimmune disorders. Neutrophil activity is influenced by various cell populations, including macrophages, which are crucial regulators. However, the exact role of human macrophages in controlling neutrophil function remains unclear due to a scarcity of studies utilizing human cells in physiologically relevant models. Methods We adapted our "Infection-on-a-Chip" microfluidic device to incorporate macrophages within the collagen extracellular matrix, allowing for the study of interactions between human neutrophils and macrophages in a context that mimics in vivo conditions. The integration of THP-1 macrophages was optimized and their effect on the endothelial lumen was characterized, focusing on permeability and structural integrity. The device was then employed to examine the influence of macrophages on neutrophil response to infection with the bacterial pathogen Pseudomonas aeruginosa. Results Integration of THP-1 macrophages into the microfluidic device was successfully optimized, showing no increase in endothelial permeability or structural damage. The presence of macrophages was found to significantly reduce neutrophil transendothelial migration in response to Pseudomonas aeruginosa infection. Conclusions Our findings highlight the regulatory role of macrophages in modulating neutrophil responses, suggesting potential therapeutic targets to control neutrophil function in various diseases. The modified microfluidic platform offers a valuable tool for mechanistic studies into macrophage-neutrophil interactions in disease contexts. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00813-2.
Collapse
Affiliation(s)
- Aitana Ignes-Romeu
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| | - Hannah K. Weppner
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| | - Tanisha Kaur
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| | - Maya Singh
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
- Present Address: Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| |
Collapse
|
31
|
Hussen J, Althagafi H, Alalai MA, Alrabiah NA, Al Abdulsalam NK, Falemban B, Alouffi A, Al-Salem WS, Desquesnes M, Hébert L. Surra-affected dromedary camels show reduced numbers of blood B-cells and in vitro evidence of Trypanosoma-induced B cell death. Trop Anim Health Prod 2024; 56:223. [PMID: 39060802 DOI: 10.1007/s11250-024-04078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Trypanosomosis due to Trypanosoma evansi (surra) is one of the most important diseases with a significant impact on camel health and production. Trypanosoma-induced immunosuppression mechanisms, which are key factors of disease pathogenesis, have been characterized in several animal species. The present study investigated, therefore, the impact of trypanosomosis on the immunophenotype of blood leukocytes in camels. For this, the relative and absolute values of blood leukocyte populations, their expression pattern of cell surface molecules, and the numbers of the main lymphocyte subsets were compared between healthy camels and camels with clinical symptoms of chronic surra and serological evidence of exposure to Trypanosoma infection. Leukocytes were separated from the blood of healthy and diseased camels, labeled with fluorochrome-conjugated antibodies, and analyzed by flow cytometry. Compared to healthy camels, the leukogram of diseased camels was characterized by a slightly increased leukocyte count with moderate neutrophilia and monocytosis indicating a chronic inflammatory pattern that may reflect tissue injury due to the long-lasting inflammation. In addition, the analysis of lymphocyte subsets revealed a lower number and percentage of B cells in diseased than healthy camels. In vitro incubation of camel mononuclear cells with fluorochrome-labeled T. evansi revealed a higher capacity of camel B cells than T cells to bind the parasite in vitro. Furthermore, cell viability analysis of camel PBMC incubated in vitro with T. evansi whole parasites but not the purified antigens resulted in Trypanosoma-induced apoptosis and necrosis of camel B cells. Here we demonstrate an association between trypanosomosis in camels and reduced numbers of blood B cells. In vitro analysis supports a high potential of T. evansi to bind to camel B cells and induce their elimination by apoptosis and necrosis.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia.
| | - Hind Althagafi
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Mohammed Ameer Alalai
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Noof Abdulrahman Alrabiah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Najla K Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, 12354, Riyadh, Saudi Arabia
| | - Waleed S Al-Salem
- Ministry of Environment, Water and Agriculture, 11195, Riyadh, Saudi Arabia
| | - Marc Desquesnes
- CIRAD, UMR INTERTRYP, 31076, Ecole Nationale Vétérinaire de Toulouse (ENVT), 23 Chemin Des Capelles, 31300, Toulouse, France
- INTERTRYP, Univ Montpellier, CIRAD, Montpellier, IRD, France
| | - Laurent Hébert
- ANSES, Laboratory for Animal Health, Normandy site, Physiopathology and Epidemiology of Equine Diseases (PhEED) Unit, ANSES, 1080 L'Église, 14430, Goustranville, France
| |
Collapse
|
32
|
Aji N, Wang L, Wang S, Pan T, Song J, Chen C, Wang L, Feng N, Tang X, Song Y. PAI-1 Deficiency Promotes NET-mediated Pyroptosis and Ferroptosis during Pseudomonas Aeruginosa-induced Acute Lung Injury by Regulating the PI3K/MAPK/AKT Axis. Inflammation 2024:10.1007/s10753-024-02102-6. [PMID: 39060815 DOI: 10.1007/s10753-024-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Circulating neutrophil extracellular trap (NET) formation is an adaptive process during acute lung injury (ALI). The important role of plasminogen activator inhibitor (PAI)-1 in NET formation during ALI remains unclear. This research intends to examine the impacts of the decrease in PAI-1 levels on NET formation and the underlying mechanism. We found a relative association between the increase in plasma NET levels and thromboinflammation-induced lung damage in patients with ARDS. PAI-1 knockout (KO) mice exhibited significant increases in Pseudomonas aeruginosa (PAO1 strain)-induced ALI, inflammation, inflammatory cell accumulation, and proinflammatory cytokine secretion, and wild-type mice exhibited the opposite changes. During PAO1-induced ALI, PAI-1 KO increased NET release and the levels of prothrombotic markers in mice. PAI-1 deficiency also promoted NET formation and NET-mediated pyroptosis and ferroptosis by activating the PI3K/MAPK/AKT pathway in a PAO1-induced ALI mouse model. In conclusion, PAI-1 KO exacerbated PAO1-induced pneumonia-associated injury and contributed to NET-mediated pyroptosis and ferroptosis through PI3K/MAPK/AKT pathway activation. Thus, targeting PAI-1 and NETs may be a promising therapeutic approach for ameliorating pneumonia and thromboinflammation-associated ALI.
Collapse
Affiliation(s)
- Nurbiya Aji
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sijiao Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | | | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China.
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China.
| |
Collapse
|
33
|
Wang Y, Shou X, Wu Y, Li D. Immuno-inflammatory pathogenesis in ischemic heart disease: perception and knowledge for neutrophil recruitment. Front Immunol 2024; 15:1411301. [PMID: 39050842 PMCID: PMC11266024 DOI: 10.3389/fimmu.2024.1411301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Traditional Chinese Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xintian Shou
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Kiefer J, Zeller J, Schneider L, Thomé J, McFadyen JD, Hoerbrand IA, Lang F, Deiss E, Bogner B, Schaefer AL, Chevalier N, Horner VK, Kreuzaler S, Kneser U, Kauke-Navarro M, Braig D, Woollard KJ, Pomahac B, Peter K, Eisenhardt SU. C-reactive protein orchestrates acute allograft rejection in vascularized composite allotransplantation via selective activation of monocyte subsets. J Adv Res 2024:S2090-1232(24)00291-1. [PMID: 38992424 DOI: 10.1016/j.jare.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Despite advancements in transplant immunology and vascularized composite allotransplantation (VCA), the longevity of allografts remains hindered by the challenge of allograft rejection. The acute-phase response, an immune-inflammatory reaction to ischemia/reperfusion that occurs directly after allogeneic transplantation, serves as a catalyst for graft rejection. This immune response is orchestrated by acute-phase reactants through intricate crosstalk with the mononuclear phagocyte system. OBJECTIVE C-reactive protein (CRP), a well-known marker of inflammation, possesses pro-inflammatory properties and exacerbates ischemia/reperfusion injury. Thus, we investigated how CRP impacts acute allograft rejection. METHODS Prompted by clinical observations in facial VCAs, we employed a complex hindlimb transplantation model in rats to investigate the direct impact of CRP on transplant rejection. RESULTS Our findings demonstrate that CRP expedites allograft rejection and diminishes allograft survival by selectively activating non-classical monocytes. Therapeutic stabilization of CRP abrogates this activating effect on monocytes, thereby attenuating acute allograft rejection. Intravital imagining of graft-infiltrating, recipient-derived monocytes during the early phase of acute rejection corroborated their differential regulation by CRP and their pivotal role in driving the initial stages of graft rejection. CONCLUSION The differential activation of recipient-derived monocytes by CRP exacerbates the innate immune response and accelerates clinical allograft rejection. Thus, therapeutic targeting of CRP represents a novel and promising strategy for preventing acute allograft rejection and potentially mitigating chronic allograft rejection.
Collapse
Affiliation(s)
- Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Laura Schneider
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia Thomé
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabel A Hoerbrand
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Friederike Lang
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Emil Deiss
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Lena Schaefer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Verena K Horner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Martin Kauke-Navarro
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| |
Collapse
|
35
|
Kang H, Liu T, Wang Y, Bai W, Luo Y, Wang J. Neutrophil-macrophage communication via extracellular vesicle transfer promotes itaconate accumulation and ameliorates cytokine storm syndrome. Cell Mol Immunol 2024; 21:689-706. [PMID: 38745069 PMCID: PMC11637192 DOI: 10.1038/s41423-024-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Cytokine storm syndrome (CSS) is a life-threatening systemic inflammatory syndrome involving innate immune hyperactivity triggered by various therapies, infections, and autoimmune conditions. However, the potential interplay between innate immune cells is not fully understood. Here, using poly I:C and lipopolysaccharide (LPS)-induced cytokine storm models, a protective role of neutrophils through the modulation of macrophage activation was identified in a CSS model. Intravital imaging revealed neutrophil-derived extracellular vesicles (NDEVs) in the liver and spleen, which were captured by macrophages. NDEVs suppressed proinflammatory cytokine production by macrophages when cocultured in vitro or infused into CSS models. Metabolic profiling of macrophages treated with NDEV revealed elevated levels of the anti-inflammatory metabolite, itaconate, which is produced from cis-aconitate in the Krebs cycle by cis-aconitate decarboxylase (Acod1, encoded by Irg1). Irg1 in macrophages, but not in neutrophils, was critical for the NDEV-mediated anti-inflammatory effects. Mechanistically, NDEVs delivered miR-27a-3p, which suppressed the expression of Suclg1, the gene encoding the enzyme that metabolizes itaconate, thereby resulting in the accumulation of itaconate in macrophages. These findings demonstrated that neutrophil-to-macrophage communication mediated by extracellular vesicles is critical for promoting the anti-inflammatory reprogramming of macrophages in CSS and may have potential implications for the treatment of this fatal condition.
Collapse
Affiliation(s)
- Haixia Kang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Liu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanyuan Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjuan Bai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jing Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Gao H, Li S, Lan Z, Pan D, Naidu GS, Peer D, Ye C, Chen H, Ma M, Liu Z, Santos HA. Comparative optimization of polysaccharide-based nanoformulations for cardiac RNAi therapy. Nat Commun 2024; 15:5398. [PMID: 38926348 PMCID: PMC11208445 DOI: 10.1038/s41467-024-49804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Ionotropic gelation is widely used to fabricate targeting nanoparticles (NPs) with polysaccharides, leveraging their recognition by specific lectins. Despite the fabrication scheme simply involves self-assembly of differently charged components in a straightforward manner, the identification of a potent combinatory formulation is usually limited by structural diversity in compound collections and trivial screen process, imposing crucial challenges for efficient formulation design and optimization. Herein, we report a diversity-oriented combinatory formulation screen scheme to identify potent gene delivery cargo in the context of precision cardiac therapy. Distinct categories of cationic compounds are tested to construct RNA delivery system with an ionic polysaccharide framework, utilizing a high-throughput microfluidics workstation coupled with streamlined NPs characterization system in an automatic, step-wise manner. Sequential computational aided interpretation provides insights in formulation optimization in a broader scenario, highlighting the usefulness of compound library diversity. As a result, the out-of-bag NPs, termed as GluCARDIA NPs, are utilized for loading therapeutic RNA to ameliorate cardiac reperfusion damages and promote the long-term prognosis. Overall, this work presents a generalizable formulation design strategy for polysaccharides, offering design principles for combinatory formulation screen and insights for efficient formulation identification and optimization.
Collapse
Affiliation(s)
- Han Gao
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Sen Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhengyi Lan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Gonna Somu Naidu
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hangrong Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ming Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Zehua Liu
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
37
|
Erensoy G, Råberg L, von Mentzer U, Menges LD, Bardhi E, Hultgård Ekwall AK, Stubelius A. Dynamic Release from Acetalated Dextran Nanoparticles for Precision Therapy of Inflammation. ACS APPLIED BIO MATERIALS 2024; 7:3810-3820. [PMID: 38795048 PMCID: PMC11191005 DOI: 10.1021/acsabm.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Polymer-based nanoparticles (NPs) that react to altered physiological characteristics have the potential to enhance the delivery of therapeutics to a specific area. These materials can utilize biochemical triggers, such as low pH, which is prone to happen locally in an inflammatory microenvironment due to increased cellular activity. This reduced pH is neutralized when inflammation subsides. For precise delivery of therapeutics to match this dynamic reaction, drug delivery systems (DDS) need to not only release the drug (ON) but also stop the release (OFF) autonomously. In this study, we use a systematic approach to optimize the composition of acetalated dextran (AcDex) NPs to start (ON) and stop (OFF) releasing model cargo, depending on local pH changes. By mixing ratios of AcDex polymers (mixed NPs), we achieved a highly sensitive material that was able to rapidly release cargo when going from pH 7.4 to pH 6.0. At the same time, the mix also offered a stable composition that enabled a rapid ON/OFF/ON/OFF switching within this narrow pH range in only 90 min. These mixed NPs were also sensitive to biological pH changes, with increased release in the presence of inflammatory cells compared to healthy cells. Such precise and controllable characteristics of a DDS position mixed NPs as a potential treatment platform to inhibit disease flare-ups, reducing both systemic and local side effects to offer a superior treatment option for inflammation compared to conventional systems.
Collapse
Affiliation(s)
- Gizem Erensoy
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Loise Råberg
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ula von Mentzer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Luca Dirk Menges
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Endri Bardhi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Anna-Karin Hultgård Ekwall
- The
Rheumatology Clinic, Sahlgrenska University
Hospital, Gothenburg 413 45, Sweden
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
| | - Alexandra Stubelius
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
38
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
39
|
Amason ME, Beatty CJ, Harvest CK, Saban DR, Miao EA. Chemokine expression profile of an innate granuloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577927. [PMID: 38352492 PMCID: PMC10862903 DOI: 10.1101/2024.01.30.577927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2 -/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | - Cole J. Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | - Daniel R. Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| |
Collapse
|
40
|
Farzamfar S, Garcia LM, Rahmani M, Bolduc S. Navigating the Immunological Crossroads: Mesenchymal Stem/Stromal Cells as Architects of Inflammatory Harmony in Tissue-Engineered Constructs. Bioengineering (Basel) 2024; 11:494. [PMID: 38790361 PMCID: PMC11118848 DOI: 10.3390/bioengineering11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge-initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Luciana Melo Garcia
- Department of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
- Hematology-Oncology Service, CHU de Québec—Université Laval, Québec, QC G1V 0A6, Canada
| | - Mahya Rahmani
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Stephane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
41
|
Liu X, Ou X, Zhang T, Li X, Qiao Q, Jia L, Xu Z, Zhang F, Tian T, Lan H, Yang C, Kong L, Zhang Z. In situ neutrophil apoptosis and macrophage efferocytosis mediated by Glycyrrhiza protein nanoparticles for acute inflammation therapy. J Control Release 2024; 369:215-230. [PMID: 38508529 DOI: 10.1016/j.jconrel.2024.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liyuan Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangxi Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fangming Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
42
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
43
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
44
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
45
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
46
|
Ligeron C, Saenz J, Evrard B, Drouin M, Merieau E, Mary C, Biteau K, Wilhelm E, Batty C, Gauttier V, Baccelli I, Poirier N, Chiffoleau E. CLEC-1 Restrains Acute Inflammatory Response and Recruitment of Neutrophils following Tissue Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1178-1187. [PMID: 38353642 DOI: 10.4049/jimmunol.2300479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 03/20/2024]
Abstract
The inflammatory response is a key mechanism for the elimination of injurious agents but must be tightly controlled to prevent additional tissue damage and progression to persistent inflammation. C-type lectin receptors expressed mostly by myeloid cells play a crucial role in the regulation of inflammation by recognizing molecular patterns released by injured tissues. We recently showed that the C-type lectin receptor CLEC-1 is able to recognize necrotic cells. However, its role in the acute inflammatory response following tissue damage had not yet been investigated. We show in this study, in a mouse model of liver injury induced by acetaminophen intoxication, that Clec1a deficiency enhances the acute immune response with increased expression of Il1b, Tnfa, and Cxcl2 and higher infiltration of activated neutrophils into the injured organ. Furthermore, we demonstrate that Clec1a deficiency exacerbates tissue damage via CXCL2-dependent neutrophil infiltration. In contrast, we observed that the lack of CLEC-1 limits CCL2 expression and the accumulation, beyond the peak of injury, of monocyte-derived macrophages. Mechanistically, we found that Clec1a-deficient dendritic cells increase the expression of Il1b, Tnfa, and Cxcl2 in response to necrotic cells, but decrease the expression of Ccl2. Interestingly, treatment with an anti-human CLEC-1 antagonist mAb recapitulates the exacerbation of acute immunopathology observed by genetic loss of Clec1a in a preclinical humanized mouse model. To conclude, our results demonstrate that CLEC-1 is a death receptor limiting the acute inflammatory response following injury and represents a therapeutic target to modulate immunity.
Collapse
Affiliation(s)
- Camille Ligeron
- OSE Immunotherapeutics, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Javier Saenz
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Berangere Evrard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Marion Drouin
- OSE Immunotherapeutics, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Emmanuel Merieau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | | | | | | | | | | | | | - Elise Chiffoleau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
47
|
Yao X, Liu Y, Mao M, Yang L, Zhan Q, Xiao J. Calorie restriction mimetic, resveratrol, attenuates hepatic ischemia and reperfusion injury through enhancing efferocytosis of macrophages via AMPK/STAT3/S1PR1 pathway. J Nutr Biochem 2024; 126:109587. [PMID: 38262562 DOI: 10.1016/j.jnutbio.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1β were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Menghan Mao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
48
|
Saffari PM, Asili P, Eshraghi S, Muhammadnejad A, Dehpour AR, Goudarzi R, Partoazar A. Phosphatidylserine accelerates wound healing and reduces necrosis in the rats: Growth factor activation. Clin Exp Pharmacol Physiol 2024; 51:e13849. [PMID: 38408759 DOI: 10.1111/1440-1681.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
To examine the effect of topical phosphatidylserine (PS) on wound healing factors and tissue necrosis in in vivo models. Topical PS was applied to evaluate aspects of the wound healing process and growth factors production of vascular endothelial growth factors (VEGF) as well a necrosis reduction in the skin flap of rat models. Moreover, phenytoin (PHT) and cyclosporine A (CsA) were used topically as positive control treatments in wound and necrosis models, respectively. Immunohistochemistry (IHC) VEGF, transforming growth factor-β (TGF-β), fibroblast growth factor (FGF) and histopathology were analysed on the wounds of rats. In the necrosis assessment, necrotic areas were determined on photography taken from the back skin of rats. Results indicated that PS topically enhanced significantly (P < 0.05) numbers of fibroblasts and endothelium while inhibiting the neutrophils and macrophages during the 14 days of wound treatment. Moreover, higher values of collagen deposition and epithelialization scores as well as wound recovery percentage (near 80%) were determined significantly (P < 0.05) in the PS group compared with the control. IHC analysis determined that FGF and VEGF cytokine factors were elevated in the wound site by topical PS. Moreover, the necrotic area was significantly (P < 0.05) improved in the PS group. Our experiment indicated that wound improvement and flap survival values in PS treatments were superior to PHT and CsA control groups, respectively. In conclusion, these findings suggest the potential of PS application in the healing of wounds and control of necrosis development after surgery or skin injuries.
Collapse
Affiliation(s)
- Partow Mirzaee Saffari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Asili
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Eshraghi
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Lu T, Liu Y, Huang X, Sun S, Xu H, Jin A, Wang X, Gao X, Liu J, Zhu Y, Dai Q, Wang C, Lin K, Jiang L. Early-Responsive Immunoregulation Therapy Improved Microenvironment for Bone Regeneration Via Engineered Extracellular Vesicles. Adv Healthc Mater 2024; 13:e2303681. [PMID: 38054523 DOI: 10.1002/adhm.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-β1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.
Collapse
Affiliation(s)
- Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 201999, China
| | - Chao Wang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200433, China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
50
|
Hu X, Li E, Zhou Y, You Q, Jiang Z. Casitas b cell lymphoma‑B (Cbl-b): A new therapeutic avenue for small-molecule immunotherapy. Bioorg Med Chem 2024; 102:117677. [PMID: 38457911 DOI: 10.1016/j.bmc.2024.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma‑b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.
Collapse
Affiliation(s)
- Xiuqi Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Erdong Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yangguo Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|