1
|
Thibaut MM, Roumain M, Piron E, Gillard J, Loriot A, Neyrinck AM, Rodriguez J, Massart I, Thissen JP, Huot JR, Pin F, Bonetto A, Delzenne NM, Muccioli GG, Bindels LB. The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia. Gut Microbes 2025; 17:2449586. [PMID: 39780051 PMCID: PMC11730681 DOI: 10.1080/19490976.2025.2449586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.
Collapse
Affiliation(s)
- Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Edwige Piron
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Massart
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Lv Y, Yang X, Sun X, Ren X. Immune-microbiota dysregulation in maintenance hemodialysis: a 16S rRNA sequencing-based analysis of gut flora and T cell profiles. Ren Fail 2025; 47:2498630. [PMID: 40375064 PMCID: PMC12082729 DOI: 10.1080/0886022x.2025.2498630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Maintenance hemodialysis (MHD) patients frequently exhibit immune dysregulation and gut dysbiosis, both of which contribute to increased infection risk and adverse outcomes. However, the relationship between gut microbial composition and immune competence in this population remains underexplored. METHODS This study assessed 45 MHD patients and 30 healthy controls, stratifying MHD patients into immunocompetent (HD-NLI, CD4+/CD8+ ≥ 1) and immunodeficient (HD-LI, CD4+/CD8+ < 1) groups. Circulating cytokines (IL-6, IL-10, IL-12, TNF-α, IFN-γ) were quantified using ELISA. Gut microbiota profiles were derived via 16S rRNA gene sequencing (V3-V4 regions), followed by QIIME2 and LEfSe-based bioinformatics analyses. RESULTS HD-LI patients displayed severe T cell dysregulation and elevated pro-inflammatory cytokines. Compared to controls, HD patients had reduced abundance of beneficial taxa (e.g., Prevotella copri, Bacteroides vulgatus, Agathobacter), and enrichment of pro-inflammatory taxa (e.g., Escherichia-Shigella, Blautia, Citrobacter). LEfSe identified 39 discriminatory taxa with distinct immune group signatures. Redundancy analysis revealed that CD4+ levels, CD4+/CD8+ ratios, and TNF-α significantly shaped microbiota composition. Correlation analysis confirmed strong associations between immune parameters and microbial taxa involved in short-chain fatty acid (SCFA) metabolism. CONCLUSION This study provides novel evidence linking gut microbial dysbiosis to immune impairment in MHD patients. The findings suggest that SCFA-producing bacteria are depleted in immunodeficient states, offering a potential target for microbiota-directed immunomodulatory therapies in ESRD.
Collapse
Affiliation(s)
- Yan Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuting Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaowu Sun
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Ren
- Department of Intensive Care Unit, Lvliang People’s Hospital, Lvliang City, China
| |
Collapse
|
3
|
Olivares C, Ruppé E, Ferreira S, Corbel T, Andremont A, de Gunzburg J, Guedj J, Burdet C. A modelling framework to characterize the impact of antibiotics on the gut microbiota diversity. Gut Microbes 2025; 17:2442523. [PMID: 39711113 DOI: 10.1080/19490976.2024.2442523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Metagenomic sequencing deepened our knowledge about the role of the intestinal microbiota in human health, and several studies with various methodologies explored its dynamics during antibiotic treatments. We compared the impact of four widely used antibiotics on the gut bacterial diversity. We used plasma and fecal samples collected during and after treatment from healthy volunteers assigned to a 5-day treatment either by ceftriaxone (1 g every 24 h through IV route), ceftazidime/avibactam (2 g/500 mg every 8 h through IV route), piperacillin/tazobactam (1 g/500 mg every 8 h through IV route) or moxifloxacin (400 mg every 24 h through oral route). Antibiotic concentrations were measured in plasma and feces, and bacterial diversity was assessed by the Shannon index from 16S rRNA gene profiling. The relationship between the evolutions of antibiotic fecal exposure and bacterial diversity was modeled using non-linear mixed effects models. We compared the impact of antibiotics on gut microbiota diversity by simulation, using various reconstructed pharmacodynamic indices. Piperacillin/tazobactam was characterized by the highest impact in terms of intensity of perturbation (maximal [IQR] loss of diversity of 27.3% [1.9; 40.0]), while moxifloxacin had the longest duration of perturbation, with a time to return to 95% of baseline value after the last administration of 13.2 d [8.3; 19.1]. Overall, moxifloxacin exhibited the highest global impact, followed by piperacillin/tazobactam, ceftazidime/avibactam and ceftriaxone. Their AUC between day 0 and day 42 of the change of diversity indices from day 0 were, respectively, -13.2 Shannon unit.day [-20.4; -7.9], -10.9 Shannon unit.day [-20.4; -0.6] and -10.1 Shannon unit.day [-18.3; -4.6]. We conclude that antibiotics alter the intestinal diversity to varying degrees, both within and between antibiotics families. Such studies are needed to help antibiotic stewardship in using the antibiotics with the lowest impact on the intestinal microbiota.
Collapse
Affiliation(s)
| | - Etienne Ruppé
- Université Paris Cité, IAME, INSERM, Paris, France
- APHP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Moore M, Whittington HD, Knickmeyer R, Azcarate-Peril MA, Bruno-Bárcena JM. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. Gut Microbes 2025; 17:2440120. [PMID: 39695352 DOI: 10.1080/19490976.2024.2440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL-1) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO2, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.
Collapse
Affiliation(s)
- Madison Moore
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hunter D Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Rebecca Knickmeyer
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Mörkl S, Narrath M, Schlotmann D, Sallmutter MT, Putz J, Lang J, Brandstätter A, Pilz R, Karl Lackner H, Goswami N, Steuber B, Tatzer J, Lackner S, Holasek S, Painold A, Jauk E, Wenninger J, Horvath A, Spicher N, Barth A, Butler MI, Wagner-Skacel J. Multi-species probiotic supplement enhances vagal nerve function - results of a randomized controlled trial in patients with depression and healthy controls. Gut Microbes 2025; 17:2492377. [PMID: 40298641 PMCID: PMC12045568 DOI: 10.1080/19490976.2025.2492377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Major depression (MD) significantly impacts individual well-being and society. The vagus nerve plays a pivotal role in the gut-brain axis, facilitating bidirectional communication between these systems. Recent meta-analyses suggest potential antidepressant effects of probiotics, although their mechanisms remain unclear. This study aimed to assess the impact of a multi-species probiotic (OMNi-BiOTiC® STRESS Repair) on vagus nerve function in 43 MD patients and 43 healthy controls (HC). Participants received either probiotics or placebo twice daily. Serum and stool samples were collected at baseline, 7 days, 28 days, and 3 months. Vagus nerve (VN) function was evaluated using 24-hour electrocardiography (ECG) for heart rate variability (HRV), alongside stool microbiome analysis via 16S rRNA sequencing. After 3 months, MD patients receiving probiotics demonstrated significantly improved morning VN function compared to HC. MD participants who were in the probiotic group showed a significant increase in Christensellales, particularly Akkermansia muciniphila along with improved sleep parameters (use of sleep medication, sleep latency) as measured by the Pittsburgh Sleep Quality Inventory (PSI). This study highlights potential physiological benefits of probiotics in MD, potentially mediated through VN stimulation. Understanding these mechanisms could lead to novel therapeutic approaches for MD management.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martin Narrath
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daria Schlotmann
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marie-Therese Sallmutter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Putz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lang
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Brandstätter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Karl Lackner
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Nandu Goswami
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bianca Steuber
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Jasmin Tatzer
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Emanuel Jauk
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Nicolai Spicher
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Asmus Barth
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Katona BW, Shukla A, Hu W, Nyul T, Dudzik C, Arvanitis A, Clay D, Dungan M, Weber M, Tu V, Hao F, Gan S, Chau L, Buchner AM, Falk GW, Jaffe DL, Ginsberg G, Palmer SN, Zhan X, Patterson AD, Bittinger K, Ni J. Microbiota and metabolite-based prediction tool for colonic polyposis with and without a known genetic driver. Gut Microbes 2025; 17:2474141. [PMID: 40069167 PMCID: PMC11913376 DOI: 10.1080/19490976.2025.2474141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Despite extensive investigations into the microbiome and metabolome changes associated with colon polyps and colorectal cancer (CRC), the microbiome and metabolome profiles of individuals with colonic polyposis, including those with (Gene-pos) and without (Gene-neg) a known genetic driver, remain comparatively unexplored. Using colon biopsies, polyps, and stool from patients with Gene-pos adenomatous polyposis (N = 9), Gene-neg adenomatous polyposis (N = 18), and serrated polyposis syndrome (SPS, N = 11), we demonstrated through 16S rRNA sequencing that the mucosa-associated microbiota in individuals with colonic polyposis is representative of the microbiota associated with small polyps, and that both Gene-pos and SPS cohorts exhibit differential microbiota populations relative to Gene-neg polyposis cohorts. Furthermore, we used these differential microbiota taxa to perform linear discriminant analysis to differentiate Gene-neg subjects from Gene-pos and from SPS subjects with an accuracy of 89% and 93% respectively. Stool metabolites were quantified via 1H NMR, revealing an increase in alanine in SPS subjects relative to non-polyposis subjects, and Partial Least Squares Discriminant Analysis (PLS-DA) analysis indicated that the proportion of leucine to tyrosine in fecal samples may be predictive of SPS. Use of these microbial and metabolomic signatures may allow for better diagnostric and risk-stratification tools for colonic polyposis patients and their families as well as promote development of microbiome-targeted approaches for polyp prevention.
Collapse
Affiliation(s)
- Bryson W. Katona
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashutosh Shukla
- Division of Digestive & Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas Nyul
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christina Dudzik
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alex Arvanitis
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Clay
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michaela Dungan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marina Weber
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Shuheng Gan
- Peter O’Donnell Jr. School of Public Health, Quantitative Biomedical Research Center, Center for the Genetics and Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lillian Chau
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Anna M. Buchner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David L. Jaffe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory Ginsberg
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Suzette N. Palmer
- Peter O’Donnell Jr. School of Public Health, Quantitative Biomedical Research Center, Center for the Genetics and Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaowei Zhan
- Peter O’Donnell Jr. School of Public Health, Quantitative Biomedical Research Center, Center for the Genetics and Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Josephine Ni
- Division of Digestive & Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Tingting L, Zhang P, Yang L, Li R, Wang R. The effects of topical antimicrobial-corticosteroid combination therapy in comparison to topical steroids alone on the skin microbiome of patients with atopic dermatitis. J DERMATOL TREAT 2025; 36:2470379. [PMID: 39993425 DOI: 10.1080/09546634.2025.2470379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE This study aims to analyze the different therapeutic responses between topical antimicrobial-corticosteroid combination and topical corticosteroids alone on improving the skin microbiome and skin barrier of patients with atopic dermatitis (AD). METHODS Forty patients with mild-to-moderate AD were randomly assigned to receive two kinds of treatment. Skin swabs were collected from the lesional sites and nearby nonlesional sites at baseline, after topical medication treatment and 2 weeks post-treatment, and were analyzed by DNA sequencing of the fungal internal transcribed spacer (ITS)1-5 rDNA gene and the V3V4 region of the bacterial 16S rRNA gene. RESULTS According to our research analysis, both topical steroids alone and combination treatment of steroids and antimicrobials effectively improved the severity of AD and repaired skin barrier. AD lesions were characterized by a decreased sebum level, lower abundance of Cutibacterium and a higher abundance of Staphylococcus. A combined topical treatment with an antimicrobial and steroid showed better responses in increasing skin sebum level and restoring the skin bacterial microbiome, whereas topical steroid alone did not improve skin dysbiosis. CONCLUSION A combined therapy with antimicrobial and steroid helps to recover the skin microbiome. Further studies are necessary to explore the therapeutic effects of treatments aiming at balancing the microbiome.
Collapse
Affiliation(s)
- Li Tingting
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Peixin Zhang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Li Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| |
Collapse
|
8
|
Tobón-Cornejo S, Sanchez-Tapia M, Guizar-Heredia R, Velázquez Villegas L, Noriega LG, Furuzawa-Carballeda J, Hernández-Pando R, Vázquez-Manjarrez N, Granados-Portillo O, López-Barradas A, Rebollar-Vega R, Maya O, Miller AW, Serralde A, Guevara-Cruz M, Torres N, Tovar AR. Increased dietary protein stimulates amino acid catabolism via the gut microbiota and secondary bile acid production. Gut Microbes 2025; 17:2465896. [PMID: 39980327 PMCID: PMC11849929 DOI: 10.1080/19490976.2025.2465896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/27/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Excess amino acids from a protein-rich diet are mainly catabolized in the liver. However, it is still unclear to what extent the gut microbiota may be involved in the mechanisms governing this catabolism. Therefore, the aim of this study was to investigate whether consumption of different dietary protein concentrations induces changes in the taxonomy of the gut microbiota, which may contribute to the regulation of hepatic amino acid catabolism. Consumption of a high-protein diet caused overexpression of HIF-1α in the colon and increase in mitochondrial activity, creating a more anaerobic environment that was associated with changes in the taxonomy of the gut microbiota promoting an increase in the synthesis of secondary bile acids, increased secretion of pancreatic glucagon. This effect was demonstrated in pancreatic islets, where secondary bile acids stimulated the expression of the PC2 enzyme that promotes glucagon formation. The increase in circulating glucagon was associated with an induction of the expression of hepatic amino acid-degrading enzymes, an effect attenuated by antibiotics. Thus, high protein intake in mice and humans induced the increase of different species in the gut microbiota with the capacity to produce secondary bile acids leading to an increase in secondary bile acids and glucagon levels, promoting amino acid catabolism.
Collapse
Affiliation(s)
- Sandra Tobón-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Monica Sanchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Laura Velázquez Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Janette Furuzawa-Carballeda
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Natalia Vázquez-Manjarrez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Rosa Rebollar-Vega
- RED de apoyo a la investigación, Coordinación de la Investrigación Científica, UNAM e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Otoniel Maya
- Physics Department, Chalmers University of Technology, Chalmers E-Commons, Gothenburg, Sweden
| | - Aaron W. Miller
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aurora Serralde
- Departamento de Nutrición Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| |
Collapse
|
9
|
Zheng L, Li Q, Du J, Lu X, Fan T, Xu L, Xie HQ, Chen Y, Zhao B. Insight into interaction among soil microbial community, soil metabolomics and enzyme activity after long-term PAH stress. J Environ Sci (China) 2025; 155:423-430. [PMID: 40246477 DOI: 10.1016/j.jes.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 04/19/2025]
Abstract
The problem of soil polycyclic aromatic hydrocarbon (PAH) pollution in coking plant sites has been widely studied in recent years, but there is a lack of research on the correlation between soil microorganisms, soil metabolomics, and soil properties. Thus, in this study, the long-term impact of coke combustion on soil microbial community structure, enzyme activities, and metabolic pathways within a former coking plant site was investigated. Soil samples were collected from both the coking production area (CA group) and office area (OLA group), approximately 0 to 20 cm in depth. Compared with OLA group, elevated levels of 16 PAHs in the list of US EPA were detected by gas chromatography-mass spectrometry in the CA group. Several dominant microorganisms, such as Altererythrobacter, Lysobacter, and Sulfurifustis, were identified by 16 s ribosomal DNA sequencing in the CA group. The fatty acid biosynthesis pathway exhibited specific inhibition, while the phenylalanine metabolic pathway was promoted in response to PAH stress. Long-term PAH exposure led to the inhibition of soil urease activity. The co-occurrence network of microorganisms revealed intricate patterns of co-metabolism and co-adaptation within complex bacterial communities, facilitating their adaptation to and decomposition of soil-borne PAHs. This research could provide valuable insights into the community characteristics and metabolic mechanisms of microorganisms inhabiting PAH-polluted soil within coking plant sites. The findings enhance our understanding of the indigenous soil microbiome and its intricate network dynamics under the persistent stress of PAHs, contributing to a more comprehensive knowledge of soil ecosystems in such environments.
Collapse
Affiliation(s)
- Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Qun Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Junyang Du
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaosong Lu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Yu Q, Hu X, Qian Y, Wang Y, Shi C, Qi R, Heděnec P, Nan Z, Li H. Virus communities rather than bacterial communities contribute more on nutrient pool in polluted aquatic environment. J Environ Sci (China) 2025; 154:550-562. [PMID: 40049896 DOI: 10.1016/j.jes.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 05/13/2025]
Abstract
The degradation of animal carcasses can lead to rapid waste release (e.g., pathogenic bacteria, viruses, prions, or parasites) and also result in nutrient accumulation in the surrounding environment. However, how viral profile responds and influences nutrient pool (carbon (C), nitrogen (N), phosphorus (P) and sulfur (S)) in polluted water caused by animal carcass decomposition had not been explored. Here, we combined metagenomic analysis, 16S rRNA gene sequencing and water physicochemical assessment to explore the response of viral communities under different temperatures (23 °C, 26 °C, 29 °C, 32 °C, and 35 °C) in water polluted by cadaver, as well as compare the contribution of viral/bacterial communities on water nutrient pool. We found that a total of 15,240 viral species were classified and mainly consisted of Siphoviridae. Both temperature and carrion reduced the viral diversity and abundance. Only a small portion of the viruses (∼8.8 %) had significant negative correlations with temperature, while most were not sensitive. Our results revealed that the viruses had lager contribution on nutrient pool than bacteria. Besides, viral-related functional genes involved in C, N, P and S cycling. These functional genes declined during carcass decomposition and covered part of the central nutrient cycle metabolism (including carbon sugar transformation, denitrification, P mineralization and extracelluar sulfate transfer, etc.). Our result implies that human regulation of virus communities may be more important than bacterial communities in regulating and managing polluted water quality and nutrition.
Collapse
Affiliation(s)
- Qiaoling Yu
- College of pastoral agriculture science and technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Chenwei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Qi
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Zhibiao Nan
- College of pastoral agriculture science and technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- College of pastoral agriculture science and technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| |
Collapse
|
11
|
Chen JY, Qin LJ, Long T, Wu RT, Niu SH, Liu S, Deng WK, Liao XD, Xing SC. Effortless rule: Effects of oversized microplastic management on lettuce growth and the dynamics of antibiotic resistance genes from fertilization to harvest. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138046. [PMID: 40157188 DOI: 10.1016/j.jhazmat.2025.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The complexity of soil microplastic pollution has driven deeper exploration of waste management strategies to evaluate environmental impact. This study introduced oversized microplastics (OMPs, 1-5 mm) during membrane composting to produce organic fertilizers, and conducted a 2 × 2 pot experiment: exogenous OMPs were added when normal fertilizer (no OMPs intervention) was applied, while artificial removal of OMPs was implemented when contaminated fertilizer (with OMPs) was used. The study assessed the effects of these management strategies on lettuce growth, soil environments, and potential biological safety risks related to the spread and expression of high-risk antibiotic resistance genes (ARGs) in humans. Results showed that both exogenous OMPs addition and removal negatively affected plant height and harvest index, with shifts in the rhizosphere microbial community identified as a key factor rather than soil nutrients. Exogenous OMPs altered rhizosphere and endophytic microbial communities, and plant growth-promoting bacteria were transferred to the surface of OMPs from rhizosphere soil. In contrast, bacteria such as Truepera, Pseudomonas, and Streptomyces in compost-derived OMPs supported lettuce growth, and their removal negated these effects. Some endophytic bacteria may promote growth but pose public health risks when transmitted through the food chain. OMPs in composting or planting significantly enhanced the expression of target ARGs in lettuce, particularly blaTEM. However, simulated digestion results indicated that OMPs reduced the expression of six key ARGs, including blaTEM, among the ten critical target ARGs identified in this context. Notably, the removal management strategies raised five of them posing potential risks from lettuce consumption. This study highlights that both introducing and removing OMPs may pose ecological and food safety risks, emphasizing the need for optimized organic waste management strategies to mitigate potential health hazards.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin-Jie Qin
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tiao Long
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rui-Ting Wu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
Yin X, Li Y, Wang S, Wang Y, Li Y, Achterberg EP, Wang X. Environmental concentration of the quaternary ammonium disinfectant benzalkonium chloride strongly induces resistance gene profiles in fish. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137875. [PMID: 40073566 DOI: 10.1016/j.jhazmat.2025.137875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Disinfectants are non-antibiotic biocides that have been used extensively in daily life, particularly since the onset of the COVID-19 pandemic. However, their effect on drug resistance has not received sufficient attention. Here, marine medaka were subjected to an environmental concentration (10 μg/L) of benzalkonium chloride (BAC), sulfamethazine (SMZ), and their combination, aiming to elucidate their contributions to antibiotic resistance. Overall, 10 μg/L BAC exhibited a stronger induction potential for multiple antibiotic resistance genes (ARGs) relative to a similar level of SMZ. Specifically, tetracycline resistance genes were readily induced, regardless of exposure to BAC, SMZ, or their combination. BAC exhibited a more pronounced induction of ARGs than SMZ and showed a stronger potential to stimulate multidrug resistance. SMZ and BAC induced distinct virulence factors. Bacteria increased pathogenicity primarily through biofilm formation and enhanced community sensing under SMZ exposure, whereas iron acquisition and the production of reactive oxygen species appeared to be the main mechanisms by which bacteria evaded host defenses under BAC exposure. A greater number of ARGs demonstrated a significant positive correlation with virulence factors following BAC exposure compared to both the SMZ exposure group and the co-exposure group, which further confirmed the strong ability of BAC to induce multidrug resistance. In summary, owing to the typically unregulated and low-dose use of disinfectants in daily life and their pseudo-persistence in the environment, their potential to induce resistance may exceed that of antibiotics. Therefore, increased attention and preventive measures are required to address their resistance-inducing effects.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Siquan Wang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yuxuan Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | | | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
13
|
Brito J, Frade-González C, Almenglo F, González-Cortés JJ, Valle A, Durán-Ruiz MC, Ramírez M. Anoxic desulfurization of biogas rich in hydrogen sulfide through feedback control using biotrickling filters: Operational limits and multi-omics analysis. BIORESOURCE TECHNOLOGY 2025; 428:132439. [PMID: 40127846 DOI: 10.1016/j.biortech.2025.132439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Biodesulfurization is crucial for sustainable biogas purification from hydrogen sulfide (H2S). This study investigates the operational limits of anoxic biotrickling filters (BTFs) for treating biogas with high H2S concentrations (up to 20,000 ppmv) using nitrite, along with simulated interruptions in H2S supply. The BTF achieved a maximum elimination capacity of 312 g S-H2S m-3 h-1 with an H2S removal efficiency of 98 % at an empty bed residence time of 284 s. A proportional-integral-derivative (PID) feedback control system was successfully employed to maintain an H2S outlet concentration close to the requisite setpoint (100 and 500 ppmv) by adjusting the nitrite flow rate, thereby minimizing its accumulation. Continuous nitrite feeding after interruptions in H2S supply was essential to avoid H2S release due to sulfate-reducing bacteria. Multi-omics analyses, combining metagenomics and proteomics, revealed Sulfurimonas as the dominant sulfur-oxidizing bacteria, which downregulates most enzyme genes involved in nitrogen and sulfur metabolism in response to substrate starvation. These findings underscore the resilience of BTFs under extreme conditions and the value of multi-omics approaches in understanding microbial population dynamics, positioning BTFs as a robust solution for large-scale biogas purification.
Collapse
Affiliation(s)
- J Brito
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Puerto Real 11510 Cadiz, Spain
| | - C Frade-González
- Condensed Matter Physics Department, Faculty of Sciences, University of Cadiz, Puerto Real 11510 Cadiz, Spain
| | - F Almenglo
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Puerto Real 11510 Cadiz, Spain; Institute of Viticulture and Agri-Food Research (IVAGRO)-International Campus of Excellence (ceiA3), University of Cadiz, Puerto Real 11510 Cadiz, Spain
| | - J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Puerto Real 11510 Cadiz, Spain; Institute of Viticulture and Agri-Food Research (IVAGRO)-International Campus of Excellence (ceiA3), University of Cadiz, Puerto Real 11510 Cadiz, Spain.
| | - A Valle
- Institute of Viticulture and Agri-Food Research (IVAGRO)-International Campus of Excellence (ceiA3), University of Cadiz, Puerto Real 11510 Cadiz, Spain; Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Faculty of Sciences, University of Cadiz 11510 Puerto Real, Cadiz, Spain
| | - M C Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Faculty of Sciences, University of Cadiz 11510 Puerto Real, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz 11009 Cadiz, Spain
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Puerto Real 11510 Cadiz, Spain; Institute of Viticulture and Agri-Food Research (IVAGRO)-International Campus of Excellence (ceiA3), University of Cadiz, Puerto Real 11510 Cadiz, Spain
| |
Collapse
|
14
|
Jiang T, Ren J, Li D, Luo Y, Huang Y, Gao T, Yang J, Yu J, Liu L, Yuan H. Pseudomonas syringae exacerbates apple replant disease caused by Fusarium. Microbiol Res 2025; 296:128124. [PMID: 40054134 DOI: 10.1016/j.micres.2025.128124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Apple replant disease (ARD) causes significant economic losses globally, including in China. Analyzing the causes of this replant disease from the perspective of rhizosphere microecology is therefore essential. In this study, we examined rhizosphere soils from apple trees subjected to continuous cropping. The mechanisms underlying ARD were elucidated through high-throughput sequencing of the soil microbiome, co-occurrence network analysis using NetShift, and correlation analyses. Core bacterial microbes were isolated, and their roles in altering the microecological environment were verified through reinoculation experiments. The results indicated that the disease indices for apple seedlings cultivated increased in continuously cropped soils. Bacterial diversity decreased in continuously cropped apple orchards for 10 years (R10) and 15 years (R15), but the relative abundance of Pseudomonas increased. In contrast, fungal diversity increased, with the relative abundance of Fusarium also increasing. As a dominant genus, Pseudomonas exhibited significant network variation after 10 years of consecutive cultivation, suggesting that this microorganism may play a key role in the occurrence of ARD. Moreover, the correlation analysis revealed, for the first time, that Pseudomonas is negatively correlated with bacterial diversity but positively correlated with the relative abundance of Fusarium, indicating a close relationship between Pseudomonas and Fusarium in continuously cropped soil. Four key Pseudomonas amplicon sequence variants (ASVs) strains were isolated from the continuously cropped rhizosphere soil of apple trees, and reinoculation experiments verified that introducing Pseudomonas exacerbated the occurrence of replant diseases in both strawberry and apple, with significantly higher disease indices compared to single Fusarium inoculation. The findings of this study provide new and timely insights into the mechanism underlying the occurrence of ARD.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxi Ren
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Luo
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiayi Yu
- Beijing Siliang Technology Limited Company, Beijing 100193, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Zhang X, Wang Y, Zhang M, Liu B, Li X, Zhao J, Qiao W, Liu Y, Liu Y, Chen L. Association between fat-soluble vitamins in breast milk and neonatal gut microbiome in Tibetan mother-infant dyads during the first month postnatal. Food Res Int 2025; 212:116350. [PMID: 40382082 DOI: 10.1016/j.foodres.2025.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
The Tibetan Plateau is a high-altitude environment characterized by hypoxic conditions, strong ultraviolet rays, and significant temperature variations that affect the well-being of local residents, including mother-infant dyads. Adaptive evolution through lifestyle and dietary patterns plays an important role in nutrition during the maternal lactation period, which offers unique merits for investigation at the intersection of environmental and nutritional fields. Specifically, changes in the nutrient composition of human milk among Tibetan lactating mothers and their associated consequences for infants provide insight into early nutrition research and infant food production. In this study, the concentrations of vitamins A, D, E, and β-carotene in the human milk of Tibetan mothers, as well as the fecal microbiome profiles of their infants, were analyzed within the first month postnatal. The results showed that the fat-soluble vitamins in Tibetan human milk were at satisfactory levels, particularly during the colostrum stage, which may be attributed to the advantages of their dietary pattern and dwelling environment. Dynamic changes in the gut microbiota composition of Tibetan infants were observed, with the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria being relatively abundant. The abundance of Bifidobacterium increased as infants aged within the first month postnatal. Correlations were found between the fat-soluble vitamin composition in human milk and the characteristics of the infant gut microbiota, including alpha (α)-diversity indices and microbial abundances. These findings will help enhance the understanding of early nutrition under harsh natural conditions and will guide relevant innovations and improvements in the maternal and infant food industry.
Collapse
Affiliation(s)
- Xiaomei Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Bin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xianping Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
16
|
Hu H, Wang C, Tang X, Wang Y, Jian X, Liu S, Zhang X. Molecular-level insights into dissolved organic matter during Ulva prolifera degradation and its regulation on the environmental behaviour of the organic pollutant tributyl phosphate. WATER RESEARCH 2025; 279:123436. [PMID: 40068283 DOI: 10.1016/j.watres.2025.123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
Macroalgal blooms have frequently occurred in coastal waters, and a large amount of algogenic dissolved organic matter (DOM) is input into seawater as macroalgae degraded. It undergoes continuous changes under microbial degradation; however, the impact of microbially-modified marine DOM on the environmental behaviour of organic pollutants remains underexplored. This study focused on Ulva prolifera, the dominant species in green tides, and investigated the molecular diversity of DOM from U. prolifera degradation over a 100-day period and the role of DOM at different time points in the adsorption of organophosphate flame retardants onto goethite. Our findings revealed that dissolved organic carbon (DOC) in seawater increased sharply during the first two weeks, followed by a rapid decline, and eventually reached a stable level within 100 days. Multi-spectrum analysis and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), along with the results of spectral analysis, indicated an increase in the humification and aromaticity of DOM, accompanied by the transformation of protein components, suggesting a decrease in DOM bioavailability. Microbial abundance aligned with DOC trends, and 16S rRNA results revealed significant shifts in the microbial community during DOM transformation. A strong correlation between fluorescent DOM groups and microbial diversity was observed, and co-occurrence network analysis further identified Alteromonas and Vibrio as major contributors to DOM chemical diversity. The introduction of U. prolifera DOM reduced available surface sites on goethite, inhibiting the adsorption rate of tributyl phosphate (TnBP) in batch sorption experiments. However, this competitive sorption effect was mitigated by co-sorption, as DOM could bind with TnBP, explaining the observed increase in adsorption capacity. Redundancy analysis and verification tests suggested protein-like DOM components play a crucial role in sorption, and microbial transformation of DOM-proteins could diminish this effect. These findings underscore the importance of macroalgal DOM in influencing the environmental behaviour of organic pollutants and could supply a supplement about the ecological effect about macroalgal blooms.
Collapse
Affiliation(s)
- Hanwen Hu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Chengmin Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; MoE Key Laboratory of Evolution & Marine Biodiversity, Qingdao, 266003, PR China
| | - Ying Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Fushun Road 22, Qingdao, Shandong Province, 266033, PR China
| | - Suyang Liu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
17
|
Wang J, Li X, Jin H, Cui Y, Jiang L, Huang S, Shi K, Yan J. Enhanced resilience to oxygen exposure and toxicity of chlorinated solvents in immobilized Dehalococcoides mccartyi. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137769. [PMID: 40022933 DOI: 10.1016/j.jhazmat.2025.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Members of Dehalococcoides mccartyi (Dhc) are strictly anaerobic and play crucial roles in the restoration of many industrial sites impacted by chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). In situ bioremediation with Dhc involves intricate procedures intended to minimize oxygen intrusion, and achieving optimal dechlorination performance in aquifers near the dense non-aqueous phase liquids source zone is challenging. Here, we respectively embedded Dhc strain 195 and the biomass of a Dhc-containing, PCE-dechlorinating consortium in poly(vinyl alcohol)-alginate hydrogel beads. The ethene-forming potential was well-retained in immobilized Dhc following a prolonged oxygen exposure spanning from 12 hours to 7 days, with dechlorination rates ranging from 54.6 ± 4.2-101.9 ± 13.5 µM Cl- released day-1. In contrast, suspended strain 195 and the Dhc-containing biomass exposed to oxygen for a shorter duration were completely deactivated, or suffered a substantial reduction in dechlorination potential. Cell immobilization also significantly improved the ability of Dhc to tolerate the toxic effects of chlorinated solvents. When exposed to 300 mg L-1 TCE or free-phase PCE, an immobilized Dhc inoculum enabled more rapid recovery of dechlorination activity with shorter lag phases and up to 2.1-fold higher dechlorination rate compared to the use of their suspended counterparts. Our results demonstrate the effectiveness of cell immobilization for shielding Dhc from various environmental stresses (e.g., oxygen exposure).
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, Liaoning 110044, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yiru Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Lisi Jiang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| |
Collapse
|
18
|
Ma G, Chai Y, Tye KD, Xie H, Meng L, Tang X, Luo H, Xiao X. Predictive analysis of the impact of probiotic administration during pregnancy on the functional pathways of the gut microbiome in healthy infants based on 16S rRNA gene sequencing. Gene 2025; 952:149414. [PMID: 40086705 DOI: 10.1016/j.gene.2025.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Maternal probiotic supplementation altered the microbial composition in infants' gut, yet its effect on the functional pathways of the microbiota remains unclear. This study aimed to explore the potential impact of maternal probiotic intake on the predicted functional pathways of the gut microbiome in healthy infants. A total of 24 pregnant women were randomly allocated to either the control group or the probiotic group. The women in the probiotic group began receiving probiotics at the 32nd week of pregnancy and continued until delivery. Meconium and fecal samples were collected from infants at birth, as well as on the 3rd day, 14th day, and 6th month after birth. The functional characteristics of the microbial community were inferred using 16S rRNA gene analysis, processed with PICRUSt software, and cross-referenced with the KEGG database. The probiotic group had lower levels of Actinobacteria and Bacteroidetes, while Bifidobacterium growth was notably increased in the infant gut microbiota. At day 0 postpartum, the control group exhibited higher levels of Prevotellaceae compared to the probiotic group (P < 0.05). However, no significant differences were found by day 3. At day 14, the control group exhibited higher levels of Bacteroidaceae and Bacteroides, while Bacteroides_thetaiotaomicron was more abundant in the probiotic group (P < 0.05). By 6 months, the control group showed a higher abundance of Firmicutes (P < 0.05). On day 0 postpartum, maternal probiotic consumption increased the Environmental information processing pathway at KEGG Level 1, and increased Energy metabolism, Metabolism of cofactors and vitamins, and Cell growth and death pathways at KEGG Level 2. It also increased Histidine metabolism, One carbon pool by folate, and Folate biosynthesis at KEGG Level 3. No changes were observed in the infant gut microbiota's functional metabolic pathways at 3 days postpartum. At 14 days postpartum, probiotics reduced Lipid metabolism pathways at KEGG Level 2 and the Citrate cycle at KEGG Level 3. At 6 months postpartum, probiotics decreased Carbohydrate metabolism pathways at KEGG Level 2. Our findings suggest that probiotic supplementation during pregnancy affects the functional metabolism of the gut microbiota in healthy infants. This, in turn, may influence the development of the infant's immune system, metabolism, and overall health by modifying the gut microbial environment.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yang Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haishan Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lulu Meng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
19
|
Povedano-Priego C, Jroundi F, Peula-Ruiz E, Lopez-Tercero L, Fernández AM, Alonso U, Merroun ML. Indigenous bacterial adaptation and survival: Exploring the shifts in highly compacted bentonite over a 5-year long-term study for nuclear repository purposes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137526. [PMID: 39965332 DOI: 10.1016/j.jhazmat.2025.137526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Compacted bentonite is one of the most promising engineered barrier materials used in Deep Geological Repositories (DGR) of high-level radioactive waste encapsulated in metal canisters. Determining bentonite compaction density threshold for bacterial presence and activity has been a long-standing objective, due to their implications for canisters' durability and, therefore, in the safety performance of DGR. This study provided new insights into the effect of dry density (1.5 and 1.7 g cm⁻³), acetate amendment, and long-term incubation (5 years) on the bentonite mineralogy as well as their bacterial community distribution and survival. Through Illumina sequencing, we demonstrated that higher dry density reduces the bacterial diversity with spore-forming bacteria such as Nocardioides, and Promicromonospora being predominant. Interestingly, Paracoccus and Pseudomonas were enriched in acetate-treated samples, suggesting the utilization of this carbon source and, consequently, supporting their viability and survival. In addition, spore-forming (e.g., Bacillus) and desiccation-resistant (e.g., Arthrobacter) microorganisms were isolated. X-ray diffraction and scanning electron microscopy analyses showed the stability of bentonite while indicating the probable formation of iron sulfides. These findings confirm the influence of bentonite compaction degree and long-term incubation on microbial viability and activity, highlighting their potential impact on the integrity and safety of future DGR.
Collapse
Affiliation(s)
| | - Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Esther Peula-Ruiz
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Lidia Lopez-Tercero
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Ana María Fernández
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| | - Ursula Alonso
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
20
|
Xu HS, Chen Y, Lin YJ, Eldefrawy F, Kramer NE, Siracusa JS, Kong F, Guo TL. Nanocellulose dysregulated glucose homeostasis in female mice on a Western diet: The role of gut microbiome. Life Sci 2025; 370:123567. [PMID: 40113076 DOI: 10.1016/j.lfs.2025.123567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
There is currently increased interest in nanocellulose as a food emulsifier and dietary supplement. It was hypothesized that nanocellulose could modulate behaviors and glucose homeostasis in female mice using mechanisms of altered gut microbiome and immune modulation. An initial experiment was conducted with the objective of examining whether three common types of nanocellulose affected the gut microbiome of female C57BL/6 mice on a Western diet. Cellulose nanofibrils (CNF), TEMPO-CNF and cellulose nanocrystals were administered at the physiologically relevant dose of 30 mg/kg/day for 30 days by gavage, with cellulose and water groups as the positive and negative controls, respectively. Findings suggested that CNF had the strongest effect on the gut microbiome. CNF was therefore selected for a chronic 6-month study on the gut microbiome, immune system and behaviors in female NOD mice, a model for type 1 diabetes. Gut microbiome analysis suggested that there might be some beneficial changes following subchronic exposure (e.g., at the two-month timepoint), however, this effect was no longer seen after chronic consumption (e.g., at the six-month timepoint). CNF treatment also altered the immune homeostasis, including decreases in the splenic Mac-3+ population and serum level of proinflammatory chemokine LIX. Additionally, CNF consumption decreased diabetic incidences but had no effect on the depressive-like behavior and grip strength. However, further analysis, e.g., the insulin tolerance test, indicated that CNF-treated NOD mice might exhibit signs of insulin resistance. Taken together, nanocellulose dysregulated glucose homeostasis in female mice on a Western diet involving mechanisms related to alteration of the gut microbiome.
Collapse
Affiliation(s)
| | - Yingjia Chen
- Department of Veterinary Biomedical Sciences, USA
| | - Yu-Ju Lin
- Department of Pharmaceutical and Biomedical Sciences, USA
| | | | - Naomi E Kramer
- Department of Pharmaceutical and Biomedical Sciences, USA
| | | | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, USA.
| |
Collapse
|
21
|
Islam T, Xu B, Bian Z. Anti-inflammatory and gut microbiota regulatory effects of ultrasonic degraded polysaccharides from Auricularia auricula-judae in DSS-induced colitis mice. ULTRASONICS SONOCHEMISTRY 2025; 117:107339. [PMID: 40215791 PMCID: PMC12008650 DOI: 10.1016/j.ultsonch.2025.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Auricularia auricula-judae is a widely cultivated mushroom species known for its edible and medicinal properties. Polysaccharides have been the focus of research because of their potential bioactivities; nonetheless, the structural complexity and molecular weight have hindered a complete understanding of their bioactivities. In this study, AP-1 polysaccharide was isolated from A. auricula-judae and subjected to ultrasonic degradation at different time points to improve their anti-inflammatory effects. The results showed that when AP-1 was degraded for 9 min (AP-2) and 20 min (AP-3), the NO inhibition rate was significantly increased in LPS-stimulated RAW 264.7 cells. The structural and physiochemical properties of native and degraded polysaccharides were analyzed, and it was found that the degradation process significantly reduced molecular weight and altered the particle size, viscosity, crystallinity, and helical structure. Furthermore, native and degraded polysaccharides (AP-1, AP-2, and AP-3) anti-inflammatory effects were investigated in the DSS-induced colitis mouse model. Degraded polysaccharides resulted in significant improvements, including recovery from weight loss, reduced disease activity, shortened colon length, and decreased inflammation, while AP-3 showed the most promising effects. Gut microbiota 16S rRNA sequencing revealed that AP-3 potentially increases healthy gut microbiota and inhibits unhealthy gut microbiota. Overall, this study demonstrates that ultrasonic degradation could be a great technique to modify polysaccharides' MW and physiochemical properties to improve anti-inflammatory and gut microbiota regulatory effects.
Collapse
Affiliation(s)
- Tahidul Islam
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
22
|
Kerlikowsky F, Müller M, Greupner T, Amend L, Strowig T, Hahn A. Distinct Microbial Taxa Are Associated with LDL-Cholesterol Reduction after 12 Weeks of Lactobacillus plantarum Intake in Mild Hypercholesterolemia: Results of a Randomized Controlled Study. Probiotics Antimicrob Proteins 2025; 17:1086-1095. [PMID: 38015360 PMCID: PMC12055864 DOI: 10.1007/s12602-023-10191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Probiotic microbes such as Lactobacillus may reduce serum total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol. The objective of this study was to assess the effect of Lactobacillus plantarum strains CECT7527, CECT7528, and CECT7529 (LP) on the serum lipids, cardiovascular parameters, and fecal gut microbiota composition in patients with mild hypercholesterolemia. A randomized, double-blinded, placebo-controlled clinical trial with 86 healthy adult participants with untreated elevated LDL cholesterol ≥ 160 mg/dl was conducted. Participants were randomly allocated to either placebo or LP (1.2 × 109 CFU/d) for 12 weeks. LDL, HDL, TC, and triglycerides (TG), cardiovascular parameters (blood pressure, arterial stiffness), and fecal gut microbiota composition (16S rRNA gene sequencing) were assessed at baseline and after 12 weeks. Both groups were comparable regarding age, sex, and LDL-C at baseline. LDL-C decreased (mean decrease - 6.6 mg/dl ± - 14.0 mg/dl, Ptime*group = 0.006) in the LP group but not in the placebo group. No effects were observed on HDL, TG, or cardiovascular parameters or overall gut microbiota composition. Responders to LP intervention (> 5% LDL-C reduction) were characterized by higher BMI, pronounced TC reduction, higher abundance of fecal Roseburia, and lower abundance of Oscillibacter. In conclusion, 12 weeks of L. plantarum intake moderately reduced LDL-C and TC as compared to placebo. LDL-C-lowering efficacy of L. plantarum strains may potentially be dependent on individual difference in the gut microbiota. Trial registration: DRKS00020384, dated 07/01/2020.
Collapse
Affiliation(s)
- Felix Kerlikowsky
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany.
| | - Mattea Müller
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany
| | - Theresa Greupner
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Brunswick, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School, Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Brunswick, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School, Hannover, Germany
- Center for Individualized Infection Medicine, Hannover, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167, Hannover, Germany
| |
Collapse
|
23
|
Alias A, Amin KAM, Heng LS, Nor SMM, Omar WBW, Ibrahim YS, Heděnec P. Microplastic contamination alters microbial community in commercially important bivalves, Geloina expansa, Anadara cornea, and Meretrix meretrix from tropical waters. MARINE POLLUTION BULLETIN 2025; 215:117931. [PMID: 40187200 DOI: 10.1016/j.marpolbul.2025.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Microplastics pose serious risks for aquatic organisms such as fishes, shrimps and bivalves. Bivalves are particularly vulnerable due to their filter-feeding strategy and sedentary life. While the microplastic bioaccumulation in bivalves has been well documented, the effects of microplastics accumulation on bivalve's gut microbiome in tropical sea waters remains poorly understood. To fill this knowledge gap, a 10-day feeding experiment with 13 mg L-1 polyethylene terephthalate particles was conducted using three commercially important bivalve species: Anadara cornea, Geloina expansa, and Meretrix meretrix taken from two contrasting locations (brackish water in protected Setiu Wetlands compared to open water in Kertih River) to investigate the effect of microplastic pollution on diversity and composition of gut prokaryotes using 16S rRNA amplicon sequencing. The results showed that alpha diversity of gut prokaryotes differed among species after microplastic exposure. For example, microplastic exposure increased operational taxonomic units (OTUs) richness of gut prokaryotes in G. expansa compared to A. cornea and M. meretrix during 10-day treatment. Community structure of prokaryotic community in bivalves gut showed strong divergence between Setiu Wetlands and Kertih River. Significant effects of microplastic exposure on relative abundance of prokaryotic phyla were also observed. Gut microbiome of G. expansa showed increase of relative abundance of Archaea and Firmicutes after microplastic exposure. The results suggest that microplastic treatment promotes dominance of certain bacterial species, likely those with plastic-metabolizing capabilities, potentially boosting bivalve resilience to microplastic contamination.
Collapse
Affiliation(s)
- Amirah Alias
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khairul Azmi Muhamad Amin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Loy See Heng
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Siti Mariam Mohamad Nor
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wan Bayani Wan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
24
|
Bandekar M, Khandeparker R, More KD, Seleyi SC, Gauthankar M, Amberkar U, Kekäläinen J, Akkanen J. Microbial Responses to Micronutrient Amendments in Oxygenated and Deoxygenated Waters of the Arabian Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70072. [PMID: 40317988 PMCID: PMC12046384 DOI: 10.1111/1758-2229.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 05/07/2025]
Abstract
Metalloenzyme cofactors and oxygen conditions are crucial for microbial metabolism, yet their combined effects on microbial ecosystems remain unexplored. This study explores the impact of micronutrient amendments (Zn, Fe, Co and their combinations) on the microbial community composition in oxygenated (73 m) and deoxygenated (200 m) waters of the Arabian Sea. Through controlled microcosm experiment and 16S rRNA amplicon sequencing, we observed that micronutrients significantly alter nutrient concentrations and microbial dynamics. At 73 m, micronutrient treatments reduced nitrate, nitrite and ammonia levels, whereas at 200 m, they increased nitrate and silicate levels. Total bacterial counts (TBCs) were higher in all treatments at both depths, with Fe showing the highest counts. Alpha diversity indicated that Fe-amended flask increased microbial diversity the most at 73 m, while mixed treatments had a pronounced effect at 200 m. Taxonomic analysis revealed significant genus-level variations in both bacteria and archaea. One-way analysis of variance (ANOVA) confirmed micronutrient impacts on nutrients and TBC. Canonical correspondence analysis (CCA) and non-metric multidimensional scaling (NMDS) revealed distinct clustering based on oxygen conditions. These results confirm our hypothesis that micronutrient amendments in varying oxygen levels distinctly alter microbial community composition and nutrient cycling in marine environments.
Collapse
Affiliation(s)
- Mandar Bandekar
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Biological Oceanography DivisionCSIR‐National Institute of OceanographyDona PaulaIndia
| | - Rakhee Khandeparker
- Biological Oceanography DivisionCSIR‐National Institute of OceanographyDona PaulaIndia
| | - Kuldeep D. More
- Department of Biological SciencesState University of New York at BuffaloAmherstNew YorkUSA
| | - Seyieleno C. Seleyi
- Marine Biotechnology DivisionNational Institute of Ocean Technology, Ministry of Earth SciencesChennaiIndia
| | - Mukund Gauthankar
- Biological Oceanography DivisionCSIR‐National Institute of OceanographyDona PaulaIndia
- Départment des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiQuébecCanada
| | - Ujwala Amberkar
- Biological Oceanography DivisionCSIR‐National Institute of OceanographyDona PaulaIndia
- Environmental Impact Assessment DivisionNational Centre for Polar and Ocean ResearchVasco‐da‐GamaIndia
| | - Jukka Kekäläinen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Jarkko Akkanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
25
|
Nemchinov LG, Irish BM, Grinstead S, Postnikova OA. Alfalfa transcriptomic responses to the field pathobiome. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:492-503. [PMID: 40232865 DOI: 10.1111/plb.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 04/17/2025]
Abstract
The pathobiome is a comprehensive biotic environment that includes a community of all disease-causing organisms within the plant, defining their mutual interactions and the resultant effects on plant health. The concept and understanding of alfalfa pathobiome and its impact on host fitness in natural ecosystems remain largely unexplored. We have previously reported on the diverse composition of the alfalfa pathobiome in the field production environment. In this study, using modern transcriptomics tools combined with computational analyses, we applied a novel 'field host genomics' approach to survey gene expression changes in visually healthy and diseased plants collected from commercial alfalfa fields. As a result of this work, genes and pathways involved in alfalfa responses to a diverse field pathobiome were identified and the genetic basis of the crop's resistance to multi-pathogenic infections was proposed. In addition to offering genetic insights into host resistance to multi-pathogenic infections in natural ecosystems, this strategy can facilitate identification of plants with tolerant genotypes adapted to field pathobiome, followed by their application in alfalfa breeding programs.
Collapse
Affiliation(s)
- L G Nemchinov
- USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| | - B M Irish
- USDA-ARS, Plant Germplasm Introduction and Testing Research Unit, Prosser, Washington, USA
| | - S Grinstead
- USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| | - O A Postnikova
- USDA-ARS, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
26
|
Wu J, Wang X, Fu Y, Yu Z, Meng F. Recruiting high-efficiency denitrifying consortia using Pseudomonas aeruginosa. WATER RESEARCH 2025; 277:123303. [PMID: 39983263 DOI: 10.1016/j.watres.2025.123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Synthesizing the microbial community with a high denitrifying capacity is the key for achieving efficient removal of nitrogen species in wastewater treatment plants. Here, we integrated the evolutionary top-down enrichment and bottom-up bioaugmentation to construct a high-efficiency Pseudomonas-recruited denitrifying consortium (PRDC). A PRDC with a high specific denitrification rate of 109.49 ± 10.58 mg N/(g MLVSS·h) was enriched after 181 days of microbiota construction with pre-inoculation of Pseudomonas strain onto carriers. The 16S rRNA gene sequencing analysis suggested that the pre-inoculated Pseudomonas was quickly washed out and replaced by dominant denitrifying genera, such as Halomonas and Thauera, under different hydraulic retention times (HRTs). The pre-inoculated Pseudomonas can facilitate PRDC by providing public goods, but compromising its nutrient requirements. The dominant community assembly processes switched from homogeneous selection to ecological drift and dispersal limitation under shortened HRT. Furthermore, a shortened HRT facilitated the colonization of new immigrants and intensified their competition with the pre-existing dominant denitrifiers. The PRDC carriers achieved a 1.65-fold enhancement in sludge denitrification and reduced the corresponding chemical oxygen demand consumption at a carrier filling ratio of 30%. Overall, our study developed a novel technique using Pseudomonas aeruginosa as a trigger to enrich high-efficiency denitrifying consortia for wastewater treatment.
Collapse
Affiliation(s)
- Jiajie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
27
|
Inokuchi T, Tomiyama K, Okuda T, Tsutsumi K, Yama K, Fujii Y, Ohara K, Chikazawa T, Kakizawa Y, Mukai Y. Phellodendron bark extract and berberine chloride suppress microbiome dysbiosis in a saliva-derived in vitro microcosm biofilm model. Arch Oral Biol 2025; 174:106231. [PMID: 40209653 DOI: 10.1016/j.archoralbio.2025.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/14/2025] [Accepted: 03/08/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVE Preventing oral microbiome dysbiosis is crucial for averting the onset and progression of periodontal diseases. Phellodendron bark extract (PBE) and its active component berberine exhibit antibacterial properties against periodontal pathogenic bacteria. Although they inhibit Porphyromonas gingivalis (P. gingivalis)-induced dysbiosis in vitro in multiple species of saliva-derived planktonic cultures, their effects on microcosm biofilm models remain unclear. In this study, we aimed to elucidate the dysbiosis-suppressive effects of PBE and berberine chloride (BC) on biofilm formation. DESIGN PBE or BC was added during the formation of in vitro microcosm biofilms containing saliva and P. gingivalis, which were anaerobically cultured for one week. Next-generation sequencing was performed to assess microbiota composition, while quantitative real-time PCR was used to measure bacterial concentrations. Additionally, the butyrate concentration in the culture supernatant was assessed as biofilm pathogenicity. RESULTS PBE and BC treatments reduced the relative abundance of periodontal pathogenic bacteria, including P. gingivalis, and significantly increased the relative abundance of the genus Streptococcus and nitrate-reducing bacteria, including the genera of Neisseria and Haemophilus. Moreover, the treatment groups exhibited significantly decreased butyrate concentrations. CONCLUSIONS Our findings suggest that PBE and BC could suppress dysbiosis triggered by P. gingivalis in microcosm biofilms in vitro by decreasing the relative abundance and amount of periodontal pathogenic bacteria and enhancing those of nitrate-reducing bacteria that have a high relative abundance in orally healthy individuals. In summary, PBE and BC may contribute to the prevention of periodontal disease through their dysbiosis-suppressive and anti-inflammatory effects.
Collapse
Affiliation(s)
- Takuya Inokuchi
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kiyoshi Tomiyama
- Department of Restorative Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Takuma Okuda
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan.
| | - Kota Tsutsumi
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kazuma Yama
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yuto Fujii
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kanta Ohara
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Takashi Chikazawa
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yasushi Kakizawa
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yoshiharu Mukai
- Department of Restorative Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| |
Collapse
|
28
|
Fabiano GA, Oliveira RPS, Rodrigues S, Santos BN, Venema K, Antunes AEC. Evidence of synbiotic potential of oat beverage enriched with inulin and fermented by L. rhamnosus LR B in a dynamic in vitro model of human colon. Food Res Int 2025; 211:116489. [PMID: 40356187 DOI: 10.1016/j.foodres.2025.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Fermented dairy products are known for their efficiency in delivering and protecting probiotic microorganisms. However, there is a growing demand for diversification of the market with plant-based products. The aim of this study was to develop an oat beverage enriched with inulin and fermented with Lacticaseibacillus rhamnosus LR B and evaluate its synbiotic effects in vitro. For this purpose, the validated dynamic colon model (the TNO Intestinal Model TIM-2) was used with focus on the composition of the gut microbiota and its production of metabolites to evaluate the functionality. The fermentation kinetics, sugars, organic acids and inulin dosage in the fermented oat beverage were also evaluated. The acidification rate was 16.91 10-3 pH units.min-1, reaching the final pH of 4.5 in 2.38 ± 0.05 h. Dosages of sucrose, glucose and lactic acid were 23.35 ± 0.45 g.L-1, 21.37 ± 0.77 g.L-1, 0.94 ± 0.05 g.L-1, respectively. After simulated in vitro digestion, the inulin concentration was partially preserved with 20.11 ± 0.21 maltose equivalent (μg.mL-1). The fermented and pre-digested oat beverage (with 7.71 ± 0.44 log CFU.mL-1) was fed into TIM-2, which was previously inoculated with feces from healthy adults. The analysis identified nine bacterial taxa that were significantly modulated compared to the standard ileal effluent medium (SIEM) control. An increase in relative abundance of Lactobacillus and Catenibacterium, and reduction in Citrobacter, Escherichia-Shigella, and Klebsiella was observed. In addition, the cumulative means of short-chain fatty acids (SCFAs) increased, especially for acetate and butyrate. These findings suggest that the developed oat beverage can positively influence the gut microbiota and its activity, highlighting possible health benefits.
Collapse
Affiliation(s)
- G A Fabiano
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R P S Oliveira
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Rodrigues
- Department of Food Engineering, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - B N Santos
- Department of Chemical Engineering, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - K Venema
- Maastricht University, Centre for Healthy Eating & Food Innovation (HEFI), Venlo, the Netherlands
| | - A E C Antunes
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
29
|
Zhao X, Liu P, Xia Z, Cai M, Tang Q, Yang G, Gao Q, Yi S. Integrated gut microbiota and multi-omics analysis revealed the growth differences of female giant freshwater prawn (Macrobrachium rosenbergii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101432. [PMID: 39892364 DOI: 10.1016/j.cbd.2025.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Macrobrachium rosenbergii (giant freshwater prawn; GFP) holds considerable importance in aquaculture due to its high market demand and economic significance. Female GFP growth varies significantly, however, the processes responsible for these growth disparities remain unknown. In this study, intestinal and hemolymph samples of large (FL), medium (FM), and small (FS) female GFPs were collected to investigate the molecular mechanism of female GFP growth. Through the utilization of 16S rRNA sequencing and liquid chromatography-mass spectrometry metabolomics, significant intestinal flora and metabolites linked to the growth performance of female GFPs were identified. The dominant phyla of the three groups were the same, namely Firmicutes and Proteobacteria. Among groups, small females exhibited the lowest abundance of Proteobacteria (27.26 %) and the highest abundance of Firmicutes (70.10 %). The most abundant genus in each group was Lactococcus. Liquid chromatography-mass spectrometry identified 115 annotated differential metabolites, and essential metabolites related to female GFP growth performance were screened. The concentration of serum metabolites in the larger females exhibited a statistically significant variance compared to that of the smaller females. Through association analysis, we identified key genes, metabolites, and gut microbiota that influence the growth of female GFPs. Likewise, we used multi-omics techniques to establish two relationship models ("gut microbiota-GFP phenotype-metabolite", "gut microbiota-GFP phenotype-transcript"), and three important network association models ("DN5520_c0_g1-CW1-Bacteroides", "DN537746_c0_g1-BW-Roseburia" and "Picolinic acid-phenotype-Roseburia") were further developed. The present study provides novel insights into the mechanisms underlying the variability in individual growth among female GFPs. Our findings offer valuable information for future investigations exploring the correlation between gut flora and host organisms in aquatic environments.
Collapse
Affiliation(s)
- Xiuxin Zhao
- Huzhou University, College of Life Sciences, Key Laboratory of Aquatic Biological Resources Conservation and Development Technology of Zhejiang Province/Chines Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou 313000, Zhejiang, China
| | - Peimin Liu
- Huzhou University, College of Life Sciences, Key Laboratory of Aquatic Biological Resources Conservation and Development Technology of Zhejiang Province/Chines Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou 313000, Zhejiang, China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, Jiangsu, China
| | - Miuying Cai
- Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, Jiangsu, China
| | - Qiongying Tang
- Huzhou University, College of Life Sciences, Key Laboratory of Aquatic Biological Resources Conservation and Development Technology of Zhejiang Province/Chines Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou 313000, Zhejiang, China
| | - Guoliang Yang
- Huzhou University, College of Life Sciences, Key Laboratory of Aquatic Biological Resources Conservation and Development Technology of Zhejiang Province/Chines Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou 313000, Zhejiang, China; Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, Jiangsu, China
| | - Quanxin Gao
- Huzhou University, College of Life Sciences, Key Laboratory of Aquatic Biological Resources Conservation and Development Technology of Zhejiang Province/Chines Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou 313000, Zhejiang, China; Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, Jiangsu, China.
| | - Shaokui Yi
- Huzhou University, College of Life Sciences, Key Laboratory of Aquatic Biological Resources Conservation and Development Technology of Zhejiang Province/Chines Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Breeding and Nutrition, Huzhou 313000, Zhejiang, China; Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, Jiangsu, China.
| |
Collapse
|
30
|
Seo B, Jeon K, Kim WK, Jang YJ, Cha KH, Ko G. Strain-Specific Anti-Inflammatory Effects of Faecalibacterium prausnitzii Strain KBL1027 in Koreans. Probiotics Antimicrob Proteins 2025; 17:1711-1724. [PMID: 38411865 DOI: 10.1007/s12602-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Faecalibacterium prausnitzii is one of the most dominant commensal bacteria in the human gut, and certain anti-inflammatory functions have been attributed to a single microbial anti-inflammatory molecule (MAM). Simultaneously, substantial diversity among F. prausnitzii strains is acknowledged, emphasizing the need for strain-level functional studies aimed at developing innovative probiotics. Here, two distinct F. prausnitzii strains, KBL1026 and KBL1027, were isolated from Korean donors, exhibiting notable differences in the relative abundance of F. prausnitzii. Both strains were identified as the core Faecalibacterium amplicon sequence variant (ASV) within the healthy Korean cohort, and their MAM sequences showed a high similarity of 98.6%. However, when a single strain was introduced to mice with dextran sulfate sodium (DSS)-induced colitis, KBL1027 showed the most significant ameliorative effects, including alleviation of colonic inflammation and restoration of gut microbial dysbiosis. Moreover, the supernatant from KBL1027 elevated the secretion of IL-10 cytokine more than that of KBL1026 in mouse bone marrow-derived macrophage (BMDM) cells, suggesting that the strain-specific, anti-inflammatory efficacy of KBL1027 might involve effector compounds other than MAM. Through analysis of the Faecalibacterium pan-genome and comparative genomics, strain-specific functions related to extracellular polysaccharide biosynthesis were identified in KBL1027, which could contribute to the observed morphological disparities. Collectively, our findings highlight the strain-specific, anti-inflammatory functions of F. prausnitzii, even within the same core ASV, emphasizing the influence of their human origin.
Collapse
Affiliation(s)
- Boram Seo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Personalized Diet Research Group, Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Kyungchan Jeon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - You Jin Jang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
- N-Bio, Seoul National University, Seoul, Republic of Korea.
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
- KoBioLabs Inc., Seoul, Republic of Korea.
| |
Collapse
|
31
|
Liao B, Chi X, Chen J, Liu W, Wu Y, Tang T, Wang X, Ge S, Kong X. Characterization of the vaginal microbiota in women of childbearing age with different Nugent scores. Microb Pathog 2025; 203:107480. [PMID: 40089193 DOI: 10.1016/j.micpath.2025.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The present study investigated the richness and diversity of vaginal microbiota among a cohort of 60 childbearing-age women. The samples were classified into three groups: healthy control (HC), bacterial vaginosis (BV), and BV intermediate (BVI). The number of Operational Taxonomic Units (OTUs) per sample ranged from 50 to 212, with three groups having 469 (HC), 482 (BVI), and 456 (BV) OTUs. Alpha diversity analysis (p < 0.05) showed that HC had lower diversity than the BV and BVI groups, whereas richness indices did not differ significantly across the groups. Beta diversity analysis (p < 0.05) indicated significant differences in species composition between groups, and specific biomarker taxa were identified for each group. Compared to HC, the BVI and BV groups showed an increase in Actinobacteria and Bacteroidetes, and a relative decrease in Bacillota. Overall, the vaginal microbiota of healthy women of childbearing age was in a state of absolute predominance of Lactobacillus, dominated by Lactobacillus crispatus or Lactobacillus iners alone, or both equally, and coexisted with a wide range of bacteria. However, patients in BVI group, Lactobacillus is reduced, dominated by L. iners, with an increased proportion of anaerobic bacteria (e.g., Gardnerella). While BV patients have predominantly Gardnerella with commensal bacteria, such as Prevotella and Fannyhessea, which collectively contribute to the development of BV. This study's findings provide insight into the dynamics of vaginal microbiota in women of childbearing age.
Collapse
Affiliation(s)
- Binqiang Liao
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China.
| | - Xidi Chi
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Jialong Chen
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Wenying Liu
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Yunbin Wu
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Tiechen Tang
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Xianghui Wang
- Department of General Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Shaofeng Ge
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| | - Xiangsheng Kong
- Department of Clinical Laboratory, Nanping First Hospital Affiliated to Fujian Medical University, Nanping City, 353000, Fujian Province, China
| |
Collapse
|
32
|
Li HQ, Wang WL, Shen YJ, Su JQ. Mangrove plastisphere as a hotspot for high-risk antibiotic resistance genes and pathogens. ENVIRONMENTAL RESEARCH 2025; 274:121282. [PMID: 40043931 DOI: 10.1016/j.envres.2025.121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
Microplastics (MPs) are critical vectors for the dissemination of antibiotic resistance genes (ARGs); however, the prevalence and ecological risks of high-risk ARGs in mangrove ecosystems-globally vital yet understudied coastal habitats-remain poorly understood. To address this gap, this study investigated polyethylene, polystyrene, and polyvinyl chloride incubated in mangrove sediments for one month, focusing on high-risk ARGs, virulence gene (VGs), and pathogenic antibiotic-resistant bacteria within the mangrove plastisphere. High-throughput PCR and metagenomic analyses revealed that high-risk ARGs, VGs, and mobile genetic elements (MGEs) were significantly enriched on MPs compared to surrounding sediments. Pathogenic bacteria and MGEs were also more abundant in the plastisphere, highlighting its role as a hotspot for ARG dispersal. Metagenome-assembled genome analysis identified Pseudomonas and Bacillus as key hosts for ARGs, MGEs, and VGs, particularly multidrug resistance genes, integrase genes, and adherence factors. Notably, polystyrene harbored the highest abundance of pathogenic bacteria carrying ARGs, MGEs, and VGs, and mangrove root exudates were found to amplify horizontal gene transfer on MPs, uncovering a previously overlooked mechanism driving antibiotic resistance in coastal ecosystems. These findings not only elucidate how MPs accelerate the spread of ARGs, but also underscore the urgent need for targeted mitigation strategies to address the adverse impacts microplastic pollution on human, animal, and environmental health.
Collapse
Affiliation(s)
- Huan-Qin Li
- Xiamen Key Laboratory of Marine Biomedicine Resources, Xiamen Medical College, Xiamen, 361023, China; State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Wen-Lei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ying-Jia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Jian-Qiang Su
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
33
|
Zhang W, Wen L, Xin Z, Wang G, Lin H, Wang H, Wei B, Yan X, Wang W, Guo B. Research on the histopathology of Larimichthys crocea affected by white gill disease and analysis of its bacterial and viral community characteristics. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110287. [PMID: 40113151 DOI: 10.1016/j.fsi.2025.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
White gill disease (WGD) is one of the major diseases affecting Larimichthys crocea, although its etiology remains unclear. To investigate the causes of WGD, this study selected WGD-affected Larimichthys crocea (WG) and healthy Larimichthys crocea (NH) from multiple aquaculture regions for pathological analysis and analysis of bacterial and viral community characteristics. The results indicated severe tissue damage and significant inflammatory responses, as evidenced by clinical manifestations and electron microscopy. Two bacterial species, Photobacterium damselae and Vibrio campbellii, were isolated from all lesion tissues. Additionally, 16S full-length sequencing results showed that Photobacterium damselae and Vibrio campbellii dominated in the tissues of Larimichthys crocea, with a combined relative abundance of approximately 90 %. There were no significant differences in α-diversity and β-diversity between the NH group and WG group from the three aquaculture regions, and no significant biomarkers were identified. The diversity of DNA and RNA viruses did not show significant differences between the NH and WG groups, although both types of viruses exhibited notable synergistic and antagonistic relationships. Analyses from 16S full-length sequencing, metagenomics, and metatranscriptomics revealed that the related functional genes were primarily enriched in various metabolic pathways, including glycine biosynthesis, membrane transport, and energy metabolism. The metatranscriptomic analysis indicated that the expression levels of genes related to antibiotic resistance, biosynthesis, transport, and degradation processes were significantly downregulated in the WG group. Finally, through PCR, qPCR, and metagenomic sequencing, we were unable to detect iridovirus in Larimichthys crocea, further suggesting that the causes of WGD may differ across aquaculture regions compared to previous reports. This study indicates that the etiology of WGD may involve complex ecological and metabolic mechanisms, rather than being merely the result of a single pathogen infection. This research provides a comprehensive analysis of the microbial communities in WGD-affected Larimichthys crocea from multiple aquaculture regions for the first time, providing a theoretical basis for further elucidating the causes of WGD and developing preventive measures.
Collapse
Affiliation(s)
- Wanliang Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Lifang Wen
- Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenqi Xin
- Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Gengshen Wang
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316022, PR China
| | - Huajian Lin
- Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Hao Wang
- Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Bingqi Wei
- Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China; Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Weifeng Wang
- Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China; Marine Science and Technology School, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
34
|
Huang M, Huang W, Duan R, Huang Y, Xia Y. The repairing effect of baicalein on lead induced damage to the gut-liver axis in tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126232. [PMID: 40221113 DOI: 10.1016/j.envpol.2025.126232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Baicalein has pharmacological functions, such as antioxidant and anti-inflammatory properties, and has been shown to alleviate damage to organs caused by environmental pollutants. However, the mechanism by which baicalein reduces the toxic effects of metals needs further research. This study used Pelophylax nigromaculatus tadpoles as a model to explore the toxicological effects of lead (Pb) on the gut-liver axis, and the mechanism by which baicalein alleviates lead toxicity. Analysis of the gut microbiota showed that baicalein alleviated abnormal changes in the gut microbiota following Pb exposure, mainly by increasing the abundance of beneficial bacterial genera, including Cetobacterium, Clostridioides, and Monoglobus. Liver metabolomics showed that compared to a natural recovery, baicalein treatment significantly increased the content of metabolites such as uridine, 17α-hydroxypregnenolone, niacin, and cucurbitacin E, and significantly reduced the content of metabolites such as linoleic, gluconic acid, and tetrahydrocortisone. These differential metabolites could be enriched in pathways such as pyrimidine metabolism, nicotinic acid and nicotinamide metabolism, and steroid hormone biosynthesis, which were beneficial for the treatment of liver injury. There was a significant correlation between the gut microbiota and the main differential metabolites in the liver with the addition of baicalein. The improvement of these metabolic pathways by baicalein is beneficial for the repair of the liver and intestines. Therefore, baicalein can increase the abundance of beneficial gut microbiota, improve liver metabolism, and thus reduce the damage of Pb exposure to the gut-liver axis.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Wentao Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China.
| | - Yingfeng Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Yongqiang Xia
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| |
Collapse
|
35
|
Cornejo-Granados F, Gallardo-Becerra L, Romero-Hidalgo S, Lopez-Zavala AA, Cota-Huízar A, Cervantes-Echeverría M, Sotelo-Mundo RR, Ochoa-Leyva A. Host genome drives the microbiota enrichment of beneficial microbes in shrimp: exploring the hologenome perspective. Anim Microbiome 2025; 7:50. [PMID: 40405248 DOI: 10.1186/s42523-025-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/18/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Pacific Whiteleg shrimp (Litopenaeus vannamei) is an important model for breeding programs to improve global aquaculture productivity. However, the interaction between host genetics and microbiota in enhancing productivity remains poorly understood. We investigated the effect of two shrimp genetic lines, Fast-Growth (Gen1) and Disease-Resistant (Gen2), on the microbiota of L. vannamei. RESULTS Using genome-wide SNP microarray analysis, we confirmed that Gen1 and Gen2 represented distinct genetic populations. After confirming that the rearing pond did not significantly influence the microbiota composition, we determined that genetic differences explained 15.8% of the microbiota variability, with a stronger selective pressure in the hepatopancreas than in the intestine. Gen1, which exhibited better farm productivity, fostered a microbiota with greater richness, diversity, and resilience than Gen2, along with a higher abundance of beneficial microbes. Further, we demonstrated that a higher abundance of beneficial microbes was associated with healthier shrimp vs. diseased specimens, suggesting that Gen1 could improve shrimp's health and productivity by promoting beneficial microbes. Finally, we determined that the microbiota of both genetic lines was significantly different from their wild-type counterparts, suggesting farm environments and selective breeding programs strongly alter the natural microbiome. CONCLUSIONS This study highlights the importance of exploring the hologenome perspective, where integrating host genetics and microbiome composition can enhance breeding programs and farming practices.
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Secretaría de Salud (INMEGEN), Periférico Sur No. 4809, 14610, México, DF, México
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Blvd., Rosales y Luis Encinas, 83000, Hermosillo, Sonora, México
| | - Andrés Cota-Huízar
- Camarones El Renacimiento SPR de RI, Justino Rubio No. 26, Col Ejidal, 81330, Higuera de Zaragoza, Sinaloa, México
| | - Melany Cervantes-Echeverría
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas Num. 46. Col. La Victoria, 83304, Hermosillo, Sonora, México
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
36
|
Jonas L, Lee YY, Mroz R, Hill RT, Li Y. Nannochloropsis oceanica IMET1 and its bacterial symbionts for carbon capture, utilization, and storage: biomass and calcium carbonate production under high pH and high alkalinity. Appl Environ Microbiol 2025; 91:e0013325. [PMID: 40243321 DOI: 10.1128/aem.00133-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
To combat the increasing levels of carbon dioxide (CO2) released from the combustion of fossil fuels, microalgae have emerged as a promising strategy for biological carbon capture, utilization, and storage. This study used a marine microalgal strain, Nannochloropsis oceanica IMET1, which thrives in high CO2 concentrations. A high-pH, high-alkalinity culture was designed for CO2 capture through algal biomass production as well as permanent sequestration through calcium carbonate (CaCO3) precipitation. This was accomplished by timed pH elevation and the addition of sodium bicarbonate to cultures of N. oceanica grown at lab scale (1 L) and pilot scale (500 L) with 10% and 5% CO2, respectively. Our data showed that 0.02 M NaHCO3 promoted algal growth and that sparging cultures with ambient air after 12 days raised pH and created favorable CaCO3 formation conditions. At the 1 L scale, we reached 1.52 g L-1 biomass after 12 days and an extra 9.3% CO2 was captured in the form of CaCO3 precipitates. At the 500 L pilot scale, an extra 60% CO2 was captured (Day 40) with a maximum CO2 capture rate of 63.2 g m-2 day-1 (Day 35). Bacterial communities associated with the microalgae were dominated by two novel Patescibacteria. Functional analysis revealed that genes for several plant growth-promotion traits (PGPTs) were enriched within this group. The microalgal-bacterial coculture system offers advantages for enhanced carbon mitigation through biomass production and simultaneous precipitation of recalcitrant CaCO3 for long-term CO2 storage.IMPORTANCECapturing carbon dioxide (CO2) released from fossil fuel combustion is of the utmost importance as the impacts of climate change continue to worsen. Microalgae can remove CO2 through their natural photosynthetic pathways and are additionally able to convert CO2 into a stable, recalcitrant form as calcium carbonate (CaCO3). We demonstrate that microalgae-based carbon capture systems can be greatly improved with high pH and high alkalinity by providing optimal conditions for carbonate precipitation. Our results with the microalga, Nannochloropsis oceanica strain IMET1, show an extra 9.3% CO2 captured as CaCO3 at the 1 L scale and an extra 60% CO2 captured at the 500 L (pilot) scale. Our optimized system provides a novel approach to capture CO2 through two mechanisms: (i) as organic carbon within microalgal biomass and (ii) as inorganic carbon stored permanently in the form of CaCO3.
Collapse
Affiliation(s)
- Lauren Jonas
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Yi-Ying Lee
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | | | - Russell T Hill
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Yantao Li
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Watanabe K, Kamei Y, Igarashi M, Shibuya S, Shimizu T, Kimura I, Maruyama M. Impact of a water-soluble soy extract on inflammation and gut microbiota in physiologically aged mice. Biosci Biotechnol Biochem 2025; 89:884-893. [PMID: 40097303 DOI: 10.1093/bbb/zbaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Soy isoflavones are involved deeply in our diet as beneficial to health. It is known to have anti-inflammatory and antioxidant effects and also to be effective in alleviating various lifestyle diseases, as well as the maintenance of endocrine function, especially with age-related diseases such as osteoporosis. Here we investigated the impact of age-dependent changes with the intestinal microbiota in physiologically aged C57BL/6 N by free drinking water with soluble soybean-derived isoflavone glycosides (SIFs) for 4 weeks. Consequently, Akkermansia muciniphila (A. muciniphila) species represented an age-dependent increase with SIF treatment, subsequently, generally age-dependent decreased goblet cells are retained in the large intestine. These results invoke that SIF plays a beneficial role in intestinal barrier function to maintain large intestine homeostasis. Interestingly, we also revealed that SIF had an alleviating effect on age-dependent bone loss. Taken together, SIF has a fruitful effect on the intestinal environment and the maintenance of homeostasis in physiological aging.
Collapse
Affiliation(s)
- Kenji Watanabe
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yuka Kamei
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Shuichi Shibuya
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takahiko Shimizu
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Ikuo Kimura
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mitsuo Maruyama
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Queen J, Cing Z, Minsky H, Nandi A, Southward T, Ferri J, McMann M, Iyadorai T, Vadivelu J, Roslani A, Loke MF, Wanyiri J, White JR, Drewes JL, Sears CL. Fusobacterium nucleatum is enriched in invasive biofilms in colorectal cancer. NPJ Biofilms Microbiomes 2025; 11:81. [PMID: 40394001 PMCID: PMC12092649 DOI: 10.1038/s41522-025-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Fusobacterium nucleatum is an oral bacterium known to colonize colorectal tumors, where it is thought to play an important role in cancer progression. Recent advances in sequencing and phenotyping of F. nucleatum have revealed important differences at the subspecies level, but whether these differences impact the overall tumor ecology, and tumorigenesis itself, remain poorly understood. In this study, we sought to characterize Fusobacteria in the tumor microbiome of a cohort of individuals with CRC through a combination of molecular, spatial, and microbiologic analyses. We assessed for relative abundance of F. nucleatum in tumors compared to paired normal tissue, and correlated abundance with clinical and pathological features. We demonstrate striking enrichment of F. nucleatum and the recently discovered subspecies animalis clade 2 (Fna C2) specifically in colon tumors that have biofilms, highlighting the importance of complex community partnerships in the pathogenesis of this important organism.
Collapse
Affiliation(s)
- Jessica Queen
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zam Cing
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Hana Minsky
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asmita Nandi
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Madison McMann
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Jane Wanyiri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Julia L Drewes
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Zhou J, Liu Y, Gu T, Zhou J, Chen F, Li S. Investigating the gut bacteria structure and function of hibernating bats through 16S rRNA high-throughput sequencing and culturomics. mSystems 2025; 10:e0146324. [PMID: 40202348 PMCID: PMC12090805 DOI: 10.1128/msystems.01463-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The gut microbiota of bats is vital for their roles in health and the ecosystem, yet studies on hibernating bats in southwest China, particularly in the unique karst landscape of Guizhou, are limited. We captured three hibernating bat species-Pipistrellus (PB), Rhinolophus (RB), and Myotis (MB)-in Liping County, collecting rectal samples for 16S rRNA amplicon sequencing. Data processing involved Trimmomatic, Flash, and Qiime2 for operational taxonomic unit (OTU) standardization and species annotation via the Greengenes database. Differential abundance was analyzed using LEfSe, and diversity metrics were assessed through alpha and beta diversity analyses. The RB group was predominantly composed of Proteobacteria (80.99%), while MB and PB exhibited diverse compositions with significant OTU richness (729 in MB). Notable genera included Hafnia and Yersinia in RB and Cosenzaea myxofaciens in MB. High proportions of unclassified taxa were observed, particularly in RB (83.81%). Functional predictions indicated metabolic pathways, with a significant representation of human diseases in PB. Culturomics revealed the successful cultivation of Huaxiibacter chinensis and Enterobacter chengduensis from bats for the first time and appears to have identified a new bacterium that is likely closely related to Clostridium paraputrificum.IMPORTANCEOur research reveals significant differences in the composition and diversity of the gut microbiota among three bat groups (PB, MB, and RB) from Guizhou. While Proteobacteria predominates in all groups, its abundance varies. Notably, the high richness of operational taxonomic units (OTUs) in the MB group suggests a more diverse microbial ecosystem, underscoring the complex interactions between species diversity, diet, gut microbiota, and overall ecological dynamics in bats. Furthermore, the substantial presence of unknown bacterial species in their intestines highlights the critical importance of cultivation-based approaches. The presence of specific taxa may have potential health implications for both bats and humans. These findings emphasize the need for further investigations into the functional roles of these microbiota and their contributions to host health. Future research should focus on longitudinal studies to elucidate these intricate interactions.
Collapse
Affiliation(s)
- Jian Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Ying Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Tao Gu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingzhu Zhou
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Fengming Chen
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Shijun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| |
Collapse
|
40
|
Xu J, Chen L, Zhou T, Zhang C, Zhang J, Zhao B. Salinity-driven differentiation of bacterial and fungal communities in coastal wetlands: Contrasting assembly processes and spatial dynamics. ENVIRONMENTAL RESEARCH 2025:121895. [PMID: 40393537 DOI: 10.1016/j.envres.2025.121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025]
Abstract
Coastal wetlands are critical for carbon sequestration and coastal protection, yet increasingly threatened by salinization. While soil microbiota mediate these ecosystems' functioning and stability, the mechanisms governing bacterial and fungal assembly across intermediate spatial scales remain poorly resolved. Here, we investigated microbial communities across a 30-km seaward-to-landward gradient in the Yellow River Delta during May 2020 using 16S rRNA and ITS sequencing coupled with ecological modeling. Our results revealed a striking dichotomy: bacterial communities were predominantly structured by deterministic environmental filtering (explained 49.2% of variation), whereas fungal communities exhibited stronger spatial dependence (Mantel r = 0.28 vs 0.06 for bacteria, P < 0.01). Null model analyses confirmed salinity-driven variable selection for bacteria (60.0% contribution) and stochastic homogenizing dispersal for fungi (44.9%). Microbial interaction network analysis (based on taxon co-occurrence patterns) demonstrated the fungal network resisted salinity perturbations through high modularity (0.87 vs 0.68 for bacteria) and short path lengths (3.10 vs 4.90). Path analysis further showed geographic distance indirectly stabilized fungal networks (indirect effect = 0.33) but minimally affected bacteria. These findings highlight contrasting ecological strategies: bacteria prioritize deterministic variable selection for rapid resource acquisition, whereas fungi rely on homogenizing dispersal for spatial stability. These findings advance our understanding of microbial responses to salinization under climate change, informing adaptive management strategies to preserve microbial-mediated carbon storage and ecosystem functionality in salt-affected soils.
Collapse
Affiliation(s)
- Jisheng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Tantan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Nanjing, Nanjing, 211135, China.
| |
Collapse
|
41
|
Tian H, Gao X, Du H, Lin Z, Huang X. Changes in microbial and metabolic profiles of mice fed with long-term high salt diet. BMC Gastroenterol 2025; 25:375. [PMID: 40375136 PMCID: PMC12082937 DOI: 10.1186/s12876-025-03929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/04/2025] [Indexed: 05/18/2025] Open
Abstract
PURPOSE High salt diet (HSD) has been considered as a risk factor for the development of metabolic disorders. However, less is known about long-term implications of HSD. Therefore, the aim of this study was to conduct a preliminary investigation into the effects of mice feeding with long-term HSD on gut microbial and metabolic profiles. METHODS In this study, C57BL/6 J mice were fed with HSD for 22 weeks, after which fat and feces were collected. The composition of fecal microbiota was determined using 16S rRNA gene sequencing. Fecal metabolic profiling of mice was identified through untargeted ultrahigh-performance liquid chromatography-mass spectrometry. In addition, the serum levels of adipocytokines, including fibroblast growth factor 21 (FGF21) and adiponectin (APN), were measured. RESULTS Long-term HSD disrupted the growth performance of mice. Compared to those fed a normal salt diet, mice on a long-term HSD showed slower weight gain, as well as lower fat accumulation and serum levels of APN, while experiencing elevated blood pressure and levels of serum FGF21 and glucose. The 16S rRNA sequencing revealed changes in community richness and diversity, with long-term HSD affecting the abundance of certain gut microbiota, including Firmicutes, Christensenella, Barnesiella, and Lactococcus. Fecal metabolomic analysis also uncovered alterations in metabolites, such as myriocin, cerulenin, norcholic acid, 7-ketocholesterol, and prostaglandins B2. Further analysis indicated that these gut and microbiota and metabolites are predominantly involved in the lipid metabolism of the organism. Importantly, variations in these gut metabolites and microbiota were significantly correlated with body weight, fat accumulation, and the levels of FGF21 and APN. CONCLUSION Long-term HSD affects physiological traits, alters gut metabolites profiles, and impacts the composition and function of gut microbiota, thus causes a certain impact on lipid metabolism.
Collapse
Affiliation(s)
- Huiying Tian
- The Laboratory of Animal Center, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaotang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanlin Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xianen Huang
- Department of Endocrinology, The 3rd Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, Wenzhou, 325200, China.
| |
Collapse
|
42
|
Bohórquez-Sandoval LJ, Hernandez-Lara A, Gómez-Morte JA, Cuartero J, García-Molano JF, Pascual JA, Ros M. The potential bioavailability of phosphorus and the microbial community involved in agro-industrial composts as organic amendments or growing media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125762. [PMID: 40378796 DOI: 10.1016/j.jenvman.2025.125762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/31/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Harnessing agro-industrial residues through composting is gaining importance as a means of phosphorus recovery, as is its reutilization as plant available phosphorus. This research seeks to analyze various combinations of agroindustrial waste and observe the microbial communities contributing to the availability of this element for plants. Six composts were used with different proportions of agroindustrial waste. Phosphorus fractionation was carried out, and the available phosphorus was determined. The molecules involved in phosphorus mineralization and solubilization, alkaline phosphatase activity, organic acids, and microbial communities were also determined. Finally, the potential phosphorus genes (Inorganic P solubilization genes (gcd, ppx, ppqC), and Organic P mineralization genes (phoA, phoD, phnL, phnl, phnJ, phnP, phnH, and phnG)) present in the analyzed composts were established. Compost X2B, composed of vineyard and tomato residues, demonstrated superior performance in providing available phosphorus compared to other composts. This was determined by microbial communities harboring genes involved in the phosphorus cycle, facilitating phosphorus availability.
Collapse
Affiliation(s)
| | - Alicia Hernandez-Lara
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain
| | - José Antonio Gómez-Morte
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain; Instituto de Ciencias Agrarias, ICA-CSIC, C/ Serrano 115bis, Madrid, 28006, Spain
| | - Jessica Cuartero
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain; Swiss Federal Institute for Forest, Snow and Landscape Research WLS, Birmensdorf, 8903, Switzerland
| | - José Francisco García-Molano
- Juan de Castellanos University Foundation, Department of Agricultural and Environmental Sciences, Tunja, 150001, Colombia
| | - José Antonio Pascual
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain
| | - Margarita Ros
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain.
| |
Collapse
|
43
|
Zhang Y, Liu H, Jing H. Community differences and potential function along the particle size spectrum of microbes in the twilight zone. MICROBIOME 2025; 13:121. [PMID: 40369676 PMCID: PMC12076831 DOI: 10.1186/s40168-025-02116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The twilight zone, which extends from the base of the euphotic zone to a depth of 1000 m, is the major area of particulate organic carbon (POC) remineralization in the ocean. However, little is known about the microbial community and metabolic activity that are directly associated with POC remineralization in this consistently underexplored realm. Here, we utilized a large-volume in situ water transfer system to collect the microbes on different-sized particles from the twilight zone in three regions and analyzed their composition and metabolic function by metagenomic analysis. RESULTS Distinct prokaryotic communities with significantly lower diversity and less endemic species were detected on particles in the South East Asian Time-series Study (SEATS) compared with the other two regions, perhaps due to the in situ physicochemical conditions and low labile nutrient availability in this region. Observable transitions in community composition and function at the upper and lower boundaries of the twilight zone suggest that microbes respond differently to (and potentially drive the transformation of) POC through this zone. Substantial variations among different particle sizes were observed, with smaller particles typically exhibiting lower diversity but harboring a greater abundance of carbon degradation-associated genes than the larger particles. Such a pattern might arise due to the relatively larger surface area of the smaller particles relative to their volume, which likely provides more sites for microbial colonization, increasing their chance of being remineralized. This makes them less likely to be transferred to the deep ocean, and thus, they contribute more to carbon recycling than to long-term sequestration. Both contig-based and metagenome-assembled genome-(MAG-) based analyses revealed a high diversity of the Carbohydrate-Active enZymes (CAZy) family. This indicates the versatile carbohydrate metabolisms of the microbial communities associated with sinking particles that modulate the remineralization and export of POC in the twilight zone. CONCLUSION Our study reveals significant shifts in microbial community composition and function in the twilight zone, with clear differences among the three particle sizes. Microbes with diverse metabolic potential exhibited different responses to the POC entering the twilight zone and also collectively drove the transformation of POC through this zone. These findings provided insights into the diversity of prokaryotes in sinking particles and their roles in POC remineralization and export in marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
44
|
Yoshii K, Node E, Furuta M, Tojima Y, Matsunaga A, Adachi J, Takaai N, Morita M, Hosomi K, Kunisawa J. Establishment of enterotype-specific antibodies for various diagnostic systems. Sci Rep 2025; 15:16814. [PMID: 40368953 PMCID: PMC12078515 DOI: 10.1038/s41598-025-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
This study demonstrates that monoclonal antibodies can be developed to targeting specific gut bacteria prevalent in the Japanese population and the potential for creating a novel diagnostic system using these antibodies. In this study, we established specific antibodies against representative bacteria from the genera Bacteroides, Faecalibacterium, and Prevotella and showed that they could be detected using ELISA, flow cytometry, and western blot analysis. Furthermore, a technique to quantify target bacteria was developed by combining these antibodies in a sandwich ELISA, enabling the quantification of bacteria in human fecal samples. This technology serves as a foundational method for rapidly and easily measuring gut bacteria and is expected to evolve into a powerful tool for analyzing the impact of gut bacteria on health, as well as for personalized health management based on individual gut environments.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Eri Node
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Mari Furuta
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoko Tojima
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Faculty of Agriculture, Department of Applied Biological Science, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, NIBN, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Narimi Takaai
- Laboratory of Proteomics for Drug Discovery, NIBN, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Makiko Morita
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, 2-2 Wakamatsu, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
45
|
Zuffa S, Lay C, Wimborne EA, Rodriguez AH, Wu Y, Nobrega FL, Bartke N, Hokken-Koelega ACS, Knol J, Roeselers G, Swann JR. Milk phospholipid-coated lipid droplets modulate the infant gut microbiota and metabolome influencing weight gain. MICROBIOME 2025; 13:120. [PMID: 40369689 PMCID: PMC12076826 DOI: 10.1186/s40168-025-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The supramolecular structure and composition of milk fat globules in breast milk is complex. Lipid droplets in formula milk are typically smaller compared to human milk and differ in their lipid and protein composition. These droplets play an important role in gut and immune maturation, and their components possess antimicrobial and antiviral properties. Here, the influence of a concept infant formula (IF) containing large milk phospholipid-coated lipid droplets on the maturation of the infant microbiota, metabolome, and weight gain in the first year of life was investigated. RESULTS Formula-fed infants were randomized to receive either a standard IF (Control) or a Test formula containing large milk phospholipid-coated lipid droplets (Test) until 17 weeks of age. A breast-fed Reference group was also investigated. At 3 months of age, several taxa identified as opportunistic pathogens (e.g., Enterobacter, Klebsiella, Enterococcus, Streptococcus) were less abundant in the Test stools compared to Control, while an enrichment of the butyrate-producing Ruminococcaceae and Lachnospiraceae was observed. These findings indicate that the Test formula resulted in gut microbiota maturation trajectories more comparable to healthy breast-fed infants. This was accompanied by variation in several fecal and plasma metabolites at 3 months of age related to gut microbial metabolism including bile acids, hippurate, phenylacetylglycine, trimethylamine, and various lipids and fatty acids. At 12 months, measures of subcutaneous fat and body mass index (BMI) were significantly higher in infants receiving standard IF compared to those receiving breast milk. However, this weight gain and adiposity was attenuated in the Test group infants. CONCLUSIONS The presence of large phospholipid-coated lipid droplets in formula milk positively influenced the development of the infants' gut microbiota, their metabolomic profiles, and their body composition to more closely resemble breast-fed infants compared to standard IF. These droplets may further enhance the restriction of pathogenic bacteria seen with standard infant formula and suggest a potential impact on infant metabolic programming that may contribute to physiological development. Video Abstract.
Collapse
Affiliation(s)
- Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Christophe Lay
- Danone Research & Innovation, Precision Nutrition, D-Lab, Singapore, Singapore
| | - Elizabeth A Wimborne
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| | | | - Yi Wu
- Faculty of Life Sciences, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Franklin L Nobrega
- Faculty of Life Sciences, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Nana Bartke
- Danone Research & Innovation, Utrecht, The Netherlands
| | | | - Jan Knol
- Danone Research & Innovation, Utrecht, The Netherlands
| | | | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK.
| |
Collapse
|
46
|
Luo C, Wang X, Ding H, Yang S, Dong Y. Wheat Root-Exuded Specialized Metabolites (BXs) Drive Rhizosphere Microbial Interactions in Legume Intercropping, Enhancing the Field Growth Performance of Both Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11573-11585. [PMID: 40300084 DOI: 10.1021/acs.jafc.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Unique rhizosphere metabolites, such as benzoxazinoids (BXs), are secreted by cereal crops, such as wheat, which influence the rhizosphere microbiota and affect the growth of offspring crops. However, the feedback effect of this microbiota interaction on the rhizosphere environment of neighboring intercropped plants and their growth performance remains unclear. This study combined pot and field experiments to explore the intercropping system between wheat (IW) and fava bean (IF). Compared with monoculture wheat (MW), IF significantly increased BXs release from wheat roots and enhanced BXs synthesis in both wheat leaves and roots. BXs not only drove changes in the diversity and richness of the rhizosphere microbiota in wheat but also altered the microbiota composition in the IF rhizosphere through horizontal transfer. Actinomycota, the dominant bacterial phylum, was strongly influenced by BXs in the rhizosphere of IF, showing a positive correlation with Pseudomonadota. In terms of fungi, BXs promoted the enrichment of Penicillium in IW and IF while inhibiting the growth of Fusarium and Gibberella. The BXs-driven rhizosphere effect enhanced enzyme activities, including CAT, urease, sucrase, and neutral phosphatase, in IW and IF rhizosphere soil. These changes improved both aboveground (plant height, leaf length, and fresh weight) and belowground (root length and root weight) growth as well as crop grain yield. In conclusion, this study demonstrates for the first time that BXs secreted by wheat roots promote positive feedback interactions in the fava bean rhizosphere, improving soil enzyme activities and overall plant performance in a wheat-fava bean intercropping system.
Collapse
Affiliation(s)
- Chaosheng Luo
- College of Resources and Environment, Key Laboratory for Improving Quality and Productivity of Arable Land of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaotan Wang
- College of Resources and Environment, Key Laboratory for Improving Quality and Productivity of Arable Land of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huiqiong Ding
- College of Resources and Environment, Key Laboratory for Improving Quality and Productivity of Arable Land of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Siyin Yang
- College of Resources and Environment, Key Laboratory for Improving Quality and Productivity of Arable Land of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Dong
- College of Resources and Environment, Key Laboratory for Improving Quality and Productivity of Arable Land of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
47
|
Yu H, Fu X, Li Z, He F, Qin S, Bi X, Li Y, Li Y, Hu F, Lyu Y. Integration of transcriptome, metabolome and high-throughput amplicon sequencing reveals potential mechanisms of antioxidant activity and environmental adaptation in the purple-leaf phenotype of Coffea cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110015. [PMID: 40381364 DOI: 10.1016/j.plaphy.2025.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
To understand its potential in meeting the increasing market demand for high-quality and resistant coffee varieties., the study focused on evaluating a leaf color mutation in Coffea arabica L. (purple coffee) and comparing it with the control (Catimor). Analysis of antioxidant indices revealed that purple coffee exhibited significantly higher levels of TAC (total anthocyanin content), DPPH (2,2-dyphenyl-1-picrylhydrazyl), POD (peroxidase), and PPO (polyphenol oxidase) compared to Catimor, indicating stronger antioxidant activities. Multi-omics analysis was conducted to create metabolic profiles, genetic maps, and phyllosphere microbial communities of the two Coffea genotypes. The metabolome and transcriptome results showed higher levels of flavonoids and phenolic acids in purple coffee, along with different gene expression patterns. The up-regulation of key genes in the phenylpropanoid pathway was identified to result in a notable alteration in the accumulation of flavonoids and phenolic acids. The co-occurrence network analysis of bacterial communities identified 10 keystone OTUs (operational taxonomic units), including Methylobacterium-Methylorubrum, 1174-901-12, Massilia, Comamonas, Klenkia, and Salinicola, all of which are Proteobacteria. The results of the co-analysis demonstrated a strong correlation between keystone OTUs and both phenylpropanoid metabolism and antioxidant activity. Taken together, we hypothesize that the up-regulation of key genes in the phenylpropanoid metabolite pathway in purple coffee facilitates the synthesis of flavonoids and phenolic acids, which suppresses the abundance of microbial taxa and thus enhances antioxidant activity and environment adaptability. These findings provide valuable insights for future research on the environmental adaptation of coffee and hold potential in breeding high flavonoid content coffee leaf tea.
Collapse
Affiliation(s)
- Haohao Yu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Zhongxian Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming, 650500, Yunnan, China
| | - Shiwen Qin
- School of Agriculture, Yunnan University, Kunming, 650500, Yunnan, China
| | - Xiaofei Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China.
| | - Yulan Lyu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China.
| |
Collapse
|
48
|
Song WL, Lin D, Chen X, Dai Q, Rao G, Chen YJ, Chen SL. Spatiotemporal patterns of soil myxomycetes in subtropical managed forests and their potential interactions with bacteria. Appl Environ Microbiol 2025:e0047925. [PMID: 40358238 DOI: 10.1128/aem.00479-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Soil myxomycetes are crucial soil protists with important ecological functions. Yet, our understanding of their diversity patterns in managed forests and the interactions with their food is far behind other taxa. This study investigates the spatiotemporal patterns of soil myxomycetes in four northern subtropical managed forest types across seasons and aims to identify assembly processes, main predictors of myxomycete communities, and the potential interactions between myxomycetes and bacteria. Results showed that no significant difference in α diversity of myxomycete communities among forest types was observed, but a significant difference was observed in community structures. Significant differences were observed in α diversity and community structures of myxomycetes among seasons. Deterministic processes in each forest type and season dominated myxomycete community assemblies. Soil physicochemical properties and bacterial communities have a significant direct impact on the myxomycete community, while forest types, seasons, and enzyme activities have an indirect effect. There is a significant synergistic covariation between the soil myxomycete community and bacterial community. The genera of the phyla Acidobacteriota, Actinobacteriota, and Bacteroidota have a strong correlation with the richness of myxomycete genera. Overall, this study provides new insight into the diversity of soil myxomycetes and their influence by bacteria, crucial for myxomycetes ecology.IMPORTANCESoil myxomycetes are an important component of soil protists. Our study revealed for the first time the community structure of soil myxomycetes in managed forests of the northern subtropical regions and systematically investigated the seasonal variation patterns of soil myxomycetes. Meanwhile, we further investigated the potential interactions between soil myxomycetes and bacteria. This study will greatly enhance our understanding of the ecology of soil myxomycetes and their biological roles.
Collapse
Affiliation(s)
- Wen-Long Song
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Di Lin
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xia Chen
- Dr. Sun Yat-Sen Mausoleum Administration, Nanjing, Jiangsu, China
| | - Qun Dai
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, Jiangsu, China
| | - Gu Rao
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ya-Jing Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shuang-Lin Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Wang Z, Duan R, He Q, Liu H, Xu P, Wei M. Characteristics of airborne bacteria over inland and coastal atmosphere influenced by systemic air mass in northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126429. [PMID: 40368016 DOI: 10.1016/j.envpol.2025.126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Regional aerosol pollution frequently occurs in winter and spring in northern China. Here, we surveyed four air pollution, categorized as episodes influenced by northerly or southerly air mass, and discussed the bacterial communities in inland and coastal cities. Influenced by northerly airmass, the predominant bacterial phyla were Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria both in the inland and coastal cities. The opportunistic pathogen in the genus Staphylococcus was predominant, and the relative proportion increased with the intensification of air pollution. Gut bacteria of the genus Lactobacillus and aquatic bacteria of the family Flavobacteriaceae were enriched in the coastal city. Influenced by southerly air mass, combined with the transmission of dust air masses in the northwest, air pollution in spring showed obvious sand dust characteristics. The prevalence of the members from the phylum Cyanobacteria was markedly greater in inland city compared to the coastal city, especially in dust samples. This indicated the possibility of soil Cyanobacteria members, subsequently being transported from terrestrial to coastal areas via dust movements. The bacterial community dynamics was intimately linked to meteorological factors and air pollutants. In both cities, pathogenic bacteria predominate in haze pollution influenced by northernly air masses, while a higher proportion of soil bacteria originating from natural sources predominate in southern air mass samples. The impact of varying air masses was particularly pronounced in inland city. Meteorological factors instigated by seasonal changes-especially the transition of wind direction from winter to spring, accompanied by elevated wind speeds and rising temperatures-play a pivotal role in shaping bacterial community structure. This study examined the sea-land variations in bacterial communities transported by systemic air masses during typical air pollution events. These insights lay the groundwork for future research into the distribution, sources, and health risks of bioaerosols during air pollution.
Collapse
Affiliation(s)
- Zhaowen Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Rongbao Duan
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Qun He
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Min Wei
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China.
| |
Collapse
|
50
|
Liu S, Zheng Y, Cui B, Yang J, Yuan B, Cao Y, Zhao Z, Sun Z, Wang Q, Yang X, Pan W, He C. Gut microbiota-derived butyrate alleviates the impairment of mice intestinal integrity caused by Toxoplasma gondii infection. Life Sci 2025; 374:123709. [PMID: 40368048 DOI: 10.1016/j.lfs.2025.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/04/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Chronic infection with Toxoplasma gondii (T. gondii) results in severe damages to the integrity of intestinal barrier, however, both the underlying mechanism and feasible intervention strategies are still little known. Here, we found that both the chronic infection of T. gondii and transplanting gut microbiota from T. gondii-infected mice severely impaired the mice intestinal integrity, which was characterized by significantly decreased thickness of inner mucus layer and down-regulated expression of three tight junction proteins Occludin, ZO-1, and Claudin (p < 0.05). Moreover, T. gondii infection also led to mice intestinal microbiota dysbiosis, especially butyrate-producing bacteria, and significantly changed the expression of several senescence-associated markers, including 6- and 7- fold upregulation for P16, P21, and 6-fold downregulation for Lamin B1 at mRNA levels, and 2-fold downregulation for β-galactosidase at protein levels (p < 0.05). Interestingly, subsequent administration with dietary butyrate could alleviate T. gondii-induced intestinal integrity impairment and cell senescence, revealing a significant increase of the inner mucus layer thickness (p < 0.001), and a remarkable decrease in P16, P21, β-galactosidase expression levels while an upregulation of Lamin B1 expression (p < 0.05). Taken together, our study revealed that T. gondii-induced dysbiosis of gut microbiota, especially butyrate-producing bacteria, contributes to the intestinal impairment, potentially via promoting cell senescence. In addition, administration with the metabolite, butyrate, could be a promising therapeutic measure against T. gondii infection.
Collapse
Affiliation(s)
- Shuni Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yutao Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Bingqian Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bohui Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China
| | - Yuhan Cao
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zimu Zhao
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingling Wang
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, China.
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, China; Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, China.
| |
Collapse
|