1
|
Kim GH, Lee YJ, Kwon JH. Relationship Between Harvesting Efficiency and Filament Morphology in Arthrospira platensis Gomont. Microorganisms 2025; 13:367. [PMID: 40005734 PMCID: PMC11857947 DOI: 10.3390/microorganisms13020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Arthrospira platensis, a filamentous cyanobacterium, exhibits morphological variability influenced by biotic and abiotic factors. We investigated the effect of sodium ion concentration on filament length, growth, and harvest efficiency. Increasing the sodium concentration from 0.2 M to 0.4 M (using NaHCO3 or Na2CO3) led to a significant increase in filament length, from 0.3393 to 0.7084 mm, and longer filaments had increased auto-flotation efficiency (from 87% to 94%) within 3 h. The linear filaments, obtained via spontaneous morphological conversion, also had increased photosynthetic activity and growth rates compared to coiled filaments, and we speculate this was due to decreased self-shading and increased light penetration. However, linear filaments also had poor auto-flotation efficiency (10% after 24 h) and decreased buoyancy, and this likely limits their survival in natural ecosystems. These findings provide insights into optimizing the cultivation of A. platensis for biomass harvesting.
Collapse
Affiliation(s)
- Ga-Hyeon Kim
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (G.-H.K.); (Y.J.L.)
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeong Jun Lee
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (G.-H.K.); (Y.J.L.)
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Hee Kwon
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (G.-H.K.); (Y.J.L.)
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Badea GI, Gatea F, Litescu-Filipescu SC, Alecu A, Chira A, Damian CM, Radu GL. Optimization of Green Ultrasound-Assisted Extraction of Carotenoids and Tocopherol from Tomato Waste Using NADESs. Molecules 2025; 30:591. [PMID: 39942695 PMCID: PMC11820441 DOI: 10.3390/molecules30030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of this study was to extract the lipophilic fraction from one of the largest source of waste in the industrial sector, namely, the tomato residue from processing the fruit. In order to make this process more environmentally sustainable, this study used a green extraction protocol employing natural deep eutectic solvents (NADESs) combined with a less energy-consuming technology, the ultrasound-assisted extraction (UAE) method, to simultaneously recover carotenoids and tocopherol from dried powder tomato waste. Two NADESs, one hydrophilic and one hydrophobic, were prepared and compared to support high extraction efficiency and increase the stability of the extracted compounds. The optimal extraction parameters were identified as choline chloride:1,3-butanediol (1:5)-based NADES, a solid-to-liquid ratio of 1:20 (w/v), time of extraction 12 min, temperature 65 °C, radiation frequency 37 Hz, and an ultrasound power level of 70%. The extraction process was intensified and resulted in extracts rich in lycopene (215.13 ± 4.31 μg/g DW), β-carotene (206.95 ± 3.27 μg/g DW), and tocopherol (130.86 ± 8.97 μg/g DW) content, with the highest antioxidant capacity 93.84 ± 0.18 mM Trolox equivalent. Incorporating NADESs for the extraction of bioactive compounds offers numerous benefits, such as improved sustainability, enhanced extraction efficiency, better protection of sensitive compounds, and reduced environmental impact. These advantages make NADESs a promising alternative to traditional organic solvents, especially in industries that require natural, green, and efficient extraction processes for valuable bioactive molecules.
Collapse
Affiliation(s)
- Georgiana Ileana Badea
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Florentina Gatea
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Simona Carmen Litescu-Filipescu
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Andreia Alecu
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Ana Chira
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Celina Maria Damian
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Gabriel Lucian Radu
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| |
Collapse
|
3
|
Sethi S, Rathod VK. Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review. Prep Biochem Biotechnol 2024:1-27. [PMID: 39718248 DOI: 10.1080/10826068.2024.2436952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
With numerous advantages over conventional techniques, ultrasound-assisted extraction (UAE) has become a viable method for the effective extraction of biomolecules from prokaryotic and eukaryotic cells. The fundamentals and workings of UAE are examined in this review, focusing on current developments, including how these impact the extraction of proteins, lipids, enzymes, and other bioactive compounds. UAE not only enhances cell disruption and mass transfer, leading to improved extraction yields, but also preserves the integrity of the extracted bioactive molecules under optimized conditions, making it a preferred choice in Biochemistry and Biotechnology. Additionally, this review explores recent innovative approaches that combine ultrasound with other techniques like enzymatic digestion, supercritical CO2, deep eutectic solvents, and Three-Phase Partitioning (UA-TPP) etc, to further enhance extraction efficiency. The differences in extraction effectiveness between prokaryotic and eukaryotic cells are attributed to cellular structure and ultrasonic conditions. Overall, this review highlights UAE's promise as a viable and efficient substitute for biomolecule extraction concerning prokaryotic and eukaryotic cells while bringing up areas that need additional research and development.
Collapse
Affiliation(s)
- Santosh Sethi
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| | - V K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| |
Collapse
|
4
|
Görüşük EM, Lalikoglu M, Aşçı YS, Bener M, Bekdeşer B, Apak R. Novel tributyl phosphate-based deep eutectic solvent: Application in microwave assisted extraction of carotenoids. Food Chem 2024; 459:140418. [PMID: 39024868 DOI: 10.1016/j.foodchem.2024.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
A contribution to the use of deep eutectic solvents (DES) and microwave-assisted extraction (MAE) was made for bioactive compounds recovery, especially those with lipophilic character, from tomato and carrot samples rich in carotenoids. For the first time, a novel deep eutectic solvent was synthesized, comprising tributyl phosphate (TBP) as a hydrogen bond acceptor and acetic acid (AcOH) as a hydrogen bond donor. The total antioxidant capacity (TAC) of tomato and carrot extracts obtained by MAE, in which optimization of operational parameters and modeling were made with the use of Box-Behnken design of the response surface methodology (RSM), was evaluated using the Cupric Reducing Antioxidant Capacity (CUPRAC) method. For the highest TAC, operational parameters that best suit the MAE procedure were set at 80 °C, 35 min, and 25 mL/2.0 g. The TAC values of extracts obtained by MAE using TBP:AcOH, 1:2 (mol/mol) were examined against those of extracts acquired by classical solvent extraction using a mixture of hexane, ethanol and acetone (H:E:A, 2:1:1 (v/v/v)) mixture. TAC of extracts in DES varied between 5.10 and 0.71 lycopene equivalents (mmol LYC kg-1). The highest extraction yield comparable to conventional organic solvents was obtained with TBP:AcOH (1:2). It was observed that, in addition to lipophilic antioxidants, some hydrophilic antioxidant compounds were partially extracted with the proposed DES. Moreover, the extracted antioxidant compounds were identified and quantified by HPLC analysis. The proposed DES and MAE process will find potential application for hydrophobic antioxidant extraction from tomatoes and carrots on an industrial scale after further studies.
Collapse
Affiliation(s)
- Emine Münevver Görüşük
- Institute of Graduate Studies and Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Istanbul, Türkiye
| | - Melisa Lalikoglu
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Yavuz Selim Aşçı
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Burcu Bekdeşer
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Türkiye.
| | - Reşat Apak
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Türkiye; Turkish Academy of Sciences (TUBA), 06690 Çankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Kanda H, Kusumi K, Zhu L, Wang T. Direct Extraction of Lipids, β-Carotene, and Polyphenolic Compounds from Wet Microalga Dunaliella salina by Liquefied Dimethyl Ether. Mar Drugs 2024; 22:438. [PMID: 39452846 PMCID: PMC11509521 DOI: 10.3390/md22100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet Dunaliella salina using liquefied dimethyl ether (DME), which is effective in lipid extraction for biofuel production. The amount of DME-extracted β-carotene was 7.0 mg/g, which was higher than that obtained from the chloroform-methanol extraction. Moreover, the total phenolic content extracted with DME and its antioxidant capacity were slightly higher than those extracted with chloroform-methanol. DME removed almost all the water and extracted 29.2 wt% of total lipids and 9.7 wt% of fatty acids. More lipids were extracted from wet samples by liquefied DME than by chloroform-methanol extraction. The C/N ratio of lipids extracted with DME was 112.0, higher than that of chloroform-methanol. The high C/N ratio suggests that nitrogen-containing phosphatidylcholines may be less easily extracted by liquefied DME and may be highly selective. However, the ratio of saturated fatty acids was 34.8%, lower than that of chloroform-methanol. Na+ and Mg2+ in the culture medium were not extracted using DME. Thus, using the extract with DME has both advantages and disadvantages compared to using the extract with chloroform-methanol; however, it has satisfactory extraction properties. DME is expected to be an environment-friendly alternative solvent because it does not require drying, which is necessary for conventional extraction solvents.
Collapse
Affiliation(s)
- Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Kaito Kusumi
- Department of Materials Process Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Li Zhu
- Department of Chemical Systems Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Tao Wang
- Department of Chemical Systems Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Chen X, Liu S, Shen M, Shi J, Wu C, Song Z, Zhao Y. Dielectrophoretic characterization and selection of non-spherical flagellate algae in parallel channels with right-angle bipolar electrodes. LAB ON A CHIP 2024; 24:2506-2517. [PMID: 38619815 DOI: 10.1039/d4lc00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Jishun Shi
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Chungang Wu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Zhipeng Song
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| |
Collapse
|
7
|
Vo TP, Pham TV, Weina K, Tran TNH, Vo LTV, Nguyen PT, Bui TLH, Phan TH, Nguyen DQ. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: optimization and surface morphology. BMC Chem 2023; 17:119. [PMID: 37735704 PMCID: PMC10512608 DOI: 10.1186/s13065-023-01041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
This study deployed ultrasonic-assisted extraction (UAE), combined with natural deep eutectic solvents (NADES), to extract phenolics and flavonoids from the black mulberry fruit, and the antioxidant activity was examined. The extraction yields of NADES-based UAE were assessed based on the yields of phenolics and flavonoids extracted from the black mulberry fruit. This study selected the molar ratios of hydrogen bond acceptors (HBA) and hydrogen bond donors HBD at 1:2 from previous studies. Choline chloride-lactic acid showed the highest solubility with phenolics and flavonoids among NADES systems. One-factor experiments evaluated the effect of UAE conditions (liquid-to-solid ratio (LSR), water content in NADES, temperature, and time) on TPC, TFC, and antioxidant activity. The suitable NADES-based UAE conditions for extracting phenolics and flavonoids from the black mulberry fruit were 60 ml/g of LSR, 40% water content, 70 °C, and 15 min. Response surface methodology with the Box-Behnken design model optimized the NADES-based UAE process based on response (TPC, TFC, ABTS, OH, and DPPH). The optimal conditions for the NADES-based UAE process were 70 ml/g of LSR, 38.9% water content in NADES, 67.9 °C, and 24.2 min of extraction time. The predicted values of the Box-Behnken design were compatible with the experimental results. Moreover, scanning electron microscopy (SEM) was used to survey the surface of black mulberry fruit with and without sonication. SEM can assist in demonstrating the destructive effect of NADES and ultrasonic waves on material surfaces. SEM findings indicated the high surface destruction capacity of NADES, which partially contributed to a superior extraction yield of NADES than conventional organic solvents. The study proposes an efficient and green method for extracting bioactive compounds from black mulberry fruits. The black mulberry fruit extracts can be applied to meat preservation and beverages with high antioxidants.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Vy Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Kasia Weina
- Evergreen Labs, My Khue Ward, Danang, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Thao Vy Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Phuc Thanh Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Linh Ha Bui
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Han Phan
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
8
|
Ferreira JPA, Grácio M, Sousa I, Pagarete A, Nunes MC, Raymundo A. Tuning the Bioactive Properties of Dunaliella salina Water Extracts by Ultrasound-Assisted Extraction. Mar Drugs 2023; 21:472. [PMID: 37755085 PMCID: PMC10532918 DOI: 10.3390/md21090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
(1) Background: Microalgae are promising feedstock for obtaining valuable bioactive compounds. To facilitate the release of these important biomolecules from microalgae, effective cell disruption is usually necessary, where the use of ultrasound has achieved considerable popularity as an alternative to conventional methods. (2) Methods: This paper aims to evaluate the use of ultrasound technology in water medium as a green technology to recover high added-value compounds from Dunaliella salina and improve its sensory profile towards a high level of incorporation into novel food products. (3) Results: Among the variables, the solid concentration and extraction time have the most significant impact on the process. For the extraction of protein, or fat, the most influential factor is the extraction time. Total polyphenols are only significantly affected by the extraction time. The antioxidant capacity is strongly affected by the solid to liquid ratio and, to a small extent, by the extraction time. Ultrasound-assisted extraction improves the overall odor/aroma of D. salina with good acceptability by the panelists. (4) Conclusions: The application of ultrasonic-assisted extraction demonstrates a positive overall effect on enhancing the sensory profile, particularly the odor of microalgal biomass, while the bioactive properties are preserved. Notably, the intense sea/fish odors are reduced, while earthy and citrus notes become more prominent, resulting in an improved overall sensory profile score. This is the first time, to our knowledge, that this innovative, green, and efficient technology has been used to upgrade the aroma profile of microalgae.
Collapse
Affiliation(s)
- Joana P. A. Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - Madalena Grácio
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - António Pagarete
- Pagarete Microalgae Solutions Soc. Unipessoal Lda., Rua João Chagas, 4, 7Esq, 1495-069 Algés, Portugal;
| | - M. Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| |
Collapse
|
9
|
Generalić Mekinić I, Šimat V, Rathod NB, Hamed I, Čagalj M. Algal Carotenoids: Chemistry, Sources, and Application. Foods 2023; 12:2768. [PMID: 37509860 PMCID: PMC10379930 DOI: 10.3390/foods12142768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, the isolation and identification of various biologically active secondary metabolites from algae have been of scientific interest, with particular attention paid to carotenoids, widely distributed in various photosynthetic organisms, including algal species. Carotenoids are among the most important natural pigments, with many health-promoting effects. Since the number of scientific studies on the presence and profile of carotenoids in algae has increased exponentially along with the interest in their potential commercial applications, this review aimed to provide an overview of the current knowledge (from 2015) on carotenoids detected in different algal species (12 microalgae, 21 green algae, 26 brown algae, and 43 red algae) to facilitate the comparison of the results of different studies. In addition to the presence, content, and identification of total and individual carotenoids in various algae, the method of their extraction and the main extraction parameters were also highlighted.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology & Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), District Raigad, Killa-Roha 402 116, Maharashtra State, India
| | - Imen Hamed
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| |
Collapse
|
10
|
Fatima I, Munir M, Qureshi R, Hanif U, Gulzar N, Sheikh AA. Advanced methods of algal pigments extraction: A review. Crit Rev Food Sci Nutr 2023; 64:9771-9788. [PMID: 37233148 DOI: 10.1080/10408398.2023.2216782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Algae are exclusively aquatic photosynthetic organisms that are microscopic or macroscopic, unicellular or multicellular and distributed across the globe. They are a potential source of food, feed, medicine and natural pigments. A variety of natural pigments are available from algae including chlorophyll a, b, c d, phycobiliproteins, carotenes and xanthophylls. The xanthophylls include acyloxyfucoxanthin, alloxanthin, astaxanthin, crocoxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, loroxanthin, monadoxanthin, neoxanthin, nostoxanthin, perdinin, Prasinoxanthin, siphonaxanthin, vaucheriaxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, while carotenes include echinenone, α-carotene, β-carotene, γ-carotene, lycopene, phytoene, phytofluene. These pigments have applications as pharmaceuticals and nutraceuticals and in the food industry for beverages and animal feed production. The conventional methods for the extraction of pigments are solid-liquid extraction, liquid-liquid extraction and soxhlet extraction. All these methods are less efficient, time-consuming and have higher solvent consumption. For a standardized extraction of natural pigments from algal biomass advanced procedures are in practice which includes Supercritical fluid extraction, Pressurized liquid extraction, Microwave-assisted extraction, Pulsed electric field, Moderate electric field, Ultrahigh pressure extraction, Ultrasound-assisted extraction, Subcritical dimethyl ether extraction, Enzyme assisted extraction and Natural deep eutectic solvents. In the present review, these methods for pigment extraction from algae are discussed in detail.
Collapse
Affiliation(s)
- Ishrat Fatima
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Nabila Gulzar
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
11
|
Vo TP, Pham ND, Pham TV, Nguyen HY, Vo LTV, Tran TNH, Tran TN, Nguyen DQ. Green extraction of total phenolic and flavonoid contents from mangosteen (Garcinia mangostana L) rind using natural deep eutectic solvents. Heliyon 2023; 9:e14884. [PMID: 37095977 PMCID: PMC10121615 DOI: 10.1016/j.heliyon.2023.e14884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
This research combined ultrasonic-assisted extraction (UAE) and natural deep eutectic solvent (NADES) to recover phenolic and flavonoid components from mangosteen rind. The antioxidant activities were determined using DPPH, ABTS+, and hydroxyl assays. NADES prepared from lactic and 1,2-propanediol had the highest extraction efficiency based on the total flavonoid content (TFC) and phenolic contents (TPC). Single-factor experiments were employed to assess the influence of UAE conditions (liquid-to-solid ratio, temperature, water content in NADES, and time) on TFC, TPC, and antioxidant activities. NADES-based UAE conditions were optimized using response surface methodology with the Box-Behnken design model on five dependent responses (TPC, TFC, DPPH, ABTS, and OH). The optimal conditions for the lactic-1,2-Propanediol-based UAE process were 76.7 ml liquid/g solid with 30.3% of water content at 57.5 °C for 9.1 min. Scanning electron microscopy (SEM) was applied to examine the surface morphology of mangosteen rind before and after sonication. This study proposes an efficient, green, and practical approach for recovering phenolics and flavonoids from mangosteen rinds.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngoc Duyen Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Vy Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Yen Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Thao Vy Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tri Nguyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Corresponding author. Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Le Guillard C, Bergé JP, Donnay-Moreno C, Cornet J, Ragon JY, Fleurence J, Dumay J. Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu. Mar Drugs 2023; 21:md21040213. [PMID: 37103353 PMCID: PMC10146196 DOI: 10.3390/md21040213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Enzyme-assisted extraction (EAE) and ultrasound-assisted extraction (UAE) are both recognized as sustainable processes, but little has been done on the combined process known as ultrasound-assisted enzymatic hydrolysis (UAEH), and even less on seaweed. The present study aimed to optimize the UAEH of the red seaweed Grateloupia turuturu for the extraction of R-phycoerythrin (R-PE) directly from the wet biomass by applying a response surface methodology based on a central composite design. Three parameters were studied: the power of ultrasound, the temperature and the flow rate in the experimental system. Data analysis demonstrated that only the temperature had a significant and negative effect on the R-PE extraction yield. Under the optimized conditions, the R-PE kinetic yield reached a plateau between 90 and 210 min, with a yield of 4.28 ± 0.09 mg·g−1 dry weight (dw) at 180 min, corresponding to a yield 2.3 times higher than with the conventional phosphate buffer extraction on freeze-dried G. turuturu. Furthermore, the increased release of R-PE, carbohydrates, carbon and nitrogen can be associated with the degradation of G. turuturu constitutive polysaccharides, as their average molecular weights had been divided by 2.2 in 210 min. Our results thus demonstrated that an optimized UAEH is an efficient method to extract R-PE from wet G. turuturu without the need for expensive pre-treatment steps found in the conventional extraction. UAEH represents a promising and sustainable approach that should be investigated on biomasses where the recovery of added-value compounds needs to be improved.
Collapse
Affiliation(s)
- Cécile Le Guillard
- IFREMER Centre Ifremer Atlantique, EM3B, BP 21105, CEDEX 03, 44311 Nantes, France
- Institut des Substances et Organismes de la Mer, ISOMER, Nantes Université, UR 2160, 44000 Nantes, France
- Correspondence: or (C.L.G.); (J.D.)
| | | | - Claire Donnay-Moreno
- IFREMER Centre Ifremer Atlantique, EM3B, BP 21105, CEDEX 03, 44311 Nantes, France
| | - Josiane Cornet
- IFREMER Centre Ifremer Atlantique, EM3B, BP 21105, CEDEX 03, 44311 Nantes, France
| | - Jean-Yves Ragon
- IFREMER Centre Ifremer Atlantique, EM3B, BP 21105, CEDEX 03, 44311 Nantes, France
| | - Joël Fleurence
- Institut des Substances et Organismes de la Mer, ISOMER, Nantes Université, UR 2160, 44000 Nantes, France
| | - Justine Dumay
- Institut des Substances et Organismes de la Mer, ISOMER, Nantes Université, UR 2160, 44000 Nantes, France
- Correspondence: or (C.L.G.); (J.D.)
| |
Collapse
|
13
|
Wang P, Tian B, Ge Z, Feng J, Wang J, Yang K, Sun P, Cai M. Ultrasound and deep eutectic solvent as green extraction technology for recovery of phenolic compounds from Dendrobium officinale leaves. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
15
|
Ghosh S, Sarkar T, Chakraborty R. Underutilized plant sources: A hidden treasure of natural colors. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Rashid R, Mohd Wani S, Manzoor S, Masoodi F, Masarat Dar M. Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: Optimisation, comparison and bioactivity. Food Chem 2023; 398:133871. [DOI: 10.1016/j.foodchem.2022.133871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
|
17
|
Addo PW, Sagili SUKR, Bilodeau SE, Gladu-Gallant FA, MacKenzie DA, Bates J, McRae G, MacPherson S, Paris M, Raghavan V, Orsat V, Lefsrud M. Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology. Molecules 2022; 27:molecules27248803. [PMID: 36557949 PMCID: PMC9784742 DOI: 10.3390/molecules27248803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Limited studies have explored different extraction techniques that improve cannabis extraction with scale-up potential. Ultrasound-assisted and microwave-assisted extraction were evaluated to maximize the yield and concentration of cannabinoids and terpenes. A central composite rotatable design was used to optimize independent factors (sample-to-solvent ratio, extraction time, extraction temperature, and duty cycle). The optimal conditions for ultrasound- and microwave-assisted extraction were the sample-to-solvent ratios of 1:15 and 1:14.4, respectively, for 30 min at 60 °C. Ultrasound-assisted extraction yielded 14.4% and 14.2% more oil and terpenes, respectively, compared with microwave-assisted extracts. Ultrasound-assisted extraction increased cannabinoid concentration from 13.2−39.2%. Considering reference ground samples, tetrahydrocannabinolic acid increased from 17.9 (g 100 g dry matter−1) to 28.5 and 20 with extraction efficiencies of 159.2% and 111.4% for ultrasound-assisted and microwave-assisted extraction, respectively. Principal component analyses indicate that the first two principal components accounted for 96.6% of the total variance (PC1 = 93.2% and PC2 = 3.4%) for ultrasound-assisted extraction and 92.4% of the total variance (PC1 = 85.4% and PC2 = 7%) for microwave-assisted extraction. Sample-to-solvent ratios significantly (p < 0.05) influenced the secondary metabolite profiles and yields for ultrasound-assisted extracts, but not microwave-assisted extracts.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Sai Uday Kumar Reddy Sagili
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | | | | | - Douglas A. MacKenzie
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Jennifer Bates
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Garnet McRae
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Maxime Paris
- EXKA Inc., 7625 Route Arthur Sauvé, Mirabel, QC J7N 2R6, Canada
| | - Vijaya Raghavan
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Mark Lefsrud
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-(514)-3987967
| |
Collapse
|
18
|
Vilas-Franquesa A, Saldo J, Juan B. Sea buckthorn (Hippophae rhamnoides) oil extracted with hexane, ethanol, diethyl ether and 2-MTHF at different temperatures – An individual assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Gupta I, Adin SN, Panda BP, Mujeeb M. β-Carotene-production methods, biosynthesis from Phaffia rhodozyma, factors affecting its production during fermentation, pharmacological properties: A review. Biotechnol Appl Biochem 2022; 69:2517-2529. [PMID: 35048411 DOI: 10.1002/bab.2301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022]
Abstract
β-Carotene is the most treasured provitamin A carotenoid molecule exhibiting antioxidant and coloring properties and significant applications in the food, pharmaceutical, and nutraceutical industries. β-Carotene has many biological functions within the human body; however, it is not synthesized within the human body, so its requirements are fulfilled through food and pharmaceuticals. Its manufacturing via chemical synthesis or extraction from plants offers low yields with excessive manufacturing expenses, which attracted the researchers toward microbial production of β-carotene. This alternative provides higher yield and low expenses and thus is more economical. Phaffia rhodozyma is a basidiomycetous yeast that is utilized to prevent cardiovascular diseases and cancer and to enhance immunity and antiaging in people. This paper reviews the methods of production of β-carotene, biosynthesis of β-carotene fromP. rhodozyma, factors affecting β-carotene production during fermentation, and pharmacological properties of β-carotene.
Collapse
Affiliation(s)
- Isha Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Syeda Nashvia Adin
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Bibhu Prasad Panda
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohd Mujeeb
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
Singh K, Srichairatanakool S, Chewonarin T, Prommaban A, Samakradhamrongthai RS, Brennan MA, Brennan CS, Utama-ang N. Impact of Green Extraction on Curcuminoid Content, Antioxidant Activities and Anti-Cancer Efficiency (In Vitro) from Turmeric Rhizomes ( Curcuma longa L.). Foods 2022; 11:foods11223633. [PMID: 36429224 PMCID: PMC9689051 DOI: 10.3390/foods11223633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Turmeric (Curcuma longa L.) powder is widely used as a spice and seasoning in Asian countries. This study investigated the effect of turmeric extracts on the anticancer activity of Huh7 and HCT 116 cells. The curcumin bioactive compounds were extracted using various methods such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and traditional extraction (TDE). The yield of dried extracts from MAE was found to be the highest at 17.89%, followed by UAE and TDE, with 11.34% and 5.54%, respectively. Antioxidant activities such as TPC, DPPH and FRAP from MAE were higher than those of UAE and TDE. The total curcuminoid contents from the novel extractions were higher than those from traditional extraction methods. For instance, curcuminoid contents from MAE, UAE and TDE were 326.79, 241.17 and 215.83 mg/g, respectively. Due to having the highest bioactive compounds and extraction yield, turmeric extract from MAE was used to investigate the potential anticancer properties. The extract showed significant cytotoxic potential against the human liver (Huh7) and human colon (HCT116) cell lines, in concentrations ranging from 31.25 to 1000.00 µg/mL. Turmeric extracts using MAE have potential anticancer effects on Huh7 and HCT116 cells. This study serves as scientific data for the chemotherapeutic properties of turmeric extracts and their use as functional ingredients.
Collapse
Affiliation(s)
- Kanjana Singh
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Somdet Srichairatanakool
- Cluster of High Value Products from Thai Rice and Plant for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Adchara Prommaban
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Rajnibhas Sukeaw Samakradhamrongthai
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of High Value Products from Thai Rice and Plant for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Margaret Anne Brennan
- School of Science, RMIT University, Melbourne 3000, Australia
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Science, Lincoln University, Christchurch 7647, New Zealand
| | - Charles Stephen Brennan
- School of Science, RMIT University, Melbourne 3000, Australia
- Correspondence: (C.S.B.); (N.U.-a.); Tel.: +61-399254177 (C.S.B.); +66-53948233 (N.U.-a.)
| | - Niramon Utama-ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of High Value Products from Thai Rice and Plant for Health, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: (C.S.B.); (N.U.-a.); Tel.: +61-399254177 (C.S.B.); +66-53948233 (N.U.-a.)
| |
Collapse
|
22
|
Cikoš AM, Aladić K, Velić D, Tomas S, Lončarić P, Jerković I. Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Han Jeong Y, Van Kien N, Jin Han Seog D, Ryoo JJ. Comparison between the use of polyether ether ketone and stainless steel columns for ultrasonic-assisted extraction under various ultrasonic conditions. ULTRASONICS SONOCHEMISTRY 2022; 90:106125. [PMID: 36191369 PMCID: PMC9531288 DOI: 10.1016/j.ultsonch.2022.106125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
The ultrasound-assisted extraction (UAE) was conducted using the stainless steel (SS) and polyether ether ketone (PEEK) columns and analyzed with high-performance liquid chromatography (HPLC) to understand the mechanism of ultrasound-assisted chromatography (UAC). Empty SS and PEEK columns were used to extract dyes from a fabric under identical conditions with several parameters including the initial ultrasonic bath temperatures (30 °C and 40 °C), ultrasound power intensities (0, 20, 40, 60, 80, and 100 %), ultrasound operation modes (normal and sweep), and ultrasound frequencies (25 kHz, 40 kHz, and 132 kHz) to compare their extraction capabilities. After 30 min of extraction, the amount of extract was determined by HPLC. The PEEK material was significantly affected by ultrasonic radiation compared to the SS material, especially at a higher temperature (40 °C), power intensity (100 %), and frequency (132 kHz) with sweep mode. At a maximum power density of 45 W/L, the extraction effectiveness ratio of PEEK to SS was in the range of 1.8 - 3.9 depending on the specific frequency, initial temperature, and with or without temperature control. The most optimal ultrasound frequencies, in terms of enhancing extraction effectiveness, are in the order of 132 kHz, 40 kHz, and 25 kHz. Unlike the SS material, the PEEK material was more affected by temperature and acoustic effects under identical conditions, especially at 132 kHz ultrasound frequency. In contrast, at lower frequencies of 40 kHz and 25 kHz, no significant differences in the acoustic effects were observed between the PEEK and SS materials. The findings of this study contribute to elucidating the roles of column materials in UAE and UAC.
Collapse
Affiliation(s)
- Young Han Jeong
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Nguyen Van Kien
- Department of Chemistry Education, Kyungpook National University, Daegu 702-701, South Korea
| | - David Jin Han Seog
- Science Education Research Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Jae Jeong Ryoo
- Department of Chemistry Education, Kyungpook National University, Daegu 702-701, South Korea; Science Education Research Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
24
|
Zhao Y, Qin D, Chen J, Hou J, Ilovitsh T, Wan M, Wu L, Feng Y. On-demand regulation and enhancement of the nucleation in acoustic droplet vaporization using dual-frequency focused ultrasound. ULTRASONICS SONOCHEMISTRY 2022; 90:106224. [PMID: 36368292 PMCID: PMC9649937 DOI: 10.1016/j.ultsonch.2022.106224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Acoustic droplet vaporization (ADV) plays an important role in focused ultrasound theranostics. Better understanding of the relationship between the ultrasound parameters and the ADV nucleation could provide an on-demand regulation and enhancement of ADV for improved treatment outcome. In this work, ADV nucleation was performed in a dual-frequency focused ultrasound configuration that consisted of a continuous low-frequency ultrasound and a short high-frequency pulse. The combination was modelled to investigate the effects of the driving frequency and acoustic power on the nucleation rate, efficiency, onset time, and dimensions of the nucleation region. The results showed that the inclusion of short pulsed high-frequency ultrasound significantly increased the nucleation rate with less energy, reduced the nucleation onset time, and changed the length-width ratio of the nucleation region, indicating the dual-frequency ultrasound mode yields an efficient enhancement of the ADV nucleation, compared to a single-frequency ultrasound mode. Furthermore, the acoustic and temperature fields varied independently with the dual-frequency ultrasound parameters. This facilitated the spatial and temporal control over the ADV nucleation, and opens the door to the possibility to realize on-demand regulation of the ADV occurrence in ultrasound theranostics. In addition, the improved energy efficacy that is obtained with the dual-frequency configuration lowered the requirements on hardware system, increasing its flexibility and could facilitate its implementation in practical applications.
Collapse
Affiliation(s)
- Yubo Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dui Qin
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jin Hou
- Department of Otorhinolaryngology Head & Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liang Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
25
|
Green extraction of bioactive components from carrot industry waste and evaluation of spent residue as an energy source. Sci Rep 2022; 12:16607. [PMID: 36198728 PMCID: PMC9534898 DOI: 10.1038/s41598-022-20971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Carrot processing industries produce 25-30% of waste in the form of carrot rejects, peels, and pomace which contain a large amount of high-value bioactive components. Green extraction of the bioactive components from carrot rejects with green solvents using closed-vessel energy-intensive microwave-assisted extraction was the objective of this work. In this work, three experimental studies were implemented. One uses 8 different green solvents for maximum yield of bioactive using green technology, and the other for the optimization of Microwave-assisted Extraction (MAE) parameters to enhance the bioactive components yield. Response Surface Methodology was employed to optimize the processing parameters including temperature, time, solid to solvent ratio, and solvent type. The optimized extraction conditions: treatment temperature of 50 °C for 5 min gave a significantly higher yield of total carotenoids (192.81 ± 0.32 mg carotenoids/100 g DW), total phenolic (78.12 ± 0.35 g GAE/100 g DW), and antioxidants by FRAP (5889.63 ± 0.47 mM TE/100 g DW), ABTS (1143.65 ± 0.81 mM TE/100 g DW), and DPPH (823.14 ± 0.54 mM TE/100 g DW) using a solvent combination of hexane and ethanol (1:3) with solid to solvent ratio of 1:40 (w/v). This green technology in combination with GRAS solvents promoted the best recovery of bioactive from carrot rejects. Moreover, the solid residue remained after the extraction of bioactive components exhibited higher carbon content (46.5%) and calorific value (16.32 MJ/kg), showcasing its potential to be used as an energy source.
Collapse
|
26
|
Factorial Optimization of Ultrasound-Assisted Extraction of Phycocyanin from Synechocystis salina: Towards a Biorefinery Approach. Life (Basel) 2022; 12:life12091389. [PMID: 36143425 PMCID: PMC9505276 DOI: 10.3390/life12091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
PC is a bioactive and colorant compound widely sought in the food, nutraceutical and cosmetic industries, and one of the most important pigments produced by Synechocystis salina. However, the general extraction process is usually time-consuming and expensive, with low extraction yields—thus compromising a feasible and sustainable bioprocess. Hence, new extraction technologies (e.g., ultrasound assisted-extraction or UAE) emerged in the latest years may serve as a key step to make the overall bioprocess more competitive. Therefore, this study aimed at optimizing the yields of phycocyanin (PC) rich-extracts of S. salina by resorting to UAE; in attempts to explore this process in a more economically feasible way; valorization of the remaining cyanobacterial biomass, via extraction of other bioactive pigments and antioxidants, was tackled within a biorefinery perspective. A two-stage extraction (using ethanol and water) was thus performed (because it favors PC extraction); other bioactive pigments, including chlorophyll a (chl a), carotenoids, and other phycobiliproteins (PBPs), but also antioxidant (AOX) capacity and extraction yields were also evaluated for their optimum UAE yields. A factorial design based on Box–Behnken model was developed; and the influence of such extraction parameters as biomass to solvent ratio (B/S ratio = 1.5–8.5 mg·mL−1), duty cycle (DT = 40–100%), and percentage of amplitude (A = 40–100%) were evaluated. The model predicted higher PC yields with high B/S ratio = 6 mg·mL−1, lower DT = 80% and an A = 100%. Classical extraction was compared with UAE under the optimum conditions found; the latter improved PC yields by 12.5% and 47.8%, when compared to freeze-thawing extraction, and bead beater homogenization-based extraction, respectively. UAE successive extractions allowed to valorize other important bioactive compounds than PC, by reusing biomass, supporting a favorable contribution to the economic feasibility of the S. salina-based process towards a biorefinery approach.
Collapse
|
27
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Gogna S, Kaur J, Sharma K, Prasad R, Singh J, Bhadariya V, Kumar P, Jarial S. Spirulina- An Edible Cyanobacterium with Potential Therapeutic Health Benefits and Toxicological Consequences. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-14. [PMID: 35916491 DOI: 10.1080/27697061.2022.2103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Spirulina is a blue-green algae which is cultivated not only for its maximum protein content but also due to the presence of other essential nutrients such as carbohydrates and vitamins (A, C and E). It is also a storehouse of minerals including iron, calcium, chromium, copper, magnesium, manganese, phosphorus, potassium, sodium and zinc. Simultaneously, γ- linolenic acid (an essential fatty acid), as well as pigments such as chlorophyll A and phycobiliproteins (C-phycocyanin, allophycocyanin and β-carotene), is also a major component of its rich nutritional profile. Spirulina is known to have various promising effects on the prevention of cancer, oxidative stress, obesity, diabetes, cardiovascular diseases and anemia. Moreover, it also plays a positive role in treating muscular cramps. The safety recommended dosage of Spirulina is approximately 3-10 g/d for adults and it's biological value (BV) is 75 with a net protein utilization (NPU) of 62. Spirulina does not have pericardium due to which it does not hinder the absorption of iron by chelation with phytates or oxalates. On the contrasting note, it may have some adverse effects due to the toxins (microcystins, β-methylamino-L-alanine (BMAA)) produced by Spirulina which might contribute to acute poisoning, cancer, liver damage as well as gastrointestinal disturbances. Its long-term consumption may also lead to the pathogenesis of Alzheimer's disease and Parkinson's disease. The current review focuses on the various aspects of spirulina including its cultivation, nutritional composition, extraction techniques, health benefits, adverse effects, industrial scope and market value which could be beneficial for its utilization in the development of value-added products and supplementary foods due to its high content of protein and bioavailability of nutrients.
Collapse
Affiliation(s)
- Simran Gogna
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kartik Sharma
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkla, Thailand
| | - Rasane Prasad
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Vishesh Bhadariya
- Department of Chemical and Petroleum Engineering, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Prashant Kumar
- Department of Chemical and Petroleum Engineering, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sapna Jarial
- Department of Agricultural Economics & Extension, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
29
|
Afzal MZ, Zu P, Zhang CM, Guan J, Song C, Sun XF, Wang SG. Sonocatalytic degradation of ciprofloxacin using hydrogel beads of TiO 2 incorporated biochar and chitosan. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128879. [PMID: 35427970 DOI: 10.1016/j.jhazmat.2022.128879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/12/2023]
Abstract
Pharmaceuticals are necessary to be removed from environment. Herein TiO2 incorporated biochar made from pyrolysis of agricultural wastes was encapsulated into chitosan to obtain a novel hydrogel beads. This hydrogel beads executed a dual role as both adsorbent and sonocatalyst, which proved to be suitable for the removal of antibiotic ciprofloxacin (CIP) from water. The results showed that adsorption of CIP followed pseudo first order kinetics model and Langmuir adsorption isotherm model, having maximum adsorption at pH 9. Whereas the degradation was more efficient at pH 6 due to greater standard potential for •OH/H2O in acidic media. The degradation was maximum at 150 W of ultrasonic power, then decreased in presence of dissimilar electrolytes and even reduced to 0 in presence of Na3PO4. Different quenchers such as benzoquinone (BQ), Triethanolamine (TEA) and isopropyl alcohol (IPA) reduced degradation efficiency (DE) and mineralization efficiency (ME). The DE was decreased from 85.23% to 81.50% (BQ), 74.27% (TEA), and 61.77% (IPA) within 25 min. The prepared sonocatalyst was capable of regeneration with DE, remaining sufficiently high (62%) even after four regeneration steps. These results indicate that titanium-biochar/chitosan hydrogel beads (TBCB) are durable and effective for long-term CIP removal.
Collapse
Affiliation(s)
- Muhammad Zaheer Afzal
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Sciences, University of Jhang, Jhang, Pakistan
| | - Peng Zu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Chun-Miao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jing Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Sciences, University of Jhang, Jhang, Pakistan
| | - Xue-Fei Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
30
|
Rashid R, Wani SM, Manzoor S, Masoodi F, Dar MM. Improving oxidative stability of edible oils with nanoencapsulated orange peel extract powder during accelerated shelf life storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Gohara-Beirigo AK, Matsudo MC, Cezare-Gomes EA, Carvalho JCMD, Danesi EDG. Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Paliwal C, Rehmanji M, Shaikh KM, Zafar SU, Jutur PP. Green extraction processing of lutein from Chlorella saccharophila in water-based ionic liquids as a sustainable innovation in algal biorefineries. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Disease Prevention and Treatment Using β-Carotene: the Ultimate Provitamin A. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:491-501. [PMID: 35669276 PMCID: PMC9150880 DOI: 10.1007/s43450-022-00262-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
Humans being unable to synthesize beta-carotene, the provitamin A, depend on external sources as its supplement. Health benefits and dietary requirements of beta-carotene are interrelated. This orange-red coloured pigment has been enormously examined for its capacity to alleviate several chronic diseases including various types of cancer, cystic fibrosis, as well as COVID-19. However, this class of phytoconstituents has witnessed a broad research gap due to several twin conclusions that have been reported. Natural sources for these compounds along with their extraction methods have been mentioned. The current communication aims at contributing to the global scientific literature on beta-carotene’s application in prevention and treatment of lifestyle diseases.
Collapse
|
34
|
Tiwari S, Yawale P, Upadhyay N. Carotenoids extraction strategies and potential applications for valorization of under-utilized waste biomass. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Sun H, Yang S, Zhao W, Kong Q, Zhu C, Fu X, Zhang F, Liu Z, Zhan Y, Mou H, He Y. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Crit Rev Food Sci Nutr 2022; 63:7996-8012. [PMID: 35319314 DOI: 10.1080/10408398.2022.2054932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fucoxanthin attracts increasing attentions due to its potential health benefits, which has been exploited in several food commodities. However, fucoxanthin available for industrial application is mainly derived from macroalgae, and is not yet sufficiently cost-effective compared with microalgae. This review focuses on the strategies to improve fucoxanthin productivity and approaches to reduce downstream costs in microalgal production. Here we comprehensively and critically discuss ways and methods to increase the cell growth rate and fucoxanthin content of marine microalgae, including strain screening, condition optimization, design of culture mode, metabolic and genetic engineering, and scale-up production of fucoxanthin. The approaches in downstream processes provide promising alternatives for fucoxanthin production from marine microalgae. Besides, this review summarizes fucoxanthin improvements in solubility and bioavailability by delivery system of emulsion, nanoparticle, and hydrogel, and discusses fucoxanthin metabolism with gut microbes. Fucoxanthin production from marine microalgae possesses numerous advantages in environmental sustainability and final profits to meet incremental global market demands of fucoxanthin. Strategies of adaptive evolution, multi-stage cultivation, and bioreactor improvements have tremendous potentials to improve economic viability of the production. Moreover, fucoxanthin is promising as the microbiota-targeted ingredient, and nanoparticles can protect fucoxanthin from external environmental factors for improving the solubility and bioavailability.
Collapse
Affiliation(s)
- Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Zhan
- Shandong Feed and Veterinary Drug Quality Center, Jinan, Shandong, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
36
|
Evaluation of ultrasound assisted extraction of bioactive compounds from microalgae. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01347-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Coelho TLS, Silva DSN, Dos Santos Junior JM, Dantas C, Nogueira ARDA, Lopes Júnior CA, Vieira EC. Multivariate optimization and comparison between conventional extraction (CE) and ultrasonic-assisted extraction (UAE) of carotenoid extraction from cashew apple. ULTRASONICS SONOCHEMISTRY 2022; 84:105980. [PMID: 35288329 PMCID: PMC8921489 DOI: 10.1016/j.ultsonch.2022.105980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/05/2023]
Abstract
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59-201 mg) and extraction time (6-34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.
Collapse
Affiliation(s)
- Tiago Linus Silva Coelho
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Darlisson Slag Neri Silva
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Jedaias Marreiros Dos Santos Junior
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Clecio Dantas
- Laboratório de Química Computacional Inorgânica e Quimiometria - (LQCINMETRIA), State University of Maranhão - UEMA, 65604-380 Caxias, Maranhão, Brazil
| | | | - Cícero Alves Lopes Júnior
- Institute for Chemistry, TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Grupo de Estudo em Bioanalítica (GEBIO), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| | - Edivan Carvalho Vieira
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| |
Collapse
|
38
|
Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. CHEMOSPHERE 2022; 291:132932. [PMID: 34798100 DOI: 10.1016/j.chemosphere.2021.132932] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed. Moreover, the latest trends in biotherapy based on high-value algae extracts as materials are discussed. The excellent antioxidant properties of microalgae derivatives are regarded as an attractive replacement for safe and environmentally friendly cosmetics formulation and production. Through further studies, the mechanism of microalgae bioactive compounds can be understood better and reasonable clinical trials conducted can safely conclude the compliance of microalgae-derived drugs or cosmetics to be necessary standards to be marketed.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University. No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Kit Wayne Chew
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Ganorkar PV, Jadeja GC, Desai MA. Extraction of shikimic acid from water hyacinth (Eichhornia crassipes) using sonication: An approach towards waste valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114419. [PMID: 34991027 DOI: 10.1016/j.jenvman.2021.114419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Shikimic acid (SA) is a valuable compound found in water hyacinth and is a precursor for synthesis of antiviral drug oseltamivir phosphate (Tamiflu®) which is used to treat H5N1 avian influenza. In the present work, the acid was extracted from different morphological parts (stem, leaves, and roots) of water hyacinth (a notorious aquatic weed) using sonication. The parametric study has been conducted by varying sonication time (10-50 min), solvent composition (methanol + water), solvent volume (20-50 mL), amplitude of sonication (30-60%), and pulse ratio (20-50%) for improving the recovery of shikimic acid (SA), antioxidant activity (AA) and total phenolic content (TPC) of water hyacinth extract. Also, the acid was extracted conventionally as a benchmark study. The highest yield of 2.4% at 40 min and 3.1% at 30 min was observed in case of conventional and ultrasound assisted extraction (UAE), respectively for stem. Leaves showed a higher TPC value of 7.4 mg GAE/g biomass and a higher AA was observed 83.21% at 20 min for stem in case of conventional method. The highest TPC value of 11.11 mg GAE/g biomass has been observed for leaves while stem has shown the highest AA of 87.72% at 10 min of sonication time for UAE. It was possible to recover the valuable chemicals with better processing conditions in the case of UAE.
Collapse
Affiliation(s)
- Priti V Ganorkar
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| | - G C Jadeja
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| | - Meghal A Desai
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India.
| |
Collapse
|
40
|
Gilani S, Najafpour G. Evaluation of the extraction process parameters on bioactive compounds of cinnamon bark: A comparative study. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Rifna E, Dwivedi M. Effect of pulsed ultrasound assisted extraction and aqueous acetone mixture on total hydrolysable tannins from pomegranate peel. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Kininge MM, Gogate PR. Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. ULTRASONICS SONOCHEMISTRY 2022; 82:105870. [PMID: 34920353 PMCID: PMC8683778 DOI: 10.1016/j.ultsonch.2021.105870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 05/24/2023]
Abstract
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15-90 min), alkali concentration (0.25 M-2.5 M), solvent loading (1:15-1:30 w/v), temperature (50-90 ˚C), power (40-140 W) and duty cycle (40-70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors.
Collapse
Affiliation(s)
- Madhuri M Kininge
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
43
|
Tan SX, Andriyana A, Lim S, Ong HC, Pang YL, Ngoh GC. Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers (Basel) 2021; 13:polym13244398. [PMID: 34960953 PMCID: PMC8705327 DOI: 10.3390/polym13244398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude of 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young’s modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10−8 g m−1 s−1 Pa−1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes.
Collapse
Affiliation(s)
- Shiou Xuan Tan
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Andri Andriyana
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Correspondence: (S.L.); (G.C.N.)
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, Douliou 64002, Taiwan;
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Gek Cheng Ngoh
- Centre of Separation Science and Technology, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.L.); (G.C.N.)
| |
Collapse
|
44
|
Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. ULTRASONICS SONOCHEMISTRY 2021; 78:105704. [PMID: 34454180 PMCID: PMC8406036 DOI: 10.1016/j.ultsonch.2021.105704] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 06/06/2023]
Abstract
Ultrasound is an essential technique to improve organic synthesis from the point of view of green chemistry, as it can promote better yields and selectivities, in addition to shorter reaction times when compared to the conventional methods. Heterogeneous catalysis is another pillar of sustainable chemistry being the recycling and reuse of the catalysts one of its great advantage. In the other hand, multicomponent reactions provide the synthesis of structurally diverse compounds, in a one-pot fashion, without isolation and purification of intermediates. Thus, the combination of these protocols has proved to be a powerful tool to obtain biologically active organic compounds with lower costs, time and energy consumption. Herein, we provide a comprehensive overview of advances on methods of organic synthesis that have been reported over the past ten years with focus on ultrasound-assisted multicomponent reactions under heterogeneous catalysis. In particular, we present pharmacologically important N- and O-heterocyclic compounds, considering their synthetic methods using green solvents, and catalyst recycling.
Collapse
Affiliation(s)
- Ingrid V Machado
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Jhonathan R N Dos Santos
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marcelo A P Januario
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
45
|
Oliyaei N, Moosavi‐Nasab M. Ultrasound‐assisted extraction of fucoxanthin from
Sargassum angustifolium
and
Cystoseira indica
brown algae. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| | - Marzieh Moosavi‐Nasab
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|
46
|
Toprakçı İ, Kurtulbaş E, Pekel AG, Şahin S. Application of D‐optimal design for automatic solvent extraction of carotenoid from orange peel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- İrem Toprakçı
- Chemical Engineering Department Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Ebru Kurtulbaş
- Chemical Engineering Department Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Ayşe Gizem Pekel
- Chemical Engineering Department Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Selin Şahin
- Chemical Engineering Department Istanbul University‐Cerrahpaşa Istanbul Turkey
| |
Collapse
|
47
|
Carreira-Casais A, Otero P, Garcia-Perez P, Garcia-Oliveira P, Pereira AG, Carpena M, Soria-Lopez A, Simal-Gandara J, Prieto MA. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9153. [PMID: 34501743 PMCID: PMC8431298 DOI: 10.3390/ijerph18179153] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
The increase in life expectancy has led to the appearance of chronic diseases and interest in healthy aging, in turn promoting a growing interest in bioactive compounds (BCs) and functional ingredients. There are certain foods or products rich in functional ingredients, and algae are one of them. Algae consumption has been nominal in Europe until now. However, in recent years, it has grown significantly, partly due to globalization and the adoption of new food trends. With the aim of obtaining BCs from foods, multiple methods have been proposed, ranging from conventional ones, such as maceration or Soxhlet extraction, to more innovative methods, e.g., ultrasound-assisted extraction (UAE). UAE constitutes a novel method, belonging to so-called green chemistry, that enables the extraction of BCs requiring lower amounts of solvent and energy costs, preserving the integrity of such molecules. In recent years, this method has been often used for the extraction of different BCs from a wide range of algae, especially polysaccharides, such as carrageenans and alginate; pigments, including fucoxanthin, chlorophylls, or β-carotene; and phenolic compounds, among others. In this way, the application of UAE to marine algae is an efficient and sustainable strategy to pursue their deep characterization as a new source of BCs, especially suitable for vegetarian and vegan diets.
Collapse
Affiliation(s)
- Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
48
|
Chen QH, Wu BK, Pan D, Sang LX, Chang B. Beta-carotene and its protective effect on gastric cancer. World J Clin Cases 2021; 9:6591-6607. [PMID: 34447808 PMCID: PMC8362528 DOI: 10.12998/wjcc.v9.i23.6591] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/16/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Beta-carotene is an important natural pigment that is very beneficial to human health. It is widely found in vegetables and fruits. The three main functions are antioxidant effects, cell gap junction-related functions and immune-related functions. Because of its diverse functions, beta-carotene is believed to prevent and treat many chronic diseases. Gastric cancer is one of the most important diseases it can treat. Gastric cancer is a type of cancer with a high incidence. Its etiology varies, and the pathogenesis is complex. Gastric cancer seriously affects human health. The role of beta-carotene, a natural nutrient, in gastric cancer has been explored by many researchers, including molecular mechanisms and epidemiological studies. Molecular studies have mainly focused on oxidative stress, cell cycle, signal transduction pathways and immune-related mechanisms of beta-carotene in gastric cancer. Many epidemiological surveys and cohort studies of patients with gastric cancer have been conducted, and the results of these epidemiological studies vary due to the use of different research methods and analysis of different regions. This paper will summarize the results of these studies, mainly in terms of molecular mechanisms and epidemiological research results, which will provide a systematic basis for future studies of the treatment and prognosis of gastric cancer. This paper will help researchers identify new research directions.
Collapse
Affiliation(s)
- Qian-Hui Chen
- Department of Intensive Care Unit, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bao-Kang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
49
|
Chen G, Sun F, Wang S, Wang W, Dong J, Gao F. Enhanced extraction of essential oil from Cinnamomum cassia bark by ultrasound assisted hydrodistillation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Liu X, Wu Z, Cavalli R, Cravotto G. Sonochemical Preparation of Inorganic Nanoparticles and Nanocomposites for Drug Release–A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaolin Liu
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, 109807, Russia
| |
Collapse
|