1
|
Marengo N, Pecoraro F, Lo Bue E, Colonna S, Panico F, Morello A, Ajello M, Zenga F, Garbossa D, Cofano F. Enabling Technology with Minimally Invasive Strategies: Robot-Assisted Cortical Bone Trajectory Screw Fixation in Lateral Transpsoas Interbody Fusion. World Neurosurg 2025; 197:123890. [PMID: 40086725 DOI: 10.1016/j.wneu.2025.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Robot-assisted cortical bone trajectory (CBT) screw placement is safer than the traditional fluoroscopy-assisted approach. This technical note reports a novel technique of robot-assisted CBT screw placement using a subfascial transmuscular approach. METHODS This technique involves two stages: first, the positioning of a lumbar interbody cage through a lateral transpsoas approach, and then, the robot-assisted placement of CBT screws. The second step is performed with the patient in prone position with navigation frames (ICT, DRB, and surveillance-marker) registered to the robotic system. A three-dimensional fluoroscopic scan is used to plan the screw trajectory, diameter, and length. The screws are placed with the support of a robotic arm. RESULTS The technique allows for accurate and precise placement of CBT screws with minimal soft tissue dissection. Compared to traditional methods, the single-lateral position approach reduces intraoperative time and minimizes postoperative pain and recovery time. The percutaneous transmuscular approach avoids the need for fascial dissection, decreasing the risk of complications such as seroma or hematoma formation. CONCLUSIONS To our knowledge, this is the first reported technical note about robot-assisted transmuscular CBT screw placement for posterior fixation in LLIF. The proposed surgical technique aims to combine the advantages of CBT screws and the use of innovative robot-assisted technology.
Collapse
Affiliation(s)
- Nicola Marengo
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Federico Pecoraro
- Spine Surgery Unit, Humanitas-Cliniche Gavezzani, Bergamo (BG), Italy
| | - Enrico Lo Bue
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy.
| | - Stefano Colonna
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Flavio Panico
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Alberto Morello
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Marco Ajello
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Francesco Zenga
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini", "Città della Salute e della Scienza" University Hospital, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Garufi G, Conti A, Collufio D, Messineo F, Morabito A, Ricciardo G, Cardali S. The Early Clinical and Radiographic Outcomes of Robotic-Assisted Midline Lumbar Interbody Fusion (MIDLIF) With Expandable Interbody Spacers: A Case Series. Cureus 2025; 17:e82802. [PMID: 40406778 PMCID: PMC12097802 DOI: 10.7759/cureus.82802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
OBJECTIVE To assess the early clinical and radiological outcomes of the midline lumbar interbody fusion (MIDLIF) approach with the use of robotic assistance and expandable spacers. METHODS A retrospective case series was performed on patients who underwent MIDLIF procedures for the treatment of degenerative spinal diseases, with a minimum of three months postoperative follow-up. Demographic (age, gender, body mass index [BMI], comorbidities, and diagnoses), surgical data (operative time, blood loss, hospital stay, intraoperative complications), patient-reported outcomes (PROs) (visual analogue scale [VAS] back pain and disability (Oswestry disability index [ODI]), and radiographic data were collected. RESULTS In total, 42 patients were included, with an average age of 53.6 years and a BMI of 28 kg/m². Surgical data showed the mean total operative time was 98.8 minutes, and the mean blood loss was 17.1 mL with no intraoperative complications. At three-month follow-up, all mean PROs showed statistically significant improvement (p<0.05) when compared with baseline. VAS back pain improved from 7.5 (standard deviation (stdev) 7.5±0.7) preoperatively to 3.0 (stdev 1.0) at three months postoperative, while ODI improved from 58.7 (stdev 7.2) to 26.3 (stdev 10.3) at the same time points. Radiographic data showed that using robotic assistance for planning and placing cortical screws yielded high accuracy, as evidenced by a mean tip deviation of 1.2 mm (stdev 0.6 mm), mean tail deviation of 1.1 mm (stdev 0.4 mm) and a mean angular offset of 1.4 mm (stdev 0.7). Two (4.8%) patients had postoperative complications at three-month follow-up, including a wound infection and one report of wound dehiscence. CONCLUSION MIDLIF is an efficient, reproducible surgical procedure with a low complication rate that resulted in significant improvements in early PROs. Robotic assistance for planning and placing cortical screws in MIDLIF was highly accurate. These initial findings suggest that using robotic assistance adds value to MIDLIF procedures and is a viable alternative to traditional posterior fusion procedures.
Collapse
Affiliation(s)
- Giada Garufi
- Neurosurgery, Papardo Hospital, University of Messina, Messina, ITA
| | | | | | | | | | | | | |
Collapse
|
3
|
Samprón N, Lafuente J, Presa-Alonso J, Ivanov M, Hartl R, Ringel F. Advancing spine surgery: Evaluating the potential for full robotic automation. BRAIN & SPINE 2025; 5:104232. [PMID: 40191588 PMCID: PMC11968298 DOI: 10.1016/j.bas.2025.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/09/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Introduction The use of robotic systems in spine surgery is expanding, with growing interest in the potential for full automation. This review explores current robotic technologies, their limitations, and future automation possibilities, focusing on technical and practical aspects. Research question What are the current capabilities and limitations of robotic systems in spine surgery, and how might advancements in tracking technologies facilitate a transition toward greater automation? Material and methods A narrative review of literature on robotic spine surgery systems was conducted, analyzing benefits, accuracy, limitations, and innovations necessary for full automation. Focus was placed on trajectory-guiding technologies, such as optical tracking and alternative tracking methods. Results Current robotic systems (e.g., Cirq®, Mazor X™, ExcelsiusGPS™) assist in trajectory guidance but lack autonomy. Optical tracking systems present challenges, such as obstruction vulnerability and inaccuracies in complex constructs. Conversely, encoder-based tracking demonstrated superior accuracy, offering a promising pathway toward increased automation. The potential advantages of robotics over conventional navigation, including their nature and clinical relevance, remain a topic of active discussion. However, the inherent complexity of spine surgery and the critical role of human decision-making remain substantial barriers. Discussion and conclusion While full automation in robotic spine surgery is not yet attainable, advancements in tracking technologies point to a future of enhanced robot-surgeon collaboration, which could optimize clinical outcomes and improve procedural safety.
Collapse
Affiliation(s)
- Nicolás Samprón
- Department of Neurosurgery, Hospital Universitario Donostia, San Sebastian, Spain
| | - Jesus Lafuente
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
| | | | - Marcel Ivanov
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield, UK
| | - Roger Hartl
- Department of Neurological Surgery, Och Spine at New York Presbyterian Hospital, Weill Cornell Medicine, New York, USA
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center, Mainz, Germany
| |
Collapse
|
4
|
Al-Naseem AO, Al-Muhannadi A, Ramadhan M, Alfadhli A, Marwan Y, Shafafy R, Abd-El-Barr MM. Robot-assisted pedicle screw insertion versus navigation-based and freehand techniques for posterior spinal fusion in scoliosis: a systematic review and meta-analysis. Spine Deform 2024; 12:1203-1215. [PMID: 38619784 PMCID: PMC11343815 DOI: 10.1007/s43390-024-00879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE The role of robotics in spine surgery remains controversial, especially for scoliosis correction surgery. This study aims to assess the safety and efficacy of robotic-assisted (RA) surgery specifically for scoliosis surgery by comparing RA to both navigation systems (NS) and conventional freehand techniques (CF). METHODS As per the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, a systematic review and meta-analysis were conducted via an electronic search of the following databases: MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL). All papers comparing RA to either NS or CF for posterior spinal fusion in scoliosis were included. Fixed and random effects models of analysis were utilised based on analysis heterogeneity. RESULTS 10 observational studies were included in total. RA had significantly greater odds of accurate pedicle screw placement relative to both NS (OR = 2.02, CI = 1.52-2.67, p < 0.00001) and CF (OR = 3.06, CI = 1.79-5.23, p < 0.00001). The downside of RA was the significantly greater operation duration relative to NS (MD = 10.74, CI = 3.52-17.97, p = 0.004) and CF (MD = 40.27, CI = 20.90, p < 0.0001). Perioperative outcomes including estimated blood loss, radiation exposure, length of hospital stay, cobb angle correction rate, postoperative SRS score, VAS pain score, JOA score, as well as rates of neurological injury and revision surgery, were comparable between the groups (p > 0.05). CONCLUSION RA offers significantly greater pedicle screw placement accuracy relative to NS and CF, however, surgery can take longer. In terms of perioperative outcomes, all three techniques are comparable.
Collapse
Affiliation(s)
| | | | | | | | - Yousef Marwan
- Department of Surgery, College of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait.
| | - Roozbeh Shafafy
- Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Spinal Surgery, Royal National Orthopaedic Hospital NHS Foundation Trust, Stanmore, UK.
| | - Muhammad M Abd-El-Barr
- Department of Neurosurgery, Division of Spine, Duke University Medical Centre, Durham, USA.
| |
Collapse
|
5
|
Zheng J, Wu Y, Guo C, Fang X, Ding T. Efficacy and Safety of Cortical Bone Trajectory Screws versus Pedicle Screws in Lumbar Fusion: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 188:e233-e246. [PMID: 38777322 DOI: 10.1016/j.wneu.2024.05.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE A systematic review and meta-analysis was conducted to compare the efficacy and safety of cortical bone trajectory (CBT) screws and traditional pedicle screws in lumbar fusion. METHODS Randomized controlled studies and cohort studies on CBT versus pedicle screws in lumbar fusion were searched in China Biology Medicine, China National Knowledge Infrastructure, Wanfang, VIP Database for Chinese Technical and Science Periodicals, PubMed, Cochrane Library, and Web of Science databases. The search period spanned from the establishment of the databases to December 2023. The Cochrane bias risk assessment tool and Newcastle-Ottawa scale were applied to assess the quality of the literature included. Clinical and imaging data as well as surgical outcomes, recovery, and postoperative complications were extracted from the relevant literature. RESULTS A total of 6 randomized controlled trials and 26 cohort studies were included after screening by inclusion and exclusion criteria with a total of 2478 patients. The meta-analysis demonstrated significant discrepancies between the CBT and TPS groups in Japanese Orthopaedic Association score at 3 and 6 months and final follow-up. Moreover, the TPS group exhibited a higher Oswestry disability index at final follow-up, a greater VAS for low back pain at both 1 week and final follow-up, as well as a higher VAS for leg pain at 1 month. Differences were also noted in surgical and recovery outcomes. However, there was no significant difference between the 2 groups in postoperative complications. CONCLUSIONS CBT and TPS have analogous safety profiles when applied to lumbar fusion, but the clinical efficacy of CBT is superior to that of TPS to some extent, and the procedure is less invasive with faster recovery.
Collapse
Affiliation(s)
- Jianqing Zheng
- Department of Orthopaedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yue Wu
- Department of Orthopaedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chunliang Guo
- Department of Orthopaedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiule Fang
- Department of Orthopaedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Tao Ding
- Department of Orthopaedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Hess S, Husarek J, Müller M, Eberlein SC, Klenke FM, Hecker A. Applications and accuracy of 3D-printed surgical guides in traumatology and orthopaedic surgery: A systematic review and meta-analysis. J Exp Orthop 2024; 11:e12096. [PMID: 39135870 PMCID: PMC11317891 DOI: 10.1002/jeo2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Background Patient-Specific Surgical Guides (PSSGs) are advocated for reducing radiation exposure, operation time and enhancing precision in surgery. However, existing accuracy assessments are limited to specific surgeries, leaving uncertainties about variations in accuracy across different anatomical sites, three-dimensional (3D) printing technologies and manufacturers (traditional vs. printed at the point of care). This study aimed to evaluate PSSGs accuracy in traumatology and orthopaedic surgery, considering anatomical regions, printing methods and manufacturers. Methods A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Studies were eligible if they (1) assessed the accuracy of PSSGs by comparing preoperative planning and postoperative results in at least two different planes (2) used either computer tomography or magnetic resonance imaging (3) covered the field of orthopaedic surgery or traumatology and (4) were available in English or German language. The 'Quality Assessment Tool for Quantitative Studies' was used for methodological quality assessment. Descriptive statistics, including mean, standard deviation, and ranges, are presented. A random effects meta-analysis was performed to determine the pooled mean absolute deviation between preoperative plan and postoperative result for each anatomic region (shoulder, hip, spine, and knee). Results Of 4212 initially eligible studies, 33 were included in the final analysis (8 for shoulder, 5 for hip, 5 for spine, 14 for knee and 1 for trauma). Pooled mean deviation (95% confidence interval) for total knee arthroplasty (TKA), total shoulder arthroplasty (TSA), total hip arthroplasty (THA) and spine surgery (pedicle screw placement during spondylodesis) were 1.82° (1.48, 2.15), 2.52° (1.9, 3.13), 3.49° (3.04, 3.93) and 2.67° (1.64, 3.69), respectively. Accuracy varied between TKA and THA and between TKA and TSA. Conclusion Accuracy of PSSGs depends on the type of surgery but averages around 2-3° deviation from the plan. The use of PSSGs might be considered for selected complex cases. Level of Evidence Level 3 (meta-analysis including Level 3 studies).
Collapse
Affiliation(s)
- Silvan Hess
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Julius Husarek
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Faculty of MedicineUniversity of BernBernSwitzerland
- Faculty of MedicineMedical University of SofiaSofiaBulgaria
| | - Martin Müller
- Department of Emergency Medicine, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Sophie C. Eberlein
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Frank M. Klenke
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Andreas Hecker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
7
|
Yuan S, Chen R, Zang L, Wang A, Fan N, Du P, Xi Y, Wang T. Development of a software system for surgical robots based on multimodal image fusion: study protocol. Front Surg 2024; 11:1389244. [PMID: 38903864 PMCID: PMC11187239 DOI: 10.3389/fsurg.2024.1389244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Background Surgical robots are gaining increasing popularity because of their capability to improve the precision of pedicle screw placement. However, current surgical robots rely on unimodal computed tomography (CT) images as baseline images, limiting their visualization to vertebral bone structures and excluding soft tissue structures such as intervertebral discs and nerves. This inherent limitation significantly restricts the applicability of surgical robots. To address this issue and further enhance the safety and accuracy of robot-assisted pedicle screw placement, this study will develop a software system for surgical robots based on multimodal image fusion. Such a system can extend the application range of surgical robots, such as surgical channel establishment, nerve decompression, and other related operations. Methods Initially, imaging data of the patients included in the study are collected. Professional workstations are employed to establish, train, validate, and optimize algorithms for vertebral bone segmentation in CT and magnetic resonance (MR) images, intervertebral disc segmentation in MR images, nerve segmentation in MR images, and registration fusion of CT and MR images. Subsequently, a spine application model containing independent modules for vertebrae, intervertebral discs, and nerves is constructed, and a software system for surgical robots based on multimodal image fusion is designed. Finally, the software system is clinically validated. Discussion We will develop a software system based on multimodal image fusion for surgical robots, which can be applied to surgical access establishment, nerve decompression, and other operations not only for robot-assisted nail placement. The development of this software system is important. First, it can improve the accuracy of pedicle screw placement, percutaneous vertebroplasty, percutaneous kyphoplasty, and other surgeries. Second, it can reduce the number of fluoroscopies, shorten the operation time, and reduce surgical complications. In addition, it would be helpful to expand the application range of surgical robots by providing key imaging data for surgical robots to realize surgical channel establishment, nerve decompression, and other operations.
Collapse
Affiliation(s)
| | | | - Lei Zang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
8
|
Matsukawa K, Kaito T, Abe Y. Comparison of Safety and Perioperative Outcomes Between Patient-specific Template-Guided and Fluoroscopic-Assisted Freehand Lumbar Screw Placement Using Cortical Bone Trajectory Technique. Global Spine J 2024; 14:1464-1471. [PMID: 36448992 PMCID: PMC11394518 DOI: 10.1177/21925682221143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
STUDY DESIGN Non-randomized prospective controlled study. OBJECTIVES To compare the safety and perioperative outcomes between patient-specific template-guided and fluoroscopic-assisted freehand techniques in transforaminal lumbar interbody fusion (TLIF) using cortical bone trajectory (CBT). METHODS The subjects consisted of 94 consecutive patients who underwent single-level TLIF using CBT. The standard trajectory was set so as to start from the pars interarticularis, pass the inferior border of the pedicle, and end around the middle of the vertebral endplate. Template guide technique was performed in 66 patients (Guide group), and fluoroscopic-assisted freehand technique was performed in 28 patients (Freehand group). Intraoperative parameters, screw placement accuracy, and complications were compared between the two techniques. RESULTS The Guide group had significantly shorter operative and radiation exposure times than the Freehand group (operative time 84.6 ± 16.7 vs 93.0 ± 15.0 minutes; P = .023, radiation exposure time 7.0 ± 6.0 vs 20.4 ± 11.8 seconds; P < .001, respectively). The screw diameter and the screw insertion depth in the vertebra in the Guide group were significantly greater than those in the Freehand group. The degree and incidence of facet joint violation were comparable between the two groups, while the accuracy of screw placement was significantly different, with no perforation rate of 97.7% in the Guide group vs 82.1% in the Freehand group (P < .001). No significant difference was found in the rate of clinically relevant complications between the two groups. CONCLUSIONS The template-guided technique provided a safe and highly accurate option for CBT screw placement.
Collapse
Affiliation(s)
- Keitaro Matsukawa
- Department of Orthopaedic Surgery, National Hospital Organization, Murayama Medical Center, Musashimurayama, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Abe
- Department of Orthopaedic Surgery, Wajokai Eniwa Hospital, Eniwa, Japan
| |
Collapse
|
9
|
Nagata K, Glassman SD, Brown ME, Daniels CL, Schmidt GO, Carreon LY, Hines B, Gum JL. Risk Factors of Screw Malposition in Robot-Assisted Cortical Bone Trajectory: Analysis of 1344 Consecutive Screws in 256 Patients. Spine (Phila Pa 1976) 2024; 49:780-787. [PMID: 37767783 DOI: 10.1097/brs.0000000000004827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
STUDY DESIGN Retrospective single-center study using prospectively collected data. OBJECTIVE To describe the incidence of and identify risk factors for intraoperative screw malposition secondary to skive or shift during robot-assisted cortical bone trajectory (RA-CBT) insertion. SUMMARY OF BACKGROUND DATA RA-CBT screw malposition occurs through 2 distinct modes, skive or shift. Skive occurs when a downward force applied to the cannula, drill, tap, or screw, causes the instrument to deflect relative to its bony landmark. Shift is a change in the position of the RA system relative to the patient after registration. PATIENTS AND METHODS A consecutive series of patients older than 18 years who underwent RA-CBT screw placement between January 2019 and July 2022 were enrolled. Baseline demographic and surgical data, Hounsfield Units (HUs) at L1, and vertebral shape related to screw planning were collected. Skive or shift was recorded in the operating room on a data collection form. RESULTS Of 1344 CBT screws in 256 patients, malposition was recognized intraoperatively in 33 screws (2.4%) in 27 patients (10.5%); 19 through skive in 17 and 14 through shift in 10 patients. These patients had higher body mass index than patients without malposition (33.0 vs. 30.5 kg/m 2 , P = 0.037). Patients with skive had higher HU (178.2 vs . 145.2, P = 0.035), compared with patients with shift (139.2 vs . 145.2, P = 0.935) and patients without screw malposition. More than half of the screw malposition was observed at the upper instrumented vertebra. At the upper instrumented vertebra, if the screw's overlap to the bone surface at the insertion point was decreased, skive was more likely (57% vs . 87%, P < 0.001). No patients were returned to the operating room for screw revision. CONCLUSIONS Intraoperative screw malposition occurred in 2.4% of RA-CBT. High body mass index was associated with screw malposition, regardless of etiology. Skive was associated with high HU and decreased screw overlap to the bone surface at the insertion point.
Collapse
Affiliation(s)
- Kosei Nagata
- Department of Orthopedic Surgery, University of Louisville School of Medicine, Louisville, KY
- Norton Leatherman Spine Center, Louisville, KY
| | - Steven D Glassman
- Department of Orthopedic Surgery, University of Louisville School of Medicine, Louisville, KY
- Norton Leatherman Spine Center, Louisville, KY
| | | | | | | | | | - Bren Hines
- Norton Leatherman Spine Center, Louisville, KY
| | | |
Collapse
|
10
|
Nagata K, Gum JL, Brown M, Daniels C, Hines B, Carreon LY, Glassman SD. Risk Factors for Medial Breach During Robotic-Assisted Cortical Bone Trajectory Screw Insertion. World Neurosurg 2024; 184:e546-e553. [PMID: 38320649 DOI: 10.1016/j.wneu.2024.01.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVE We describe the incidence of, and identify the risk factors for, a medial breach of the pedicle wall during robotic-assisted cortical bone trajectory (RA-CBT) screw insertion. METHODS We analyzed a consecutive series of adult patients who underwent RA-CBT screw placement from January 2019 to July 2022. To assess the pedicle wall medial breach, postoperative computed tomography (CT) images were analyzed. Patient demographic data and screw data were compared between patients with and without a medial breach. The Hounsfield units (HUs) on the L1 midvertebral axial CT scan was used to evaluate bone quality. RESULTS Of 784 CBT screws in 145 patients, 30 (3.8%) had a medial breach in 23 patients (15.9%). One screw was grade 2, and the others were grade 1. Patients with a medial breach had a lower HU value compared with the patients without a medial breach (123.3 vs. 150.5; P = 0.027). A medial breach was more common in the right than left side (5.5% vs. 2.0%; P = 0.014). More than one half of the screws with a medial breach were found in the upper instrumented vertebra (UIV) compared with the middle construct or lowest instrumented vertebra (6.7% vs. 1.3% vs. 2.7%; P = 0.003). Binary logistic regression showed that low HU values, right-sided screw placement, and UIV were associated with a medial breach. No patients returned to the operating room for screw malposition. No differences were found in the clinical outcomes between patients with and without a medial breach. CONCLUSIONS The incidence of pedicle wall medial breach was 3.8% of RA-CBT screws in the postoperative CT images. A low HU value measured in the L1 axial image, right-sided screw placement, and UIV were associated with an increased risk of medial breach for RA-CBT screw placement.
Collapse
Affiliation(s)
- Kosei Nagata
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA; Norton Leatherman Spine Center, Louisville, Kentucky, USA
| | - Jeffrey L Gum
- Norton Leatherman Spine Center, Louisville, Kentucky, USA
| | - Morgan Brown
- Norton Leatherman Spine Center, Louisville, Kentucky, USA
| | | | - Bren Hines
- Norton Leatherman Spine Center, Louisville, Kentucky, USA
| | - Leah Y Carreon
- Norton Leatherman Spine Center, Louisville, Kentucky, USA.
| | - Steven D Glassman
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA; Norton Leatherman Spine Center, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Wang X, Li HX, Zhu QS, Zhu YH. Effectiveness and safety of robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in spinal surgery: a systematic review and meta-analysis. J Robot Surg 2024; 18:78. [PMID: 38358573 DOI: 10.1007/s11701-024-01866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Robot-assisted (RA) technology has been shown to be a safe aid in spine surgery, this meta-analysis aims to compare surgical parameters and clinical indexes between robot-assisted cortical bone trajectory (CBT) and fluoroscopy-assisted (FA) cortical bone trajectory in spinal surgery. We searched databases such as PubMed, Web of Science, the Cochrane Library, and the China National Knowledge Infrastructure. The study selection process was guided by the PICOS (Patient/Problem, Intervention, Comparison, Outcome, Study Design) strategy. The risk of bias in non-randomized comparative studies was assessed using the risk of bias in non-randomized studies of interventions (ROBINS-I) tool. We performed this meta-analysis using RevMan 5.3 software (Cochrane Collaboration, Copenhagen, Denmark), and the level of statistical significance was set at P < 0.05. Six articles involving 371 patients and 1535 screws were included in this meta-analysis. RA-CBT outperformed FA-CBT in terms of various parameters, such as accuracy of pedicle screw position (both Gertzbein-Robbins scale and Ding scale), avoidance of superior facet joint violation (FJV), and reduction of neurological injury. Our meta-analysis offered a thorough evaluation of the efficacy and safety of RA-CBT in spinal surgery. The findings revealed that RA-CBT produced statistically significant results in terms of pedicle screw position accuracy and superior facet joint violation prevention. In terms of surgical parameters and clinical indexes, future research and clinical practice should investigate the efficacy of RA-CBT further. The study was registered in the PROSPERO (CRD42023466280).
Collapse
Affiliation(s)
- Xu Wang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, Jilin, China
| | - Hao-Xuan Li
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, Jilin, China
| | - Qing-San Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, Jilin, China.
| | - Yu-Hang Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, Jilin, China.
| |
Collapse
|
12
|
Wang J, Miao J, Zhan Y, Duan Y, Wang Y, Hao D, Wang B. Spine Surgical Robotics: Current Status and Recent Clinical Applications. Neurospine 2023; 20:1256-1271. [PMID: 38171293 PMCID: PMC10762389 DOI: 10.14245/ns.2346610.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 01/05/2024] Open
Abstract
With the development of artificial intelligence and the further deepening of medical-engineering integration, spine surgical robot-assisted (RA) technique has made significant progress and its applicability in clinical practice is constantly expanding in recent years. In this review, we have systematically summarized the majority of literature related to spine surgical robots in the past decade, and not only classified robots accordingly, but also summarized the latest research progress in RA technique for screw placement such as cervical, thoracic, and lumbar pedicle screws, cortical bone trajectory screws, cervical lateral mass screws, and S2 sacroiliac screws; guiding targeted puncture and placement of endoscope via the intervertebral foramen; complete resection of spinal tumor tissue; and decompressive laminectomy. In addition, this report also provides a detailed evaluation of RA technique's advantages and disadvantages, and clarifies the accuracy, safety, and practicality of RA technique. We consider that this review can help clinical physicians further understand and familiarize the current clinical application status of spine surgical robots, thereby promoting the continuous improvement and popularization of RA technique, and ultimately benefiting numerous patients.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Medical School of Yan’an University, Yan’an, China
| | - Junxian Miao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yi Zhan
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yongchao Duan
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Intraoperative Imaging, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuanshun Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Orthopedics, The Third People’s Hospital of Xining, Qinghai, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Biao Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Han J, Guo J, Ma X, Zhang G, Han S, Zhang H, Liu H, Chen M, Wang Y. The Cortical Bone Trajectory Screw Technique Assisted by the Mazor Renaissance Robotic System as a Salvage Strategy for Failed Lumbar Spine Surgery: Technical Note and Case Series. J Pain Res 2023; 16:2971-2980. [PMID: 37664488 PMCID: PMC10474863 DOI: 10.2147/jpr.s423058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose The objective of this study was to describe the Mazor Renaissance robotic system-assisted CBT (cortical bone trajectory) screw technique as a salvage strategy for failed lumbar spine surgery. Patients and Methods Between January 2018 and June 2022, 7 patients underwent salvage surgery with the CBT screw fixation technique assisted by the Mazor Renaissance robot system in our institution. Intraoperative observations were recorded for blood loss, duration of operation, and fluoroscopy time. Complications related to CBT screws were also recorded. The accuracy of CBT screws was recorded in accordance with the modified Gertzbein-Robbins classification. The JOA (Japanese Orthopedic Association) score for low back pain was used to evaluate surgical outcomes. Results A total of 26 CBT screws were placed in 7 patients, including 4 females and 3 males. Three patients underwent ASD (adjacent segment disease) and four patients underwent lumbar union failure with loose or compromised PSs (pedicle screws). The mean operation time was 129.29 ± 32.97 minutes, the mean blood loss was 180 ± 52.60 mL, and the mean intraoperative fluoroscopy time was 14.29 ± 3.15 s. All screws were clinically acceptable according to the Gertzbein-Robbins classification. There were no complications related to CBT screws in any of the cases. The JOA scores for low back pain of all patients were significantly improved at the final follow-up. Conclusion The CBT screw fixation technique supplemented the traditional PS fixation technique, which can be performed as a salvage strategy for failed lumbar spine surgery and achieved good clinical results. The spinal robot was very helpful in evaluating pedicle size and determining CBT screw direction, especially in a previously instrumented lumbar pedicle.
Collapse
Affiliation(s)
- Jialuo Han
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Jianwei Guo
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Xuexiao Ma
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Guoqing Zhang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Shuo Han
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Houchen Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Mingrui Chen
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| | - Yan Wang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, People’s Republic of China
| |
Collapse
|
14
|
Lee NJ, Zuckerman SL, Buchanan IA, Boddapati V, Mathew J, Marciano G, Robertson D, Lakomkin N, Park PJ, Leung E, Lombardi JM, Lehman RA. Is There a Difference in Screw Accuracy, Robot Time Per Screw, Robot Abandonment, and Radiation Exposure Between the Mazor X and the Renaissance? A Propensity-Matched Analysis of 1179 Robot-Assisted Screws. Global Spine J 2023; 13:1286-1292. [PMID: 34235996 PMCID: PMC10416583 DOI: 10.1177/21925682211029867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
STUDY DESIGN Prospective single-cohort analysis. OBJECTIVES To compare the outcomes/complications of 2 robotic systems for spine surgery. METHODS Adult patients (≥18-years-old) who underwent robot-assisted spine surgery from 2016-2019 were assessed. A propensity score matching (PSM) algorithm was used to match Mazor X to Renaissance cases. Preoperative CT scan for planning and an intraoperative O-arm for screw evaluation were preformed. Outcomes included screw accuracy, robot time/screw, robot abandonment, and radiation. Screw accuracy was measured using Vitrea Core software by 2 orthopedic surgeons. Screw breach was measured according to the Gertzbein/Robbins classification. RESULTS After PSA, a total of 65 patients (Renaissance: 22 vs. X: 43) were included. Patient/operative factors were similar between robot systems (P > .05). The pedicle screw accuracy was similar between robots (Renaissance: 1.1%% vs. X: 1.3%, P = .786); however, the S2AI screw breach rate was significantly lower for the X (Renaissance: 9.5% vs. X: 1.2%, P = .025). Robot time per screw was not statistically different (Renaissance: 4.6 minutes vs. X: 3.9 minutes, P = .246). The X was more reliable with an abandonment rate of 2.3% vs. Renaissance:22.7%, P = .007. Radiation exposure were not different between robot systems. Non-robot related complications including dural tear, loss of motor/sensory function, and blood transfusion were similar between robot systems. CONCLUSION This is the first comparative analyses of screw accuracy, robot time/screw, robot abandonment, and radiation exposure between the Mazor X and Renaissance systems. There are substantial improvements in the X robot, particularly in the perioperative planning processes, which likely contribute to the X's superiority in S2AI screw accuracy by nearly 8-fold and robot reliability by nearly 10-fold.
Collapse
Affiliation(s)
- Nathan J. Lee
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Scott L. Zuckerman
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Ian A. Buchanan
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Venkat Boddapati
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Justin Mathew
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Gerard Marciano
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Djani Robertson
- Department of Orthopaedics, NYU Langone Health, New York, NY, USA
| | | | - Paul J. Park
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Eric Leung
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Joseph M. Lombardi
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| | - Ronald A. Lehman
- Department of Orthopaedics, Columbia University Medical Center, The Och Spine Hospital at New York-Presbyterian, New York, NY, USA
| |
Collapse
|
15
|
Wang Y, Kahaer A, Maimaiti A, Guo H, Rexiti P. Complication, fusion, and revision rate in the lumbar cortical bone trajectory and pedicle screw fixation techniques: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:382. [PMID: 37226223 DOI: 10.1186/s13018-023-03820-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND To obtain the complication rate, fusion rate, and revision rate of the lumbar cortical bone trajectory technique and pedicle screw fixation technique in lumbar interbody fusion surgery by single-arm meta-analysis and lay a basis for orthopedic surgeons to select the fixation techniques and perioperative management. METHODS PubMed, Ovid Medline, Web of Science, CNKI, and Wanfang databases were searched comprehensively. Data extraction, content analysis, and quality assessment of the literature were performed by two independent reviewers according to the Cochrane Collaboration guidelines using R and STATA software for single-arm meta-analysis. RESULTS The total complication rate of the lumbar cortical bone trajectory technique was 6%, including a hardware complication rate of 2%, ASD (adjacent segment degeneration) rate of 1%, wound infection rate of 1%, dural damage rate of 1%, hematoma rate tending to 0%, fusion rate of 94%, and revision rate of 1%. Lumbar pedicle screw fixation techniques had a total complication rate of 9%, with a hardware complication rate of 2%, ASD rate of 3%, wound infection rate of 2%, dural damage rate of 1%, hematoma rate tending to 0%, fusion rate of 94%, and revision rate of 5%. This study was registered with PROSPERO, CRD42022354550. CONCLUSION Lumbar cortical bone trajectory was associated with a lower total complication rate, ASD rate, wound infection rate, and revision rate than pedicle screw fixation. The cortical bone trajectory technique reduces the incidence of intraoperative and postoperative complications and can be an alternative in lumbar interbody fusion surgery.
Collapse
Affiliation(s)
- Yixi Wang
- First Clinical Medical College, Xinjiang Medical University, Urumqi, China
| | - Alafate Kahaer
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abulikemu Maimaiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hailong Guo
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Paerhati Rexiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), China Ministry of Education, Urumqi, China.
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
16
|
Accuracy and digital screw path design of TiRobot-assisted pedicle screw placement for lumbar spondylolisthesis. INTERNATIONAL ORTHOPAEDICS 2023; 47:309-317. [PMID: 36331595 DOI: 10.1007/s00264-022-05615-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate lumbar spondylolisthesis screw placement assisted by TiRobot in terms of digital screw path design, accurate implementation, and accuracy evaluation method. METHODS In this study, we enrolled 40 patients with lumbar spondylolisthesis between December 2020 and August 2021 who underwent spine surgery at the Affiliated Hospital of PuTian University. Pre-operative computed tomography position and screw path designation, intra-operative pedicle screw placement according to pre-operative planning, and post-operative evaluation of the accuracy of screw placement were performed. 3D coordinates of the entry and exit points before and after the operation were collected. The qualified points at different levels of accuracy were counted. The screw placement accuracy was based on the absolute difference using the Chi-squared test. RESULTS In total, 194 screws were successfully implanted with no screws penetrating the cortex. The absolute difference of entry points X, Y, and Z coordinates before and after the operation was 0.425 ± 0.294 mm, 0.417 ± 0.310 mm, and 0.466 ± 0.327 mm, respectively. The corresponding values in terms of exit points were 0.702 ± 0.470 mm, 0.963 ± 0.595mm, and 0.983 ± 0.566 mm, respectively. No obvious differences in coordinates before and after the operation were observed with an entry point degree of accuracy of ≥ 1.2 mm and exit point degree of accuracy of ≥ 2.1 mm. Therefore, the real surgery was consistent with the design. CONCLUSIONS TiRobot-assisted lumbar spondylolisthesis surgery achieved optimal path designation and precise surgery.
Collapse
|
17
|
Peng SB, Yuan XC, Lu WZ, Yu KX. Application of the cortical bone trajectory technique in posterior lumbar fixation. World J Clin Cases 2023; 11:255-267. [PMID: 36686364 PMCID: PMC9850973 DOI: 10.12998/wjcc.v11.i2.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The cortical bone trajectory (CBT) is a novel technique in lumbar fixation and fusion. The unique caudocephalad and medial-lateral screw trajectories endow it with excellent screw purchase for vertebral fixation via a minimally invasive method. The combined use of CBT screws with transforaminal or posterior lumbar interbody fusion can treat a variety of lumbar diseases, including spondylolisthesis or stenosis, and can also be used as a remedy for revision surgery when the pedicle screw fails. CBT has obvious advantages in terms of surgical trauma, postoperative recovery, prevention and treatment of adjacent vertebral disease, and the surgical treatment of obese and osteoporosis patients. However, the concept of CBT internal fixation technology appeared relatively recently; consequently, there are few relevant clinical studies, and the long-term clinical efficacy and related complications have not been reported. Therefore, large sample and prospective studies are needed to further reveal the long-term complications and fusion rate. As a supplement to the traditional pedicle trajectory fixation technique, the CBT technique is a good choice for the treatment of lumbar diseases with accurate screw placement and strict indications and is thus deserving of clinical recommendation.
Collapse
Affiliation(s)
- Shi-Bo Peng
- Department of Orthopedics, Chongqing Nanchuan Hospital of Traditional Chinese Medicine, Chongqing 408400, China
| | - Xi-Chuan Yuan
- Department of Orthopedics, Chongqing Nanchuan Hospital of Traditional Chinese Medicine, Chongqing 408400, China
| | - Wei-Zhong Lu
- Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Ke-Xiao Yu
- Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| |
Collapse
|
18
|
Caelers I, Berendsen R, Droeghaag R, Pecasse N, Rijkers K, Van Hemert W, De Bie R, Van Santbrink H. Comparing radiation dose of image-guided techniques in lumbar fusion surgery with pedicle screw insertion; A systematic review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 13:100199. [PMID: 36747986 PMCID: PMC9898805 DOI: 10.1016/j.xnsj.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Background Context Fluoroscopic devices can be used to visualize subcutaneous and osseous tissue, a useful feature during pedicle screw insertion in lumbar fusion surgery. It is important that both patient and surgeon are exposed as little as possible, since these devices use potential harmful ionizing radiation. Purpose This study aims to compare radiation exposure of different image-guided techniques in lumbar fusion surgery with pedicle screw insertion. Study Design Systematic review. Methods Cochrane, Embase, PubMed and Web of Science databases were used to acquire relevant studies. Eligibility criteria were lumbar and/or sacral spine, pedicle screw, mGray and/or Sievert and/or mrem, radiation dose and/or radiation exposure. Image-guided techniques were divided in five groups: conventional C-arm, C-arm navigation, C-arm robotic, O-arm navigation and O-arm robotic. Comparisons were made based on effective dose for patients and surgeons, absorbed dose for patients and surgeons and exposure. Risk of bias was assessed using the 2017 Cochrane Risk of Bias tool on RCTs and the Cochrane ROBINS-I tool on NRCTs. Level of evidence was assessed using the guidelines of Oxford Centre for Evidence-based Medicine 2011. Results A total of 1423 studies were identified of which 38 were included in the analysis and assigned to one of the five groups. Results of radiation dose per procedure and per pedicle screw were described in dose ranges. Conventional C-arm appeared to result in higher effective dose for surgeons, higher absorbed dose for patients and higher exposure, compared to C-arm navigation/robotic and O-arm navigation/robotic. Level of evidence was 3 to 4 in 29 studies. Risk of bias of RCTs was intermediate, mostly due to inadequate blinding. Overall risk of bias score in NRCTs was determined as 'serious'. Conclusions Ranges of radiation doses using different modalities during pedicle screw insertion in lumbar fusion surgery are wide. Based on the highest numbers in the ranges, conventional C-arm tends to lead to a higher effective dose for surgeons, higher absorbed dose for patients and higher exposure, compared to C-arm-, and O-arm navigation/robotic. The level of evidence is low and risk of bias is fairly high. In future studies, heterogeneity should be limited by standardizing measurement methods and thoroughly describing the image-guided technique settings.
Collapse
Affiliation(s)
- I.J.M.H. Caelers
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, the Netherlands,Department of Neurosurgery, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands,Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, the Netherlands,Corresponding author.
| | - R.C.M. Berendsen
- Department of Medical Physics, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
| | - R. Droeghaag
- Department of Orthopedic surgery, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
| | - N.J.J. Pecasse
- Biomedical Sciences, Faculty of Health, Medicine and Life Sciences, Maastricht University, the etherlands
| | - K. Rijkers
- Department of Neurosurgery, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands,Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - W.L.W. Van Hemert
- Department of Orthopedic surgery, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
| | - R.A. De Bie
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, the Netherlands,Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - H. Van Santbrink
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, the Netherlands,Department of Neurosurgery, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands,Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
19
|
Guo S, Zhu K, Yan MJ, Li XH, Tan J. Cortical bone trajectory screws in the treatment of lumbar degenerative disc disease in patients with osteoporosis. World J Clin Cases 2022; 10:13179-13188. [PMID: 36683619 PMCID: PMC9850985 DOI: 10.12998/wjcc.v10.i36.13179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/26/2022] Open
Abstract
Lumbar degenerative disc disease (DDD) in the elderly population remains a global health problem, especially in patients with osteoporosis. Osteoporosis in the elderly can cause failure of internal fixation. Cortical bone trajectory (CBT) is an effective, safe and minimally invasive technique for the treatment of lumbar DDD in patients with osteoporosis. In this review, we analyzed the anatomy, biomechanics, and advantages of the CBT technique in lumbar DDD and revision surgery. Additionally, the clinical trials and case reports, indications, advancements and limitations of this technique were further discussed and reviewed. Finally, we concluded that the CBT technique can be a practical, effective and safe alternative to traditional pedicle screw fixation, especially in DDD patients with osteoporosis.
Collapse
Affiliation(s)
- Song Guo
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Kai Zhu
- Department of Orthopedics Ⅱ, Qingdao No. 8 People’s Hospital, Qingdao 266121, Shandong Province, China
| | - Mei-Jun Yan
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xin-Hua Li
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jun Tan
- Department of Orthopedics, United Family Healthcare, Shanghai 200336, China
| |
Collapse
|
20
|
Abstract
The transition to performing procedures robotically generally entails a period of adjustment known as a learning curve as the surgeon develops a familiarity with the technology. However, no study has comprehensively examined robotic learning curves across the field of neurosurgery. We conducted a systematic review to characterize the scope of literature on robotic learning curves in neurosurgery, assess operative parameters that may involve a learning curve, and delineate areas for future investigation. PubMed, Embase, and Scopus were searched. Following deduplication, articles were screened by title and abstract for relevance. Remaining articles were screened via full text for final inclusion. Bibliographic and learning curve data were extracted. Of 746 resultant articles, 32 articles describing 3074 patients were included, of which 23 (71.9%) examined spine, 4 (12.5%) pediatric, 4 (12.5%) functional, and 1 (3.1%) general neurosurgery. The parameters assessed for learning curves were heterogeneous. In total, 8 (57.1%) of 14 studies found reduced operative time with increased cases, while the remainder demonstrated no learning curve. Six (60.0%) of 10 studies reported reduced operative time per component with increased cases, while the remainder indicated no learning curve. Radiation time, radiation time per component, robot time, registration time, setup time, and radiation dose were assessed by ≤ 4 studies each, with 0-66.7% of studies demonstrated a learning curve. Four (44.4%) of 9 studies on accuracy showed improvement over time, while the others indicated no improvement over time. The number of cases required to reverse the learning curve ranged from 3 to 75. Learning curves are common in robotic neurosurgery. However, existing studies demonstrate high heterogeneity in assessed parameters and the number of cases that comprise the learning curve. Future studies should seek to develop strategies to reduce the number of cases required to reach the learning curve.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| | - Jonathan Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| |
Collapse
|
21
|
Muacevic A, Adler JR, Torii Y, Umehara T, Iinuma M, Yoshida A, Tomochika K, Niki H. Accuracy and Screw Insertion Time of Robotic-Assisted Cortical Bone Trajectory Screw Placement for Posterior Lumbar Interbody Fusion: A Comparison of Early, Middle, and Late Phases. Cureus 2022; 14:e32574. [PMID: 36654567 PMCID: PMC9840449 DOI: 10.7759/cureus.32574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The purpose of this study was to evaluate robotic-assisted cortical bone trajectory (CBT) screw placement. Early, middle, and late phases of robotic-assisted CBT screw placement were compared for accuracy and screw insertion time by comparing time and accuracy in every phase. Methods A retrospective review was conducted on the initial 40 patients who underwent spinal fusion using CBT screws in one institution from September 2021 to September 2022 utilizing a spine surgery robot system (Mazor X Stealth Edition, Medtronic Inc., Dublin, Ireland). The inclusion criterion was one- or two-level posterior lumbar interbody fusion (PLIF). Exclusion criteria were 1) patients who underwent posterior-lateral fusion in other segments, 2) patients who underwent additional decompression in other segments, 3) patients who underwent reoperation, and 4) patients with spondylolysis. The deviation of the CBT screw was evaluated on computed tomography (CT) one week after surgery using the Gertzbein-Robbins grade system. The rate of Grade A was considered the perfect accuracy rate, and the rate of penetration of 2 mm or more (Grades C, D, and E) was calculated as the deviation rate. To assess the learning curve, patients were divided into three groups. The first 10 cases were in the early phase group, the subsequent 10 cases were in the middle phase group, and the last 10 cases were in the late phase group. We compared the perfect accuracy rate, deviation rate, operative time, operative time per segment, intraoperative blood loss, registration time, and screw insertion time among the three groups. Results Thirty patients met the criteria. Overall, the perfect accuracy (Grade A) rate of the screw was 95.3% and the deviation rate was 1.4%. The perfect accuracy rate was 90.4% in the early phase, 95.5% in the middle phase, and 100% in the late phase. The deviation rate was 3.8% in the early phase, 0% in the middle phase, and 0% in the late phase, and there was no statistically significant difference between the three groups. Among the three groups, the operative time, the operative time per segment, the intraoperative blood loss, and the registration time were not significantly different. There was no significant difference in the screw insertion time among the three groups, but it decreased with experience (early phase: 156.9 ± 54.7 sec, middle phase: 139.9 ± 41.6 sec, and late phase: 106.4 ± 39.9 sec, p=0.060). The screw insertion time of the late phase tended to be shorter than that of the early phase (p=0.052). Conclusions The deviation rate of robotic-assisted CBT screw placement with one- or two-level PLIF was 1.4%, which was highly accurate. The deviation rate was 3.8% in the early phase, 0% in the middle phase, and 0% in the late phase. Although the deviation rate was low even in the early period, the screw insertion time in the early 10 cases tended to be longer than that in the late 10 cases. After passing the experience of 10 cases, this study concluded that robotic-assisted CBT screw placement was proficient.
Collapse
|
22
|
Tovar MA, Dowlati E, Zhao DY, Khan Z, Pasko KBD, Sandhu FA, Voyadzis JM. Robot-assisted and augmented reality-assisted spinal instrumentation: a systematic review and meta-analysis of screw accuracy and outcomes over the last decade. J Neurosurg Spine 2022; 37:299-314. [PMID: 35213837 DOI: 10.3171/2022.1.spine211345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of technology-enhanced methods in spine surgery has increased immensely over the past decade. Here, the authors present the largest systematic review and meta-analysis to date that specifically addresses patient-centered outcomes, including the risk of inaccurate screw placement and perioperative outcomes in spinal surgeries using robotic instrumentation and/or augmented reality surgical navigation (ARSN). METHODS A systematic review of the literature in the PubMed, EMBASE, Web of Science, and Cochrane Library databases spanning the last decade (January 2011-November 2021) was performed to present all clinical studies comparing robot-assisted instrumentation and ARSN with conventional instrumentation techniques in lumbar spine surgery. The authors compared these two technologies as they relate to screw accuracy, estimated blood loss (EBL), intraoperative time, length of stay (LOS), perioperative complications, radiation dose and time, and the rate of reoperation. RESULTS A total of 64 studies were analyzed that included 11,113 patients receiving 20,547 screws. Robot-assisted instrumentation was associated with less risk of inaccurate screw placement (p < 0.0001) regardless of control arm approach (freehand, fluoroscopy guided, or navigation guided), fewer reoperations (p < 0.0001), fewer perioperative complications (p < 0.0001), lower EBL (p = 0.0005), decreased LOS (p < 0.0001), and increased intraoperative time (p = 0.0003). ARSN was associated with decreased radiation exposure compared with robotic instrumentation (p = 0.0091) and fluoroscopy-guided (p < 0.0001) techniques. CONCLUSIONS Altogether, the pooled data suggest that technology-enhanced thoracolumbar instrumentation is advantageous for both patients and surgeons. As the technology progresses and indications expand, it remains essential to continue investigations of both robotic instrumentation and ARSN to validate meaningful benefit over conventional instrumentation techniques in spine surgery.
Collapse
Affiliation(s)
- Matthew A Tovar
- 1School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Ehsan Dowlati
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - David Y Zhao
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - Ziam Khan
- 3Center for Bioinformatics and Computational Biology, University of Maryland, Baltimore County, Baltimore, Maryland; and
| | - Kory B D Pasko
- 4Georgetown University School of Medicine, Washington, DC
| | - Faheem A Sandhu
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - Jean-Marc Voyadzis
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
23
|
Himstead AS, Shahrestani S, Brown NJ, Produturi G, Shlobin NA, Al Jammal O, Choi EH, Ransom SC, Daniel Diaz-Aguilar L, Sahyouni R, Abraham M, Pham MH. Bony fixation in the era of spinal robotics: A systematic review and meta-analysis. J Clin Neurosci 2022; 97:62-74. [DOI: 10.1016/j.jocn.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 01/02/2023]
|
24
|
Kim SJ, Mobbs RJ, Natarajan P, Fonseka RD, Walsh WR. Historical Note: The Evolution of Cortical Bone Trajectory and Associated Techniques. Spine Surg Relat Res 2022; 6:1-9. [PMID: 35224240 PMCID: PMC8842353 DOI: 10.22603/ssrr.2021-0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Cortical bone trajectory (CBT) for posterior fixation with pedicle screws is considered a relatively new alternative trajectory that travels in the medio-lateral direction in the transverse plane and in the caudo-cephalad path in the sagittal plane. Various biomechanical studies have already validated its superior pullout strength and mechanical stability over the traditional trajectory of convergent pedicle screws. Due to the relatively medial starting point of this trajectory, the CBT also poses the clinical advantage of requiring a smaller surgical field of exposure, thus minimizing tissue and muscle injury while reducing operative time and intraoperative blood loss. The evolution of CBT through time has closely been linked to the unwavering philosophy of prioritizing patient outcomes, advancements in neuronavigational technology, and the mounting biomechanical, morphometric, and clinical evidence. In this historical review, we provide a unique perspective on how CBT surgical technique has developed through time, highlighting key milestones and attempting to explain its explosive rise in popularity.
Collapse
Affiliation(s)
- Sihyong J. Kim
- Surgical Orthopaedics Research Laboratory, Prince of Wales Hospital
| | | | | | | | - William R. Walsh
- Surgical Orthopaedics Research Laboratory, Prince of Wales Hospital
| |
Collapse
|
25
|
Khan A, Soliman MAR, Lee NJ, Waqas M, Lombardi JM, Boddapati V, Levy LC, Mao JZ, Park PJ, Mathew J, Lehman RA, Mullin JP, Pollina J. CT-to-fluoroscopy registration versus scan-and-plan registration for robot-assisted insertion of lumbar pedicle screws. Neurosurg Focus 2022; 52:E8. [PMID: 34973678 DOI: 10.3171/2021.10.focus21506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Pedicle screw insertion for stabilization after lumbar fusion surgery is commonly performed by spine surgeons. With the advent of navigation technology, the accuracy of pedicle screw insertion has increased. Robotic guidance has revolutionized the placement of pedicle screws with 2 distinct radiographic registration methods, the scan-and-plan method and CT-to-fluoroscopy method. In this study, the authors aimed to compare the accuracy and safety of these methods. METHODS A retrospective chart review was conducted at 2 centers to obtain operative data for consecutive patients who underwent robot-assisted lumbar pedicle screw placement. The newest robotic platform (Mazor X Robotic System) was used in all cases. One center used the scan-and-plan registration method, and the other used CT-to-fluoroscopy for registration. Screw accuracy was determined by applying the Gertzbein-Robbins scale. Fluoroscopic exposure times were collected from radiology reports. RESULTS Overall, 268 patients underwent pedicle screw insertion, 126 patients with scan-and-plan registration and 142 with CT-to-fluoroscopy registration. In the scan-and-plan cohort, 450 screws were inserted across 266 spinal levels (mean 1.7 ± 1.1 screws/level), with 446 (99.1%) screws classified as Gertzbein-Robbins grade A (within the pedicle) and 4 (0.9%) as grade B (< 2-mm deviation). In the CT-to-fluoroscopy cohort, 574 screws were inserted across 280 lumbar spinal levels (mean 2.05 ± 1.7 screws/ level), with 563 (98.1%) grade A screws and 11 (1.9%) grade B (p = 0.17). The scan-and-plan cohort had nonsignificantly less fluoroscopic exposure per screw than the CT-to-fluoroscopy cohort (12 ± 13 seconds vs 11.1 ± 7 seconds, p = 0.3). CONCLUSIONS Both scan-and-plan registration and CT-to-fluoroscopy registration methods were safe, accurate, and had similar fluoroscopy time exposure overall.
Collapse
Affiliation(s)
- Asham Khan
- 1Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
| | - Mohamed A R Soliman
- 1Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
- 3Department of Neurosurgery, Cairo University, Cairo, Egypt; and
| | - Nathan J Lee
- 4Department of Orthopedic Surgery, Columbia University Medical Center, The Och Spine Hospital at NewYork-Presbyterian, New York, New York
| | - Muhammad Waqas
- 1Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
| | - Joseph M Lombardi
- 4Department of Orthopedic Surgery, Columbia University Medical Center, The Och Spine Hospital at NewYork-Presbyterian, New York, New York
| | - Venkat Boddapati
- 4Department of Orthopedic Surgery, Columbia University Medical Center, The Och Spine Hospital at NewYork-Presbyterian, New York, New York
| | - Lauren C Levy
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
| | - Jennifer Z Mao
- 1Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
| | - Paul J Park
- 4Department of Orthopedic Surgery, Columbia University Medical Center, The Och Spine Hospital at NewYork-Presbyterian, New York, New York
| | - Justin Mathew
- 4Department of Orthopedic Surgery, Columbia University Medical Center, The Och Spine Hospital at NewYork-Presbyterian, New York, New York
| | - Ronald A Lehman
- 4Department of Orthopedic Surgery, Columbia University Medical Center, The Och Spine Hospital at NewYork-Presbyterian, New York, New York
| | - Jeffrey P Mullin
- 1Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
| | - John Pollina
- 1Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- 2Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York
| |
Collapse
|
26
|
Pennington Z, Judy BF, Zakaria HM, Lakomkin N, Mikula AL, Elder BD, Theodore N. Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula. Neurosurg Focus 2022; 52:E3. [PMID: 34973673 DOI: 10.3171/2021.10.focus21496] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Spine robots have seen increased utilization over the past half decade with the introduction of multiple new systems. Market research expects this expansion to continue over the next half decade at an annual rate of 20%. However, because of the novelty of these devices, there is limited literature on their learning curves and how they should be integrated into residency curricula. With the present review, the authors aimed to address these two points. METHODS A systematic review of the published English-language literature on PubMed, Ovid, Scopus, and Web of Science was conducted to identify studies describing the learning curve in spine robotics. Included articles described clinical results in patients using one of the following endpoints: operative time, screw placement time, fluoroscopy usage, and instrumentation accuracy. Systems examined included the Mazor series, the ExcelsiusGPS, and the TiRobot. Learning curves were reported in a qualitative synthesis, given as the mean improvement in the endpoint per case performed or screw placed where possible. All studies were level IV case series with a high risk of reporting bias. RESULTS Of 1579 unique articles, 97 underwent full-text review and 21 met the inclusion and exclusion criteria; 62 articles were excluded for not presenting primary data for one of the above-described endpoints. Of the 21 articles, 18 noted the presence of a learning curve in spine robots, which ranged from 3 to 30 cases or 15 to 62 screws. Only 12 articles performed regressions of one of the endpoints (most commonly operative time) as a function of screws placed or cases performed. Among these, increasing experience was associated with a 0.24- to 4.6-minute decrease in operative time per case performed. All but one series described the experience of attending surgeons, not residents. CONCLUSIONS Most studies of learning curves with spine robots have found them to be present, with the most common threshold being 20 to 30 cases performed. Unfortunately, all available evidence is level IV data, limited to case series. Given the ability of residency to allow trainees to safely perform these cases under the supervision of experienced senior surgeons, it is argued that a curriculum should be developed for senior-level residents specializing in spine comprising a minimum of 30 performed cases.
Collapse
Affiliation(s)
- Zach Pennington
- 1Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
| | - Brendan F Judy
- 2Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Hesham M Zakaria
- 3Department of Neurosurgery, California Pacific Medical Center, Sutter Health, San Francisco, California
| | - Nikita Lakomkin
- 1Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - Nicholas Theodore
- 2Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
27
|
Rho K, OConnor TE, Lucas JM, Pollina J, Mullin J. Minimally Invasive Robot-Guided Dual Cortical Bone Trajectory for Adjacent Segment Disease. Cureus 2021; 13:e16822. [PMID: 34513418 PMCID: PMC8407417 DOI: 10.7759/cureus.16822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Here we present a novel application of cortical bone trajectory (CBT) fixation utilizing robotic guidance in a previously instrumented spine with a traditional pedicle screw (PS), obviating the need for a larger posterior incision, reducing the risk of infection, muscular dissection, and likely decreasing hospital length of stay. A 60-year-old woman with prior left L3-L4 extreme lateral interbody fusion and unilateral percutaneous PS placed at L3 to L5 presented with progressive bilateral lower-extremity pain and diminished sensation in the S1 dermatome secondary to adjacent segment disease (ASD). The patient underwent an L5-S1 anterior lumbar interbody fusion for indirect decompression and restoration of segmental lordosis. After the first stage was completed, she was turned prone for posterior percutaneous instrumentation. Given prior instrumentation at L3-L5 on the left side, a robot planning software was used to plan a cortical bone screw on the left L5 pedicle. A left S1 PS was then planned with the screw head aligning with the left L5 cortical bone screw. Instrumentation was then placed percutaneously using the robot bilaterally without issue. Intraoperative fluoroscopic imaging demonstrated accurate placement of PS, and postoperative computed tomography demonstrated the excellent positioning of all PSs. This report is the first documented case of a robotically placed CBT screw placed in the same pedicle as a prior traditional PS for ASD. This method expands the surgical options for ASD to include robotic percutaneous placement of posterior instrumentation at the same level as previous instrumentation.
Collapse
Affiliation(s)
- Kyungduk Rho
- Neurological Surgery, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Timothy E OConnor
- Neurological Surgery, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Jean-Marc Lucas
- Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| | - John Pollina
- Neurological Surgery, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Jeffrey Mullin
- Neurological Surgery, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| |
Collapse
|
28
|
Ishii M, Ohnishi A, Yamagishi A, Ohwada T. Freehand screw insertion technique without image guidance for the cortical bone trajectory screw in posterior lumbar interbody fusion: what affects screw misplacement? J Neurosurg Spine 2021; 36:1-7. [PMID: 34479186 DOI: 10.3171/2021.2.spine202145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cortical bone trajectory (CBT) screw insertion using a freehand technique is considered less feasible than guided techniques, due to the lack of readily identifiable visual landmarks. However, in posterior lumbar interbody fusion (PLIF), after resection of the posterior anatomy, the pedicles themselves, into which implantation is performed, are palpable from the spinal canal and neural foramen. With the help of pedicle wall probing, the authors have placed CBT screws using a freehand technique without image guidance in PLIF. This technique has advantages of no radiation exposure and no requirement for expensive devices, but the disadvantage of reduced accuracy in screw placement. To address the problem of symptomatic breaches with this freehand technique, variables related to unacceptable screw positioning and need for revisions were investigated. METHODS From 2014 to 2020, 182 of 426 patients with single-level PLIF were enrolled according to the combined criteria of L4-5 level, excluding cases of revision and isthmic spondylolisthesis; using screws 5.5 mm in diameter; and operated by right-handed surgeons. We studied the number of misplaced screws found and replaced during initial surgeries. Using multiplanar reconstruction CT postoperatively, 692 screw positions on images were classified using previously reported grading criteria. Details of pedicle breaches requiring revisions were studied. We conducted a statistical analysis of the relationship between unacceptable (perforations > 2 mm) misplacements and four variables: level, laterality, spinal deformity, and experiences of surgeons. RESULTS Three screws in L4 and another in L5 were revised during initial surgeries. The total rate of unacceptable screws on CT examinations was 3.3%. Three screws in L4 and another in L5 breached inferomedial pedicle walls in grade 3 and required revisions. The revision rate was 2.2%. The percentage of unacceptable screws was 5.2% in L4 and 1.7% in L5 (p < 0.05), whereas other variables showed no significant differences. CONCLUSIONS A freehand technique can be feasible for CBT screw insertion in PLIF, balancing the risks of 3.3% unacceptable misplacements and 2.2% revisions with the benefits of no radiation exposure and no need for expensive devices. Pedicle palpation in L4 is the key to safety, even though it requires deeper and more difficult probing. In the initial surgeries and revisions, 75% of revised screws were observed in L4, and unacceptable screw positions were more likely to be found in L4 than in L5.
Collapse
|
29
|
Shi W, Aierken G, Wang S, Abuduwali N, Xia Y, Rezhake R, Zhao S, Zhou M, Jianabuli, Sheng W, Rexiti P. Application study of three-dimensional printed navigation template between traditional and novel cortical bone trajectory on osteoporosis lumbar spine. J Clin Neurosci 2021; 85:41-48. [PMID: 33581788 DOI: 10.1016/j.jocn.2020.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/08/2020] [Accepted: 11/23/2020] [Indexed: 01/02/2023]
Abstract
To investigate the safety, accuracy and indications of traditional and novel cortical bone screws placement for osteoporosis lumbar spine, 4 lumbar vertebra specimens (2 males and 2 females) were used for this study. After the computed tomography scanning data of the above anatomical specimens were three-dimensional (3D) reconstructed, one side of each anatomical specimen was randomly chosen to place traditional cortical bone screws, and the other side received novel technical placement. The safety screw trajectory was designed, and a 3D navigation template complementary to the surface anatomical structure of lumbar isthmus lateral margin-vertebral plate-spinous process part was established. The designed supporting navigation template was substantialized, and the navigation template replicated different cortical bone screw trajectory at different sides of the same one lumbar vertebra. Forty cortical bone screws were firstly placed in 3D printed vertebra and then 40 were placed in real anatomical specimens. In 3D printed specimens, the success rates of screw placement with navigation template using traditional and novel techniques were both 100%. While in anatomical specimens, the success rate of screw placement using traditional and novel navigation template was 97.5% (one out of 40 went wrong). Therefore, it is safe, accurate and reliable to place traditional and novel cortical bone screws on osteoporosis lumbar spine using 3D printed navigation template. Traditional and novel screw placement methods should be flexibly applied or combined according to specific sequence and form of vertebra.
Collapse
Affiliation(s)
- Wenjie Shi
- Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Gulixian Aierken
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Shuiquan Wang
- Department of Anatomy, College of Basic Medicine, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Nueraihemaiti Abuduwali
- Department of Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yudong Xia
- Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Reyazuli Rezhake
- Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Shuwen Zhao
- Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Mingbin Zhou
- Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Jianabuli
- Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Weibin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China.
| | - Paerhati Rexiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
30
|
O'Connor TE, O'Hehir MM, Khan A, Mao JZ, Levy LC, Mullin JP, Pollina J. Mazor X Stealth Robotic Technology: A Technical Note. World Neurosurg 2020; 145:435-442. [PMID: 33059080 DOI: 10.1016/j.wneu.2020.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Minimally invasive techniques in spine surgery have continued to advance as robotic technology has evolved over several generations. Although traditional techniques for placing pedicle screws are still widespread in practice, newer technology has increased the reliability of accurately placing instrumentation with smaller incisions and subsequent decreased length of stay. Additionally, advancements in planning software have improved the ability to align posterior instrumentation to assist with rod placement on multilevel constructs. METHODS This paper describes the surgical techniques and operative workflow for placing pedicle screws with the latest robotic technology. The robotic platform, registration, surgical planning, and placement of instrumentation are discussed in detail. Advantages of the Mazor X Stealth Edition compared with the previous generation robot include obviating the need for K wires and eliminating the need for a percutaneous pin, as navigation is integrated into the robot. RESULTS Our use of this new technology has been encouraging. Using the techniques described in this paper, the first 90 pedicle screws placed with the Mazor X Stealth Edition robot yielded 100% grade A accuracy on the Gertzbein-Robbins scale confirmed on immediate postoperative CT. There were no complications experienced in any case. CONCLUSIONS In our experience, this robotic technology has the potential to improve patient outcomes and is associated with advanced surgical planning compared with more traditional techniques.
Collapse
Affiliation(s)
- Timothy E O'Connor
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA.
| | - Mary Margaret O'Hehir
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Asham Khan
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - Jennifer Z Mao
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA; Department of Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - Lauren C Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jeffrey P Mullin
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - John Pollina
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| |
Collapse
|