1
|
Hülsmeier AJ. Glycosphingolipids in neurodegeneration - Molecular mechanisms, cellular roles, and therapeutic perspectives. Neurobiol Dis 2025; 207:106851. [PMID: 39978484 DOI: 10.1016/j.nbd.2025.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuronal loss and pose significant global health challenges. Glycosphingolipids (GSLs), critical components of neuronal membranes, regulate signal transduction, membrane organization, neuroinflammation, and lipid raft functionality. This review explores GSL roles in neural development, differentiation, and neurogenesis, along with their dysregulation in neurodegenerative diseases. Aberrations in GSL metabolism drive key pathological features such as protein aggregation, neuroinflammation, and impaired signaling. Specific GSLs, such as GM1, GD3, and GM3, influence amyloid-beta aggregation in AD, α-synuclein stability in PD, and mutant huntingtin toxicity in HD. Therapeutic strategies targeting GSL metabolism, such as GM1 supplementation and enzyme modulation, have demonstrated potential to mitigate disease progression. Further studies using advanced lipidomics and glycomics may support biomarker identification and therapeutic advancements. This work aims to highlight the translational potential of GSL research for diagnosing and managing devastating neurodegenerative conditions.
Collapse
Affiliation(s)
- Andreas J Hülsmeier
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Szunyogh S, Carroll E, Wade-Martins R. Recent developments in gene therapy for Parkinson's disease. Mol Ther 2025:S1525-0016(25)00204-7. [PMID: 40121531 DOI: 10.1016/j.ymthe.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder for which there is currently no cure. Gene therapy has emerged as a novel approach offering renewed hope for the development of treatments that meaningfully alter the course of the disease. In this review, we explore various gene therapy strategies currently being developed targeting key aspects of PD pathogenesis: the restoration of the dopamine system by delivering genes involved in dopamine biosynthesis, reinforcing the inhibitory signaling pathways through glutamic acid decarboxylase (GAD) delivery to increase GABA production, enhancing neuronal survival and development by introducing various neurotrophic factors, delivery of genes to complement recessive familial PD mutations to correct mitochondrial dysfunction, restoring lysosomal function through delivery of GBA1 to increase glucocerebrosidase (GCase) activity, and reducing α-synuclein levels by reducing or silencing SNCA expression. Despite promising early work, challenges remain in developing safe, effective, and long-lasting gene therapies. Key considerations include optimizing viral vectors for targeted delivery, achieving controlled and sustained gene expression using different promoters, minimizing immune responses, and increasing transgene delivery capacity. Future prospects may involve combinatory strategies targeting multiple pathways, such as multi-gene constructs delivered via high-capacity viral systems.
Collapse
Affiliation(s)
- Sandor Szunyogh
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Emily Carroll
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
3
|
Liu M, Liu S, Lin Z, Chen X, Jiao Q, Du X, Jiang H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications. Biomolecules 2025; 15:149. [PMID: 39858542 PMCID: PMC11764135 DOI: 10.3390/biom15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors. Notably, emerging research has underscored the interplay between autophagy and oxidative stress in PD pathogenesis. Given the limited efficacy of therapies targeting either autophagy dysfunction or oxidative stress, it is crucial to elucidate the intricate mechanisms governing their interplay in PD to develop more effective therapeutics. This review overviews the role of autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcriptional regulator orchestrating cellular defense mechanisms against oxidative stress, and the complex interplay between these processes. By elucidating the intricate interplay between these key pathological processes in PD, this review will deepen our comprehensive understanding of the multifaceted pathological processes underlying PD and may uncover potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Siqi Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Zihan Lin
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
4
|
Radefeldt M, Lemke S, Chaichoompu K, Paul JJ, Curado F, Valzania F, Cavallieri F, Fioravanti V, Valente EM, Avenali M, Negrotti A, Hanagasi HA, Thonke S, Matarazzo M, Panzavolta A, Cerami C, Westenberger A, Klein C, Bauer P, Beetz C. Genetic and Epidemiological Insights into RAB32-Linked Parkinson's Disease. Mov Disord 2025; 40:147-151. [PMID: 39460989 PMCID: PMC11752972 DOI: 10.1002/mds.30041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The p.Ser71Arg RAB32 variant was recently associated with Parkinson's disease (PD). OBJECTIVE The aim was to investigate the presence of RAB32 variants in a large multiethnic group of individuals affected and unaffected by PD. METHODS We queried our proprietary database that contains exome/genome sequencing data of >180,000 individuals. Additional PD patients were genotyped, and proximal p.Ser71Arg-associated haplotypes were constructed. RESULTS p.Ser71Arg was present in 11 PD patients (73% from northern Italy) and in 35 individuals (89% from the Middle East and North Africa [MENA]) aged <50 years without PD-relevant symptoms. It was found in-cis to a set of proximal single-nucleotide polymorphisms. Additional RAB32 variants were comparably frequent in PD and non-PD individuals. CONCLUSIONS The RAB32 p.Ser71Arg variant defines a cluster of PD patients in northern Italy. Globally, it is most prevalent in MENA. Our data indicate that p.Ser71Arg causes PD and that it occurred only once, through a founder event. Other RAB32 variants are unlikely to cause PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | | | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation DepartmentAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation DepartmentAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor and Rehabilitation DepartmentAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Enza Maria Valente
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- IRCCS Mondino FoundationPaviaItaly
| | - Micol Avenali
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- IRCCS Mondino FoundationPaviaItaly
| | - Anna Negrotti
- Neurology UnitUniversity Hospital of ParmaParmaItaly
| | - Hasmet A. Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Sven Thonke
- Department of NeurologyKlinikum Hanau, Teaching Hospital of the Goethe‐UniversityFrankfurtGermany
| | - Michele Matarazzo
- Centro Integral de Neurociencias Abarca Campal, Hospital Universitario HM Puerta Del Sur, HM HospitalesMadridSpain
| | | | - Chiara Cerami
- Dementia Research Center, IRCCS Mondino FoundationPaviaItaly
| | | | | | | | | |
Collapse
|
5
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2025; 48:62-76. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Wu Y, Zhong A, Sidharta M, Kim TW, Ramirez B, Persily B, Studer L, Zhou T. Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells. Nat Commun 2024; 15:10824. [PMID: 39737975 DOI: 10.1038/s41467-024-55104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells. By evaluating disease-associated mutations, we show that this platform allows efficient creation of both monoallelic and biallelic disease-relevant mutations in hPSCs. In addition, this platform enables the efficient introduction of single or multiple edits in one step, demonstrating potential for multiplex editing. Our method presents an efficient and controllable multiplex prime editing tool in hPSCs and their differentiated progeny.
Collapse
Affiliation(s)
- Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Aaron Zhong
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Mega Sidharta
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Tae Wan Kim
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Bernny Ramirez
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Benjamin Persily
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.
| |
Collapse
|
8
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
9
|
Andelman-Gur M, Snitz K, Honigstein D, Weissbrod A, Soroka T, Ravia A, Gorodisky L, Pinchover L, Ezra A, Hezi N, Gurevich T, Sobel N. Discriminating Parkinson's disease patients from healthy controls using nasal respiratory airflow. COMMUNICATIONS MEDICINE 2024; 4:233. [PMID: 39543393 PMCID: PMC11564766 DOI: 10.1038/s43856-024-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Breathing patterns may inform on health. We note that the sites of earliest brain damage in Parkinson's disease (PD) house the neural pace-makers of respiration. We therefore hypothesized that ongoing long-term temporal dynamics of respiration may be altered in PD. METHODS We applied a wearable device that precisely logs nasal airflow over time in 28 PD patients (mostly H&Y stage-II) and 33 matched healthy controls. Each participant wore the device for 24 h of otherwise routine daily living. RESULTS We observe significantly altered temporal patterns of nasal airflow in PD, where inhalations are longer and less variable than in matched controls (mean PD = -1.22 ± 1.9 (combined respiratory features score), Control = 1.04 ± 2.16, Wilcoxon rank-sum test, z = -4.1, effect size Cliff's δ = -0.61, 95% confidence interval = -0.79 - (-0.34), P = 4.3 × 10-5). The extent of alteration is such that using only 30 min of recording we detect PD at 87% accuracy (AUC = 0.85, 79% sensitivity (22 of 28), 94% specificity (31 of 33), z = 5.7, p = 3.5 × 10-9), and also predict disease severity (correlation with UPDRS-Total score: r = 0.49; P = 0.008). CONCLUSIONS We conclude that breathing patterns are altered by H&Y stage-II in the disease cascade, and our methods may be further refined in the future to provide an indication with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Michal Andelman-Gur
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Kobi Snitz
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Honigstein
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Pinchover
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ezra
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
11
|
de Oliveira FF, Miraldo MC, de Castro-Neto EF, de Almeida SS, de Andrade Matas SL, Bertolucci PHF, da Graça Naffah-Mazzacoratti M. Anthropometric and Demographic Features Affect the Interpretation of Cerebrospinal Fluid Biomarkers in Patients with Different Dementia Syndromes and Cognitively Healthy Adults. Neuromolecular Med 2024; 26:43. [PMID: 39487345 DOI: 10.1007/s12017-024-08810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Clinical distinction between dementia with Lewy bodies (DLB) and late-onset Alzheimer's disease (AD) is difficult, while several features might affect the analyses of biomarkers. This study aimed to verify associations of anthropometric and demographic features with cerebrospinal fluid biomarkers, their ratios, and restructured traditional regression formulas in patients with DLB and AD, as well as in cognitively healthy controls. Consecutive outpatients with DLB were paired with outpatients with AD according to sex, dementia stage, and cognitive status, and with controls according to sex and age to investigate associations of sex, age, dementia duration, total sleep time, body mass index, alcohol use, smoking, sanitation, and APOE-ε4 alleles on the measurement of cerebrospinal fluid α-synuclein, biomarker ratios, and restructured traditional regression formulas involving amyloid-β (Aβ42,Aβ40,Aβ38), tau, and phospho-tau Thr181. Overall, 81 participants were included with DLB (n = 27;11 APOE-ε4 +) or AD (n = 27;12 APOE-ε4 +), and controls (n = 27;4 APOE-ε4 +); two thirds were women. Cerebrospinal fluid evidence of amyloidosis and tauopathy was more prevalent among women with AD, while Aβ42/Aβ38 could also discriminate men with DLB from men with AD. Restructured traditional regression formulas had higher diagnostic accuracy for women with AD. Aging, higher body mass index, and APOE-ε4 alleles were associated with amyloidosis in DLB, while only in AD were higher body mass index associated with lower tau pathology load, and more alcohol use associated with higher phospho-tau Thr181/Aβ42. These findings confirm the effects of anthropometric and demographic features on cerebrospinal fluid biomarkers, and also differences in aberrant amyloidosis and tauopathy between DLB and AD.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil.
| | - Marjorie Câmara Miraldo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Eduardo Ferreira de Castro-Neto
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Luiz de Andrade Matas
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Paulo Henrique Ferreira Bertolucci
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Maria da Graça Naffah-Mazzacoratti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| |
Collapse
|
12
|
Ging K, Frick L, Schlachetzki J, Armani A, Zhu Y, Gilormini PA, Dhingra A, Böck D, Marques A, Deen M, Chen X, Serdiuk T, Trevisan C, Sellitto S, Pisano C, Glass CK, Heutink P, Yin JA, Vocadlo DJ, Aguzzi A. Direct and indirect regulation of β-glucocerebrosidase by the transcription factors USF2 and ONECUT2. NPJ Parkinsons Dis 2024; 10:192. [PMID: 39438499 PMCID: PMC11496744 DOI: 10.1038/s41531-024-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in GBA1 encoding the lysosomal enzyme β-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson's disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity. Among these, activation of MITF and TFEC increased lysosomal GCase activity in live cells, while activation of ONECUT2 and USF2 decreased it. While MITF, TFEC, and USF2 affected GBA1 transcription, ONECUT2 might control GCase trafficking. The effects of MITF, TFEC, and USF2 on lysosomal GCase activity were reproducible in iPSC-derived neurons from PD patients. Our study provides a systematic approach to identifying modulators of GCase activity and deepens our understanding of the mechanisms regulating GCase.
Collapse
Affiliation(s)
- Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Johannes Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ana Marques
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Matthew Deen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xi Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tetiana Serdiuk
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Stefano Sellitto
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Claudio Pisano
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Towns C, Fang ZH, Tan MMX, Jasaityte S, Schmaderer TM, Stafford EJ, Pollard M, Tilney R, Hodgson M, Wu L, Labrum R, Hehir J, Polke J, Lange LM, Schapira AHV, Bhatia KP, Singleton AB, Blauwendraat C, Klein C, Houlden H, Wood NW, Jarman PR, Morris HR, Real R. Parkinson's families project: a UK-wide study of early onset and familial Parkinson's disease. NPJ Parkinsons Dis 2024; 10:188. [PMID: 39420034 PMCID: PMC11487259 DOI: 10.1038/s41531-024-00778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
The Parkinson's Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson's disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives. We analysed DNA samples with a combination of single nucleotide polymorphism (SNP) array genotyping, multiplex ligation-dependent probe amplification (MLPA), and whole-genome sequencing (WGS). We investigated the association between identified pathogenic mutations and demographic and clinical factors such as age at motor symptom onset, family history, motor symptoms (MDS-UPDRS) and cognitive performance (MoCA). We performed baseline genetic analysis in 718 families, of which 205 had sporadic early-onset PD (sEOPD), 113 had familial early-onset PD (fEOPD), and 400 had late-onset familial PD (fLOPD). 69 (9.6%) of these families carried pathogenic variants in known monogenic PD-related genes. The rate of a molecular diagnosis increased to 28.1% in PD with motor onset ≤35 years. We identified pathogenic variants in LRRK2 in 4.2% of families, and biallelic pathogenic variants in PRKN in 3.6% of families. We also identified two families with SNCA duplications and three families with a pathogenic repeat expansion in ATXN2, as well as single families with pathogenic variants in VCP, PINK1, PNPLA6, PLA2G6, SPG7, GCH1, and RAB32. An additional 73 (10.2%) families were carriers of at least one pathogenic or risk GBA1 variant. Most early-onset and familial PD cases do not have a known genetic cause, indicating that there are likely to be further monogenic causes for PD.
Collapse
Affiliation(s)
- Clodagh Towns
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Simona Jasaityte
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresa M Schmaderer
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eleanor J Stafford
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Miriam Pollard
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Russel Tilney
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Megan Hodgson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Robyn Labrum
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Jason Hehir
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - James Polke
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul R Jarman
- National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Williams D, Glasstetter LM, Jong TT, Chen T, Kapoor A, Zhu S, Zhu Y, Calvo R, Gehrlein A, Wong K, Hogan AN, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. High-throughput screening for small-molecule stabilizers of misfolded glucocerebrosidase in Gaucher disease and Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2406009121. [PMID: 39388267 PMCID: PMC11494340 DOI: 10.1073/pnas.2406009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and noninhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: The fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 directly visualized GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of small molecules targeting GCase, ultimately leading to a viable therapeutic for GD and PD.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Raul Calvo
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Kimberly Wong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Andrew N. Hogan
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
15
|
Bhosale S, Kandalkar S, Gilormini PA, Akintola O, Rowland R, Adabala PJP, King D, Deen MC, Chen X, Davies GJ, Vocadlo DJ, Bennet AJ. Development of Tunable Mechanism-Based Carbasugar Ligands that Stabilize Glycoside Hydrolases through the Formation of Transient Covalent Intermediates. ACS Catal 2024; 14:14769-14779. [PMID: 39386917 PMCID: PMC11459473 DOI: 10.1021/acscatal.4c04549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Mutations in many members of the set of human lysosomal glycoside hydrolases cause a wide range of lysosomal storage diseases. As a result, much effort has been directed toward identifying pharmacological chaperones of these lysosomal enzymes. The majority of the candidate chaperones are active site-directed competitive iminosugar inhibitors but these have met with limited success. As a first step toward an alternative class of pharmacological chaperones we explored the potential of small molecule mechanism-based reversible covalent inhibitors to form transient enzyme-inhibitor adducts. By serial synthesis and kinetic analysis of candidate molecules, we show that rational tuning of the chemical reactivity of glucose-configured carbasugars delivers cyclohexenyl-based allylic carbasugar that react with the lysosomal enzyme β-glucocerebrosidase (GCase) to form covalent enzyme-adducts with different half-lives. X-ray structural analysis of these compounds bound noncovalently to GCase, along with the structures of the covalent adducts of compounds that reacted with the catalytic nucleophile of GCase, reveal unexpected reactivities of these compounds. Using differential scanning fluorimetry, we show that formation of a transient covalent intermediate stabilizes the folded enzyme against thermal denaturation. In addition, these covalent adducts break down to liberate the active enzyme and a product that is no longer inhibitory. We further show that the one compound, which reacts through an unprecedented SN1'-like mechanism, exhibits exceptional reactivity-illustrated by this compound also covalently labeling an α-glucosidase. We anticipate that such carbasugar-based single turnover covalent ligands may serve as pharmacological chaperones for lysosomal glycoside hydrolases and other disease-associated retaining glycosidases. The unusual reactivity of these molecules should also open the door to creation of new chemical biology probes to explore the biology of this important superfamily of glycoside hydrolases.
Collapse
Affiliation(s)
- Sandeep Bhosale
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Sachin Kandalkar
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Oluwafemi Akintola
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Rhianna Rowland
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Pal John Pal Adabala
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dustin King
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew C. Deen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xi Chen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gideon J. Davies
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - David J. Vocadlo
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Molecular Biology and Biochemistry, Simon
Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J. Bennet
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
16
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
17
|
Carvalho IV, Damas D, Baldeiras I, Almeida MR, Gens H, Santo GC. Creutzfeldt-Jakob disease in a heterozygous GBA mutation carrier: Coincidence or consequence? Neurologia 2024; 39:614-616. [PMID: 39232596 DOI: 10.1016/j.nrleng.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Affiliation(s)
- I V Carvalho
- Neurology Department, Centro Hospitalar e Universitário de Coimbra Praceta Professor Mota Pinto, Coimbra, Portugal.
| | - D Damas
- Neurology Department, Centro Hospitalar e Universitário de Coimbra Praceta Professor Mota Pinto, Coimbra, Portugal
| | - I Baldeiras
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - M R Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - H Gens
- Neurology Department, Centro Hospitalar e Universitário de Coimbra Praceta Professor Mota Pinto, Coimbra, Portugal
| | - G C Santo
- Neurology Department, Centro Hospitalar e Universitário de Coimbra Praceta Professor Mota Pinto, Coimbra, Portugal
| |
Collapse
|
18
|
Massaro G, Geard AF, Nelvagal HR, Gore K, Clemo NK, Waddington SN, Rahim AA. Comparison of different promoters to improve AAV vector-mediated gene therapy for neuronopathic Gaucher disease. Hum Mol Genet 2024; 33:1467-1480. [PMID: 38757200 PMCID: PMC11336133 DOI: 10.1093/hmg/ddae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Gaucher Disease (GD) is an inherited metabolic disorder caused by mutations in the GBA1 gene. It can manifest with severe neurodegeneration and visceral pathology. The most acute neuronopathic form (nGD), for which there are no curative therapeutic options, is characterised by devastating neuropathology and death during infancy. In this study, we investigated the therapeutic benefit of systemically delivered AAV9 vectors expressing the human GBA1 gene at two different doses comparing a neuronal-selective promoter with ubiquitous promoters. Our results highlight the importance of a careful evaluation of the promoter sequence used in gene delivery vectors, suggesting a neuron-targeted therapy leading to high levels of enzymatic activity in the brain but lower GCase expression in the viscera, might be the optimal therapeutic strategy for nGD.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Amy F Geard
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand Medical, School, 7 York Road, Parktown 2193, South Africa
| | - Hemanth R Nelvagal
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Katrina Gore
- Apollo Therapeutics, Stevenage Bioscience Catalyst, 50-60 Station Road, Cambridge, CB1 2JH, United Kingdom
| | - Nadine K Clemo
- Apollo Therapeutics, Stevenage Bioscience Catalyst, 50-60 Station Road, Cambridge, CB1 2JH, United Kingdom
| | - Simon N Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand Medical, School, 7 York Road, Parktown 2193, South Africa
- UCL EGA Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, United Kingdom
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, 29-38 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
19
|
Kamano S, Ozawa D, Ikenaka K, Nagai Y. Role of Lipids in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:8935. [PMID: 39201619 PMCID: PMC11354291 DOI: 10.3390/ijms25168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Collapse
Grants
- 24H00630 Ministry of Education, Culture, Sports, Science and Technology
- 21H02840 Ministry of Education, Culture, Sports, Science and Technology
- 17K19658 Ministry of Education, Culture, Sports, Science and Technology
- 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- JP16ek0109018 Japan Agency for Medical Research and Development
- JP19ek0109222 Japan Agency for Medical Research and Development
- 30-3 National Center of Neurology and Psychiatry
- 30-9 National Center of Neurology and Psychiatry
- 3-9 National Center of Neurology and Psychiatry
- 6-9 National Center of Neurology and Psychiatry
Collapse
Affiliation(s)
- Shumpei Kamano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
- Life Science Research Institute, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
20
|
Castillo-Ribelles L, Arranz-Amo JA, Hernández-Vara J, Samaniego-Toro D, Enriquez-Calzada S, Pozo SLD, Camprodon-Gomez M, Laguna A, Gonzalo MA, Ferrer R, Martinez-Vicente M, Carnicer-Caceres C. Evaluation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Analysis of Glucosylceramide and Galactosylceramide Isoforms in Cerebrospinal Fluid of Parkinson's Disease Patients. Anal Chem 2024; 96:12875-12882. [PMID: 39047057 PMCID: PMC11308999 DOI: 10.1021/acs.analchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson's disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.
Collapse
Affiliation(s)
- Laura Castillo-Ribelles
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Antonio Arranz-Amo
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
| | | | - Silvia Enriquez-Calzada
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Sara Lucas-Del Pozo
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
- Department
of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Maria Camprodon-Gomez
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Unit
of Hereditary Metabolic Disorders, Internal Medicine Department, Vall d’Hebron University Hospital, Barcelona 08035, Spain
| | - Ariadna Laguna
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Mercedes Arrúe Gonzalo
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Roser Ferrer
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Martinez-Vicente
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Clara Carnicer-Caceres
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
21
|
Chen Y, Xie WY, Xia D, Zhang MT, Sun YR, Duan WX, Shen Y, Wang F, Qu WM, Huang ZL, Liu CF. GBA-AAV mitigates sleep disruptions and motor deficits in mice with REM sleep behavior disorder. NPJ Parkinsons Dis 2024; 10:142. [PMID: 39095359 PMCID: PMC11297138 DOI: 10.1038/s41531-024-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Sleep disturbances, including rapid eye movement sleep behavior disorder (RBD), excessive daytime sleepiness, and insomnia, are common non-motor manifestations of Parkinson's disease (PD). Little is known about the underlying mechanisms, partly due to the inability of current rodent models to adequately mimic the human PD sleep phenotype. Clinically, increasing studies have reported that variants of the glucocerebrosidase gene (GBA) increase the risk of PD. Here, we developed a mouse model characterized by sleep-wakefulness by injecting α-synuclein preformed fibronectin (PFF) into the sublaterodorsal tegmental nucleus (SLD) of GBA L444P mutant mice and investigated the role of the GBA L444P variant in the transition from rapid eye movement sleep behavior disorder to PD. Initially, we analyzed spectral correlates of REM and NREM sleep in GBA L444P mutant mice. Importantly, EEG power spectral analysis revealed that GBA L444P mutation mice exhibited reduced delta power during non-rapid eye movement (NREM) sleep and increased theta power (8.2-10 Hz) in active rapid eye movement (REM) sleep phases. Our study revealed that GBA L444P-mutant mice, after receiving PFF injections, exhibited increased sleep fragmentation, significant motor and cognitive dysfunctions, and loss of dopaminergic neurons in the substantia nigra. Furthermore, the over-expression of GBA-AAV partially improved these sleep disturbances and motor and cognitive impairments. In conclusion, we present the initial evidence that the GBA L444P mutant mouse serves as an essential tool in understanding the complex sleep disturbances associated with PD. This model further provides insights into potential therapeutic approaches, particularly concerning α-synuclein accumulation and its subsequent pathological consequences.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei-Ye Xie
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Dong Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Mu-Tian Zhang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yan-Rui Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wen-Xiang Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, Jiangsu, China.
- Department of Neurology, Xiongan Xuanwu Hospital, 071700, Xiongan, China.
| |
Collapse
|
22
|
Klein TL, Bender J, Bolton S, Collin-Histed T, Daher A, De Baere L, Dong D, Hopkin J, Johnson J, Lai T, Pavlou M, Schaller T, Žnidar I. A rare partnership: patient community and industry collaboration to shape the impact of real-world evidence on the rare disease ecosystem. Orphanet J Rare Dis 2024; 19:262. [PMID: 38987844 PMCID: PMC11234558 DOI: 10.1186/s13023-024-03262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
People with rare lysosomal storage diseases face challenges in their care that arise from disease complexity and heterogeneity, compounded by many healthcare professionals being unfamiliar with these diseases. These challenges can result in long diagnostic journeys and inadequate care. Over 30 years ago, the Rare Disease Registries for Gaucher, Fabry, Mucopolysaccharidosis type I and Pompe diseases were established to address knowledge gaps in disease natural history, clinical manifestations of disease and treatment outcomes. Evidence generated from the real-world data collected in these registries supports multiple stakeholders, including patients, healthcare providers, drug developers, researchers and regulators. To maximise the impact of real-world evidence from these registries, engagement and collaboration with the patient communities is essential. To this end, the Rare Disease Registries Patient Council was established in 2019 as a partnership between the Rare Disease Registries and global and local patient advocacy groups to share perspectives on how registry data are used and disseminated. The Patient Council has resulted in a number of patient initiatives including patient representation at Rare Disease Registries advisory boards; development of plain language summaries of registry publications to increase availability of real-world evidence to patient communities; and implementation of digital innovations such as electronic patient-reported outcomes, and patient-facing registry reports and electronic consent (in development), all to enhance patient engagement. The Patient Council is building on the foundations of industry-patient advocacy group collaboration to fully integrate patient communities in decision-making and co-create solutions for the rare disease community.
Collapse
Affiliation(s)
- T L Klein
- National MPS Society, PO Box 14686, Durham, NC, USA.
- International MPS Network, Ottawa, Ontario, Canada.
| | | | - S Bolton
- International Niemann-Pick Disease Registry (INPDR), Newcastle, UK
| | - T Collin-Histed
- International Gaucher Alliance (IGA), London, UK
- Gaucher Registry for Development, Innovation & Analysis of Neuronopathic Disease (GARDIAN), London, UK
| | - A Daher
- Casa Hunter - Brazilian Association of Hunter Disease Patients and Other Rare Diseases, São Paulo, Brazil
| | - L De Baere
- Fabry International Network (FIN), Antwerp, Belgium
| | - D Dong
- Sanofi, Cambridge, MA, USA
| | - J Hopkin
- National Niemann-Pick Disease Foundation (NNPDF), Rochester, NY, USA
| | - J Johnson
- Fabry International Network (FIN), Antwerp, Belgium
- Fabry Support & Information Group (FSIG), Concordia, MO, USA
| | - T Lai
- Hong Kong Mucopolysaccharidoses & Rare Genetic Diseases Mutual Aid Group (HKMPS), Kowloon, Hong Kong
| | - M Pavlou
- Fabry International Network (FIN), Antwerp, Belgium
| | - T Schaller
- International Pompe Association (IPA), Baarn, The Netherlands
- Pompe Deutschland eV, Weingarten (Baden), Germany
| | - I Žnidar
- International Gaucher Alliance (IGA), London, UK
| |
Collapse
|
23
|
Bezrukova AI, Basharova KS, Baydakova GV, Zakharova EY, N Pchelina S, Usenko TS. Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of MTOR Protein Kinase - Assessment of the Prospects of Parkinson's Disease Therapy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1300-1312. [PMID: 39218026 DOI: 10.1134/s0006297924070113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024]
Abstract
To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson's disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.
Collapse
Affiliation(s)
- Anastasia I Bezrukova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Katerina S Basharova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | | | | | - Sofya N Pchelina
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Tatiana S Usenko
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| |
Collapse
|
24
|
Gustavsson EK, Sethi S, Gao Y, Brenton JW, García-Ruiz S, Zhang D, Garza R, Reynolds RH, Evans JR, Chen Z, Grant-Peters M, Macpherson H, Montgomery K, Dore R, Wernick AI, Arber C, Wray S, Gandhi S, Esselborn J, Blauwendraat C, Douse CH, Adami A, Atacho DAM, Kouli A, Quaegebeur A, Barker RA, Englund E, Platt F, Jakobsson J, Wood NW, Houlden H, Saini H, Bento CF, Hardy J, Ryten M. The annotation of GBA1 has been concealed by its protein-coding pseudogene GBAP1. SCIENCE ADVANCES 2024; 10:eadk1296. [PMID: 38924406 PMCID: PMC11204300 DOI: 10.1126/sciadv.adk1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.
Collapse
Affiliation(s)
- Emil K. Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Siddharth Sethi
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Yujing Gao
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Jonathan W. Brenton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sonia García-Ruiz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Regina H. Reynolds
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - James R. Evans
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie Montgomery
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhys Dore
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna I. Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Julian Esselborn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher H. Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Diahann A. M. Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Antonina Kouli
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Annelies Quaegebeur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge, UK
| | - Roger A. Barker
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Frances Platt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Johan Jakobsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Nicholas W. Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Carla F. Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, UCL, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
25
|
Wani WY, Zunke F, Belur NR, Mazzulli JR. The hexosamine biosynthetic pathway rescues lysosomal dysfunction in Parkinson's disease patient iPSC derived midbrain neurons. Nat Commun 2024; 15:5206. [PMID: 38897986 PMCID: PMC11186828 DOI: 10.1038/s41467-024-49256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Disrupted glucose metabolism and protein misfolding are key characteristics of age-related neurodegenerative disorders including Parkinson's disease, however their mechanistic linkage is largely unexplored. The hexosamine biosynthetic pathway utilizes glucose and uridine-5'-triphosphate to generate N-linked glycans required for protein folding in the endoplasmic reticulum. Here we find that Parkinson's patient midbrain cultures accumulate glucose and uridine-5'-triphosphate, while N-glycan synthesis rates are reduced. Impaired glucose flux occurred by selective reduction of the rate-limiting enzyme, GFPT2, through disrupted signaling between the unfolded protein response and the hexosamine pathway. Failure of the unfolded protein response and reduced N-glycosylation caused immature lysosomal hydrolases to misfold and accumulate, while accelerating glucose flux through the hexosamine pathway rescued hydrolase function and reduced pathological α-synuclein. Our data indicate that the hexosamine pathway integrates glucose metabolism with lysosomal activity, and its failure in Parkinson's disease occurs by uncoupling of the unfolded protein response-hexosamine pathway axis. These findings offer new methods to restore proteostasis by hexosamine pathway enhancement.
Collapse
Affiliation(s)
- Willayat Y Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
Szlepák T, Kossev AP, Csabán D, Illés A, Udvari S, Balicza P, Borsos B, Takáts A, Klivényi P, Molnár MJ. GBA-associated Parkinson's disease in Hungary: clinical features and genetic insights. Neurol Sci 2024; 45:2671-2679. [PMID: 38153678 PMCID: PMC11082009 DOI: 10.1007/s10072-023-07213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) has a complex genetic background involving both rare and common genetic variants. Although a small percentage of cases show a clear Mendelian inheritance pattern, it is much more relevant to identify patients who present with a complex genetic profile of risk variants with different severity. The ß-glucocerebrosidase coding gene (GBA1) is recognized as the most frequent genetic risk factor for PD and Lewy body dementia, irrespective of reduction of the enzyme activity due to genetic variants. METHODS In a selected cohort of 190 Hungarian patients with clinical signs of PD and suspected genetic risk, we performed the genetic testing of the GBA1 gene. As other genetic hits can modify clinical features, we also screened for additional rare variants in other neurodegenerative genes and assessed the APOE-ε genotype of the patients. RESULTS In our cohort, we identified 29 GBA1 rare variant (RV) carriers. Out of the six different detected RVs, the highly debated E365K and T408M variants are composed of the majority of them (22 out of 32). Three patients carried two GBA1 variants, and an additional three patients carried rare variants in other neurodegenerative genes (SMPD1, SPG11, and SNCA). We did not observe differences in age at onset or other clinical features of the patients carrying two GBA1 variants or patients carrying heterozygous APOE-ε4 allele. CONCLUSION We need further studies to better understand the drivers of clinical differences in these patients, as this could have important therapeutic implications.
Collapse
Affiliation(s)
- Tamás Szlepák
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- HUN-REN, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| | - Annabel P Kossev
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Dóra Csabán
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Anett Illés
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Szabolcs Udvari
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Péter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- HUN-REN, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| | - Beáta Borsos
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Annamária Takáts
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Mária J Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary.
- HUN-REN, Multiomic Neurodegeneration Research Group, Budapest, Hungary.
| |
Collapse
|
27
|
Brody EM, Seo Y, Suh E, Amari N, Hartstone WG, Skrinak RT, Zhang H, Diaz-Ortiz ME, Weintraub D, Tropea TF, Van Deerlin VM, Chen-Plotkin AS. GPNMB Biomarker Levels in GBA1 Carriers with Lewy Body Disorders. Mov Disord 2024; 39:1065-1070. [PMID: 38610104 PMCID: PMC11209810 DOI: 10.1002/mds.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eliza M. Brody
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yunji Seo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noor Amari
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Whitney G. Hartstone
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - R. Tyler Skrinak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hanwen Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maria E. Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Weintraub
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas F. Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
29
|
Meng Y, Kalia LV, Kalia SK, Hamani C, Huang Y, Hynynen K, Lipsman N, Davidson B. Current Progress in Magnetic Resonance-Guided Focused Ultrasound to Facilitate Drug Delivery across the Blood-Brain Barrier. Pharmaceutics 2024; 16:719. [PMID: 38931843 PMCID: PMC11206305 DOI: 10.3390/pharmaceutics16060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
This review discusses the current progress in the clinical use of magnetic resonance-guided focused ultrasound (MRgFUS) and other ultrasound platforms to transiently permeabilize the blood-brain barrier (BBB) for drug delivery in neurological disorders and neuro-oncology. Safety trials in humans have followed on from extensive pre-clinical studies, demonstrating a reassuring safety profile and paving the way for numerous translational clinical trials in Alzheimer's disease, Parkinson's disease, and primary and metastatic brain tumors. Future directions include improving ultrasound delivery devices, exploring alternative delivery approaches such as nanodroplets, and expanding the application to other neurological conditions.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Lorraine V. Kalia
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), University Health Network, Toronto, ON M5T 1M8, Canada
- KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Clement Hamani
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
30
|
Zhu Y, Cho K, Lacin H, Zhu Y, DiPaola JT, Wilson BA, Patti GJ, Skeath JB. Loss of dihydroceramide desaturase drives neurodegeneration by disrupting endoplasmic reticulum and lipid droplet homeostasis in glial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573836. [PMID: 38260379 PMCID: PMC10802327 DOI: 10.1101/2024.01.01.573836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dihydroceramide desaturases convert dihydroceramides to ceramides, the precursors of all complex sphingolipids. Reduction of DEGS1 dihydroceramide desaturase function causes pediatric neurodegenerative disorder hypomyelinating leukodystrophy-18 (HLD-18). We discovered that infertile crescent (ifc), the Drosophila DEGS1 homolog, is expressed primarily in glial cells to promote CNS development by guarding against neurodegeneration. Loss of ifc causes massive dihydroceramide accumulation and severe morphological defects in cortex glia, including endoplasmic reticulum (ER) expansion, failure of neuronal ensheathment, and lipid droplet depletion. RNAi knockdown of the upstream ceramide synthase schlank in glia of ifc mutants rescues ER expansion, suggesting dihydroceramide accumulation in the ER drives this phenotype. RNAi knockdown of ifc in glia but not neurons drives neuronal cell death, suggesting that ifc function in glia promotes neuronal survival. Our work identifies glia as the primary site of disease progression in HLD-18 and may inform on juvenile forms of ALS, which also feature elevated dihydroceramide levels.
Collapse
Affiliation(s)
- Yuqing Zhu
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Haluk Lacin
- Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yi Zhu
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Jose T DiPaola
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Beth A Wilson
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
32
|
Greenberg J, Astudillo K, Frucht SJ, Flinker A, Riboldi GM. Clinical prediction of GBA carrier status in Parkinson's disease. Clin Park Relat Disord 2024; 10:100251. [PMID: 38645305 PMCID: PMC11031818 DOI: 10.1016/j.prdoa.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Given the unique natural history of GBA-related Parkinson's disease (GBA-PD) and the potential for novel treatments in this population, genetic testing prioritization for the identification of GBA-PD patients is crucial for prognostication, individualizing treatment, and stratification for clinical trials. Assessing the predictive value of certain clinical traits for the GBA-variant carrier status will help target genetic testing in clinical settings where cost and access limit its availability. Methods In-depth clinical characterization through standardized rating scales for motor and non-motor symptoms and self-reported binomial information of a cohort of subjects with PD (n = 100) from our center and from the larger cohort of the Parkinson's Progression Marker Initiative (PPMI) was utilized to evaluate the predictive values of clinical traits for GBA variant carrier status. The model was cross-validated across the two cohorts. Results Leveraging non-motor symptoms of PD, we established successful discrimination of GBA variants in the PPMI cohort and study cohort (AUC 0.897 and 0.738, respectively). The PPMI cohort model successfully generalized to the study cohort data using both MDS-UPDRS scores and binomial data (AUC 0.740 and 0.734, respectively) while the study cohort model did not. Conclusions We assessed the predictive value of non-motor symptoms of PD for identifying GBA carrier status in the general PD population. These data can be used to determine a simple, clinically oriented model using either the MDS-UPDRS or subjective symptom reporting from patients. Our results can inform patient counseling about the expected carrier risk and test prioritization for the expected identification of GBA variants.
Collapse
Affiliation(s)
- Julia Greenberg
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Kelly Astudillo
- Department of Neurology, New York University Langone Health, New York, NY, USA
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Steven J. Frucht
- Department of Neurology, New York University Langone Health, New York, NY, USA
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Adeen Flinker
- Department of Neurology, New York University Langone Health, New York, NY, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Giulietta M. Riboldi
- Department of Neurology, New York University Langone Health, New York, NY, USA
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| |
Collapse
|
33
|
Moors TE, Morella ML, Bertran-Cobo C, Geut H, Udayar V, Timmermans-Huisman E, Ingrassia AMT, Brevé JJP, Bol JGJM, Bonifati V, Jagasia R, van de Berg WDJ. Altered TFEB subcellular localization in nigral neurons of subjects with incidental, sporadic and GBA-related Lewy body diseases. Acta Neuropathol 2024; 147:67. [PMID: 38581586 PMCID: PMC10998821 DOI: 10.1007/s00401-024-02707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/08/2024]
Abstract
Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.
Collapse
Affiliation(s)
- Tim E Moors
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Martino L Morella
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Cesc Bertran-Cobo
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Hanneke Geut
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Vinod Udayar
- Roche Pharma Research and Early Development; Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Evelien Timmermans-Huisman
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Angela M T Ingrassia
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - John J P Brevé
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - John G J M Bol
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ravi Jagasia
- Roche Pharma Research and Early Development; Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Wilma D J van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Williams D, Glasstetter LM, Jong TT, Kapoor A, Zhu S, Zhu Y, Gehrlein A, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. Development of quantitative high-throughput screening assays to identify, validate, and optimize small-molecule stabilizers of misfolded β-glucocerebrosidase with therapeutic potential for Gaucher disease and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586364. [PMID: 38712038 PMCID: PMC11071283 DOI: 10.1101/2024.03.22.586364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sha Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - David J. Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
35
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Takahashi H, Bhagwagar S, Nies SH, Ye H, Han X, Chiasseu MT, Wang G, Mackenzie IR, Strittmatter SM. Reduced progranulin increases tau and α-synuclein inclusions and alters mouse tauopathy phenotypes via glucocerebrosidase. Nat Commun 2024; 15:1434. [PMID: 38365772 PMCID: PMC10873339 DOI: 10.1038/s41467-024-45692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Comorbid proteinopathies are observed in many neurodegenerative disorders including Alzheimer's disease (AD), increase with age, and influence clinical outcomes, yet the mechanisms remain ill-defined. Here, we show that reduction of progranulin (PGRN), a lysosomal protein associated with TDP-43 proteinopathy, also increases tau inclusions, causes concomitant accumulation of α-synuclein and worsens mortality and disinhibited behaviors in tauopathy mice. The increased inclusions paradoxically protect against spatial memory deficit and hippocampal neurodegeneration. PGRN reduction in male tauopathy attenuates activity of β-glucocerebrosidase (GCase), a protein previously associated with synucleinopathy, while increasing glucosylceramide (GlcCer)-positive tau inclusions. In neuronal culture, GCase inhibition enhances tau aggregation induced by AD-tau. Furthermore, purified GlcCer directly promotes tau aggregation in vitro. Neurofibrillary tangles in human tauopathies are also GlcCer-immunoreactive. Thus, in addition to TDP-43, PGRN regulates tau- and synucleinopathies via GCase and GlcCer. A lysosomal PGRN-GCase pathway may be a common therapeutic target for age-related comorbid proteinopathies.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Sanaea Bhagwagar
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah H Nies
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Marius T Chiasseu
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Guilin Wang
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA.
| |
Collapse
|
37
|
Peggion C, Calì T, Brini M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants (Basel) 2024; 13:240. [PMID: 38397838 PMCID: PMC10885966 DOI: 10.3390/antiox13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) encompass an assorted array of disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, each characterised by distinct clinical manifestations and underlying pathological mechanisms. While some cases have a genetic basis, many NDs occur sporadically. Despite their differences, these diseases commonly feature chronic neuroinflammation as a hallmark. Consensus has recently been reached on the possibility that mitochondria dysfunction and protein aggregation can mutually contribute to the activation of neuroinflammatory response and thus to the onset and progression of these disorders. In the present review, we discuss the contribution of mitochondria dysfunction and neuroinflammation to the aetiology and progression of NDs, highlighting the possibility that new potential therapeutic targets can be identified to tackle neurodegenerative processes and alleviate the progression of these pathologies.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Marisa Brini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
38
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
41
|
Sardi SP. Venglustat in GBA1-related Parkinson's disease - Authors' reply. Lancet Neurol 2024; 23:137-138. [PMID: 38267178 DOI: 10.1016/s1474-4422(23)00470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Affiliation(s)
- S Pablo Sardi
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA 02141, USA.
| |
Collapse
|
42
|
Wu Y, Zhong A, Sidharta M, Kim TW, Ramirez B, Persily B, Studer L, Zhou T. A robust and inducible precise genome editing via an all-in-one prime editor in human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576233. [PMID: 38293122 PMCID: PMC10827208 DOI: 10.1101/2024.01.18.576233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small deletions, or insertions at a specific genomic locus, a strategy that shows great promise for creating "Disease in a dish" models. To improve the effectiveness of prime editing in hPSCs, we systematically compared and combined the "inhibition of mismatch repair pathway and p53" on top of the "PEmax" to generate an all-in-one "PE-Plus" prime editor. We show that PE-Plus conducts the most efficient editing among the current PE tools in hPSCs. We further established an inducible prime editing platform in hPSCs by incorporating the all-in-one PE vector into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells. By evaluating disease-associated mutations, we show that this platform allows efficient creation of both monoallelic and biallelic disease-relevant mutations in hPSCs. In addition, this platform enables the efficient introduction of single or multiple edits in one step, demonstrating potential for multiplex editing. Therefore, our method presents an efficient and controllable multiplex prime editing tool in hPSCs and their differentiated progeny.
Collapse
|
43
|
Fonseca T, Macedo MF. Inherited Metabolic Disorders: From Bench to Bedside. Biomedicines 2024; 12:174. [PMID: 38255278 PMCID: PMC10813142 DOI: 10.3390/biomedicines12010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Inherited metabolic disorders (IMDs), commonly referred to as inborn errors of metabolism, represent a spectrum of disorders with a defined (or presumed) primary genetic cause which disrupts the normal metabolism of essential molecules in the body [...].
Collapse
Affiliation(s)
- Tiago Fonseca
- Faculdade de Medicina, Universidade de Coimbra, 3000-548 Coimbra, Portugal;
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - M. Fátima Macedo
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Departamento de Ciências Médicas, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
44
|
Chauhan P, Pandey P, Khan F, Maqsood R. Insights on the Correlation between Mitochondrial Dysfunction and the Progression of Parkinson's Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1007-1014. [PMID: 37867265 DOI: 10.2174/0118715303249690231006114308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
The aetiology of a progressive neuronal Parkinson's disease has been discussed in several studies. However, due to the multiple risk factors involved in its development, such as environmental toxicity, parental inheritance, misfolding of protein, ageing, generation of reactive oxygen species, degradation of dopaminergic neurons, formation of neurotoxins, mitochondria dysfunction, and genetic mutations, its mechanism of involvement is still discernible. Therefore, this study aimed to review the processes or systems that are crucially implicated in the conversion of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) into its lethal form, which directly blockades the performance of mitochondria, leading to the formation of oxidative stress in the dopaminergic neurons of substantia nigra pars compacta (SNpc) and resulting in the progression of an incurable Parkinson's disease. This review also comprises an overview of the mutated genes that are frequently associated with mitochondrial dysfunction and the progression of Parkinson's disease. Altogether, this review would help future researchers to develop an efficient therapeutic approach for the management of Parkinson's disease via identifying potent prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Ramish Maqsood
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| |
Collapse
|
45
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Usenko T, Bezrukova A, Basharova K, Baydakova G, Shagimardanova E, Blatt N, Rizvanov A, Limankin O, Novitskiy M, Shnayder N, Izyumchenko A, Nikolaev M, Zabotina A, Lavrinova A, Kulabukhova D, Nasyrova R, Palchikova E, Zalutskaya N, Miliukhina I, Barbitoff Y, Glotov O, Glotov A, Taraskina A, Neznanov N, Zakharova E, Pchelina S. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites 2023; 14:30. [PMID: 38248833 PMCID: PMC10819534 DOI: 10.3390/metabo14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Recent data described that patients with lysosomal storage disorders (LSDs) may have clinical schizophrenia (SCZ) features. Disruption of lipid metabolism in SCZ pathogenesis was found. Clinical features of schizophrenia (SCZ) have been demonstrated in patients with several lysosomal storage disorders (LSDs). Taking into account the critical role of lysosomal function for neuronal cells' lysosomal dysfunction could be proposed in SCZ pathogenesis. The current study analyzed lysosomal enzyme activities and the alpha-synuclein level in the blood of patients with late-onset SCZ. In total, 52 SCZ patients with late-onset SCZ, 180 sporadic Parkinson's disease (sPD) patients, and 176 controls were recruited. The enzymatic activity of enzymes associated with mucopolysaccharidosis (alpha-L-Iduronidase (IDUA)), glycogenosis (acid alpha-glucosidase (GAA)) and sphingolipidosis (galactosylceramidase (GALC), glucocerebrosidase (GCase), alpha-galactosidase (GLA), acid sphingomyelinase (ASMase)) and concentration of lysosphingolipids (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), and lysosphingomyelin (LysoSM)) were measured using LC-MS/MS. The alpha-synuclein level was estimated in magnetically separated CD45+ blood cells using the enzyme-linked immunosorbent assay (ELISA). Additionally, NGS analysis of 11 LSDs genes was conducted in 21 early-onset SCZ patients and 23 controls using the gene panel PGRNseq-NDD. Decreased ASMase, increased GLA activities, and increased HexSpn, LysoGb3, and LysoSM concentrations along with an accumulation of the alpha-synuclein level were observed in late-onset SCZ patients in comparison to the controls (p < 0.05). Four rare deleterious variants among LSDs genes causing mucopolysaccharidosis type I (IDUA (rs532731688, rs74385837) and type III (HGSNAT (rs766835582)) and sphingolipidosis (metachromatic leukodystrophy (ARSA (rs201251634)) were identified in five patients from the group of early-onset SCZ patients but not in the controls. Our findings supported the role of sphingolipid metabolism in SCZ pathogenesis. Aberrant enzyme activities and compounds of sphingolipids associated with ceramide metabolism may lead to accumulation of alpha-synuclein and may be critical in SCZ pathogenesis.
Collapse
Affiliation(s)
- Tatiana Usenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anastasia Bezrukova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Galina Baydakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Research Center for Medical Genetics, 115478 Moscow, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Oleg Limankin
- Psychiatric Hospital No. 1 Named after P. P. Kashchenko, 195009 Saint Petersburg, Russia;
- North-Western Medical University Named after P. I.I. Mechnikov of the Ministry of Health of the Russian Federation, 191015 Saint Petersburg, Russia
| | - Maxim Novitskiy
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Natalia Shnayder
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Artem Izyumchenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Mikhail Nikolaev
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Zabotina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Lavrinova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Darya Kulabukhova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Regina Nasyrova
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Ekaterina Palchikova
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Natalia Zalutskaya
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Irina Miliukhina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Institute of the Human Brain of RAS, 197022 Saint Petersburg, Russia
| | - Yury Barbitoff
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Bioinformatics Institute, 197342 Saint Petersburg, Russia
| | - Oleg Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Pediatric Research and Clinical Center of Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- School of Medicine, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Taraskina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Nikolai Neznanov
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | | | - Sofya Pchelina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| |
Collapse
|
47
|
Yarkova ES, Grigor’eva EV, Medvedev SP, Pavlova SV, Zakian SM, Malakhova AA. IPSC-Derived Astrocytes Contribute to In Vitro Modeling of Parkinson's Disease Caused by the GBA1 N370S Mutation. Int J Mol Sci 2023; 25:327. [PMID: 38203497 PMCID: PMC10779194 DOI: 10.3390/ijms25010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that ranks second in prevalence after Alzheimer's disease. The number of PD diagnoses increases annually. Nevertheless, modern PD treatments merely mitigate symptoms rather than preventing neurodegeneration progression. The creation of an appropriate model to thoroughly study the mechanisms of PD pathogenesis remains a current challenge in biomedicine. Recently, there has been an increase in data regarding the involvement of not only dopaminergic neurons of the substantia nigra but also astrocytes in the pathogenesis of PD. Cell models based on induced pluripotent stem cells (iPSCs) and their differentiated derivatives are a useful tool for studying the contribution and interaction of these two cell types in PD. Here, we generated two iPSC lines, ICGi034-B and ICGi034-C, by reprogramming peripheral blood mononuclear cells of a patient with a heterozygous mutation c.1226A>G (p.N370S) in the GBA1 gene by non-integrating episomal vectors encoding OCT4, KLF4, L-MYC, SOX2, LIN28, and mp53DD. The iPSC lines demonstrate the expression of pluripotency markers and are capable of differentiating into three germ layers. We differentiated the ICGi034-B and ICGi034-C iPSC lines into astrocytes. This resulting cell model can be used to study the involvement of astrocytes in the pathogenesis of GBA-associated PD.
Collapse
Affiliation(s)
- Elena S. Yarkova
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
| |
Collapse
|
48
|
Rosety I, Zagare A, Saraiva C, Nickels S, Antony P, Almeida C, Glaab E, Halder R, Velychko S, Rauen T, Schöler HR, Bolognin S, Sauter T, Jarazo J, Krüger R, Schwamborn JC. Impaired neuron differentiation in GBA-associated Parkinson's disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis 2023; 9:166. [PMID: 38110400 PMCID: PMC10728202 DOI: 10.1038/s41531-023-00616-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.
Collapse
Affiliation(s)
- Isabel Rosety
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Nickels
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Thomas Rauen
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversial Translational Medicine, Luxembourg Institute of Health (LIH), 1 A-B rue Thomas Ediison, L-1445, Strassen, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
49
|
Pal G, Corcos DM, Metman LV, Israel Z, Bergman H, Arkadir D. Cognitive Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease with GBA1 Pathogenic Variants. Mov Disord 2023; 38:2155-2162. [PMID: 37916476 PMCID: PMC10990226 DOI: 10.1002/mds.29647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
| | - Leo Verhagen Metman
- Parkinson’s Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zvi Israel
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel–Canada (IMRIC), The Hebrew University–Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - David Arkadir
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
50
|
Colucci F, Avenali M, De Micco R, Fusar Poli M, Cerri S, Stanziano M, Bacila A, Cuconato G, Franco V, Franciotta D, Ghezzi C, Gastaldi M, Elia AE, Romito L, Devigili G, Leta V, Garavaglia B, Golfrè Andreasi N, Cazzaniga F, Reale C, Galandra C, Germani G, Mitrotti P, Ongari G, Palmieri I, Picascia M, Pichiecchio A, Verri M, Esposito F, Cirillo M, Di Nardo F, Aloisio S, Siciliano M, Prioni S, Amami P, Piacentini S, Bruzzone MG, Grisoli M, Moda F, Eleopra R, Tessitore A, Valente EM, Cilia R. Ambroxol as a disease-modifying treatment to reduce the risk of cognitive impairment in GBA-associated Parkinson's disease: a multicentre, randomised, double-blind, placebo-controlled, phase II trial. The AMBITIOUS study protocol. BMJ Neurol Open 2023; 5:e000535. [PMID: 38027469 PMCID: PMC10679992 DOI: 10.1136/bmjno-2023-000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme β-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). GBA-related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF). Methods and analysis In this multicentre, double-blind, placebo-controlled, phase II clinical trial, we randomise patients with GBA-PD in a 1:1 ratio to either oral ABX 1.2 g/day or placebo. The duration of treatment is 52 weeks. Each participant is assessed at baseline and weeks 12, 26, 38, 52 and 78. Changes in the Montreal Cognitive Assessment score and the frequency of mild cognitive impairment and dementia between baseline and weeks 52 are the primary outcome measures. Secondary outcome measures include changes in validated scales/questionnaires assessing motor and non-motor symptoms. Neuroimaging features and CSF neurodegeneration markers are used as surrogate markers of disease progression. GCase activity, ABX and α-synuclein levels are also analysed in blood and CSF. A repeated-measures analysis of variance will be used for elaborating results. The primary analysis will be by intention to treat. Ethics and dissemination The study and protocols have been approved by the ethics committee of centres. The study is conducted according to good clinical practice and the Declaration of Helsinki. The trial findings will be published in peer-reviewed journals and presented at conferences. Trial registration numbers NCT05287503, EudraCT 2021-004565-13.
Collapse
Affiliation(s)
- Fabiana Colucci
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Rosita De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fusar Poli
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | | | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Franco
- IRCCS Mondino Foundation, Pavia, Italy
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | - Antonio Emanuele Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luigi Romito
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Grazia Devigili
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valentina Leta
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Parkinson's Centre of Excellence, King's College London, London, UK
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nico Golfrè Andreasi
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Federico Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Chiara Reale
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | | | | | | | | | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mattia Verri
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simone Aloisio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Sara Prioni
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Amami
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sylvie Piacentini
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Roberto Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|