1
|
Norte-Muñoz M, Portela-Lomba M, Sobrado-Calvo P, Simón D, Di Pierdomenico J, Gallego-Ortega A, Pérez M, Cabrera-Maqueda JM, Sierra J, Vidal-Sanz M, Moreno-Flores MT, Agudo-Barriuso M. Differential response of injured and healthy retinas to syngeneic and allogeneic transplantation of a clonal cell line of immortalized olfactory ensheathing glia: a double-edged sword. Neural Regen Res 2025; 20:2395-2407. [PMID: 39359096 PMCID: PMC11759016 DOI: 10.4103/nrr.nrr-d-23-01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 04/19/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00029/figure1/v/2024-09-30T120553Z/r/image-tiff Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system, including retinal ganglion cell axonal growth through the injured optic nerve. Still, it is unknown whether olfactory ensheathing glia also have neuroprotective properties. Olfactory ensheathing glia express brain-derived neurotrophic factor, one of the best neuroprotectants for axotomized retinal ganglion cells. Therefore, we aimed to investigate the neuroprotective capacity of olfactory ensheating glia after optic nerve crush. Olfactory ensheathing glia cells from an established rat immortalized clonal cell line, TEG3, were intravitreally injected in intact and axotomized retinas in syngeneic and allogeneic mode with or without microglial inhibition or immunosuppressive treatments. Anatomical and gene expression analyses were performed. Olfactory bulb-derived primary olfactory ensheathing glia and TEG3 express major histocompatibility complex class II molecules. Allogeneically and syngenically transplanted TEG3 cells survived in the vitreous for up to 21 days, forming an epimembrane. In axotomized retinas, only the allogeneic TEG3 transplant rescued retinal ganglion cells at 7 days but not at 21 days. In these retinas, microglial anatomical activation was higher than after optic nerve crush alone. In intact retinas, both transplants activated microglial cells and caused retinal ganglion cell death at 21 days, a loss that was higher after allotransplantation, triggered by pyroptosis and partially rescued by microglial inhibition or immunosuppression. However, neuroprotection of axotomized retinal ganglion cells did not improve with these treatments. The different neuroprotective properties, different toxic effects, and different responses to microglial inhibitory treatments of olfactory ensheathing glia in the retina depending on the type of transplant highlight the importance of thorough preclinical studies to explore these variables.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Portela-Lomba
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paloma Sobrado-Calvo
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Diana Simón
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Mar Pérez
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Cabrera-Maqueda
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
- Center of Neuroimmunology, Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona, Barcelona, Spain
| | - Javier Sierra
- Medicine Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Teresa Moreno-Flores
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
2
|
Pellitteri R, La Cognata V, Russo C, Patti A, Sanfilippo C. Protective Role of Eicosapentaenoic and Docosahexaenoic and Their N-Ethanolamide Derivatives in Olfactory Glial Cells Affected by Lipopolysaccharide-Induced Neuroinflammation. Molecules 2024; 29:4821. [PMID: 39459191 PMCID: PMC11510059 DOI: 10.3390/molecules29204821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroinflammation is a symptom of different neurodegenerative diseases, and growing interest is directed towards active drug development for the reduction of its negative effects. The anti-inflammatory activity of polyunsaturated fatty acids, eicosapentaenoic (EPA), docosahexaenoic (DHA), and their amide derivatives was largely investigated on some neural cells. Herein, we aimed to elucidate the protective role of both EPA and DHA and the corresponding N-ethanolamides EPA-EA and DHA-EA on neonatal mouse Olfactory Ensheathing Cells (OECs) after exposition to lipopolysaccharide (LPS)-induced neuroinflammation. To verify their anti-inflammatory effect and cell morphological features on OECs, the expression of IL-10 cytokine, and cytoskeletal proteins (vimentin and GFAP) was evaluated by immunocytochemical procedures. In addition, MTT assays, TUNEL, and mitochondrial health tests were carried out to assess their protective effects on OEC viability. Our results highlight a reduction in GFAP and vimentin expression in OECs exposed to LPS and treated with EPA or DHA or EPA-EA or DHA-EA in comparison with OECs exposed to LPS alone. We observed a protective role of EPA and DHA on cell morphology, while the amides EPA-EA and DHA-EA mainly exerted a superior anti-inflammatory effect compared to free acids.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, Via Santa Sofia 97, I-95123 Catania, Italy;
| | - Angela Patti
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Claudia Sanfilippo
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| |
Collapse
|
3
|
Portela-Lomba M, Simón D, Callejo-Móstoles M, de la Fuente G, Fernández de Sevilla D, García-Escudero V, Moreno-Flores MT, Sierra J. Generation of functional neurons from adult human mucosal olfactory ensheathing glia by direct lineage conversion. Cell Death Dis 2024; 15:478. [PMID: 38961086 PMCID: PMC11222439 DOI: 10.1038/s41419-024-06862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.
Collapse
Affiliation(s)
- María Portela-Lomba
- School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Diana Simón
- School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Marta Callejo-Móstoles
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gemma de la Fuente
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Fernández de Sevilla
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vega García-Escudero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Teresa Moreno-Flores
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Javier Sierra
- School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain.
- School of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain.
| |
Collapse
|
4
|
de Laorden EH, Simón D, Milla S, Portela-Lomba M, Mellén M, Sierra J, de la Villa P, Moreno-Flores MT, Iglesias M. Human placenta-derived mesenchymal stem cells stimulate neuronal regeneration by promoting axon growth and restoring neuronal activity. Front Cell Dev Biol 2023; 11:1328261. [PMID: 38188022 PMCID: PMC10766706 DOI: 10.3389/fcell.2023.1328261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, μm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Elvira H. de Laorden
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Diana Simón
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Santiago Milla
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Portela-Lomba
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Marian Mellén
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Javier Sierra
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Teresa Moreno-Flores
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maite Iglesias
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
5
|
Liu Y, Wang Y, Wang Y, Zhou J, Ding W. The growth status and functions of olfactory ensheathing cells cultured on randomly oriented and aligned type-I-collagen-based nanofibrous scaffolds. NANOTECHNOLOGY 2023; 35:035101. [PMID: 37905427 DOI: 10.1088/1361-6528/ad02a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Aim. The potential of olfactory ensheathing cells (OECs) as a cell therapy for spinal cord reconstruction and regeneration after injury has drawn significant attention in recent years. This study attempted to investigate the influences of nano-fibrous scaffolds on the growth status and functional properties of OECs.Methods.The ultra-morphology of the scaffolds was visualized using scanning electron microscopy (SEM). To culture OECs, donated cells were subcultured and identified with p75. Cell proliferation, apoptosis, and survival rates were measured through MTT assay, Annexin-V/PI staining, and p75 cell counting, respectively. The adhesion of cells cultured on scaffolds was observed using SEM. Additionally, the functions of OECs cultured on scaffolds were assessed by testing gene expression levels through real time polymerase chain reaction.Results.The electrospun type I collagen-based nano-fibers exhibited a smooth surface and uniform distribution. It was indicated that the proliferation and survival rates of OECs cultured on both randomly oriented and aligned type I collagen-based nano-fibrous scaffolds were higher than those observed in the collagen-coated control. Conversely, apoptosis rates were lower in cells cultured on scaffolds. Furthermore, OEC adhesion was better on the scaffolds than on the control. The expression levels of target genes were significantly elevated in cells cultured on scaffolds versus the controls.Conclusion.As a whole, the utilization of aligned collagen nanofibers has demonstrated significant advantages in promoting cell growth and improving cell function. These findings have important implications for the field of regenerative medicine and suggest that the approach may hold promise for the future therapeutic applications.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Yansong Wang
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Ying Wang
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Jihui Zhou
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Wenyuan Ding
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
| |
Collapse
|
6
|
Sipione R, Liaudet N, Rousset F, Landis BN, Hsieh JW, Senn P. Axonal Regrowth of Olfactory Sensory Neurons In Vitro. Int J Mol Sci 2023; 24:12863. [PMID: 37629041 PMCID: PMC10454582 DOI: 10.3390/ijms241612863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most prevalent causes of olfactory loss includes traumatic brain injury with subsequent shearing of olfactory axons at the level of the cribriform plate (anterior skull base). Scar tissue at this level may prevent axonal regrowth toward the olfactory bulb. Currently, there is no cure for this debilitating and often permanent condition. One promising therapeutic concept is to implant a synthetic scaffold with growth factors through the cribriform plate/scar tissue to induce neuroregeneration. The first step toward this goal is to investigate the optimum conditions (growth factors, extracellular matrix proteins) to boost this regeneration. However, the lack of a specifically tailored in vitro model and an automated procedure for quantifying axonal length limits our ability to address this issue. The aim of this study is to create an automated quantification tool to measure axonal length and to determine the ideal growth factors and extracellular proteins to enhance axonal regrowth of olfactory sensory neurons in a mouse organotypic 2D model. We harvested olfactory epithelium (OE) of C57BL/6 mice and cultured them during 15 days on coverslips coated with various extracellular matrix proteins (Fibronectin, Collagen IV, Laminin, none) and different growth factors: fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), retinoic acid (RA), transforming growth factor β (TGFβ), and none. We measured the attachment rate on coverslips, the presence of cellular and axonal outgrowth, and finally, the total axonal length with a newly developed automated high-throughput quantification tool. Whereas the coatings did not influence attachment and neuronal outgrowth rates, the total axonal length was enhanced on fibronectin and collagen IV (p = 0.001). The optimum growth factor supplementation media to culture OE compared to the control condition were as follows: FGF2 alone and FGF2 from day 0 to 7 followed by FGF2 in combination with NGF from day 7 to 15 (p < 0.0001). The automated quantification tool to measure axonal length outperformed the standard Neuron J application by reducing the average analysis time from 22 to 3 min per specimen. In conclusion, robust regeneration of murine olfactory neurons in vitro can be induced, controlled, and efficiently measured using an automated quantification tool. These results will help advance the therapeutic concept closer toward preclinical studies.
Collapse
Affiliation(s)
- Rebecca Sipione
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (R.S.); (F.R.); (B.N.L.); (P.S.)
| | - Nicolas Liaudet
- Bioimaging Core Facility, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (R.S.); (F.R.); (B.N.L.); (P.S.)
| | - Basile N. Landis
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (R.S.); (F.R.); (B.N.L.); (P.S.)
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology—Head and Neck Surgery, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Julien Wen Hsieh
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (R.S.); (F.R.); (B.N.L.); (P.S.)
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology—Head and Neck Surgery, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (R.S.); (F.R.); (B.N.L.); (P.S.)
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology—Head and Neck Surgery, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries. World J Clin Cases 2023; 11:322-331. [PMID: 36686356 PMCID: PMC9850961 DOI: 10.12998/wjcc.v11.i2.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.
Collapse
Affiliation(s)
- Olga Vladislavovna Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Grigorii Andreevich Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Svetlana Sergeevna Andretsova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Biology, Moscow State University, Moscow 119991, Russia
| | - Valentina Sergeevna Shishkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Anastasia Denisovna Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Andrey Viktorovich Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | | | - Vladimir Pavlovich Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnologу, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
8
|
Paes-Colli Y, Trindade PMP, Vitorino LC, Piscitelli F, Iannotti FA, Campos RMP, Isaac AR, de Aguiar AFL, Allodi S, de Mello FG, Einicker-Lamas M, de Siqueira-Santos R, Di Marzo V, Tannous BA, Carvalho LA, De Melo Reis RA, Sampaio LS. Activation of cannabinoid type 1 receptor (CB1) modulates oligodendroglial process branching complexity in rat hippocampal cultures stimulated by olfactory ensheathing glia-conditioned medium. Front Cell Neurosci 2023; 17:1134130. [PMID: 37138770 PMCID: PMC10150319 DOI: 10.3389/fncel.2023.1134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.
Collapse
Affiliation(s)
- Yolanda Paes-Colli
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila M. P. Trindade
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louise C. Vitorino
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
| | - Raquel M. P. Campos
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny R. Isaac
- Laboratório de Doenças Neurodegenerativas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey Fabiano Lourenço de Aguiar
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando G. de Mello
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raphael de Siqueira-Santos
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis, Laval University, Quebec, QC, Canada
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, MA, United States
- Neuroscience Program, Harvard Medical School, Boston, MA, United States
| | - Litia A. Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, MA, United States
- Neuroscience Program, Harvard Medical School, Boston, MA, United States
| | - Ricardo A. De Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luzia S. Sampaio,
| |
Collapse
|
9
|
Tirgar F, Azizi Z, Hosseindoost S, Hadjighassem M. Preclinical gene therapy in glioblastoma multiforme: Using olfactory ensheathing cells containing a suicide gene. Life Sci 2022; 311:121132. [DOI: 10.1016/j.lfs.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
10
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
11
|
Sinegubov A, Andreeva D, Burzak N, Vasyutina M, Murashova L, Dyachuk V. Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Front Mol Neurosci 2022; 15:737949. [PMID: 35401107 PMCID: PMC8990813 DOI: 10.3389/fnmol.2022.737949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the heterogeneity of peripheral glial cell populations, from the emergence of Schwann cells (SCs) in early development, to their involvement, and that of their derivatives in adult glial populations. We focus on the origin of the first glial precursors from neural crest cells (NCCs), and their ability to differentiate into several cell types during development. We also discuss the heterogeneity of embryonic glia in light of the latest data from genetic tracing and transcriptome analysis. Special attention has been paid to the biology of glial populations in adult animals, by highlighting common features of different glial cell types and molecular differences that modulate their functions. Finally, we consider the communication of glial cells with axons of neurons in normal and pathological conditions. In conclusion, the present review details how information available on glial cell types and their functions in normal and pathological conditions may be utilized in the development of novel therapeutic strategies for the treatment of patients with neurodiseases.
Collapse
|
12
|
Prager J, Ito D, Carwardine DR, Jiju P, Chari DM, Granger N, Wong LF. Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury. Exp Neurol 2021; 340:113660. [PMID: 33647272 DOI: 10.1016/j.expneurol.2021.113660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) can cause chronic paralysis and incontinence and remains a major worldwide healthcare burden, with no regenerative treatment clinically available. Intraspinal transplantation of olfactory ensheathing cells (OECs) and injection of chondroitinase ABC (chABC) are both promising therapies but limited and unpredictable responses are seen, particularly in canine clinical trials. Sustained delivery of chABC presents a challenge due to its thermal instability; we hypothesised that transplantation of canine olfactory mucosal OECs genetically modified ex vivo by lentiviral transduction to express chABC (cOEC-chABC) would provide novel delivery of chABC and synergistic therapy. Rats were randomly divided into cOEC-chABC, cOEC, or vehicle transplanted groups and received transplant immediately after dorsal column crush corticospinal tract (CST) injury. Rehabilitation for forepaw reaching and blinded behavioural testing was conducted for 8 weeks. We show that cOEC-chABC transplanted animals recover greater forepaw reaching accuracy on Whishaw testing and more normal gait than cOEC transplanted or vehicle control rats. Increased CST axon sprouting cranial to the injury and serotonergic fibres caudal to the injury suggest a mechanism for recovery. We therefore demonstrate that cOECs can deliver sufficient chABC to drive modest functional improvement, and that this genetically engineered cellular and molecular approach is a feasible combination therapy for SCI.
Collapse
Affiliation(s)
- Jon Prager
- Bristol Veterinary School, University of Bristol, Bristol, UK; The Royal Veterinary College, University of London, Hatfield, UK
| | - Daisuke Ito
- Bristol Medical School, University of Bristol, Bristol, UK; School of Veterinary Medicine, Nihon University, Japan
| | | | - Prince Jiju
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Divya M Chari
- Neural Tissue Engineering, Keele School of Medicine, Keele University, Keele, UK
| | - Nicolas Granger
- The Royal Veterinary College, University of London, Hatfield, UK
| | | |
Collapse
|
13
|
Ursavas S, Darici H, Karaoz E. Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J Neurosci Res 2021; 99:1579-1597. [PMID: 33605466 DOI: 10.1002/jnr.24817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is generally the consequence of physical damage, which may result in devastating consequences such as paraplegia or paralysis. Some certain candidates for SCI repair are olfactory ensheathing cells (OECs), which are unique glial cells located in the transition region of the peripheral nervous system and central nervous system and perform neuron regeneration in the olfactory system throughout life. Culture studies have clarified many properties of OECs, but their mechanisms of actions are not fully understood. Successful results achieved in animal models showcased that SCI treatment with OEC transplants is suitable for clinical trials. However, clinical trials are limited by difficulties like cell acquisition for autograft transplantation. Despite the improvements in both animal and clinical studies so far, there is still insufficient information about the mechanism of actions, adverse effects, proper application methods, effective subtypes, and sources of cells. This review summarizes pre-clinical and clinical literature focused on the cellular characterization of both OECs in vitro and post-transplantation. We highlight the roles and effects of OECs on (a) the injury-induced glial milieu, (b) neuronal growth/regeneration, and (c) functional recovery after injury. Due to the shown benefits of OECs with in vitro and animal studies and a limited number of clinical trials, where safety and effectivity were shown, it is necessary to conduct more studies on OECs to obtain effective and feasible treatment methods.
Collapse
Affiliation(s)
- Selin Ursavas
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Hakan Darici
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey.,Center for Stem Cell and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey.,Center for Regenerative Medicine and Stem Cell Research and Manufacturing, Liv Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Russo C, Patanè M, Russo A, Stanzani S, Pellitteri R. Effects of Ghrelin on Olfactory Ensheathing Cell Viability and Neural Marker Expression. J Mol Neurosci 2020; 71:963-971. [PMID: 32978692 DOI: 10.1007/s12031-020-01716-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023]
Abstract
Ghrelin (Ghre), a gut-brain peptide hormone, plays an important role in the entire olfactory system and in food behavior regulation. In the last years, it has aroused particular interest for its antioxidant, anti-inflammatory, and anti-apoptotic properties. Our previous research showed that Ghre and its receptor are expressed by peculiar glial cells of the olfactory system: Olfactory Ensheathing Cells (OECs). These cells are able to secrete different neurotrophic factors, promote axonal growth, and show stem cell characteristics. The aim of this work was to study, in an in vitro model, the effect of Ghre on both cell viability and the expression of some neural markers, such as Nestin (Ne), Glial Fibrillary Acid Protein (GFAP), Neuregulin (Neu), and β-III-tubulin (Tuj1), in primary mouse OEC cultures. The MTT test and immunocytochemical procedures were used to highlight cell viability and marker expression, respectively. Our results demonstrate that Ghre, after 7 days of treatment, exerted a positive effect, stimulating OEC viability compared with cells without Ghre treatment. In addition, Ghre was able to modify the expression of some biomarkers, increasing Neu and Tuj1 expression, while GFAP was constant; on the contrary, the presence of positive Ne cells was drastically reduced after 7 days, and this showed a loss of stem cell characteristic and therefore the possible orientation towards an adult neural phenotype.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Martina Patanè
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Antonella Russo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Stefania Stanzani
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| |
Collapse
|
15
|
Guo J, Cao G, Yang G, Zhang Y, Wang Y, Song W, Xu Y, Ma T, Liu R, Zhang Q, Hao D, Yang H. Transplantation of activated olfactory ensheathing cells by curcumin strengthens regeneration and recovery of function after spinal cord injury in rats. Cytotherapy 2020; 22:301-312. [PMID: 32279988 DOI: 10.1016/j.jcyt.2020.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS The pro-regeneration capabilities of olfactory ensheathing cells (OECs) remain controversial. However, little is known regarding whether the transplantation of activated OECs by curcumin (CCM) elicits neural regeneration and functional recovery after spinal cord injury (SCI) in rats, and the possible molecular mechanisms have never been investigated. METHODS Primary OECs were treated with 1μM CCM for 1-3 days. Concomitantly, activated OECs were transplanted into the traumatic spinal cord of Sprague Dawley rats. One to 9 weeks after surgery, the assessment of behavior recovery was made using the Basso, Beattie and Bresnahan (BBB) locomotor scale; electrophysiology tests, such as somatosensory evoked potential (SEP) and motor evoked potential (MEP); and the cylinder test. Pathological study, including hematoxylin and eosin staining and immunofluorescence staining for neurofilaments (NFs), was conducted at 5 weeks post-surgery. In addition, activation profiles of OECs by CCM stimulus were assessed and levels of transglutaminase-2 (TG2) and phosphatidylserine receptor (PSR) in OECs stimulated by CCM were further determined. RESULTS CCM remarkably enhanced OEC proliferation, improved cell viability and strengthened secretion of neurotrophins and anti-inflammatory factors. In addition, the levels of TG2 and PSR in CCM-treated OECs were significantly elevated. More importantly, beyond 1 week post-transplantation of CCM-treated OECs into lesioned spinal cord, BBB score and cylinder test score were significantly higher than that seen in the other three groups and a more postponed latent SEP and MEP period was noted. Furthermore, 5 weeks later, numerous, well-arranged NF-positive nerve fibers, lesions with less cavities and reduced levels of pro-inflammatory cytokines were found in activated OEC implantation groups. In addition, the number of NF-positive fibers was significantly improved and the number and area of both cavities and gliotic scars were remarkably decreased compared with the corresponding controls. CONCLUSIONS Transplantation of OECs activated by CCM promotes neural regeneration and functional recovery following SCI, the underlying mechanisms of which are intimately associated with the elevated production of neurotrophic factors and anti-inflammatory factors in OECs stimulated by CCM as well as reduced pro-inflammatory cytokines from the post-contusion spinal cord. In addition, OECs activated by CCM were mediated through TG2 and PSR.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Guoqing Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yakang Wang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Song
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yayong Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tao Ma
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Liu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Lin N, Dong XJ, Wang TY, He WJ, Wei J, Wu HY, Wang TH. Characteristics of olfactory ensheathing cells and microarray analysis in Tupaia belangeri (Wagner, 1841). Mol Med Rep 2019; 20:1819-1825. [PMID: 31257532 PMCID: PMC6625397 DOI: 10.3892/mmr.2019.10422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/25/2017] [Indexed: 12/02/2022] Open
Abstract
Tree shrews are most closely related to the primates and so possess a number of advantages in experimental studies; they have been used as an animal model in bacterial and virus infection, cancer, endocrine system disease, and certain nervous system diseases. Their olfactory ensheathing cells (OECs) are able to release several cytokines to promote neuronal survival, regeneration and remyelination. The present study used western blot analysis to identify antibody specificity in protein extracts from whole tree shrew brains to identify the specificity of p75 nerve growth factor receptor (NGFR) derived from rabbits (75 kDa). OECs were cultured and isolated, then stained and identified using the antibodies for p75NGFR. To investigate the capacity of OECs to express cytokines and growth factors, microarray technology was used, and the analysis revealed that OECs were able to express 9,821 genes. Of these genes, 44 genes were from the neurotrophic factor family, which may indicate their potential in transplantation in vivo. The present study considered the function of OECs as revealed by other studies, and may contribute to future research.
Collapse
Affiliation(s)
- Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiu-Juan Dong
- Department of Physical Education, Hainan Normal University, Haikou, Hainan 571100, P.R. China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wen-Ji He
- Department of Ultrasonic Cardiogram, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Jing Wei
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Hai-Ying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Zhang L, Li B, Liu B, Dong Z. Co-transplantation of Epidermal Neural Crest Stem Cells and Olfactory Ensheathing Cells Repairs Sciatic Nerve Defects in Rats. Front Cell Neurosci 2019; 13:253. [PMID: 31244611 PMCID: PMC6582070 DOI: 10.3389/fncel.2019.00253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy is an alternative strategy to improve outcomes of peripheral nerve injury (PNI). Epidermal neural crest stem cell (EPI-NCSC) is obtained from autologous tissue without immunological rejection, which could expand quickly in vitro and is suitable candidate for cell-based therapy. Olfactory ensheathing cell (OEC) could secrete multiple neurotrophic factors (NTFs), which is often used to repair PNI individually. However, whether the combination of EPI-NCSC and OEC have better effects on PNI repair remains unclear. Here we use EPI-NCSC and OEC co-transplantation in a rat sciatic nerve defect model to ascertain the effects and potential mechanisms of cells co-transplantation on PNI. The effect of EPI-NCSC and OEC co-transplantation on PNI is assessed by using a combination of immunohistochemistry (IHC), electrophysiological recording and neural function test. Co-transplantation of EPI-NCSC and OEC exerts a beneficial effect upon PNI such as better organized structure, nerve function recovery, and lower motoneuron apoptosis. IHC and enzyme-linked immuno sorbent assay (ELISA) further demonstrate that cells co-transplantation may improve PNI via the expression of brain derived growth factor (BDNF) and nerve growth factor (NGF) up-regulated by EPI-NCSC and OEC synergistically. Eventually, the results from this study reveal that EPI-NCSC and OEC co-transplantation effectively repairs PNI through enhancing the level of BDNF and NGF, indicating that cells co-transplantation may serve as a fruitful avenue for PNI in clinic treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhifang Dong
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| |
Collapse
|
18
|
Gomes ED, Mendes SS, Assunção-Silva RC, Teixeira FG, Pires AO, Anjo SI, Manadas B, Leite-Almeida H, Gimble JM, Sousa N, Lepore AC, Silva NA, Salgado AJ. Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells 2018; 36:696-708. [PMID: 29352743 DOI: 10.1002/stem.2785] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.
Collapse
Affiliation(s)
- Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia S Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita C Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra I Anjo
- Faculty of Sciences and Technology, Department of Life Sciences.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
19
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
20
|
Xue L, Zeng Y, Li Q, Li Y, Li Z, Xu H, Yin Z. Transplanted olfactory ensheathing cells restore retinal function in a rat model of light-induced retinal damage by inhibiting oxidative stress. Oncotarget 2017; 8:93087-93102. [PMID: 29190980 PMCID: PMC5696246 DOI: 10.18632/oncotarget.21857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
There is still not an effective treatment for continuous retinal light exposure and subsequent photoreceptor degeneration. Olfactory ensheathing cell (OEC) transplantation has been shown to be neuroprotective in spinal cord, and optic nerve injury and retinitis pigmentosa. However, whether OECs protect rat photoreceptors against light-induced damage and how this may work is unclear. Thus, to elucidate this mechanism, purified rat OECs were grafted into the subretinal space of a Long-Evans rat model with light-induced photoreceptor damage. Light exposure decreased a- and b- wave amplitudes and outer nuclear layer (ONL) thickness, whereas the ONL of rats exposed to light for 24 h after having received OEC transplants in their subretinal space was thicker than the PBS control and untreated groups. A- and b- wave amplitudes from electroretinogram of OEC-transplanted rats were maintained until 8 weeks post OEC transplantation. Also, transplanted OECs inhibited formation of reactive oxygen species in retinas exposed to light. In vitro experiments showed that OECs had more total antioxidant capacity in a co-cultured 661W photoreceptor cell line, and cells were protected from damage induced by hydrogen-peroxide. Thus, transplanted OECs preserved retinal structure and function in a rat model of light-induced degeneration by suppressing retinal oxidative stress reactions.
Collapse
Affiliation(s)
- Langyue Xue
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhengqin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
21
|
Fu QQ, Wei L, Sierra J, Cheng JZ, Moreno-Flores MT, You H, Yu HR. Olfactory Ensheathing Cell-Conditioned Medium Reverts Aβ 25-35-Induced Oxidative Damage in SH-SY5Y Cells by Modulating the Mitochondria-Mediated Apoptotic Pathway. Cell Mol Neurobiol 2017; 37:1043-1054. [PMID: 27807758 PMCID: PMC11482107 DOI: 10.1007/s10571-016-0437-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 01/24/2023]
Abstract
Olfactory ensheathing cells (OECs) are a type of glia from the mammalian olfactory system, with neuroprotective and regenerative properties. β-Amyloid peptides are a major component of the senile plaques characteristic of the Alzheimer brain. The amyloid beta (Aβ) precursor protein is cleaved to amyloid peptides, and Aβ25-35 is regarded to be the functional domain of Aβ, responsible for its neurotoxic properties. It has been reported that Aβ25-35 triggers reactive oxygen species (ROS)-mediated oxidative damage, altering the structure and function of mitochondria, leading to the activation of the mitochondrial intrinsic apoptotic pathway. Our goal is to investigate the effects of OECs on the toxicity of aggregated Aβ25-35, in human neuroblastoma SH-SY5Y cells. For such purpose, SH-SY5Y cells were incubated with Aβ25-35 and OEC-conditioned medium (OECCM). OECCM promoted the cell viability and reduced the apoptosis, and decreased the intracellular ROS and the lipid peroxidation. In the presence of OECCM, mRNA and protein levels of antioxidant enzymes (SOD1 and SOD2) were upregulated. Concomitantly, OECCM decreased mRNA and the protein expression levels of cytochrome c, caspase-9, caspase-3, and Bax in SH-SY5Y cells, and increased mRNA and the protein expression level of Bcl-2. However, OECCM did not alter intracellular Ca2+ concentration in SH-SY5Y cells. Taken together, our data suggest that OECCM ameliorates Aβ25-35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial intrinsic pathway. These data provide new insights into the functional actions of OECCM on oxidative stress-induced cell damage.
Collapse
Affiliation(s)
- Qing-Qing Fu
- Research Center of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 400020, China
| | - Javier Sierra
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Jian-Zhang Cheng
- Research Center of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - María Teresa Moreno-Flores
- Department of Anatomy, Histology and Neuroscience, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Hua You
- Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Hua-Rong Yu
- Research Center of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Hashemi M, Hadjighassem M. Primary Olfactory Ensheathing Cell Culture from Human Olfactory Mucosa Specimen. Bio Protoc 2017; 7:e2275. [PMID: 34541055 DOI: 10.21769/bioprotoc.2275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/22/2017] [Accepted: 04/01/2017] [Indexed: 01/02/2023] Open
Abstract
The human olfactory mucosa is located in the middle and superior turbinates, and the septum of nasal cavity. Olfactory mucosa plays an important role in detection of odours and it is also the only nervous tissue that is exposed to the external environment. This property leads to easy access to the olfactory mucosa for achieving various researches. The lamina propria of olfactory mucosa consists of olfactory ensheathing cells (OECs) that cover the nerve fibers of olfactory. Here we describe a protocol for isolation of OECs from biopsy of human olfactory mucosa.
Collapse
Affiliation(s)
- Mansoureh Hashemi
- Functional neurosurgery research center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 2017; 1665:1-21. [PMID: 28396009 DOI: 10.1016/j.brainres.2017.03.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Neuronal cell injury, as a consequence of acute or chronic neurological trauma, is a significant cause of mortality around the world. On a molecular level, the condition is characterized by widespread cell death and poor regeneration, which can result in severe morbidity in survivors. Potential therapeutics are of major interest, with a promising candidate being brain-derived neurotrophic factor (BDNF), a ubiquitous agent in the brain which has been associated with neural development and may facilitate protective and regenerative effects following injury. This review summarizes the available information on the potential benefits of BDNF and the molecular mechanisms involved in several pathological conditions, including hypoxic brain injury, stroke, Alzheimer's disease and Parkinson's disease. It further explores the methods in which BDNF can be applied in clinical and therapeutic settings, and the potential challenges to overcome.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Chun-Yin San
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingquan Lian
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
24
|
Hao DJ, Liu C, Zhang L, Chen B, Zhang Q, Zhang R, An J, Zhao J, Wu M, Wang Y, Simental A, He B, Yang H. Lipopolysaccharide and Curcumin Co-Stimulation Potentiates Olfactory Ensheathing Cell Phagocytosis Via Enhancing Their Activation. Neurotherapeutics 2017; 14:502-518. [PMID: 27743319 PMCID: PMC5398976 DOI: 10.1007/s13311-016-0485-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The gradual deterioration following central nervous system (CNS) injuries or neurodegenerative disorders is usually accompanied by infiltration of degenerated and apoptotic neural tissue debris. A rapid and efficient clearance of these deteriorated cell products is of pivotal importance in creating a permissive environment for regeneration of those damaged neurons. Our recent report revealed that the phagocytic activity of olfactory ensheathing cells (OECs) can make a substantial contribution to neuronal growth in such a hostile environment. However, little is known about how to further increase the ability of OECs in phagocytosing deleterious products. Here, we used an in vitro model of primary cells to investigate the effects of lipopolysaccharide (LPS) and curcumin (CCM) co-stimulation on phagocytic activity of OECs and the possible underlying mechanisms. Our results showed that co-stimulation using LPS and CCM can significantly enhance the activation of OECs, displaying a remarkable up-regulation in chemokine (C-X-C motif) ligand 1, chemokine (C-X-C motif) ligand 2, tumor necrosis factor-α, and Toll-like receptor 4, increased OEC proliferative activity, and improved phagocytic capacity compared with normal and LPS- or CCM-treated OECs. More importantly, this potentiated phagocytosis activity greatly facilitated neuronal growth under hostile culture conditions. Moreover, the up-regulation of transglutaminase-2 and phosphatidylserine receptor in OECs activated by LPS and CCM co-stimulation are likely responsible for mechanisms underlying the observed cellular events, because cystamine (a specific inhibitor of transglutaminase-2) and neutrophil elastase (a cleavage enzyme of phosphatidylserine receptor) can effectively abrogate all the positive effects of OECs, including phagocytic capacity and promotive effects on neuronal growth. This study provides an alternative strategy for the repair of traumatic nerve injury and neurologic diseases with the application of OECs in combination with LPS and CCM.
Collapse
Affiliation(s)
- Ding-Jun Hao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Cuicui Liu
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Lingling Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Bo Chen
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Qian Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Rui Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jing An
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jingjing Zhao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Mingmei Wu
- Institute of Neurosciences, The Fourth Military Medical University, Shaanxi, 710032, China
| | - Yi Wang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Baorong He
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Hao Yang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| |
Collapse
|
25
|
Pellitteri R, Bonfanti R, Spatuzza M, Cambria MT, Ferrara M, Raciti G, Campisi A. Effect of Some Growth Factors on Tissue Transglutaminase Overexpression Induced by β-Amyloid in Olfactory Ensheathing Cells. Mol Neurobiol 2016; 54:6785-6794. [PMID: 27757835 DOI: 10.1007/s12035-016-0152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Herein, we assessed in a particular glial cell type, called olfactory ensheathing cells (OECs), the effect of some growth factors (GFs) on tissue transglutaminase (TG2) overexpression induced by amyloid-beta (Aβ) with native full-length peptide 1-42 or by fragments, 25-35 or 35-25, as control. Previously, we demonstrated that TG2 overexpression induced by some stressors was down-regulated by GFs exposure in OECs. To monitor cell viability, an MTT test was used, while TG2 expression was examined using immunocytochemical and Western blot analysis. We also considered the involvement of the TG2-mediated apoptotic pathway. Vimentin expression was evaluated as well. Reactive oxygen species and reduced glutathione levels were utilized to test the oxidative intracellular status. Lactate dehydrogenase released into the medium, as a marker of necrotic cell death, was evaluated. We found that in OECs exposed to Aβ(1-42) or Aβ(25-35) for 24 h, TG2 expression increased, and we observed that the protein appeared prevalently localized in the cytosol. The pre-treatment with GFs, basic fibroblast growth factor (bFGF) or glial-derived neurotrophic factor (GDNF), down-regulated the TG2 level, which was prevalently limited to the nuclear compartment. Vimentin expression and caspase cleavage showed a significant enhancement in Aβ(1-42) and Aβ(25-35) exposed cells. The pre-treatment with bFGF or GDNF was able to restore the levels of the proteins to control values, and the intracellular oxidative status modified by the exposure to Aβ(1-42) or Aβ(25-35). Our data suggest that both bFGF or GDNF could be an innovative mechanism to contrast TG2 expression, which plays a key role in Alzheimer's disease.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Roberta Bonfanti
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Mariacristina Ferrara
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
26
|
Olfactory ensheathing glia cell therapy and tubular conduit enhance nerve regeneration after mouse sciatic nerve transection. Brain Res 2016; 1650:243-251. [PMID: 27641994 DOI: 10.1016/j.brainres.2016.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
The regenerative potential of the peripheral nervous system (PNS) is widely known, but functional recovery, particularly in humans, is seldom complete. Therefore, it is necessary to resort to strategies that induce or potentiate the PNS regeneration. Our main objective was to test the effectiveness of Olfactory Ensheathing Cells (OEC) transplantation into a biodegradable conduit as a therapeutic strategy to improve the repair outcome after nerve injury. Sciatic nerve transection was performed in C57BL/6 mice; proximal and distal stumps of the nerve were sutured into the collagen conduit. Two groups were analyzed: DMEM (acellular grafts) and OEC (1×105/2μL). Locomotor function was assessed weekly by Sciatic Function Index (SFI) and Global Mobility Test (GMT). After eight weeks the sciatic nerve was dissected for morphological analysis. Our results showed that the OEC group exhibited many clusters of regenerated nerve fibers, a higher number of myelinated fibers and myelin area compared to DMEM group. The G-ratio analysis of the OEC group showed significantly more fibers on the most suitable sciatic nerve G-ratio index. Motor recovery was accelerated in the OEC group. These data provide evidence that the OEC therapy can improve sciatic nerve functional and morphological recovery and can be potentially translated to the clinical setting.
Collapse
|
27
|
Wang Y, Teng HL, Gao Y, Zhang F, Ding YQ, Huang ZH. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels. Glia 2016; 64:2154-2165. [PMID: 27534509 DOI: 10.1002/glia.23049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/24/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.,Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong-Lin Teng
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Gao
- Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fan Zhang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China. .,Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Zhi-Hui Huang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
28
|
Moon J, Lee ST, Kong IG, Byun JI, Sunwoo JS, Shin JW, Shim JY, Park JH, Jeon D, Jung KH, Jung KY, Kim DY, Lee SK, Kim M, Chu K. Early diagnosis of Alzheimer's disease from elevated olfactory mucosal miR-206 level. Sci Rep 2016; 6:20364. [PMID: 26842588 PMCID: PMC4740889 DOI: 10.1038/srep20364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/31/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNA-206, which suppresses the expression of brain-derived neurotrophic factor, is known to be elevated in the brains of Alzheimer's disease (AD) patients. We performed intranasal biopsy of the olfactory epithelia of early dementia patients (n = 24) and cognitively healthy controls (n = 9). Patients with significant depression (n = 8) were analyzed separately, as their cognitive impairments were thought to be caused by their depression. Real-time PCR was performed on the biopsied tissues. The relative microRNA-206 level exhibited a 7.8-fold increase (P = 0.004) in the mild cognitive impairment group (CDR 0.5; n = 13) and a 41.5-fold increase (P < 0.001) in the CDR 1 group (n = 11). However, this level was not increased in the depression group, even in those with cognitive decline. Using the optimal cutoff value, the sensitivity/specificity for diagnosing CDR 0.5 and CDR 1 dementia were 87.5%/94.1% and 90.9%/93.3%, respectively. In ROC analysis, the AUCs were 0.942 and 0.976 in the CDR 0.5 and CDR 1 groups, respectively. The olfactory mucosal microRNA-206 level and cognitive assessment scores were significantly correlated in the non-depressed subjects with cognitive impairment. In conclusion, the olfactory mucosal microRNA-206 level can be easily measured, and it can be utilized as an excellent biomarker for the diagnosis of early AD, including mild cognitive impairment.
Collapse
Affiliation(s)
- Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | | | - Jung-Ick Byun
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University College of Medicine, Seoungnam, South Korea
| | - Ji-Young Shim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Hyun Park
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Daejong Jeon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| |
Collapse
|
29
|
Plaza N, Simón D, Sierra J, Moreno-Flores MT. Transduction of an immortalized olfactory ensheathing glia cell line with the green fluorescent protein (GFP) gene: Evaluation of its neuroregenerative capacity as a proof of concept. Neurosci Lett 2016; 612:25-31. [PMID: 26655478 DOI: 10.1016/j.neulet.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
Olfactory ensheathing glia (OEG) cells are known to foster axonal regeneration of central nervous system (CNS) neurons. Several lines of reversibly immortalized human OEG (ihOEG) have been previously established that enabled to develop models for their validation in vitro and in vivo. In this work, a constitutively GFP-expressing ihOEG cell line was obtained, and named Ts14-GFP. Ts14-GFP neuroregenerative ability was similar to that found for the parental line Ts14 and it can be assayed using in vivo transplantation experimental paradigms, after spinal cord or optic nerve damage. Additionally, we have engineered a low-regenerative ihOEG line, hTL2, using lentiviral transduction of the large T antigen from SV40 virus, denominated from now on Ts12. Ts12 can be used as a low regeneration control in these experiments.
Collapse
Affiliation(s)
- N Plaza
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - D Simón
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - J Sierra
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - M T Moreno-Flores
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
30
|
A New Approach in Gene Therapy of Glioblastoma Multiforme: Human Olfactory Ensheathing Cells as a Novel Carrier for Suicide Gene Delivery. Mol Neurobiol 2015; 53:5118-28. [DOI: 10.1007/s12035-015-9412-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
|
31
|
Lynam DA, Shahriari D, Wolf KJ, Angart PA, Koffler J, Tuszynski MH, Chan C, Walton P, Sakamoto J. Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomater 2015; 18:128-31. [PMID: 25712385 DOI: 10.1016/j.actbio.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/31/2015] [Accepted: 02/13/2015] [Indexed: 01/09/2023]
Abstract
Agarose nerve guidance scaffolds (NGS) seeded with cells expressing brain derived neurotrophic factor (BDNF) have demonstrated robust nerve regeneration in the rat central nervous system. The purpose of this work was to explore whether agarose NGS coated with hydrogen-bonded layer-by-layer (HLbL) could provide an acellular method of delivering prolonged and consistent dosages of active BDNF. Our results show that HLbL-coated agarose NGS could release BDNF over 10days in consistent dosages averaging 80.5±12.5(SD)ng/mL. Moreover, the BDNF released from HLbL was confirmed active by in vitro cell proliferation assays. To our knowledge, this is the first report demonstrating that HLbL assembled onto a hydrogel can provide consistent, prolonged release of active BDNF in clinically relevant dosages.
Collapse
|
32
|
Pellitteri R, Catania MV, Bonaccorso CM, Ranno E, Dell'Albani P, Zaccheo D. Viability of olfactory ensheathing cells after hypoxia and serum deprivation: Implication for therapeutic transplantation. J Neurosci Res 2014; 92:1757-66. [PMID: 24975631 DOI: 10.1002/jnr.23442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/15/2022]
Abstract
Olfactory ensheathing cells (OECs) represent glial cells supporting neuronal turnover in the olfactory system. In vitro, OECs promote axonal growth as a source of neurotrophic growth factors; in vivo, they produce myelin, promoting remyelination of damaged axons. Consequently, OEC transplantation appears to be a promising treatment for spinal cord injury, although the functional recovery is limited. This might be ascribed to the microenvironment at the lesion site, lacking growth factors (GFs), nutrients, and oxygen. To mimic this condition, we used an in vitro approach by growing primary neonatal mouse OECs under hypoxic conditions and/or serum deprivation. In addition, we compared OECs survival/proliferation with that of primary cultures of Schwann cells (SCs) and astrocytes under the same experimental conditions. Cultures were analyzed by immunocytochemistry, and cell viability was evaluated by MTT assay. Different GFs, such as NGF, bFGF, and GDNF, and their combination were used to rescue cells from serum and/or oxygen deprivation. We show that the cell types were differently sensitive to the tested stress conditions and that OECs were the most sensitive among them. Moreover, OEC viability was rescued by bFGF under serum-deprived or hypoxic condition but not under conditions of drastic serum deprivation and hypoxia. bFGF was effective also for the other cell types, whereas the effect of the other GFs was negligible. This model suggests that administration of bFGF might be considered useful to sustain cell survival/proliferation after transplantation of OECs either alone or in combination with other glial cell types.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Mii S, Amoh Y, Katsuoka K, Hoffman RM. Comparison of nestin-expressing multipotent stem cells in the tongue fungiform papilla and vibrissa hair follicle. J Cell Biochem 2014; 115:1070-6. [PMID: 24142339 DOI: 10.1002/jcb.24696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022]
Abstract
We have previously reported that hair follicles contain multipotent stem cells, which express nestin and participate in follicle growth at anagen as well as in the extension of the follicle sensory nerve. The nestin-driven green fluorescent protein (ND-GFP) transgenic mouse labels all nestin-expressing cells with GFP. The hair follicle nestin-GFP cells can differentiate into neurons, Schwann cells, and other cell types. In this study, we describe nestin-expressing multipotent stem cells in the fungiform papilla in the tongue. The nestin-expressing multipotent stem cells in the fungiform papilla are located around a peripheral sensory nerve immediately below the taste bud and co-express the neural crest cell marker p75(NTR) . The fungiform papilla cells formed spheres in suspension culture in DMEM-F12 medium supplemented with basic fibroblast growth factor (bFGF). The spheres consisted of nestin-expressing cells that co-expressed the neural crest marker p75(NTR) and which developed expression of the stem cell marker CD34. P75(NTR), CD34 and nestin co-expression suggested that nestin-expressing cells comprising the fungiform papilla spheres were in a relatively undifferentiated state. The nestin-expressing cells of these spheres acquired the following markers: β III tubulin typical of nerve cells; GFAP typical of glial cells; K15 typical of keratinocytes; and smooth-muscle antigen (SMA), after transfer to RPMI 1640 medium with 10% fetal bovine serum (FBS), suggesting they differentiated into multiple cell types. The results of the current study indicate nestin-expressing fungiform papilla cells and the nestin-expressing hair follicle stem cells have common features of cell morphology and ability to differentiate into multiple cell types, suggesting their remarkable similarity.
Collapse
Affiliation(s)
- Sumiyuki Mii
- AntiCancer, Inc., San Diego, California, 92111; Department of Surgery, University of California, San Diego, California, 92103-8220; Department of Dermatology, Kitasato University School of Medicine, Kanagawa, 252-0374, Japan
| | | | | | | |
Collapse
|
34
|
Carvalho LA, Vitorino LC, Guimarães RPM, Allodi S, de Melo Reis RA, Cavalcante LA. Selective stimulatory action of olfactory ensheathing glia-conditioned medium on oligodendroglial differentiation, with additional reference to signaling mechanisms. Biochem Biophys Res Commun 2014; 449:338-43. [PMID: 24853803 DOI: 10.1016/j.bbrc.2014.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differentiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged from the numerical density (ND) of cells immunoreactive to 2'3' cyclic nucleotide 3'phosphodiesterase (CNPase) and O4 antibodies. NDs increased according to inverted-U dose-response curves, particularly for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1, p38-MAPK, and PI3K. Our results raise the possibility that OEG secreted factor(s) may counteract demyelination induced by trauma, neurodegenerative diseases, and advanced age, and should stimulate novel methods to deliver these factors and/or potentiating chemicals.
Collapse
Affiliation(s)
- Litia A Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Louise C Vitorino
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Roberta P M Guimarães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Leny A Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Ishihara M, Mochizuki-Oda N, Iwatsuki K, Kishima H, Ohnishi YI, Moriwaki T, Umegaki M, Yoshimine T. Primary olfactory mucosal cells promote axonal outgrowth in a three-dimensional assay. J Neurosci Res 2014; 92:847-55. [DOI: 10.1002/jnr.23367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Masahiro Ishihara
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Noriko Mochizuki-Oda
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Koichi Iwatsuki
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Haruhiko Kishima
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Yu-ichiro Ohnishi
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Takashi Moriwaki
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Masao Umegaki
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery; Osaka University Graduate School of Medicine; Suita City Osaka Japan
| |
Collapse
|
36
|
He BR, Xie ST, Wu MM, Hao DJ, Yang H. Phagocytic Removal of Neuronal Debris by Olfactory Ensheathing Cells Enhances Neuronal Survival and Neurite Outgrowth via p38MAPK Activity. Mol Neurobiol 2013; 49:1501-12. [DOI: 10.1007/s12035-013-8588-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 01/23/2023]
|
37
|
Witheford M, Westendorf K, Roskams AJ. Olfactory ensheathing cells promote corticospinal axonal outgrowth by a L1 CAM-dependent mechanism. Glia 2013; 61:1873-89. [DOI: 10.1002/glia.22564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Miranda Witheford
- Department of Zoology, Life Sciences Institute; University of British Columbia V6T 1Z3; Vancouver Canada
| | - Kathryn Westendorf
- Department of Zoology, Life Sciences Institute; University of British Columbia V6T 1Z3; Vancouver Canada
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute; University of British Columbia V6T 1Z3; Vancouver Canada
| |
Collapse
|
38
|
Mayeur A, Duclos C, Honoré A, Gauberti M, Drouot L, do Rego JC, Bon-Mardion N, Jean L, Vérin E, Emery E, Lemarchant S, Vivien D, Boyer O, Marie JP, Guérout N. Potential of olfactory ensheathing cells from different sources for spinal cord repair. PLoS One 2013; 8:e62860. [PMID: 23638158 PMCID: PMC3634744 DOI: 10.1371/journal.pone.0062860] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/26/2013] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) induces a permanent disability in patients. To this day no curative treatment can be proposed to restore lost functions. Therefore, extensive experimental studies have been conducted to induce recovery after SCI. One of the most promising therapies is based on the use of olfactory ensheathing cells (OECs). OECs can be obtained from either the olfactory bulbs (OB-OECs) or from olfactory mucosa (OM-OECs), involving a less invasive approach for autotransplantation. However the vast majority of experimental transplantations have been focusing on OB-OECs although the OM represents a more accessible source of OECs. Importantly, the ability of OM-OECs in comparison to OB-OECs to induce spinal cord recovery in the same lesion paradigm has never been described. We here present data using a multiparametric approach, based on electrophysiological, behavioral, histological and magnetic resonance imaging experiments on the repair potential of OB-OECs and OM-OECs from either primary or purified cultures after a severe model of SCI. Our data demonstrate that transplantation of OECs obtained from OB or OM induces electrophysiological and functional recovery, reduces astrocyte reactivity and glial scar formation and improves axonal regrowth. We also show that the purification step is essential for OM-OECs while not required for OB-OECs. Altogether, our study strongly indicates that transplantation of OECs from OM represents the best benefit/risk ratio according to the safety of access of OM and the results induced by transplantations of OM-OECs. Indeed, purified OM-OECs in addition to induce recovery can integrate and survive up to 60 days into the spinal cord. Therefore, our results provide strong support for these cells as a viable therapy for SCI.
Collapse
Affiliation(s)
- Anne Mayeur
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
- Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital, Rouen, Normandy, France
| | - Célia Duclos
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
| | - Axel Honoré
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
| | - Maxime Gauberti
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP Cyceron, Université de Caen Basse-Normandie, Caen, France
| | - Laurent Drouot
- Inserm, U905, Institute for Biomedical Research and Innovation, University of Rouen, Rouen, Normandy, France
| | - Jean-Claude do Rego
- Platform of Behavioural Analysis (SCAC), Institute for Research and Innovation in Biomedicine, Rouen University, France, National Center of Scientific Research (CNRS) - DR19, France
| | - Nicolas Bon-Mardion
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
- Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital, Rouen, Normandy, France
| | - Laetitia Jean
- Inserm, U905, Institute for Biomedical Research and Innovation, University of Rouen, Rouen, Normandy, France
| | - Eric Vérin
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
| | - Evelyne Emery
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP Cyceron, Université de Caen Basse-Normandie, Caen, France
| | - Sighild Lemarchant
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP Cyceron, Université de Caen Basse-Normandie, Caen, France
| | - Denis Vivien
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP Cyceron, Université de Caen Basse-Normandie, Caen, France
| | - Olivier Boyer
- Inserm, U905, Institute for Biomedical Research and Innovation, University of Rouen, Rouen, Normandy, France
- Rouen University Hospital, Department of Immunology, Rouen, Normandy, France
| | - Jean-Paul Marie
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
- Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital, Rouen, Normandy, France
| | - Nicolas Guérout
- UPRES EA 3830, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, Normandy, France
- * E-mail:
| |
Collapse
|
39
|
Larson CA, Dension PM. Effectiveness of intense, activity-based physical therapy for individuals with spinal cord injury in promoting motor and sensory recovery: is olfactory mucosa autograft a factor? J Spinal Cord Med 2013; 36:44-57. [PMID: 23433335 PMCID: PMC3555107 DOI: 10.1179/2045772312y.0000000026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/OBJECTIVES Rehabilitation for individuals with spinal cord injury (SCI) is expanding to include intense, activity-based, out-patient physical therapy (PT). The study's primary purposes were to (i) examine the effectiveness of intense PT in promoting motor and sensory recovery in individuals with SCI and (ii) compare recovery for individuals who had an olfactory mucosa autograft (OMA) with individuals who did not have the OMA while both groups participated in the intense PT program. METHODS Prospective, non-randomized, non-blinded, intervention study. Using the American Spinal Injury Association examination, motor and sensory scores for 23 (7 OMA, 6 matched control and 10 other) participants were recorded. RESULTS Mean therapy dosage was 137.3 total hours. The participants' total, upper and lower extremity motor scores improved significantly while sensory scores did not improve during the first 60 days and from initial to discharge examination. Incomplete SCI or paraplegia was associated with greater motor recovery. Five of 14 participants converted from motor-complete to motor-incomplete SCI. Individuals who had the OMA and participated in intense PT did not have greater sensory or greater magnitude or rate of motor recovery as compared with participants who had intense PT alone. CONCLUSION This study provides encouraging evidence as to the effectiveness of intense PT for individuals with SCI. Future research is needed to identify the optimal therapy dosage and specific therapeutic activities required to generate clinically meaningful recovery for individuals with SCI including those who elect to undergo a neural recovery/regenerative surgical procedure and those that elect intense therapy alone.
Collapse
Affiliation(s)
- Cathy A. Larson
- Rehabilitation Institute of Michigan, Center for Spinal Cord Injury Recovery, Detroit, MI, USA; and Oakland University Physical Therapy program, Rochester, MI, USA,Correspondence to: Cathy A. Larson PT, PhD, University of Michigan-Flint, Physical Therapy Program, 303 E. Kearsley Street, 2157 WSW, Flint, MI 48502, USA.
| | - Paula M. Dension
- Rehabilitation Institute of Michigan, Center for Spinal Cord Injury Recovery, Detroit, MI, USA
| |
Collapse
|
40
|
Feng S, Zhuang M, Wu R. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium. Neural Regen Res 2012; 7:2907-14. [PMID: 25317143 PMCID: PMC4190949 DOI: 10.3969/j.issn.1673-5374.2012.36.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/22/2012] [Indexed: 02/05/2023] Open
Abstract
The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium-containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.
Collapse
Affiliation(s)
- Sanjiang Feng
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Minghua Zhuang
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Corresponding author: Minghua Zhuang, Professor, Chief physician, Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China . (N20110403001/WJ)
| | - Rui Wu
- Department of Hematology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
41
|
Thyssen A, Stavermann M, Buddrus K, Doengi M, Ekberg JA, St John JA, Deitmer JW, Lohr C. Spatial and developmental heterogeneity of calcium signaling in olfactory ensheathing cells. Glia 2012; 61:327-37. [PMID: 23109369 DOI: 10.1002/glia.22434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/11/2012] [Indexed: 12/24/2022]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells in the mammalian olfactory system supporting growth of axons from the olfactory epithelium into the olfactory bulb. OECs in the olfactory bulb can be subdivided into OECs of the outer nerve layer and the inner nerve layer according to the expression of marker proteins and their location in the nerve layer. In the present study, we have used confocal calcium imaging of OECs in acute mouse brain slices and olfactory bulbs in toto to investigate physiological differences between OEC subpopulations. OECs in the outer nerve layer, but not the inner nerve layer, responded to glutamate, ATP, serotonin, dopamine, carbachol, and phenylephrine with increases in the cytosolic calcium concentration. The calcium responses consisted of a transient and a tonic component, the latter being mediated by store-operated calcium entry. Calcium measurements in OECs during the first three postnatal weeks revealed a downregulation of mGluR(1) and P2Y(1) receptor-mediated calcium signaling within the first 2 weeks, suggesting that the expression of these receptors is developmentally controlled. In addition, electrical stimulation of sensory axons evoked calcium signaling via mGluR(1) and P2Y(1) only in outer nerve layer OECs. Downregulation of the receptor-mediated calcium responses in postnatal animals is reflected by a decrease in amplitude of stimulation-evoked calcium transients in OECs from postnatal days 3 to 21. In summary, the results presented reveal striking differences in receptor responses during development and in axon-OEC communication between the two subpopulations of OECs in the olfactory bulb.
Collapse
Affiliation(s)
- Anne Thyssen
- Abteilung für Allgemeine Zoologie, TU Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Campisi A, Spatuzza M, Russo A, Raciti G, Vanella A, Stanzani S, Pellitteri R. Expression of tissue transglutaminase on primary olfactory ensheathing cells cultures exposed to stress conditions. Neurosci Res 2011; 72:289-95. [PMID: 22222252 DOI: 10.1016/j.neures.2011.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/27/2023]
Abstract
Tissue transglutaminase (TG2), a multifunctional enzyme implicated in cellular proliferation and differentiation processes, plays a modulatory role in the cell response to stressors. Herein, we used olfactory ensheathing cells (OECs), representing an unusual population of glial cells to promote axonal regeneration and to provide trophic support, as well as to assess whether the effect of some Growth Factors (GFs), NGF, bFGF or GDNF, on TG2 overexpression induced by stress conditions, such as glutamate or lipopolysaccaride (LPS). Glial Fibrillary Acidic Protein (GFAP) and vimentin were used as markers of astroglial differentiation and cytoskeleton component, respectively. Glutamate or LPS treatment induced a particular increase of TG2 expression. A pre-treatment of the cells with the GFs restored the levels of the protein to that of untreated ones. Our results demonstrate that the treatment of OECs with the GFs was able to restore the OECs oxidative status as modified by stress, also counteracting TG2 overexpression. It suggests that, in OECs, TG2 modulation or inhibition induced by GFs might represent a therapeutic target to control the excitotoxicity and/or inflammation, which are involved in several acute and chronic brain diseases.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Huntington's disease (HD) is an inherited, relentlessly progressive neurodegenerative disease with an invariably fatal outcome. HD is inherited in an autosomal dominant fashion, and is characterized pathologically by the loss of cortical and striatal neurons, and clinically by involuntary choreiform movements accompanied by progressive cognitive impairment and emotional lability. The disorder is caused by an expanded cystosine adenine guanine (CAG) tri-nucleotide repeat encoding polyglutamine (polyQ) in the first exon of the Huntingtin gene. There is a correlation between the number of CAG repeats and disease onset, such that in patients with CAG repeat lengths of 36 to 60, disease symptoms typically manifest after 35 years of age, whereas CAG repeat lengths >60 yield the more severe juvenile form of the disease. Even though mutant huntingtin is expressed throughout the brain, it is characterized by the selective degeneration of medium spiny neurons of the caudate and putamen, which heralds more widespread neuronal degeneration with disease progression. The mechanisms of cell dysfunction and death in HD have been the subjects of a number of studies, which have led to therapeutic strategies largely based on the amelioration of mutant huntingtin-related metabolic impairment and cellular toxicity. Each of these approaches has aimed to delay or stop the preferential degeneration of medium spiny neurons early in the disease course. Yet, in later stages of the disease, after cell death has become prominent, cell replacement therapy (whether by direct cell transplantation or by the mobilization of endogenous progenitors) may comprise a stronger potential avenue for therapy. In this review, we will consider recent progress in the transplantation of fetal striatal cells to the HD brain, as well as emerging alternative sources for human striatal progenitor cells. We will then consider the potential application of gene therapy toward the induction of striatal neurogenesis and neuronal recruitment, with an eye toward its potential therapeutic use in HD.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Department of Neurology, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY USA
| | - Steven A. Goldman
- Department of Neurology, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
44
|
Simón D, Martín-Bermejo MJ, Gallego-Hernández MT, Pastrana E, García-Escudero V, García-Gómez A, Lim F, Díaz-Nido J, Avila J, Moreno-Flores MT. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia 2011; 59:1458-71. [PMID: 21626571 DOI: 10.1002/glia.21189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 01/02/2023]
Abstract
Olfactory ensheathing glia (OEG) cells are known to facilitate repair following axotomy of adult neurons, although the molecular mechanisms involved are not fully understood. We previously identified plasminogen activator inhibitor-1 (PAI-1), proteinase-activated receptor-1 (PAR-1), and thrombomodulin (TM) as candidates to regulate rat OEG-dependent axonal regeneration. In this study, we have validated the involvement of these proteins in promoting axonal regeneration by immortalized human OEGs. We studied the effect of silencing these proteins in OEGs on their capacity to promote the regeneration of severed adult retinal ganglion cells (RGCs) axons. Our results support the role of glial PAI-1 as a downstream effector of PAR-1 in promoting axon regeneration. In contrast, we found that TM inhibits OEG induced-axonal regeneration. We also assessed the signaling pathways downstream of PAR-1 that might modulate PAI-1 expression, observing that specifically inhibiting Gα(i), Rho kinase, or PLC and PKC downregulated the expression of PAI-1 in OEGs, with a concomitant reduction in OEG-dependent axon regeneration in adult RGCs. Our findings support an important role for the thrombin system in regulating adult axonal regeneration by OEGs.
Collapse
Affiliation(s)
- Diana Simón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kachramanoglou C, Li D, Andrews P, East C, Carlstedt T, Raisman G, Choi D. Novel strategies in brachial plexus repair after traumatic avulsion. Br J Neurosurg 2010; 25:16-27. [PMID: 20979435 DOI: 10.3109/02688697.2010.522744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinical trials in spinal cord injury (SCI) can be affected by many confounding variables including spontaneous recovery, variation in the lesion type and extend. However, the clinical need and the paucity of effective therapies has spawned a large number of animal studies and clinical trials for SCI. In this review, we suggest that brachial plexus avulsion injury, a longitudinal spinal cord lesion, is a simpler model to test methods of spinal cord repair. We explore reconstructive techniques currently explored for the repair of brachial plexus avulsion and focus on the use of olfactory ensheathing cell transplantation as an adjunct treatment in brachial plexus repair.
Collapse
|
46
|
Novikova LN, Lobov S, Wiberg M, Novikov LN. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Exp Neurol 2010; 229:132-42. [PMID: 20932826 DOI: 10.1016/j.expneurol.2010.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/27/2022]
Abstract
Olfactory ensheathing cells (OEC) have been shown to stimulate regeneration, myelination and functional recovery in different spinal cord injury models. However, recent reports from several laboratories have challenged this treatment strategy. The discrepancy in results could be attributed to many factors including variations in culture protocols. The present study investigates whether the differences in culture preparation could influence neuroprotective and growth-promoting effects of OEC after transplantation into the injured spinal cord. Primary OEC cultures were purified using method of differential cell adhesion (a-OEC) or separated with immunomagnetic beads (b-OEC). After cervical C4 hemisection in adult rats, short-term (3 weeks) or long-term (7 weeks) cultured OEC were transplanted into the lateral funiculus at 1mm rostral and caudal to the transection site. At 3-8 weeks after transplantation, labeled OEC were mainly found in the injection sites and in the trauma zone. Short-term cultured a-OEC supported regrowth of rubrospinal, raphaespinal and CGRP-positive fibers, and attenuated retrograde degeneration in the red nucleus. Short-term cultured b-OEC failed to promote axonal regrowth but increased the density of rubrospinal axons within the dorsolateral funiculus and provided significant neuroprotection for axotomized rubrospinal neurons. In addition, short-term cultured OEC attenuated sprouting of rubrospinal terminals. In contrast, long-term cultured OEC neither enhanced axonal growth nor prevented retrograde cell death. The results suggest that the age of OEC in culture and the method of cell purification could affect the efficacy of OEC to support neuronal survival and regeneration after spinal cord injury. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
47
|
Dai C, Qin Yin Z, Li Y, Raisman G, Li D. Survival of retinal ganglion cells in slice culture provides a rapid screen for olfactory ensheathing cell preparations. Brain Res 2010; 1354:40-6. [PMID: 20682293 DOI: 10.1016/j.brainres.2010.07.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Transplants of olfactory ensheathing cells (OECs) cultured from the olfactory bulb are able to induce structural regeneration of severed central axons and return of function in rat models. For clinical purposes it would be preferable to obtain the cells from the more accessible olfactory mucosa in the nasal lining. However, in our laboratory preparations cultures from mucosal samples yielded around 5% of OECs compared with the 50% obtained from samples cultured from the bulb, and when transplanted these mucosal cell preparations were less effective at repair. There are a number of manipulations which may increase the OEC content and the effectiveness of mucosal preparations, but in vivo transplantation would be a highly labour intensive method for evaluating them. As a candidate for a high throughput assay to screen for beneficial effects of modifications to mucosal cells we here report the effects of co-culture of the cells with retinal explants. Both bulbar and mucosal cell preparations prolong the survival of the explants. Counts of the surviving retinal ganglion cells, identified by beta-III-tubulin immunohistochemistry and by their axon trajectory, show that the bulbar cell preparations have around twice the potency of those from the mucosa. This in vitro system, therefore, provides a bioassay that discriminates bulbar and mucosal cell preparations, and a useful tool for evaluating the functional effects of manipulations of cultured mucosal preparations.
Collapse
Affiliation(s)
- Chao Dai
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
48
|
Guérout N, Derambure C, Drouot L, Bon-Mardion N, Duclos C, Boyer O, Marie JP. Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa. Glia 2010; 58:1570-80. [DOI: 10.1002/glia.21030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
A long-term observation of olfactory ensheathing cells transplantation to repair white matter and functional recovery in a focal ischemia model in rat. Brain Res 2010; 1317:257-67. [DOI: 10.1016/j.brainres.2009.12.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 01/02/2023]
|
50
|
Yu H, Ye J, Li H, Zhang J, Jiang H, Dai C. Conditioned medium from neonatal rat olfactory ensheathing cells promotes the survival and proliferation of spiral ganglion cells. Acta Otolaryngol 2010. [DOI: 10.3109/00016480903154256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|