1
|
Huang G, McClements DJ, Zhao J, Jin Z, Chen L. Effects of soy protein isolates and transglutaminase addition on the structure, physicochemical properties, and oil absorption of wheat flour. Food Chem 2025; 479:143824. [PMID: 40081060 DOI: 10.1016/j.foodchem.2025.143824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
The effects of soy protein isolate (SPI) addition and transglutaminase (TG) treatment (SPI-TG) on the microstructure, physicochemical properties, and oil absorption of wheat flour were studied. After the SPI-TG treatment, the disulfide bonds increased to 1.9657 μmol/g. SPI-TG (30 U/g) significantly promoted the transformation of the secondary structure of protein from β-turns and random coils to β-sheets. In addition, electrophoretograms showed that there was a decrease in smaller molecular weight peptides and an increase in protein aggregates, which was consistent with the change in scanning electron microscopy. The thermal stability, viscosity and oil content of the SPI-TG treatment wheat flour were influenced by the degree of protein cross-linking. The changes in the structure and properties of wheat flour induced by SPI-TG treatment were beneficial to reducing the oil absorption of fried flour. This provided theoretical guidance for targeted modification of fried food ingredients, facilitating the development of healthy, low-fat fried foods.
Collapse
Affiliation(s)
- Guifang Huang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | | | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
2
|
Kolotylo V, Piwowarek K, Synowiec A, Kieliszek M. Optimization of fermentation conditions for microbial transglutaminase production by Streptoverticillium cinnamoneum KKP 1658 using response surface methodology (RSM). Folia Microbiol (Praha) 2025; 70:259-269. [PMID: 39578338 PMCID: PMC11861405 DOI: 10.1007/s12223-024-01223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| |
Collapse
|
3
|
Shi W, Zhang T, Xie H, Xing B, Wen P, Ouyang K, Xiao F, Guo Q, Xiong H, Zhao Q. Characterization and in vitro digestibility of soybean tofu: Influence of the different kinds of coagulant. Food Chem 2024; 450:138984. [PMID: 38642532 DOI: 10.1016/j.foodchem.2024.138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 04/22/2024]
Abstract
This study explored the effect of diverse coagulants (glucono-δ-lactone (GDL), gypsum (GYP), microbial transglutaminase (MTGase), and white vinegar (WVG)) on microstructure, quality, and digestion properties of tofu. The four kinds of tofu were significantly different in their structure, composition, and digestibility. Tofu coagulated with MTGase had the highest springiness and cohesiveness while GDL tofu had the highest enthalpy (6.54 J/g). However, the WVG and GYP groups outperformed others in terms of thermodynamic, and digestion properties. The WVG group exhibited the highest nitrogen release (84.3%), water content, denaturation temperature, and the highest free-SH content but the lowest S-S content. Compared to WVG, the GYP group had the highest ash content, hardness, and chewiness. Results demonstrated that the tofu prepared by WVG and GYP show high digestibility. Meanwhile, the former has better thermal properties and the latter has better texture properties.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Tingting Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Beibei Xing
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; Xi'an Institute of Integrated Medical Information, Shaanxi 710000, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Fangjie Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qing Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
4
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
5
|
Rosseto M, Rigueto CVT, Gomes KS, Krein DDC, Loss RA, Dettmer A, Richards NSPDS. Whey filtration: a review of products, application, and pretreatment with transglutaminase enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3185-3196. [PMID: 38151774 DOI: 10.1002/jsfa.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Karolynne Sousa Gomes
- Graduate Program in Food Engineering and Science, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Postgraduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITec), University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
6
|
Kolotylo V, Piwowarek K, Kieliszek M. Microbiological transglutaminase: Biotechnological application in the food industry. Open Life Sci 2023; 18:20220737. [PMID: 37791057 PMCID: PMC10543708 DOI: 10.1515/biol-2022-0737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial transglutaminases (mTGs) belong to the family of global TGs, isolated and characterised by various bacterial strains, with the first being Streptomyces mobaraensis. This literature review also discusses TGs of animal and plant origin. TGs catalyse the formation of an isopeptide bond, cross-linking the amino and acyl groups. Due to its broad enzymatic activity, TG is extensively utilised in the food industry. The annual net growth in the utilisation of enzymes in the food processing industry is estimated to be 21.9%. As of 2020, the global food enzymes market was valued at around $2.3 billion USD (mTG market was estimated to be around $200 million USD). Much of this growth is attributed to the applications of mTG, benefiting both producers and consumers. In the food industry, TG enhances gelation and modifies emulsification, foaming, viscosity, and water-holding capacity. Research on TG, mainly mTG, provides increasing insights into the wide range of applications of this enzyme in various industrial sectors and promotes enzymatic processing. This work presents the characteristics of TGs, their properties, and the rationale for their utilisation. The review aims to provide theoretical foundations that will assist researchers worldwide in building a methodological framework and furthering the advancement of biotechnology research.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| |
Collapse
|
7
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
8
|
Kim MS, Chang YH. Physicochemical, structural and in vitro gastrointestinal tract release properties of ι-carrageenan/sodium caseinate synbiotic microgels produced by double-crosslinking with calcium ions and transglutaminase. Food Chem 2023; 414:135707. [PMID: 36841104 DOI: 10.1016/j.foodchem.2023.135707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The aim of this study was to develop ι-carrageenan (ιC)/sodium caseinate (NaCas) synbiotic microgels loading Lacticasebacillus paracasei produced by double-crosslinking with calcium ions and different concentrations (0, 5, 10, and 15 U/g protein) of transglutaminase (TGase). The synbiotic microgels were coated/filled with pectic oligosaccharide (POS). Field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analyses indicated that L. paracasei was successfully microencapsulated in synbiotic microgels. In Fourier transform infrared (FT-IR) analysis, the new formation of covalent and ionic crosslinking was observed in double-crosslinked synbiotic microgels. The encapsulation efficiency of L. paracasei was significantly increased from 87.82 to 97.68 % by increasing the concentration of TGase from 0 to 15 U/g protein, respectively. After exposure to simulated gastric fluid for 2 h and simulated intestinal fluid for 4 h, the survival rate of L. paracasei was significantly increased as the concentration of TGase increased.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Jo YJ, Chen L. Gelation behavior of lentil protein aggregates induced by sequential combination of glucono-δ-lactone and transglutaminase. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Hou BY, Wang BJ, Weng YM. Transglutaminase Cross-Linked and Lysozyme-Incorporated Antimicrobial Tilapia Collagen Edible Films: Development and Characterization. Foods 2023; 12:foods12071475. [PMID: 37048296 PMCID: PMC10094419 DOI: 10.3390/foods12071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
To improve the mechanical properties and confer antimicrobial activity, transglutaminase (TGase) was used as a cross-linking agent and lysozyme (LYS) was incorporated as an antimicrobial agent to prepare novel active tilapia collagen (TC) films. While the difference in visual appearance was not obvious, the LYS incorporation increased the opacity of TC films. The water vapor permeability of all TGase cross-linked TC films was significantly (p < 0.05) lower than that of the control film (prepared without TGase and LYS). In addition, while the tensile strength and Young’s modulus of all TGase cross-linked TC films were significantly (p < 0.05) higher than those of the control film, elongation at break of all TGase cross-linked TC films was significantly (p < 0.05) lower than that of the control film. LYS incorporated TC films showed antimicrobial activity against E. coli, Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis and Pseudomonas fluorescens. Collectively, TC films with improved physiochemical properties and antimicrobial activity have a good potential to serve as active food packaging materials.
Collapse
|
11
|
Gerna S, D’Incecco P, Limbo S, Sindaco M, Pellegrino L. Strategies for Exploiting Milk Protein Properties in Making Films and Coatings for Food Packaging: A Review. Foods 2023; 12:foods12061271. [PMID: 36981197 PMCID: PMC10048563 DOI: 10.3390/foods12061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Biopolymers of different natures (carbohydrates, proteins, etc.) recovered from by-products of industrial processes are increasingly being studied to obtain biomaterials as alternatives to conventional plastics, thus contributing to the implementation of a circular economy. The food industry generates huge amounts of by-products and waste, including unsold food products that reach the end of their shelf life and are no longer usable in the food chain. Milk proteins can be easily separated from dairy waste and adapted into effective bio-based polymeric materials. Firstly, this review describes the relevant properties of milk proteins and the approaches to modifying them for subsequent use. Then, we provide an overview of recent studies on the development of films and coatings based on milk proteins and, where available, their applications in food packaging. Comparisons among published studies were made based on the formulation as well as production conditions and technologies. The role of different additives and modifiers tested for the performances of films and coatings, such as water vapor permeability, tensile strength, and elongation at break, were reviewed. This review also outlines the limitations of milk-protein-based materials, such as moisture sensitivity and brittleness. Overall, milk proteins hold great potential as a sustainable alternative to petroleum-based polymers. However, their use in food packaging materials at an industrial level remains problematic.
Collapse
|
12
|
Wan C, Cheng Q, Zeng M, Huang C. Recent progress in emulsion gels: from fundamentals to applications. SOFT MATTER 2023; 19:1282-1292. [PMID: 36744514 DOI: 10.1039/d2sm01481e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Min Zeng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
13
|
Nanakali NM, Muhammad Al‐saadi J, Sulaiman Hadi C. Functional and physiochemical properties of the yoghurt modified by heat lactosylation and microbial transglutaminase cross-linking of milk proteins. Food Sci Nutr 2023; 11:722-732. [PMID: 36789078 PMCID: PMC9922141 DOI: 10.1002/fsn3.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to recognize the effect of Maillard reaction (MR) on the functional properties of milk proteins and the physiochemical, textural, and sensory properties of yoghurt. Heating at 100°C for 2 h increased the carbohydrate ratio in caseins, whey proteins, and total milk proteins from 2.83%, 1.93%, and 1.8% to 4.15%, 3.58%, and 5.32%, respectively. Solubility of the lactosylated caseins, whey proteins, and total milk proteins is increased at low pH values compared to that of the control caseins, whey proteins, and total milk proteins. Lactosylation at 70 and 100°C increased the emulsion activity index (EAI) of caseins at all pH values, especially at pH below 6, and this increment was higher for casein samples treated at 100°C. Foam volume of whey proteins and total milk proteins also increased for samples lactosylated at 100°C compared to control samples. The combination of heating and microbial transglutaminase (MTGase) had a synergistic and enhancing effect on the pH values of yoghurt samples, especially in yoghurt samples produced by whole milk protein compared to control samples. Viscosity and hardness of yoghurt samples were enhanced by heat lactosylation, MTGase treatment, and also storage for 21 days at 7 ± 1°C.
Collapse
Affiliation(s)
- Narin Muhammadamin Nanakali
- Department of Food Technology, College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
| | | | - Chnar Sulaiman Hadi
- Department of Food Technology, College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
| |
Collapse
|
14
|
Huang Y, Zhou Y, Liu Y, Wan J, Hu P, Liu L, Li M, Zhou Y, Gu S, Chen D, Hu B, Hu K, Zhu Q. Effects of tea branch liquid smoke on oxidation and structure of myofibrillar protein derived from pork tenderloin during curing. Food Chem X 2022; 17:100544. [PMID: 36845486 PMCID: PMC9943755 DOI: 10.1016/j.fochx.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
This study focused on how different concentrations of tea branch liquid smoke (TLS) in the curing solution impacted the physicochemical properties and antioxidant properties of pork tenderloin. Five experimental (1.25 mL/kg, 2.5 mL/kg, 5 mL/kg, 10 mL/kg, 20 mL/kg) and blank groups set up over 4 days, and it was found that the physicochemical indexes, antioxidant capacity, thermal stability and protein network structure of the cured meat using 5 mL/kg of liquid smoke were excellent than the other groups used (P < 0.05). However, concentrations at 20 mL/kg accelerated protein oxidation. Low frequency nuclear magnetic resonance (LFNHR) revealed that TLS also improved the water holding capacity of the cured meat by increasing the percentage of bound water. Additionally, the correlation analysis demonstrated that the inoxidizability of myofibrillar protein was significantly related to cooking loss and water distribution, which were adjusted by changing the usage of liquid smoke.
Collapse
Affiliation(s)
- Yanpei Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Mingming Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Dan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Bokai Hu
- Guizhou Provincial Institute of Walnut, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Ke Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China,Corresponding author at: School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Shokrollahi Yanchemeh B, Varidi M, Razavi SMA, Sohbatzadeh F, Mohammadifar MA. Preparation and optimization of soy (Katul cultivar) protein isolate cold‐set gels induced by
CaCl
2
and transglutaminase. Food Sci Nutr 2022. [DOI: 10.1002/fsn3.3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Mehdi Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Basic Science University of Mazandaran Babolsar Iran
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute Technical University of Denmark Kongens Lyngby Denmark
| |
Collapse
|
16
|
|
17
|
Kinetic aspects of casein micelle cross-linking by transglutaminase at different volume fractions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Combination of microwave heating and transglutaminase cross-linking enhances the stability of limonene emulsion carried by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Darnay L, Miklós G, Lőrincz A, Szakmár K, Pásztor-Huszár K, Laczay P. Possible inhibitory effect of microbial transglutaminase on the formation of biogenic amines during Trappist cheese ripening. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:580-587. [PMID: 35084293 DOI: 10.1080/19440049.2021.2005831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Trappist cheese (semi-hard, rennet-coagulated cheese with round eyes) was manufactured and matured for 4 weeks at 12 ± 1°C, 85% relative humidity (RH). The effect of microbial transglutaminase (MTGase) was followed by measuring the levels of free amino acids (FAAs) and biogenic amines (BAs) every 2 weeks during 4 weeks of cheese ripening. Results show that MTGase can decrease the cadaverine production by 30%, but only at the initial stage of ripening. Application of MTGase results in 49% less putrescine, 12% less tyramine production at the end of 4 weeks ripening time, and can decrease histamine levels by 8% after 2 weeks of ripening time in the examined semi-hard cheese type.
Collapse
Affiliation(s)
- Lívia Darnay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | | | - Anna Lőrincz
- National Food Chain Safety Office, Budapest, Hungary
| | - Katalin Szakmár
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | - Klára Pásztor-Huszár
- Institute of Food Science and Technology, Department of Livestock Products and Food Preservation Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Péter Laczay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
20
|
Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond. Protein Expr Purif 2022; 195-196:106079. [DOI: 10.1016/j.pep.2022.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
|
21
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
22
|
Monsalve-Atencio R, Sanchez-Soto K, Chica J, Camaño Echavarría JA, Vega-Castro O. Interaction between phospholipase and transglutaminase in the production of semi-soft fresh cheese and its effect on the yield, composition, microstructure and textural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Puri R, Bot F, Singh U, O’Mahony JA. Influence of Transglutaminase Crosslinking on Casein Protein Fractionation during Low Temperature Microfiltration. Foods 2021; 10:foods10123146. [PMID: 34945697 PMCID: PMC8701848 DOI: 10.3390/foods10123146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Low temperature microfiltration (MF) is applied in dairy processing to achieve higher protein and microbiological quality ingredients and to support ingredient innovation; however, low temperature reduces hydrophobic interactions between casein proteins and increases the solubility of colloidal calcium phosphate, promoting reversible dissociation of micellar β-casein into the serum phase, and thus into permeate, during MF. Crosslinking of casein proteins using transglutaminase was studied as an approach to reduce the permeation of casein monomers, which typically results in reduced yield of protein in the retentate fraction. Two treatments (a) 5 °C/24 h (TA) and (b) 40 °C/90 min (TB), were applied to the feed before filtration at 5 °C, with a 0.1 µm membrane. Flux was high for TA treatment possibly due to the stabilising effect of transglutaminase on casein micelles. It is likely that formation of isopeptide bonds within and on the surface of micelles results in the micelles being less readily available for protein-protein and protein–membrane interactions, resulting in less resistance to membrane pores and flow passage, thereby conferring higher permeate flux. The results also showed that permeation of casein monomers into the permeate was significantly reduced after both enzymatic treatments as compared to control feed due to the reduced molecular mobility of soluble casein, mainly β-casein, caused by transglutaminase crosslinking.
Collapse
Affiliation(s)
- Ritika Puri
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland; (F.B.); (J.A.O.)
- Correspondence: or
| | - Francesca Bot
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland; (F.B.); (J.A.O.)
| | - Upendra Singh
- Lakeland Dairies, Bailieborough, A82 N6K8 Co. Cavan, Ireland;
| | - James A. O’Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 TP07 Cork, Ireland; (F.B.); (J.A.O.)
| |
Collapse
|
24
|
Lactoferrin particles assembled via transglutaminase-induced crosslinking: Utilization in oleogel-based Pickering emulsions with improved curcumin bioaccessibility. Food Chem 2021; 374:131779. [PMID: 34896951 DOI: 10.1016/j.foodchem.2021.131779] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
In this study, the optimal environmental condition for preparation of lactoferrin particles assembled via transglutaminase-induced crosslinking (TG-LF particles) was pH 8, 100 U/g of TG concentration, 50 °C and 2 h of crosslinking time. Contact angle of TG-LF particles was 79°. Then, corn oil-based oleogels were prepared with carnauba wax (CW), behenyl alcohol (BA) and CW-BA mixture at 1:4 ratio (MT). To investigate the effect of oleogels on oleogel-based Pickering emulsions, oleogel-based Pickering emulsions were prepared by a two-step method using different oleogels as the oil phase and the TG-LF particles as the emulsifier. In vitro digestion study revealed that CW oleogel-based Pickering emulsion had the highest lipolysis rate and curcumin bioaccessibility. This study demonstrated that TG-LF particle-stabilized oleogel-based Pickering emulsions had good performance in curcumin delivery, which provided a new idea for the preparation of Pickering emulsifier and enriched the knowledge in the field of oleogel-based Pickering emulsion.
Collapse
|
25
|
Hebishy E, Nagarajah J, Thompson LS, Shennan S, Best L, Ajayi OM, Iheozor‐Ejiofor P, Tucker N, Onarinde BA. Impact of microbial transglutaminase and cooking time on functional properties of Mozzarella cheese analogues. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
| | | | - Luke S Thompson
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
- 1:1 Diet by Cambridge Weight Plan Corby Northamptonshire NN17 5LU UK
| | - Sarah Shennan
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
| | - Lauren Best
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
- Omega Ingredients Ltd Orion Avenue, Great Blakenham Ipswich IP6 0LW UK
| | - Oluseyi Moses Ajayi
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
| | - Pamela Iheozor‐Ejiofor
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
| | - Nick Tucker
- School of Engineering University of Lincoln Brayford Pool Lincoln LN6 7TS UK
| | - Bukola A Onarinde
- Centre of Excellence in Agri‐food Technologies National Centre for Food Manufacturing College of Sciences University of Lincoln Holbeach, Spalding PE12 7FJ UK
| |
Collapse
|
26
|
Fatima SW, Khare SK. Effect of key regulators in augmenting transcriptional expression of Transglutaminase in Streptomyces mobaraensis. BIORESOURCE TECHNOLOGY 2021; 340:125627. [PMID: 34330004 DOI: 10.1016/j.biortech.2021.125627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminase forms isopeptide bonds in proteins which are helpful in various industrial applications. However, low productivity and high cost are the major bottlenecks for industrial Transglutaminase production. The present study describes the regulatory mechanism of microbial Transglutaminase (MTGase) biosynthesis from Streptomyces mobaraensis and the effect of key regulators to maximize production. The transcriptional responses under the effect of various key modulators of MTGasebiosynthesis were evaluated. Productivity of MTGase with novel biosynthesis approach by regulators augmentation was correlated by transcriptional profiling. The optimization by key modulators by combinational supplementation led to 2-fold rise in activity. The functional attributes, the copy number of MTGase gene and relative changes were assessed by Real-Time quantitative PCR. Protease, MgCl2, CTAB induced upregulation, whereas PMSF, NaF and bleomycin sulphate showed inhibitory action on MTGase production and activity. The optimization by combinational supplementation of key modulators led to 4.27-fold increase (6.11 IU/mL) in production.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
27
|
Ali F, Wang ZX. Effect of pasteurization on the enzymatic cross-linking of milk proteins by microbial transglutaminase in view of milk fat globule membrane isolation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Abstract
Microbial transglutaminase (MTGase) is an enzyme widely used in the dairy sector to improve the functional properties of protein-based products via the formation of a network between protein molecules. The aim of this study involving cheese from the milk of donkeys was to evaluate the effects of treatment with MTGase at the concentrations of 0 (control), 5, 8 and 10 U/g milk protein on the cheese-making process parameters, as well as the physical and chemical characteristics of the resulting cheese. MTGase influenced the time of gel formation from rennet addition (P < 0.05), with a delay at the two highest concentrations, accompanied by a lower (P < 0.01) pH of cheese and the lowest (P < 0.01) loss in cheese weight at 24 h of storage. The highest gel viscosity (P < 0.01) was observed at the highest concentration of the enzyme, reaching the value of 70 mPa⋅sec after 60 min. The chemical composition and color of the cheeses were not significantly affected by the inclusion of MTGase, regardless of the enzyme concentration. These findings may be of relevance in adapting the cheese-making process and might help in the design of new dairy products from donkey's milk.
Collapse
|
29
|
Ahammed S, Liu F, Wu J, Khin MN, Yokoyama WH, Zhong F. Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Raak N, Jaros D, Rohm H. Acid-induced gelation of enzymatically cross-linked caseinates: Small and large deformation rheology in relation to water holding capacity and micro-rheological properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Meybodi NM, Mirmoghtadaie L, Sheidaei Z, Arab M, Nasab SS, Taslikh M, Mortazavian AM. Application of Microbial Transglutaminase in Wheat Bread Industry: A Review. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999201001145814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bread as the main food all over the world is generally based on wheat flour due to its
unique properties to form a three-dimensional gluten network. In fact, the quality of bread is influenced
by wheat gluten quality and quantity. The quality of gluten protein is mainly defined based
on its amino acids composition and bonding (covalent and non-covalent). Gluten protein quality is
considered weak based on its essential amino acid content: lysine and threonine. Covalent crosslinks
as the main factor in determining the integrity of the gluten network are also interrupted by
the activity of proteolytic enzymes and reducing agents. Different treatments (physical, chemical
and enzymatic) are used to alleviate these detrimental effects and improve the bread making quality
of wheat flour. Given that, food industry is looking for using enzymes (respecting their specificity,
ease of use and low risk of toxic products formation) microbial transglutaminase is an efficient
option, considering its ability to introduce new crosslinks. This new crosslink formation can either
improve gluten protein quality in damaged wheat flour or imitate the function of gluten protein in
gluten free bread. The aim of this article is to review the application of microbial transglutaminase
enzyme as an improving agent in wheat bread industry.
Collapse
Affiliation(s)
- Neda M. Meybodi
- Department of Food Sciences and Technology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, P.O. Box 193954741, Tehran, Iran
| | - Zhaleh Sheidaei
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoumeh Arab
- Department of Food Sciences and Technology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sarah S. Nasab
- Department of Food Sciences and Technology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Musarreza Taslikh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, P.O. Box 193954741, Tehran, Iran
| |
Collapse
|
32
|
Yang X, Jiang S, Li L. The gel properties and gastric digestion kinetics of a novel lactic acid bacteria fermented tofu: Focusing on the effects of transglutaminase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Akbari M, Razavi SH, Kieliszek M. Recent advances in microbial transglutaminase biosynthesis and its application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Size Modulation of Enzymatically Cross-Linked Sodium Caseinate Nanoparticles via Ionic Strength Variation Affects the Properties of Acid-Induced Gels. DAIRY 2021. [DOI: 10.3390/dairy2010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enzymatic cross-linking by microbial transglutaminase is a prominent approach to modify the structure and techno-functional properties of food proteins such as casein. However, some of the factors that influence structure-function-interrelations are still unknown. In this study, the size of cross-linked sodium caseinate nanoparticles was modulated by varying the ionic milieu during incubation with the enzyme. As was revealed by size exclusion chromatography, cross-linking at higher ionic strength resulted in larger casein particles. These formed acid-induced gels with higher stiffness and lower susceptibility to forced syneresis compared to those where the same number of ions was added after the cross-linking process. The results show that variations of the ionic milieu during enzymatic cross-linking of casein can be helpful to obtain specific modifications of its molecular structure and certain techno-functional properties. Such knowledge is crucial for the design of protein ingredients with targeted structure and techno-functionality.
Collapse
|
35
|
Liu J, Zhang Y, He S, Zhou A, Gao B, Yan M, Yu L(L. Microbial transglutaminase-induced cross-linking of sodium caseinate as the coating stabilizer of zein nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
|
37
|
Cao C, Feng Y, Kong B, Sun F, Yang L, Liu Q. Transglutaminase crosslinking promotes physical and oxidative stability of filled hydrogel particles based on biopolymer phase separation. Int J Biol Macromol 2021; 172:429-438. [PMID: 33454333 DOI: 10.1016/j.ijbiomac.2021.01.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/13/2023]
Abstract
In the present study, the effect of transglutaminase (TGase) concentration on the physical and oxidative stabilities of filled hydrogel particles created by biopolymer phase separation was investigated. The results showed that filled hydrogels had relatively smaller particle sizes, higher absolute zeta-potentials, higher interfacial layer thicknesses and lightness values with the increasing of TGase concentration (P < 0.05), as evidenced by the apparent viscosity and viscoelasticity behavior. However, the relatively higher TGase concentration promoted the protein aggregation, which weakens the protection of the surface protein layer, having the negatively impacted the physical stability of filled hydrogels. Microstructural images which obtained via cryo-scanning electron microscopy also verified the above results. In particular, it is noted that filled hydrogels displayed the lowest degrees of lipid and protein oxidation during 10 days of storage (P < 0.05) at TGase concentration of 10 U/g. Prevention against oxidation was attributed mainly to TGase crosslinking of protein molecules on the surface of droplets, which likely provided a denser interface around lipid droplets. Our results indicated that TGase was a favourable agent to crosslink protein on the surface of lipid and improve the physical and oxidative stability of filled hydrogel particles.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yangyang Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
38
|
García‐Gómez B, Vázquez‐Odériz ML, Muñoz‐Ferreiro N, Romero‐Rodríguez MÁ, Vázquez M. Novel cheese with vegetal rennet and microbial transglutaminase: Effect of storage on consumer acceptability, sensory and instrumental properties. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Belén García‐Gómez
- Department of Analytical Chemistry Faculty of Science University of Santiago de Compostela Lugo 27002 Spain
| | - Mª Lourdes Vázquez‐Odériz
- Department of Analytical Chemistry Faculty of Science University of Santiago de Compostela Lugo 27002 Spain
| | - Nieves Muñoz‐Ferreiro
- Modestya Research Group Department of Statistics, Mathematical Analysis and Optimization University of Santiago de Compostela Lugo 27002 Spain
| | | | - Manuel Vázquez
- Department of Analytical Chemistry Faculty of Science University of Santiago de Compostela Lugo 27002 Spain
| |
Collapse
|
39
|
Li Y, Li F, Liu G, Sun J, Guo L, Zhu Y, Pang B, Huang M, Yang J. The characteristics of gelation of myofibrillar proteins combined with salt soluble Rhodotorula glutinis proteins by enzymatic crosslinking. Food Chem 2020; 343:128505. [PMID: 33160775 DOI: 10.1016/j.foodchem.2020.128505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
Some microbial single-cell proteins are capable of producing synergistic crosslinking interactions with edible proteins by rational regulation. Herein, we reported that salt soluble proteins (RGP) extracted from Rhodotorula glutinis in an alkaline and saline system may combine with myofibrillar proteins (MP) by transglutaminase (TG) polymerization to form improvable irreversible thermal co-gels. The combination of MP, RGP, and TG, namely restructured MP gels, led to significantly enhanced water holding capacity (WHC), up to 90.76 ± 1.88% (% of retained water) and textural properties (hardness, springiness, and adhesiveness) as well as decreases of 'gauche-gauche-gauche' SS bonds and α-helix conformations and increases of 'gauche-gauche-trans' SS bonds and β-fold conformations, compared to MP and MP-RGP groups. Differential scanning calorimetry analysis validated that thermostability of myosins and actins from MP was reduced after using RGP, TG, and their combination, and unfolding and denaturation of myosin occurred easily during thermal co-gelation by TG and/or RGP.
Collapse
Affiliation(s)
- Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China; Ensign Industry Co., Ltd., Weifang 262499, China
| | - Fangfang Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Gongming Liu
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China.
| | - Liping Guo
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yinglian Zhu
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Pang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Huang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; National R&D Branch Center for Poultry Meat Processing Tech., Nanjing Huangjiaoshou Food Sci. & Tech. Co., Ltd., Nanjing 211226, China
| | - Jianming Yang
- Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
40
|
|
41
|
Raak N, Rohm H, Jaros D. Enzymatically Cross-Linked Sodium Caseinate as Techno-Functional Ingredient in Acid-Induced Milk Gels. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02527-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Xing G, Giosafatto CVL, Carpentieri A, Pasquino R, Dong M, Mariniello L. Gelling behavior of bio-tofu coagulated by microbial transglutaminase combined with lactic acid bacteria. Food Res Int 2020; 134:109200. [DOI: 10.1016/j.foodres.2020.109200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
|
43
|
Miwa N. Innovation in the food industry using microbial transglutaminase: Keys to success and future prospects. Anal Biochem 2020; 597:113638. [DOI: 10.1016/j.ab.2020.113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
|
44
|
Topcu A, Bulat T, Özer B. Process design for processed Kashar cheese (a pasta-filata cheese) by means of microbial transglutaminase: Effect on physical properties, yield and proteolysis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Concentration-triggered liquid-to-solid transition of sodium caseinate suspensions as a function of temperature and enzymatic cross-linking. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Nogueira MH, Tavares GM, Casanova F, Silva CRJ, Rocha JCG, Stringheta PC, Stephani R, Perrone ÍT, Carvalho AF. Cross‐linked casein micelle used as encapsulating agent for jaboticaba (
Plinia jaboticaba
) phenolic compounds by spray drying. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Márcio H Nogueira
- Department of Food Technology Federal University of Viçosa (UFV) Avenida P. H. Rolfs Viçosa MG 36570‐900 Brazil
- UMR 638 Processus aux Interfaces et Hygiène des Matériaux Université de Lille/INRA F‐59651 Villeneuve d'Ascq France
| | - Guilherme M Tavares
- School of Food Engineering University of Campinas (Unicamp) Rua Monteiro Lobato, 80 Campinas SP 13083‐862 Brazil
| | - Federico Casanova
- National Food Institute Technical University of Denmark Søltofts Plads 2800 Kgs. Lyngby Denmark
| | - Carolina RJ Silva
- Department of Food Technology Federal University of Viçosa (UFV) Avenida P. H. Rolfs Viçosa MG 36570‐900 Brazil
| | - Juliana CG Rocha
- Department of Food Technology Federal University of Viçosa (UFV) Avenida P. H. Rolfs Viçosa MG 36570‐900 Brazil
| | - Paulo C Stringheta
- Department of Food Technology Federal University of Viçosa (UFV) Avenida P. H. Rolfs Viçosa MG 36570‐900 Brazil
| | - Rodrigo Stephani
- Federal University of Juiz de Fora (UFJF) Juiz de Fora MG 36036‐330 Brazil
| | | | - Antonio F Carvalho
- Department of Food Technology Federal University of Viçosa (UFV) Avenida P. H. Rolfs Viçosa MG 36570‐900 Brazil
| |
Collapse
|
47
|
Duarte LS, Barsé LQ, Dalberto PF, da Silva WTS, Rodrigues RC, Machado P, Basso LA, Bizarro CV, Ayub MAZ. Cloning and expression of the Bacillus amyloliquefaciens transglutaminase gene in E. coli using a bicistronic vector construction. Enzyme Microb Technol 2020; 134:109468. [DOI: 10.1016/j.enzmictec.2019.109468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
|
48
|
Loi M, Quintieri L, De Angelis E, Monaci L, Logrieco AF, Caputo L, Mulè G. Yield improvement of the Italian fresh Giuncata cheese by laccase–induced protein crosslink. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Review transglutaminases: part II-industrial applications in food, biotechnology, textiles and leather products. World J Microbiol Biotechnol 2019; 36:11. [PMID: 31879822 DOI: 10.1007/s11274-019-2792-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Because of their protein cross-linking properties, transglutaminases are widely used in several industrial processes, including the food and pharmaceutical industries. Transglutaminases obtained from animal tissues and organs, the first sources of this enzyme, are being replaced by microbial sources, which are cheaper and easier to produce and purify. Since the discovery of microbial transglutaminase (mTGase), the enzyme has been produced for industrial applications by traditional fermentation process using the bacterium Streptomyces mobaraensis. Several studies have been carried out in this field to increase the enzyme industrial productivity. Researches on gene expression encoding transglutaminase biosynthesis were performed in Streptomyces lividans, Escherichia coli, Corynebacterium glutamicum, Yarrowia lipolytica, and Pichia pastoris. In the first part of this review, we presented an overview of the literature on the origins, types, mediated reactions, and general characterizations of these important enzymes, as well as the studies on recombinant microbial transglutaminases. In this second part, we focus on the application versatility of mTGase in three broad areas: food, pharmacological, and biotechnological industries. The use of mTGase is presented for several food groups, showing possibilities of applications and challenges to further improve the quality of the end-products. Some applications in the textile and leather industries are also reviewed, as well as special applications in the PEGylation reaction, in the production of antibody drug conjugates, and in regenerative medicine.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Building 92A, TECNOPUC, Av. Bento Gonçalves 4592, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
50
|
|