1
|
Huang Y, Wang Z. Therapeutic potential of SOX family transcription factors in osteoarthritis. Ann Med 2025; 57:2457520. [PMID: 39887675 PMCID: PMC11789227 DOI: 10.1080/07853890.2025.2457520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND As the worldwide population ages, osteoarthritis has significantly increased. This musculoskeletal condition has become a pressing global health issue and thus, prevention and treatment of osteoarthritis have become the primary focus of domestic and international research. Scholarly investigations of the molecular mechanisms that are related to the occurrence and development of osteoarthritis have shed light on the pathological causes of this condition to a certain extent, providing a foundation for its prevention and treatment. However, further research is necessary to fully understand the critical role of the transcription factor SOX9 in chondrocyte differentiation and the development of osteoarthritis. As a result, there has been widespread interest in SOX transcription factors. While SOX9 has been utilized as a biomarker to indicate the occurrence and prognosis of osteoarthritis, investigations into other members of the SOX family and the development of targeted treatments around SOX9 are still required. PURPOSE This article considers the impact of the SOX protein on the development and inhibition of osteoarthritis and highlights the need for therapeutic approaches targeting SOX9, as supported by existing research. RESULTS SOX9 can contribute to the process of osteoarthritis through acetylation and ubiquitination modifications. The regulation of the WNT signalling pathway, Nrf2/ARE signalling pathway, NF-κB signalling pathway and SOX9 is implicated in the emergence of osteoarthritis. Non-coding RNA may play a role in the onset and progression of osteoarthritis by modulating various SOX family members, including SOX2, SOX4, SOX5, SOX6, SOX8, SOX9 and SOX11. CONCLUSION SOX9 has the capability of mitigating the onset and progression of osteoarthritis through means such as medication therapy, stem cell therapy, recombinant adeno-associated virus (rAAV) vector therapy, physical therapy and other approaches.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Shi J, Zhao G, Wang S, Wei Y, Wu J, Huang G, Chen J, Xia J. tsRNA-12391-Modified Adipose Mesenchymal Stem Cell-Derived Exosomes Mitigate Cartilage Degeneration in Osteoarthritis by Enhancing Mitophagy. Biotechnol J 2025; 20:e202400611. [PMID: 40178220 DOI: 10.1002/biot.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Osteoarthritis (OA) is a cartilage-degenerative joint disease. Mitophagy impacts articular cartilage damage. tRNA-derived small RNAs (tsRNAs) are one of the contents of adipose mesenchymal stem cell (AMSC)-derived exosomes (AMSC-exos) and are involved in disease progression. However, whether tsRNAs regulate mitophagy and whether tsRNA-modified AMSC-exos improve OA via mitophagy remain unclear. We performed small RNA sequencing to identify OA-related tsRNAs, which were then loaded into AMSC-exos, exploring the function and mechanisms related to mitophagy in vitro and in vivo. Overall, 53 differentially expressed tsRNAs (DEtsRNAs) were identified between OA and normal cartilage tissues, among which 42 DEtsRNAs, including tsRNA-12391, were downregulated in the OA group. Target genes of tsRNA-12391 mainly participated in mitophagy-related pathways such as Rap1 signaling pathway. Compared to the control group, tsRNA-12391 mimics significantly promoted mitophagy, as shown by the upregulated expression of PINK1 and LC3 and the co-localization of Mito-Tracker Green and PINK1. Furthermore, tsRNA-12391 mimics effectively enhanced chondrogenesis in chondrocytes, as demonstrated by the elevated expression of collagen II and ACAN. AMSC-exos with tsRNA-12391 overexpression also facilitated mitophagy and chondrogenesis in vitro and in vivo. Mechanistically, tsRNA-12391 bound to ATAD3A restricted ATAD31 from degrading PINK1, leading to PINK1 accumulation. ATAD31 overexpression reversed the effects of tsRNA-12391 mimics on mitophagy and chondrogenesis. AMSC-exos loaded with tsRNA-12391 promoted mitophagy and chondrogenesis by interacting with ATAD31; this may be a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jingsheng Shi
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guanglei Zhao
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Siqun Wang
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yibing Wei
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jianguo Wu
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gangyong Huang
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Chen
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Xia
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
3
|
Xu Y, Yang Y, Song H, Li M, Shi W, Yu T, Lin J, Yu Y. The Role of Exerkines in the Treatment of Knee Osteoarthritis: From Mechanisms to Exercise Strategies. Orthop Surg 2025; 17:1021-1035. [PMID: 39854050 PMCID: PMC11962297 DOI: 10.1111/os.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
With the increasing prevalence of knee osteoarthritis (KOA), the limitations of traditional treatments, such as their limited efficacy in halting disease progression and their potential side effects, are becoming more evident. This situation has prompted scientists to seek more effective strategies. In recent years, exercise therapy has gained prominence in KOA treatment due to its safety, efficacy, and cost-effectiveness, which are underpinned by the molecular actions of exerkines. Unlike conventional therapies, exerkines offer specific advantages by targeting inflammatory responses, enhancing chondrocyte proliferation, and slowing cartilage degradation at the molecular level. This review explores the potential mechanisms involved in and application prospects of exerkines in KOA treatment and provides a comprehensive analysis of their role. Studies show that appropriate exercise not only promotes overall health, but also positively impacts KOA by stimulating exerkine production. The effectiveness of exerkines, however, is influenced by exercise modality, intensity, and duration of exercise, making the development of personalized exercise plans crucial for KOA patients. Based on these insights, this paper proposes targeted exercise strategies designed to maximize exerkine benefits, aiming to provide novel perspectives for KOA prevention and treatment.
Collapse
Affiliation(s)
- Yuxiong Xu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Yizhuo Yang
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Hanan Song
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Ming Li
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Weihao Shi
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Tongwu Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's HospitalBeijingChina
| | - Yanli Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| |
Collapse
|
4
|
Zhu Z, Tu B, Peng C, Xu X, Lu P, Ning R. Integrated bioinformatics and clinical data identify three novel biomarkers for osteoarthritis diagnosis and synovial immune. Sci Rep 2025; 15:10987. [PMID: 40164659 PMCID: PMC11958655 DOI: 10.1038/s41598-025-95837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that can be aggravated by synovitis and synovial immune disorders (SID). However, the role of synovial SID-related genes in OA synovium remains poorly understood. OA synovial and peripheral blood datasets were obtained from the GEO database ( https://www.ncbi.nlm.nih.gov/ ). Immune-related genes ( https://reactome.org/ ) showing differential expression in peripheral blood were identified as immune disorder genes. Subsequently, differentially expressed immune disorder genes in OA synovium were further identified as SID genes. The Venn diagram, random forest, SVM-RFE algorithm, and multivariate analysis were employed to determine SID-related hub genes in OA synovium. Using the identified hub genes, we constructed and validated a diagnostic model for predicting OA occurrence. The correlation between hub gene expression and immune-related modules was explored using CIBERSORT and MCP-counter analyses. We identified three SID-related hub genes (ACAT1, SPHK1, and ACACB) in OA synovium. The diagnostic model incorporating these hub genes demonstrated reliable predictive accuracy (AUC = 0.939). Through qPCR analysis, we quantitated the expression levels of the hub genes and confirmed that three hub genes could serve as novel biomarkers for OA patients (AUC = 0.960). Furthermore, we observed a significant correlation between the expression of these hub genes and immune cell infiltration, as well as inflammatory cytokine levels in OA synovium. Our findings suggest that three SID-related hub genes have the potential to serve as diagnostic biomarkers for OA patients. These genes are associated with immune disorder and contribute to immune alterations within the OA synovium.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Bizhi Tu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Xun Xu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Peizhi Lu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China.
| |
Collapse
|
5
|
Konar M, Kaur B, Saini UC, Bhadada SK, Sharma S. Synovial fluid glycoproteome profiling in knee osteoarthritis: Molecular insights into type 2 diabetes-associated biomarkers and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141067. [PMID: 40157439 DOI: 10.1016/j.bbapap.2025.141067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and Osteoarthritis (OA) share common risk factors like age, obesity and hypertension. Currently, 52 % of diabetic patients suffer from arthritis. Diabetes facilitates OA by altering lipid metabolism, levels of adipokines & cytokines, accumulation of advanced glycation end products, etc., which affects cartilage & bone health. However, the molecular mechanisms of the association of OA with T2DM remain unexplored. Since diabetes greatly affects the glycosylation status of proteins, the present study focused on identifying glycoproteins that could serve as diagnostic and prognostic markers for identifying osteoarthritis in diabetic individuals by LC-MS/MS. Comparative proteomic analysis revealed 20 significantly altered glycoproteins; among them, thyroxine-binding globulin (THBG), alpha-1-antitrypsin (A1AT), fibrinogen gamma chain (FGG) and angiotensinogen (AGT) were further validated. THBG, A1AT and AGT showed promising potential to identify the comorbid condition in serum and synovial fluid, however, ROC analysis identified THBG as the best candidate glycoprotein marker. Upregulation of THBG in OADM disrupts the bone remodeling cycle, degrades insulin, and promotes the expression of GLUT-1 and MMP-9. Overall, THBG could also serve as a therapeutic target for reducing the progression of osteoarthritis and alleviating pain and bone stiffness associated with the disease.
Collapse
Affiliation(s)
- Monidipa Konar
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bhavneet Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Uttam Chand Saini
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
6
|
Zhu B, Zhu D, Xue X, Yang H, Zhang S. Behavioral Therapy-Based Digital Interventions for Treating Osteoarthritis: Systematic Review and Meta-Analysis. J Med Internet Res 2025; 27:e56227. [PMID: 40106814 PMCID: PMC11966084 DOI: 10.2196/56227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/09/2024] [Accepted: 10/17/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by pain, functional impairments, muscle weakness, and joint stiffness. Since OA heightens reliance on heath care resources and exacerbates socioeconomic burden, remote OA rehabilitation using digital technologies is rapidly evolving. OBJECTIVE The aim of this study was to analyze the efficacy of behavioral therapy-based digital interventions for patients with OA. METHODS This study is a systematic review of randomized controlled trials (RCTs) that assessed the effects of behavioral therapy-based digital intervention tools for OA. These RCTs were searched from inception to June 2023 in the Web of Science, Embase, Cochrane Library, Ovid, and PubMed databases. RESULTS Ten eligible RCTs comprising 1895 patients with OA were included. Digital tools based on either cognitive behavioral therapy (CBT) or behavior change technique (BCT) were investigated. All studies demonstrated low-to-moderate effects on pain reduction in the short term (standardized mean difference [SMD] -0.20, 95% CI -0.35 to -0.05). Six studies reported improvement in physical function (SMD -0.20, 95% CI -0.41 to 0.00), and 5 confirmed increased pain self-efficacy (SMD 0.22, 95% CI 0.02-0.42). In subgroup analysis, compared with CBT, BCT-based digital interventions demonstrated their effects on pain reduction (SMD -0.25, 95% CI -0.49 to 0.00) and physical function (SMD -0.26, 95% CI -0.54 to -0.01) in the short term. In addition, physiotherapist involvement in treatment had a positive effect on pain control (SMD -0.14, 95% CI -0.27 to -0.02). Furthermore, web-based digital tools improved physical function in the short term (SMD -0.28, 95% CI -0.54 to -0.01). CONCLUSIONS Moderate- and low-quality evidence supported that behavioral therapy-based digital tools improved pain intensity, physical function, and self-efficacy in the short term. However, affective interactions between patients and professionals may affect the clinical outcomes. TRIAL REGISTRATION PROSPERO CRD42023430716; https://tinyurl.com/yc49vzyy.
Collapse
Affiliation(s)
- Beiyao Zhu
- Shanghai Jiao Tong University, The Ninth People's Hospital, Shanghai, China
| | - Dian Zhu
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao'ao Xue
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyi Yang
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Shurong Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wang S, Fu H, Xu Z, Huang C. The Interaction Between Microbiota and Stem Cells on Progression of Osteoarthritis and Engineered Stem Cell for Enhancing Osteoarthritis Treatment. Int J Nanomedicine 2025; 20:3219-3234. [PMID: 40098723 PMCID: PMC11913030 DOI: 10.2147/ijn.s511884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Osteoarthritis (OA) is characterized by the degeneration of articular cartilage caused by several factors of which novel most trends include microbiota. Specific microbiota and the role in the development of OA is less clear. The microbiota is presumed to influence OA occurrence and progression mainly via immune modulation. In recent years, bone marrow mesenchymal stem cells (MSCs) have shown great potential for the treatment of OA, however, the therapeutic efficiency has been seriously affected by the harsh microenvironment in the joint cavity. At present, many strategies have been used to enhance the function of MSCs, among them, engineering are a promising method. Therefore, this review mainly focuses on the latest research on how the microbiota affects the development of OA, stem cell repair, and the use of engineered MSCs in the treatment of OA. In addition, engineered MSCs can enhance the therapeutic potential of exosomes as a novel strategy for treating OA. Our review provides a comprehensive perspective on the role of microbiota in OA and the influence of MSCs therapy and engineered MSCs on the treatment of OA.
Collapse
Affiliation(s)
- Sidan Wang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Haotian Fu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zheng Xu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China
| | - Chunhong Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
8
|
Xu H, Xiao W, Ding C, Zou J, Zhou D, Wang J, Ding L, Jin C, Sun L, Li Y. Global burden of osteoarthritis among postmenopausal women in 204 countries and territories: a systematic analysis for the Global Burden of Disease Study 2021. BMJ Glob Health 2025; 10:e017198. [PMID: 40037907 DOI: 10.1136/bmjgh-2024-017198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVES Our study aimed to provide global burden and temporal trends in the incidence, prevalence, and disability-adjusted life-years (DALYs) of osteoarthritis (OA) among postmenopausal women from 1990 to 2021. METHODS The study employed data from the Global Burden of Disease (GBD) Study 2021. Four subtypes of OA affecting the hip, knee, hand, and other joints among postmenopausal women were included. Age-standardised rates (ASRs) were derived with reference to the global age standard, and temporal patterns were scrutinised through estimated annual percentage change (EAPC) assessments. The impact of age, body mass index (BMI), and Socio-demographic Index (SDI) were all considered. RESULTS From 1990 to 2021, there were more than 1.3-fold increases in OA incidence, prevalence, and DALYs among postmenopausal women globally, with EAPCs of 0.211, 0.356, and 0.395, respectively. Knee OA carried the heaviest burden, while hip OA bore the least. Higher SDI regions had higher burden, and inequalities linked to SDI among countries had intensified over time. East Asia and high-income Asia Pacific experienced the most substantial increments in OA burden. High BMI significantly influences the burden of OA, especially in countries within high, high-middle, and middle SDI, where DALYs attributed to high BMI exceed 20%. CONCLUSIONS The burden of OA among postmenopausal women continues to escalate, highlighting its significant impact on the global health of postmenopausal women. Necessarily, effective monitoring and management of risk factors, targeted lifestyle adjustments for BMI, and policy interventions accounting for demographic disparities are required to ease OA in postmenopausal women.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wenfeng Xiao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chan Ding
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiarong Zou
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dan Zhou
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Lilu Ding
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
| | | | - Lingling Sun
- Department of Orthopaedics, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2025; 31:281-295. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Ko S, Choi Y, Han HS, Kim SH, Ro DH. Association of radiographic structure deformity phenotypes of knee OA to clinical symptoms and risk for progression: Proposing a modification of Kellgren-Lawrence grade - Data from the Osteoarthritis Initiative and the MOST study. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100566. [PMID: 39896932 PMCID: PMC11787473 DOI: 10.1016/j.ocarto.2025.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Objective This study aims to define Kellgren-Lawrence grade (KLG) using OARSI grade and stratify radiographic knee osteoarthritis (KOA) into distinct phenotypes based on radiographic structure changes and compare clinical symptoms and disease progression. Design We used radiographic grading data provided by the OAI and MOST study. Decision tree was used to (1) Find OARSI grade criteria for each KLG and (2) Phenotype early osteoarthritic knees (=KLG1, 2) by the radiographic structure changes. Pain, function, and progression to KLG ≥3 were compared between phenotypes. Results 10,804 knees from 5802 patients were included. The mean follow-up duration was 55.6 ± 24.5 months. Criteria for KLG1 was: (1) Joint space narrowing (JSN) grade (more severe grade among medial and lateral compartments) = 1 without osteophytes (i.e., KLG1Jt) (2) A single grade 1 osteophyte without JSN (i.e., KLG1Ost). Criteria for KLG2 was (1) JSN = 1 with a sum of osteophyte grades ≥1 (i.e., KLG2Jt): (2) Sum of osteophyte grades ≥2 without JSN (i.e., KLG2Ost). In terms of pain and function, there was no difference between KLG1Ost and KLG1Jt or between KLG2Ost and KLG2Jt. For progression to KLG ≥3, the mean survival time of KLG1Ost was 1.87-fold (95 % CI: 1.31-2.67) longer than that of KLG1Jt, while KLG2Ost was 5.42-fold (95 % CI: 3.69-7.96) longer than KLG2Jt. Conclusions We proposed the criteria for each KLG using OARSI grade and phenotypes characterized by radiographic structure deformity in early KLG. Within the same KLG, the rate of disease progression was different depending on the structural deformity.
Collapse
Affiliation(s)
- Sunho Ko
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Yunhee Choi
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, South Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong Hwan Kim
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - Du Hyun Ro
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
- CONNECTEVE Co., Ltd, Seoul, South Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, South Korea
| |
Collapse
|
11
|
Chen J, Zhou Q, Yu W, Cao D. A critical overview of systematic reviews of radiofrequency ablation for knee osteoarthritis. Disabil Rehabil 2025:1-10. [PMID: 39989440 DOI: 10.1080/09638288.2025.2469771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE This overview aims to assess the methodological and evidence quality of systematic reviews related to radiofrequency ablation (RFA) for knee osteoarthritis (KOA). METHODS A comprehensive search strategy was conducted through two independent researchers in eight electronic databases from the inception to September 1, 2024. The methodological quality of the included systematic reviews was assessed by the Assessing the Methodological Quality of Systematic Reviews 2 tool. The Grading of Recommendations Assessment, Development, and Evaluation tool assessed the evidence quality. RESULTS Eight systematic reviews were finally included. The results of the methodological quality of the included systematic reviews were generally unsatisfactory. The limitations were a lack of pre-designed protocols, reasons for the inclusion of study types, a list of excluded studies, the consideration of the single study risk of bias, and management of conflicts of interest. A total of 56 outcome indicators were evaluated, with one item receiving a moderate quality rating, while the rest were classified as low or very low. Limitations were identified as the primary factors leading to the downgrade. CONCLUSIONS RFA shows efficacy in treating KOA, with tolerable side effects. However, systematic reviews' poor quality indicates cautious interpretation needed. Future studies must enhance quality for robust EBM.
Collapse
Affiliation(s)
- Jixin Chen
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qinxin Zhou
- Department of Orthopaedic Surgery, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang, Chinese Medical University, Shaoxing, China
| | - Weijie Yu
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongdong Cao
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Wang W, Liu X, Nan H, Li H, Yan L. Specific gut microbiota and serum metabolite changes in patients with osteoarthritis. Front Cell Dev Biol 2025; 13:1543510. [PMID: 40027098 PMCID: PMC11868077 DOI: 10.3389/fcell.2025.1543510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Recent research indicated a strong link between the gut microbiota and osteoarthritis. However, the complex interplay between the gut microbiota, serum metabolites, and the progression of osteoarthritis in affected individuals remains largely unexplored. This study aimed to investigate the characteristics of the gut microbiota and serum metabolites in patients with osteoarthritis. Methods Participants with either healthy knees or osteoarthritis were enrolled and categorized into healthy control (HC) and osteoarthritis (OA) groups. Fecal and blood samples were collected for 16S rRNA gene sequencing, metabolomic analysis via liquid chromatography-mass spectrometry (LC-MS), and integrated evaluation. Results The results showed no significant variation in gut microbiota richness and diversity between the two groups. However, the abundance of Bacteroides plebeius and Faecalibacterium prausnitzii was reduced in the OA group, both of which are known for their potential as next-generation probiotics for human health. Metabolomic analysis indicated that serum metabolites, including pyrogallol and 3-hydroxybutyrate (3HB), were significantly lower in the OA group. These metabolites are known to positively impact osteoarthritis progression and other diseases and demonstrated good diagnostic performance for distinguishing osteoarthritis patients from healthy controls. Correlation analysis revealed a positive correlation between Bacteroides plebeius and Faecalibacterium prausnitzii and between pyrogallol and 3HB. Discussion This study highlighted specific gut microbiota and serum metabolite profiles in osteoarthritis patients, suggesting that the specific changes in bacteria and derived metabolites are closely tied to osteoarthritis progression. This underscores the potential of gut microbiota and serum metabolites as modifiable elements and therapeutic targets for osteoarthritis prevention.
Collapse
Affiliation(s)
- Wendong Wang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Xincheng Liu
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| | - Hao Nan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huan Li
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Litao Yan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
13
|
Zhang L, Zheng G, Zhao W, He C, Huang Z. Coixol-Loaded Hydrogels Promote Osteochondral Defect Repair via Modulation of Ferroptosis and Autophagy in Chondrocytes. ACS Biomater Sci Eng 2025; 11:1096-1105. [PMID: 39818713 DOI: 10.1021/acsbiomaterials.4c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Osteoarthritis (OA) is a chronic multifactorial disease characterized by cartilage degeneration, pain, and reduced mobility. Current therapies primarily aim to relieve pain and restore function, but they often have limited effectiveness and side effects. Coixol, a bioactive compound from Coix lacryma-jobi L., exhibits anti-inflammatory and analgesic properties, suggesting potential benefits in OA treatment. This study explored the effects of coixol on OA chondrocytes. Primary chondrocytes from OA rats were isolated and treated with varying concentrations of coixol. Cell viability and proliferation were assessed by using CCK-8 assays. The expression of genes related to ferroptosis and autophagy was analyzed through RT-qPCR, Western blot, and immunofluorescence. Moreover, the study investigated the characteristics and performance of coixol-loaded PDLLA-PEG-PDLLA (PLEL)/gelatin sponge (GS) hydrogels (Coixol@PLEL/GS) for enhancing osteochondral defect repair by specifically targeting chondrocyte ferroptosis and autophagy. The characteristics of coixol-loaded PDLLA-PEG-PDLLA/gelatin sponge (Coixol@PLEL/GS) hydrogels were evaluated using cryo-scanning electron microscopy (SEM) or SEM, and coixol release kinetics were determined. In vivo, a rat osteochondral defect model was used to assess the efficacy of Coixol@PLEL/GS in osteochondral defect repair using International Cartilage Repair Society (ICRS) scores, Safranin O/Fast green staining, Toluidine blue staining, and immunofluorescence. Coixol significantly increased the viability and proliferation of OA chondrocytes in a dose-dependent manner. Furthermore, coixol inhibited ferroptosis and stimulated autophagy, as evidenced by the upregulation of related genes. In vivo, Coixol@PLEL/GS remarkably enhanced the repair of osteochondral defects compared to that of control groups. In conclusion, coixol protects OA chondrocytes by improving survival, inhibiting ferroptosis, and activating autophagy, highlighting its potential as a therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Liqin Zhang
- The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
| | - Guangping Zheng
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
| | - Weicheng Zhao
- The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
| | - Chun He
- The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
| | - Zhongming Huang
- The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China
| |
Collapse
|
14
|
Zhou H, Zhang Y, Tian T, Wang B, Pan Y. Meta-analysis of the Relationship Between Zinc and Copper in Patients with Osteoarthritis. Biol Trace Elem Res 2025; 203:635-645. [PMID: 38676877 DOI: 10.1007/s12011-024-04197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
This study aims to explore the relationship between osteoarthritis and the trace elements zinc and copper and to provide a theoretical basis for research on the related mechanisms for the prevention, diagnosis, and treatment of osteoarthritis. We searched all the literature indexed in Web Of Science, Embase, and PubMed as of January 10, 2024, summarized the zinc and copper detection indexes in patients with osteoarthritis, obtained clinical data through literature screening, quality assessment, and data extraction, and analyzed the data using Revman 5.4. A total of 13 papers were included in this study, totaling 7983 study subjects. These were divided into osteoarthritis and healthy control groups. The results from the meta-analysis showed that in patients with osteoarthritis, circulating copper levels, but not zinc levels, were significantly higher compared to healthy individuals. The level of copper in the blood of patients with osteoarthritis is significantly higher than that of healthy people.
Collapse
Affiliation(s)
- Haowei Zhou
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuchen Zhang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Tian Tian
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bingqian Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yalei Pan
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry State, Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Xianyang, 712083, China.
| |
Collapse
|
15
|
Zhang M, Li Y, Liu H, Hao G, Zhang H, Li M, Li C, Qiu L, Hou Y, Li J, Xue W, Liu Y, Jin X. Systematic insight into the dual COX-2/5-LOX inhibitory mechanism of Duhuo Jisheng decoction for treatment of osteoarthritis based on in silico and bioassay. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119263. [PMID: 39701217 DOI: 10.1016/j.jep.2024.119263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) is frequently used to treat osteoarthritis (OA). Duhuo Jisheng decoction (DHJSD), a Chinese patent medicine, was commonly used Chinese herbal formula for the treatment of OA. In Western medicine, dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme has been proved to be a promising strategy to treat inflammatory diseases with reduced side effects. AIM OF THE STUDY To elucidate the dual action mechanism of DHJSD targeting COX-2 and 5-LOX against OA. MATERIALS AND METHODS DHJSD, containing 1495 compounds was screened using a virtual screening approach based on molecular docking. The inhibitory effect of hit compounds against COX-2 and 5-LOX was validated using enzyme-based assays. In vitro, rat chondrocytes were treated with IL-1β (10 ng/mL) for 24 h to induce OA model in vitro. The chondrocyte viability was evaluated using an CCK-8 assay. ELISA was used to detect inflammatory factors expression. Immunofluorescence was used to assess the expression level of collagen II and MMP-13. In addition, a rat cartilage explants culture model was established, and safranin O and HE staining analysis were carried to assess cartilage matrix degradation and cartilage damage, respectively. In vivo, carrageenan-induced paw edema assay was used to examine anti-inflammatory activity, and the gastric ulcerogenic effect was further detected. Finally, Molecular dynamics simulations and binding free energy analysis were carried to explore the binding mechanism. RESULTS 13 compounds from DHJSD were identified as promising candidates by a virtual screening approach. Among these candidates, three hits 7,4'-dimethoxyisoflavone, genistein, and fraxetin displayed dual inhibition of COX-2 and 5-LOX. Further in vitro assay indicated that 7,4'-dimethoxyisoflavone, genistein, and fraxetin could inhibit PGE2, LTB4, TNF-α, IL-6, or NO production in IL-1β-induced chondrocytes. In addition, the three compounds reduced IL-1β-induced degradation of collagen II and expression of MMP-13 in rat chondrocytes. The results of anti-inflammatory activity of the three compounds in vivo showed that the highest anti-inflammatory activity with edema inhibition percentages of 50.00%, 56.00%, and 51.00% after 3 h, respectively. Moreover, it was found that 7,4'-dimethoxyisoflavone, genistein, and fraxetin have a superior gastric safety profile comparable to indomethacin. Finally, molecular dynamics simulations, binding free energy analysis, and detailed interaction mode demonstrated that 7,4'-dimethoxyisoflavone, genistein, and fraxetin interacted well with both COX-2 and 5-LOX. CONCLUSIONS 7,4'-dimethoxyisoflavone, genistein, and fraxetin from DHJSD with excellent anti-inflammatory effects and no gastric ulceration effects, which helps to explain the dual action mechanism and potential material basis of DHJSD in treating OA and provide evidence to support DHJSD's clinical use.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaling Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hao Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guoxiong Hao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huijuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou, China
| | - Lu Qiu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yehu Hou
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jintian Li
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China; Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
16
|
Long D, Deng Z, Li M, Li W, Zhong Y, Lin Z, He A, Kang Y, Mao G. tRNA-derived fragment 3031B regulates human anterior cruciate ligament cell proliferation and survival by targeting RELA. Gene 2025; 933:148897. [PMID: 39222756 DOI: 10.1016/j.gene.2024.148897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
tRNA-derived fragments (tRFs) are novel short noncoding RNAs that play pivotal roles in cell proliferation and survival. However, knowledge of the biological roles of tRFs in anterior cruciate ligament (ACL) cells is limited. Here, we intended to investigate the function of tRF-3031B in ACL cell. We used the tRF and tiRNA array to analyze tRF and tiRNA expression profiles in osteoarthritis (OA) ACL cells and normal ACL cells, and qRT-PCR and fluorescence in situ hybridization (FISH) were used to determine tRF-3031B expression. The results showed that tRF-3031B was expressed at low levels in OA ACL and Interleukin-1β (IL-1β) treated ACL cells. We found that RELA was the target of tRF-3031B. When ACL cells were transfected with tRF-3031B mimics, RELA expression was suppressed, whereas transfection with tRF-3031B inhibitors had the opposite effect. The rescue and dual-luciferase reporter assays showed that tRF-3031B silenced the RELA expression by binding to its untranslated region (3'-UTR). Hence, this study showed the novel function of tRF-3031B in regulating ACL cell proliferation and survival by targeting RELA, and these findings may offer a new direction for the study of ACL degeneration and pathophysiological of OA.
Collapse
Affiliation(s)
- Dianbo Long
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zengfa Deng
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ming Li
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Li
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yanlin Zhong
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhencan Lin
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Aishan He
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yan Kang
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Guping Mao
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
17
|
Xiong X, Huang H, Wang N, Zhou K, Song X. Sirt1 overexpression inhibits chondrocyte ferroptosis via Ftl deacetylation to suppress the development of osteoarthritis. J Bone Miner Metab 2025:10.1007/s00774-024-01574-8. [PMID: 39786573 DOI: 10.1007/s00774-024-01574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by an imbalance in chondrocyte metabolism. Ferroptosis has been implicated in the pathogenesis of OA. The role of Sirt1, a deacetylase, in mediating deacetylation during ferroptosis in OA chondrocytes remains underexplored. This study aimed to elucidate the mechanisms by which Sirt1 influences chondrocyte ferroptosis in the development of OA. MATERIALS AND METHODS In vitro and in vivo models of OA were established using IL-1β-induced mouse chondrocytes and a destabilization of the medial meniscus (DMM) mouse model, respectively. Ferroptosis was evaluated through measurements of cell viability, lactate dehydrogenase (LDH) release, intracellular levels of Fe2+, glutathione (GSH), malondialdehyde (MDA), lipid reactive oxygen species (ROS), propidium iodide staining, and Western blot analysis. The underlying mechanisms were further investigated using quantitative real-time polymerase chain reaction, Western blotting, immunoprecipitation (IP), co-immunoprecipitation (Co-IP), and glutathione-S-transferase pulldown assays. In vivo validation was performed via Safranin O staining. RESULTS IL-1β induced ferroptosis and increased histone acetylation, effects that were partially reversed by Sirt1 overexpression. Mechanistically, Sirt1 overexpression upregulated ferritin light polypeptide (Ftl) expression by deacetylating Ftl at the K181 residue. Ftl knockdown inhibited the ferroptosis-enhancing effect of Sirt1 overexpression in chondrocytes. In vivo studies showed that Sirt1 overexpression mitigated the progression of OA and reduced ferroptosis in the DMM-induced OA mouse model. CONCLUSION Our findings confirm that Sirt1 overexpression promotes Ftl expression through deacetylation at the K181 site, thereby suppressing chondrocyte ferroptosis and attenuating the progression of OA. These results suggest a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Xiaolong Xiong
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ning Wang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kai Zhou
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinghui Song
- Universiti Kebangsaan Malaysia Health Science, UKM, 43600, Bandar Baru Bangi, Selangor, Malaysia.
| |
Collapse
|
18
|
Li P, Tang W, Wen H, Zhou S, Cao H. Senkyunolide I prevent chondrocytes from oxidative stress through Nrf2/HO-1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03776-3. [PMID: 39779606 DOI: 10.1007/s00210-024-03776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disease, featured by the destruction of articular cartilage. Oxidative stress, one of the drivers of the extracellular matrix degradation in cartilage, plays a vital role in OA pathogenesis. Senkyunolide I (SEI) is a natural compound with a prominent anti-oxidative stress property against multiple diseases. However, the protective effect of SEI on OA has not been explored. Here, we aimed to elucidate the effect of SEI on OA in vitro. Our results showed that SEI suppressed the expression of senescence-related markers such as P16 and P21 in IL-1β-induced chondrocytes. Besides, SEI alleviated IL-1β-induced the degradation of extracellular matrix (ECM) by suppressing the matrix proteinase like MMP13 and ATAMDS5 while promoting matrix synthesis regulated biomarkers like COL2A1 and ACAN in chondrocytes. Mechanically, the mitochondrial dysfunction and overproduction of intracellular reactive oxygen species (ROS) in chondrocytes induced by IL-1β were reversed by SEI. Additionally, the ROS inhibitor N-acetylcysteine (NAC) synergistically enhanced the biological effect of SEI in IL-1β-induced chondrocytes. Moreover, it was also found that the expression of Nrf2 and HO-1 was increased by the treatment of SEI in IL-1β-stimulated chondrocytes, while the Nrf2 inhibitor ML385 reversed the protective effect of SEI on OA chondrocytes. In conclusion, SEI could inhibit senescence, the degradation of ECM, and the production of ROS through activating Nrf2/ HO-1 signaling pathway, which provide a novel candidate for OA treatment.
Collapse
Affiliation(s)
- Pengbin Li
- Department of Orthopedics, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Wenjuan Tang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haiyan Wen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
19
|
Liu X, Wang W, Zhu F, Xu H, Ge G, Liang X, Yang H, Xu Y, Xu W, Wei M, Zhou Q, Geng D. Osteoblastic ferroptosis inhibition by small-molecule promoting GPX4 activation for peri-prosthetic osteolysis therapy. J Nanobiotechnology 2024; 22:758. [PMID: 39696565 DOI: 10.1186/s12951-024-03049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Peri-prosthesis osteolysis (PPO) represents the most severe complication of total joint arthroplasty (TJA) surgery and imposes the primary cause of prosthesis failure and subsequent revision surgery. Antiresorptive therapies are usually prescribed to treat PPO, especially for elderly people. Nevertheless, the efficacy of anti-osteoporotic medications remains constrained. Recent therapeutic strategies to promote periprosthetic osseointegration by restoring osteoblast function are considered more effective approaches. However, the precise mechanism underlying the inhibition of osteogenesis triggered by wear particles remains enigmatic. Herein, we demonstrate that wear particles inhibit osteoblast function by inducing ferroptosis to sabotage extracellular mineralization and arouse periprosthetic osteolysis. The suppression of ferroptosis could significantly rescue osteogenesis thus alleviating PPO. Furthermore, Glutathione Peroxidase 4 (GPX4) has been identified as a key target in regulating osteoblastic ferroptosis. By utilizing virtual screening techniques, we have successfully conducted a comprehensive screening of a natural compound known as Urolithin A (UA), which exhibits remarkable inhibition of osteoblastic ferroptosis while simultaneously promoting the process of osteogenesis through its precise targeting mechanism on GPX4. Meanwhile, UA improves the osteolytic conditions significantly in vivo even when the adjunction of titanium (Ti) nanoparticles. This strategy has great potential in treating peri-prosthesis osteolysis and potentially broadens the scope of clinical therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Feng Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Haibo Xu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gaoran Ge
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaolong Liang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yaozeng Xu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Qi Zhou
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200070, China.
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
20
|
Xie C, Gong J, Zheng C, Zhang J, Gao J, Tian C, Guo X, Dai S, Gao T. Effects of vitamin K supplementation on bone mineral density at different sites and bone metabolism in the middle-aged and elderly population. Bone Joint Res 2024; 13:750-763. [PMID: 39657786 PMCID: PMC11631259 DOI: 10.1302/2046-3758.1312.bjr-2024-0053.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Aims This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC. Conclusion This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC.
Collapse
Affiliation(s)
- Chenqi Xie
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Chenglong Zheng
- Jinan Railway Center for Disease Control and Prevention, Jinan, China
| | - Junwei Zhang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, China
| | - Jie Gao
- School of Public Health, Qingdao University, Qingdao, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaofei Guo
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Cunningham J, Doyle F, Cadogan C, Clyne B, Ryan J, Smith SM, French HP. Barriers and enablers to the management of osteoarthritis in primary care in Ireland from the perspective of healthcare professionals and individuals with osteoarthritis: a qualitative study using the Theoretical Domains Framework. BMJ Open 2024; 14:e087054. [PMID: 39632109 PMCID: PMC11624817 DOI: 10.1136/bmjopen-2024-087054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES To explore the barriers and enablers to providing and receiving primary care for osteoarthritis (OA) in Ireland from the perspectives of primary care healthcare professionals (HCPs) and individuals with OA. DESIGN Descriptive qualitative study incorporating an inductive thematic analysis to identify key barrier and enabler themes and subsequent deductive mapping to the Theoretical Domains Framework (TDF). SETTING Primary care in Ireland. PARTICIPANTS HCPs, including 6 general practitioners, 5 physiotherapists, 1 occupational therapist and 1 practice nurse, and 13 individuals with OA were interviewed. RESULTS Identified barriers and enablers related to nine domains of the TDF. Key barriers identified by HCPs included limited and delayed access to multidisciplinary primary care services, lack of integrated care pathways specific to OA and insufficient training in musculoskeletal conditions including OA. Individuals with OA also reported poor access to health services due to long waiting lists, lack of education on OA and feelings of not being taken seriously by HCPs. There is a need for targeted HCP education and training to address the identified knowledge, skills and confidence gaps in communication, diagnosis and evidence-based management of OA. Improved management of OA through system-level changes, including integrated care pathways with multidisciplinary services to better support individuals with OA in the community, is required. CONCLUSIONS This study identified several barriers and enablers to the management of OA. These findings highlight areas to be targeted by future interventions aimed at improving the management of OA in primary care.
Collapse
Affiliation(s)
- Joice Cunningham
- School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Frank Doyle
- Department of Health Psychology, School of Population Health, RSCI University of Medicine and Health Sciences, Dublin, Ireland
| | - Cathal Cadogan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Barbara Clyne
- Department of Public Health and Epidemiology, School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jennifer Ryan
- School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Susan M Smith
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Helen P French
- School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
22
|
Feng K, Li P, Guo H, Chen Z. The impact of coffee consumption on osteoarthritis: insights from NHANES and Mendelian randomization analysis. Front Nutr 2024; 11:1434704. [PMID: 39691171 PMCID: PMC11650599 DOI: 10.3389/fnut.2024.1434704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Background Osteoarthritis (OA) is a prevalent degenerative joint condition, and emerging evidence suggests that dietary factors, such as coffee consumption, may influence its risk. However, the relationship between coffee consumption and the risk of developing OA remains ambiguous. This study aims to explore the association between coffee intake and OA complemented by Mendelian randomization (MR) to infer causality. Materials and methods We analyzed data from 32,439 participants across 10 NHANES cycles (1999-2018), including 3,676 individuals diagnosed with OA. Osteoarthritis was diagnosed through a structured questionnaire, while coffee consumption was assessed via 24-h dietary recalls. Participants were categorized based on reported coffee intake: 0 cups, <2 cups, 2-4 cups, and >4 cups per day. We employed weighted multivariable logistic regression to examine associations between coffee consumption and OA by using data from the NHANES 1999-2018, adjusting for various covariates. Subsequently, a MR analysis was conducted using genetic variants as instrumental variables to infer causal relationships, with multiple methods including inverse-variance weighted (IVW) analysis, MR-Egger regression, and weighted median techniques to assess the robustness, heterogeneity, and potential pleiotropy of our findings. Results Our regression models indicated an increased risk of OA with rising coffee consumption, with significant associations noted particularly for those consuming more than 4 cups daily (OR = 1.19, 95% CI: 1.00-1.41, p = 0.049). In MR analysis, coffee intake was causally linked to OA types, demonstrating increased risk for knee OA (KOA: OR = 1.60, 95% CI: 1.08-2.35, p = 0.018), hip OA (HOA: OR = 1.85, 95% CI: 1.06-3.25, p = 0.031), and combined KOA and HOA (KHOA: OR = 1.66, 95% CI: 1.18-2.33, p = 0.003). Sensitivity analyses confirmed the stability of results across multiple evaluation methods. Conclusion Our findings highlight a significant association between coffee consumption and an increased risk of OA, suggesting that higher intake levels may contribute to OA morbidity. These results warrant further exploration into the underlying biological mechanisms and implications for dietary guidelines in populations at risk for OA.
Collapse
Affiliation(s)
- Kai Feng
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
- First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Peng Li
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haohui Guo
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhirong Chen
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
23
|
Zahed M, Alesawy AF, Zahed ZS, Mohamed A, Samir R, Eleisawy M. A Comparison Between Intensive and Conventional Therapies: A Systematic Review and Meta-Analysis Regarding the Pre-operative Outcomes After Total Knee Replacement. Cureus 2024; 16:e75141. [PMID: 39759729 PMCID: PMC11699589 DOI: 10.7759/cureus.75141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Joint degeneration characterized by cartilage deterioration and bone wear is the hallmark of osteoarthritis (OA), a condition that worsens over time. Total knee arthroplasty (TKA) is the most common effective treatment for OA. Conventional therapy training (CTT) is the standard intervention; we are testing whether intensive therapy training (ITT) provides different results when used preoperatively. Our study compared intensive and standard preoperative physical therapy in randomized and non-randomized controlled trials, excluding various other study types. Two independent researchers assessed the risk of bias using appropriate tools (RoB 2 for RCTs (Cochrane Methods, London, UK) and ROBINS-I for non-randomized studies (Cochrane Methods, London, UK)). The analysis, conducted using ReviewManager 5.4 (Cochrane Methods, London, UK), presented results as mean differences (MD) with 95% CIs, employing fixed or random-effects models based on heterogeneity assessments. With a total number of 490 participants, ITT showed significant improvements in the six or 10-minute walk test (MD = 45.07m, P < 0.000001), quadriceps strength (MD = 0.07 Kg, P < 0.0001), range of motion (ROM) flexion (MD = 4.29, P = 0.03), isometric knee flexion (MD =2.32, P=0.04), SF-36 physical component (MD = 1.19, P <,0.0001), stair test (MD = -2.01, P = 0.01), timed up and go test (MD = -1.12, P = 0.02), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score (MD = -8.43, P = 0.002). Conversely, CTT showed better results in isometric knee extension (MD = 3.45, P = 0.02). No significant differences were found in ROM extension or visual analog score (VAS) pain scores. Preoperative ITT demonstrates overall superior outcomes compared to CTT for total knee arthroplasty patients. ITT significantly improved various functional and patient-reported outcomes, including walking capacity, quadriceps strength, range of motion, and quality of life measures. However, CTT showed superiority in isometric knee extension. We recommend implementing preoperative ITT protocols for TKA patients while acknowledging the need for further research to optimize exercise specifics, frequency, and duration for optimal results.
Collapse
Affiliation(s)
- Mohamed Zahed
- Orthopedics, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, GBR
| | | | - Ziad Samir Zahed
- Ophthalmology, Faculty of Medicine, Benha university, Qalubiya, EGY
| | - Ahmed Mohamed
- Orthopedics, Royal Cornwall Hospital NHS Trust, Truro, Cornwall, GBR
| | - Rahafat Samir
- Ophthalmology, Benha University Hospitals, Benha University, Qalubiya, EGY
| | - Mahmoud Eleisawy
- Ophthalmology, Benha University Hospitals, Benha University, Qalubiya, EGY
| |
Collapse
|
24
|
Gong A, Yang D, Zeng M. The genetic causal association between arthritis and low back pain. JOR Spine 2024; 7:e70023. [PMID: 39678046 PMCID: PMC11638884 DOI: 10.1002/jsp2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Background Arthritis and low back pain (LBP) are prevalent musculoskeletal conditions with a perceived association. Previous observational studies have suggested a possible link between arthritis and LBP, but causality has not been firmly established. Methods The analysis involved data from a meta-analysis of genome-wide association studies sourced from the UK Biobank Genetics resources on rheumatoid arthritis (RA), osteoarthritis (OA) at any site, knee osteoarthritis (KOA), hip osteoarthritis (HOA), and LBP. Two-sample Mendelian randomization analysis was utilized to evaluate the causal link between arthritis and LBP. The primary method employed was inverse-variance weighting (IVW), with additional techniques such as MR-Egger, weighted median, Cochran Q statistic, and leave-one-out analysis used to identify heterogeneity and pleiotropy. Results Genetically determined RA exhibited a causal impact on LBP (Weighted median: odds ratio [OR] = 1.094, 95% confidence interval [CI] 1.002-1.195, p = 0.043). Furthermore, OA at any site and KOA showed causal associations with LBP (Inverse variance weighted: OR = 1.089, 95% CI 1.011-1.173, p = 0.026) and (OR = 1.0004, 95% CI 1.000-1.008, p = 0.019), respectively. Additionally, HOA was also linked causally with an elevated risk of developing LBP (Weighted median: OR = 1.002, 95% CI 1.000-1.004, p = 0.049; Inverse variance weighted: OR = 1.002, 95% CI 1.001-1.004, p = 0.003). Conclusions This study offers genetic evidence supporting the causal relationship between RA, OA at any site, KOA, HOA and the increased risk of LBP, especially highlighting the significant impact of HOA.
Collapse
Affiliation(s)
- Aimin Gong
- Department of Traditional Chinese MedicineHainan Medical UniversityHaikouPeople's Republic of China
| | - Daniel Yang
- School of Public Health and Preventive Medicine, Monash UniversityMelbourneVictoriaAustralia
| | - Mengjie Zeng
- School of Public Health and Preventive Medicine, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
25
|
Li W, Zhong Y, Lin Z, Deng Z, Long D, Li M, Li C, Mao G, Kang Y. Forsythoside A mitigates osteoarthritis and inhibits chondrocyte senescence by promoting mitophagy and suppressing NLRP3 inflammasome via the Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156052. [PMID: 39383631 DOI: 10.1016/j.phymed.2024.156052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Chondrocyte senescence and inflammation are hallmarks of osteoarthritis (OA). Forsythiaside A (FTA), a phenylethanol glycoside isolated from air-dried fruits of Forsythia, has been reported to have significant anti-inflammatory and antioxidant properties. However, its protective effects against OA have not been elucidated. PURPOSE We explored the therapeutic efficacy of FTA in inhibiting chondrocyte senescence and inflammation during OA, as well as the potential underlying mechanisms. STUDY DESIGN This study aimed to investigate the novel mechanism of FTA in alleviating OA in both cell and animal models. METHODS The protective effect of FTA against tert‑butyl hydroperoxide-induced chondrocyte damage was assessed, and the effects of FTA on cartilage aging and OA progression were evaluated using a medial meniscus (DMM)-induced knee OA mouse model. The regulatory effects of FTA on the NLRP3 Inflammasome, mitophagy, and the PKC/Nrf2 pathway were also explored. RESULTS In vitro, FTA improved mitochondrial function, enhanced mitophagy, suppressed NLRP3 inflammasome activation, and inhibited chondrocyte senescence; however, these chondroprotective effects were partially reversed after mitophagy inhibition, NLRP3 inflammasome activation, and Nrf2 pathway inhibition. Furthermore, we found that FTA directly interacts with Nrf2 and enhances its phosphorylation by protein kinase C (PKC). In vivo, FTA attenuated the pathological signs of knee OA in a DMM-model mouse model, which was partially reversed by ML385. CONCLUSION FTA inhibited chondrocyte senescence and OA progression by activating the PKC-Nrf2 pathway. Thus, FTA is a potential novel therapeutic agent for OA.
Collapse
Affiliation(s)
- Wei Li
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlin Zhong
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhencan Lin
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zengfa Deng
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Sports Medicine and Joint Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dianbo Long
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Li
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changzhao Li
- Department of Orthopaedics, General Hospital of Southern Theater Command, Guangzhou, China.
| | - Guping Mao
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yan Kang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Jin Y, Hu C, Xia J, Xie D, Ye L, Ye X, Jiang L, Song H, Zhu Y, Jiang S, Li W, Qi W, Yang Y, Hu Z. Bimetallic clusterzymes-loaded dendritic mesoporous silica particle regulate arthritis microenvironment via ROS scavenging and YAP1 stabilization. Bioact Mater 2024; 42:613-627. [PMID: 39314862 PMCID: PMC11417149 DOI: 10.1016/j.bioactmat.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Clusterzymes are synthetic enzymes exhibiting substantial catalytic activity and selectivity, which are uniquely driven by single-atom constructs. A dramatic increase in antioxidant capacity, 158 times more than natural trolox, is noted when single-atom copper is incorporated into gold-based clusterzymes to form Au24Cu1. Considering the inflammatory and mildly acidic microenvironment characteristic of osteoarthritis (OA), pH-dependent dendritic mesoporous silica nanoparticles (DMSNs) coupled with PEG have been employed as a delivery system for the spatial-temporal release of clusterzymes within active articular regions, thereby enhancing the duration of effectiveness. Nonetheless, achieving high therapeutic efficacy remains a significant challenge. Herein, we describe the construction of a Clusterzymes-DMSNs-PEG complex (CDP) which remarkably diminishes reactive oxygen species (ROS) and stabilizes the chondroprotective protein YAP by inhibiting the Hippo pathway. In the rabbit ACLT (anterior cruciate ligament transection) model, the CDP complex demonstrated inhibition of matrix metalloproteinase activity, preservation of type II collagen and aggregation protein secretion, thus prolonging the clusterzymes' protective influence on joint cartilage structure. Our research underscores the efficacy of the CDP complex in ROS-scavenging, enabled by the release of clusterzymes in response to an inflammatory and slightly acidic environment, leading to the obstruction of the Hippo pathway and downstream NF-κB signaling pathway. This study illuminates the design, composition, and use of DMSNs and clusterzymes in biomedicine, thus charting a promising course for the development of novel therapeutic strategies in alleviating OA.
Collapse
Affiliation(s)
- Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Ye
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Sicheng Jiang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Weiqing Li
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiming Qi
- Zhejiang Center for Medical Device Evaluation, Zhejiang Medical Products Administration Hangzhou 310009, Zhejiang, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- South Australian ImmunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
27
|
Jiang S, Yuan F, Zhou H. DDX3X Activates Chondrocyte Pyroptosis to Promote Osteoarthritis Progression. Cell Biochem Biophys 2024:10.1007/s12013-024-01605-1. [PMID: 39592517 DOI: 10.1007/s12013-024-01605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The RNA-binding protein DDX3X is associated with several biological processes including inflammation and immunity. However, the role of DDX3X in the pathology of inflammation-related osteoarthritis (OA) remains unclear. This study was to explore the action of DDX3X in the progression of OA as well as the underlying mechanisms by using RNA immunoprecipitation (RIP), Immunohistochemical (IHC) and DDX3X knockout mice, etc. We found that DDX3X expression was upregulated in cartilage tissue of OA patient. The in vitro study also showed upregulation of DDX3X in the inflammatory chondrocytes stimulated by LPS. DDX3X overexpression reduced cell viability by inducing pyroptosis in chondrocytes. Knockdown of DDX3X rescued LPS-induced chondrocytes pyroptosis through regulating NLRP3 signaling. In addition, DDX3X deletion attenuates osteoarthritis in vivo. In conclusion, DDX3X promotes OA progression by regulating chondrocytes pyroptosis via the activation of NLRP3 signaling.
Collapse
Affiliation(s)
- Shilin Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Haibin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
28
|
Santini S, Marinozzi A, Talia AJ, Herrera-Rodríguez A, Herrera-Pérez M, Valderrabano V. Sports Activity with Ankle Osteoarthritis and Total Ankle Arthroplasty. J Clin Med 2024; 13:7099. [PMID: 39685558 DOI: 10.3390/jcm13237099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The interest in performing total ankle arthroplasty (TAA) to address end-stage ankle osteoarthritis (OA) is continuously growing. Sports activity plays an important role in our world. The literature is sparse regarding return-to-sports activity following TAA. The levels and types of sports in TAA are rarely reported. The purpose of this prospective case series study is to investigate sports activity in ankle osteoarthritis (OA) and TAA in terms of rate, frequency, type, and clinical outcomes with a minimum 2 years of follow-up after surgery. Methods: A total of 103 patients (105 implants, 52 female, and 51 male), mean age 60.5 years (range, 23-84 years) with end-stage ankle OA were treated using a three-component, uncemented, mobile-bearing VANTAGE Total Ankle System. The mean follow-up was 2.9 years (range, 2-5 years). Visual Analogic Scale Pain Score (VAS, 0-10 points), Ankle Dorsiflexion/Plantarflexion (DF/PF) range of motion (ROM; degrees), functional American Orthopaedic Foot and Ankle Society (AOFAS) Ankle/Hindfoot Score (0-100 points), Subjective Patients' Satisfaction Score (0-10 points), Sports Activity Rate, Sports Frequency Score, and sports type were assessed. Results: The mean preoperative VAS Pain Score was 6.7 points (range, 3-10 points) and 0.2 points for postoperative (range, 0-3 points) (p < 0.001). The mean DF/PF ROM was 24.9° preoperative (range, 0-60°) and 52.9° postoperative (range, 15-85°) (p < 0.001). The mean preoperative functional AOFAS Ankle/Hindfoot Score was 39.5 points (range, 4-57 points) and 97.8 points for postoperative (range, 75-100 points) (p < 0.001). The mean postoperative Subjective Patients' Satisfaction Score was 9.7 points (range, 7-10 points). The preoperative Sports Activity Rate was 31.1%, with 85.4% for postoperative (p < 0.001). All the groups exhibited substantial Sports Frequency Score increases (p < 0.001). The most practised sports were hiking, biking, fitness, and swimming. Conclusions: total ankle arthroplasty (TAA) is an effective treatment for end-stage ankle OA. TAA facilitates a noteworthy increase in sports activity. This research offers important sports insights to patients with ankle OA and TAA.
Collapse
Affiliation(s)
- Simone Santini
- Swiss Ortho Center, Swiss Medical Network, Schmerzklinik Basel, 4010 Basel, Switzerland
- Department of Orthopaedic and Trauma Surgery, Fondazione Policlinico Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Andrea Marinozzi
- Department of Orthopaedic and Trauma Surgery, Fondazione Policlinico Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Adrian J Talia
- Swiss Ortho Center, Swiss Medical Network, Schmerzklinik Basel, 4010 Basel, Switzerland
- Department of Orthopaedic Surgery, Western Health, Footscray Hospital, Gordon Street, Footscray, VIC 3011, Australia
| | - Alejandro Herrera-Rodríguez
- Foot and Ankle Unit, Orthopaedic Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Mario Herrera-Pérez
- Foot and Ankle Unit, Orthopaedic Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Victor Valderrabano
- Swiss Ortho Center, Swiss Medical Network, Schmerzklinik Basel, 4010 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
29
|
Mo H, Sun K, Hou Y, Ruan Z, He Z, Liu H, Li L, Wang Z, Guo F. Inhibition of PA28γ expression can alleviate osteoarthritis by inhibiting endoplasmic reticulum stress and promoting STAT3 phosphorylation. Bone Joint Res 2024; 13:659-672. [PMID: 39564812 PMCID: PMC11577458 DOI: 10.1302/2046-3758.1311.bjr-2023-0361.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Haokun Mo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Sheng W, Liao S, Wang D, Liu P, Zeng H. The role of ferroptosis in osteoarthritis: Progress and prospects. Biochem Biophys Res Commun 2024; 733:150683. [PMID: 39293333 DOI: 10.1016/j.bbrc.2024.150683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, marked by cartilage degeneration, synovitis, and subchondral bone changes. The absence of effective drugs and treatments to decelerate OA's progression highlights a significant gap in clinical practice. Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, has emerged as a research focus in osteoarthritic chondrocytes. This form of cell death is characterized by imbalances in iron and increased lipid peroxidation within osteoarthritic chondrocytes. Key antioxidant mechanisms, such as Glutathione Peroxidase 4 (GPX4) and the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) pathway, are vital in countering ferroptosis in osteoarthritic chondrocytes. This review collates recent findings on ferroptosis in osteoarthritic chondrocytes, emphasizing iron regulation, lipid peroxidation, and antioxidative responses. It also explores emerging therapeutics aimed at mitigating OA by targeting ferroptosis in chondrocytes.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Shuai Liao
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guang dong, China.
| |
Collapse
|
31
|
Costa V, Terrando S, Bellavia D, Salvatore C, Alessandro R, Giavaresi G. MiR203a-3p as a potential biomarker for synovial pathology associated with osteoarthritis: a pilot study. J Orthop Surg Res 2024; 19:746. [PMID: 39533317 PMCID: PMC11558974 DOI: 10.1186/s13018-024-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative musculoskeletal disease that significantly impacts the quality of life. Currently, no validated biomarkers for early detection of OA are defined. The possibility of discovering OA biomarkers is the focus of this study. METHODS Human primary OA synovial cells (SVs), isolated from discarded joint tissue of patients with Kellgren & Lawrence score (KL) < 3, (mild/moderate) and KL ≥ 3 (severe), were characterized by FACS analysis. Through qRT-PCR and ELISA assays the inflammation, fibrosis status and the different miRNAs expression has been investigated. The role of miR-203a-3p and its precursors were evaluated through gain and loss of function study, IL-1β synoviocytes treatments and methylation analysis of miR203a promoter. The qRT-PCR analysis of miR203a-3p and pre-miR203a on plasma (isolated 24 h before surgery, 3 days and 1 month after surgery) and synovial fluid (recovered during the surgery) were done to support our in vitro data. RESULTS MiR203a-3p expression is inversely correlated with the aggressiveness of OA, modulating the expression of epithelial to mesenchymal transition (EMT) and pro-inflammatory factors, as well as regulating the expression of secreted protein acidic and rich in cysteine (SPARC) mRNA. Methylation analysis of the miR203a promoter and SVs IL-1β treatment's highlighted the impact of inflammation on miR203a-3p and pre-miR203a expression; as confirmed by both miRNAs detection in biological fluids derived from patients with severe OA. CONCLUSION Our preliminary results suggest that miR-203a-3p might be a potential candidate for staging OA progression and a new protective/predictive biomarker for synovial OA degeneration. Further studies are needed to validate its potential impact on OA.
Collapse
Affiliation(s)
- Viviana Costa
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Silvio Terrando
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | - Caruccio Salvatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133, Palermo, Italy
- Istituto Per La Ricerca E L'Innovazione Biomedica (IRIB-CNR), 90133, Palermo, Italy
| | - Gianluca Giavaresi
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
32
|
Su S, Tian R, Jiao Y, Zheng S, Liang S, Liu T, Tian Z, Cao X, Xing Y, Ma C, Ni P, Yu F, Jiang T, Wang J. Ubiquitination and deubiquitination: Implications for the pathogenesis and treatment of osteoarthritis. J Orthop Translat 2024; 49:156-166. [DOI: 10.1016/j.jot.2024.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
33
|
Zou X, Xu H, Qian W. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug Metab Rev 2024; 56:399-412. [PMID: 39376171 DOI: 10.1080/03602532.2024.2402751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease caused by various factors such as aging, obesity, trauma, and genetics. It is a challenging condition faced by orthopedic doctors in clinical practice and places a heavy burden on patients and their families. Currently, the treatment of OA primarily focuses on symptomatic relief and lacks ideal therapeutic methods. Resveratrol is a natural polyphenolic compound with anti-inflammatory and antioxidant properties, and in recent years, it has gained attention as a candidate drug for OA treatment. This article provides an overview of the research status on the role and mechanisms of resveratrol in treating OA. It has been found that resveratrol can prevent the development of OA by inhibiting inflammatory responses, protecting chondrocytes, maintaining cartilage homeostasis, promoting autophagy, and has shown certain therapeutic effects. This process may be related to the regulation of signaling pathways such as nuclear factor-kappa B (NF-κB), Toll-like receptor 4 (TLR4), and silent information regulator 1 (SIRT1). We summarize the current molecular mechanisms of resveratrol in treating OA, hoping to provide a reference for further research and application of resveratrol in OA treatment.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongjun Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenwei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
34
|
Shi S, Zhang L, Jiang K. Polysaccharide nanosystems for osteoarthritis therapy: Mechanisms, combinations, and future directions. Int J Biol Macromol 2024; 279:135146. [PMID: 39208912 DOI: 10.1016/j.ijbiomac.2024.135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Osteoarthritis (OA) represents a chronic degenerative joint ailment characterized by the gradual breakdown of cartilage, inflicting substantial physical and economic burdens, especially among the elderly. Given the incomplete understanding of OA's pathogenesis, there is an increasing need to develop targeted therapeutic strategies and preventive measures. Conventional pharmaceutical interventions, such as non-steroidal anti-inflammatory drugs, steroids, and opioids, though effective, are often accompanied by notable adverse effects, thus emphasizing the urgency in seeking safer and more efficient therapeutic alternatives. The rapid evolution of nanotechnology has opened the door to various nanosystems for drug delivery, offering a promising avenue to mitigate these side effects. Of particular interest, recent research has shed light on the significant potential of polysaccharide-based nanosystems in the context of OA therapy, demonstrating their capability to counter inflammation, oxidative stress, regulate chondrocyte metabolism and proliferation, and protect cartilage. Therefore, in this review, we provide an in-depth examination of the role of polysaccharide nanosystems in OA, focusing on summarizing these findings based on different mechanisms of action. Furthermore, this review explores the application of combined polysaccharide nanosystems in OA, aiming to establish a foundation for the utilization of novel drug delivery nanoplatforms in OA treatment, ultimately expanding therapeutic options for this debilitating condition.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
35
|
Liu L, Yao Z, Zhang H, Wu C, Guo X, Lin Y, Zhang H, Zeng C, Bai X, Cai D, Lai P. Deapi-platycodin D3 attenuates osteoarthritis development via suppression of PTP1B. J Bone Miner Res 2024; 39:1673-1687. [PMID: 39298571 DOI: 10.1093/jbmr/zjae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Dysregulated chondrocyte metabolism is an essential risk factor for osteoarthritis (OA) progression. Maintaining cartilage homeostasis represents a promising therapeutic strategy for the treatment of OA. However, no effective disease-modifying therapy is currently available to OA patients. To discover potential novel drugs for OA, we screened a small-molecule natural product drug library and identified deapi-platycodin D3 (D-PDD3), which was subsequently tested for its effect on extracellular matrix (ECM) properties and on OA progression. We found that D-PDD3 promoted the generation of ECM components in cultured chondrocytes and cartilage explants and that intra-articular injection of D-PDD3 delayed disease progression in a trauma-induced mouse model of OA. To uncover the underlying molecular mechanisms supporting these observed functions of D-PDD3, we explored the targets of D-PDD3 via screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry. The results suggested that D-PDD3 targeted tyrosine-protein phosphatase non-receptor type 1 (PTP1B), deletion of which restored chondrocyte homeostasis and markedly attenuated destabilization of the medial meniscus induced OA. Further cellular and molecular analyses showed that D-PDD3 maintained cartilage homeostasis by directly binding to PTP1B and consequently suppressing the PKM2/AMPK pathway. These findings demonstrated that D-PDD3 was a potential therapeutic drug for the treatment of OA and that PTP1B served as a protein target for the development of drugs to treat OA. This study provided significant insights into the development of therapeutics for OA treatment, which, in turn, helped to improve the quality of life of OA patients and to reduce the health and economic burden.
Collapse
Affiliation(s)
- Liangliang Liu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zihao Yao
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chunyu Wu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiongtian Guo
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhi Lin
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Pinglin Lai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
36
|
Gong D, Wu X, Wu M, Wang F. Knowledge, attitude, and practice toward nonsteroidal anti-inflammatory drugs among osteoarthritis patients: a cross-sectional study. Sci Rep 2024; 14:24953. [PMID: 39438736 PMCID: PMC11496538 DOI: 10.1038/s41598-024-76171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are common drugs in patients with osteoarthritis (OA). NSAIDs are generally used at home by patients, without supervision, requiring proper knowledge and attitudes for correct practice. This study investigated the knowledge, attitude, and practice (KAP) of patients with OA toward NSAIDs. Methods This cross-sectional study enrolled patients with OA at the Qingpu Branch of Zhongshan Hospital of Fudan University between January and March 2024. The KAP scores and demographic information of respondents were collected through a self-designed questionnaire. Results There were 645 participants, with 579 (89.8%) over 45 years old and 394 (61.1%) females. The average scores for knowledge, attitude, and practice were 16.26 ± 3.79 (possible range: 0-24), 18.12 ± 1.99 (possible range: 5-35), and 29.20 ± 5.52 (possible range: 10-50), respectively. The structural equation model (SEM) found that for individuals currently using NSAIDs, the attitude had a direct effect on practice (β = 0.978, P < 0.001). For individuals not using NSAIDs, the attitude had a direct effect on practice (β = 0.936, P < 0.001). Conclusion This study suggested that adequate NSAID knowledge is the prerequisite for correct NSAID-related medical decisions, while attitude has a crucial intermediary effect. Healthcare professionals and society should strengthen education regarding the relevant knowledge of NSAIDs and guide the cultivation of positive attitudes toward NSAIDs.
Collapse
Affiliation(s)
- Dongliang Gong
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China
| | - Xiao Wu
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China
| | - Minghu Wu
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China
| | - Fuyong Wang
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital of Fudan University, Shanghai, 201700, China.
| |
Collapse
|
37
|
Bahardoust M, Mousavi S, Dehkharghani MZ, Arab M, Rashidi H, Gorgani H, Haghmoradi M, Askari A. Association of Tramadol Versus Codeine Prescriptions with all-cause mortality and cardiovascular diseases among patients with osteoarthritis: a systematic review and meta-analysis of propensity score-matched population-based cohort studies. Adv Rheumatol 2024; 64:80. [PMID: 39420382 DOI: 10.1186/s42358-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Today, the prescription of tramadol in patients with osteoarthritis (OA) has increased significantly, which can be associated with serious consequences. Contradictory results have been reported regarding the association of tramadol versus codeine with the risk of all-cause mortality (ACM) and cardiovascular diseases (CVD). METHODS This systematic review and meta-analysis aimed to evaluate, for the first time, the association of tramadol versus codeine with the risk of ACM and CVD in OA patients for the first time. We searched PubMed, Scopus, Embase, Web of sciences, and Google Scholar with specific keywords and mesh terms to find relevant studies until January 2024. Two independent researchers did the process of searching and screening articles. Cochran's Q and I2 tests evaluated the heterogeneity of the studies. Egger's test was used to evaluate the existence of publication bias. RESULTS Seven population-based cohort studies, matched by the propensity score method, including 1,939,293 participants, were reviewed. The study pooled results did not show a significant association between the prescriptions of tramadol versus codeine with increasing the risk of ACM in OA patients. (Hazard ratio (HR): 1.084, 95% confidence interval (95%) CI: 0.883, 1.286, P: 0.56) In addition, the prescription of tramadol versus codeine was not associated with an increased risk of CVD in OA. (HR: 1.025, 95% CI: 0.89, 1.16, P: 0.68, I2 = 37.8%) CONCLUSION: Our systematic review showed that tramadol prescription compared to codeine in OA patients was not associated with an increased risk of ACM and CVD.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Mousavi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zolfaghari Dehkharghani
- Department of Health Care Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Mahsa Arab
- Department of Orthopedic Surgery, Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Heeva Rashidi
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Gorgani
- Department of Orthopedic Surgery, Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran.
| | - Meisam Haghmoradi
- Department of Orthopedic Surgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Askari
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Shafa Orthopedic Hospital, Baharestan Square, Tehran, 1157637131, Iran.
| |
Collapse
|
38
|
Li B, Shen Y, Liu S, Yuan H, Liu M, Li H, Zhang T, Du S, Liu X. Identification of immune microenvironment subtypes and clinical risk biomarkers for osteoarthritis based on a machine learning model. Front Mol Biosci 2024; 11:1376793. [PMID: 39484639 PMCID: PMC11524973 DOI: 10.3389/fmolb.2024.1376793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
Background Osteoarthritis (OA) is a degenerative disease with a high incidence worldwide. Most affected patients do not exhibit obvious discomfort symptoms or imaging findings until OA progresses, leading to irreversible destruction of articular cartilage and bone. Therefore, developing new diagnostic biomarkers that can reflect articular cartilage injury is crucial for the early diagnosis of OA. This study aims to explore biomarkers related to the immune microenvironment of OA, providing a new research direction for the early diagnosis and identification of risk factors for OA. Methods We screened and downloaded relevant data from the Gene Expression Omnibus (GEO) database, and the immune microenvironment-related genes (Imr-DEGs) were identified using the ImmPort data set by combining weighted coexpression analysis (WGCNA). Functional enrichment of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted to explore the correlation of Imr-DEGs. A random forest machine learning model was constructed to analyze the characteristic genes of OA, and the diagnostic significance was determined by the Receiver Operating Characteristic Curve (ROC) curve, with external datasets used to verify the diagnostic ability. Different immune subtypes of OA were identified by unsupervised clustering, and the function of these subtypes was analyzed by gene set enrichment analysis (GSVA). The Drug-Gene Interaction Database was used to explore the relationship between characteristic genes and drugs. Results Single sample gene set enrichment analysis (ssGSEA) revealed that 16 of 28 immune cell subsets in the dataset significantly differed between OA and normal groups. There were 26 Imr-DEGs identified by WGCNA, showing that functional enrichment was related to immune response. Using the random forest machine learning model algorithm, nine characteristic genes were obtained: BLNK (AUC = 0.809), CCL18 (AUC = 0.692), CD74 (AUC = 0.794), CSF1R (AUC = 0.835), RAC2 (AUC = 0.792), INSR (AUC = 0.765), IL11 (AUC = 0.662), IL18 (AUC = 0.699), and TLR7 (AUC = 0.807). A nomogram was constructed to predict the occurrence and development of OA, and the calibration curve confirmed the accuracy of these 9 genes in OA diagnosis. Conclusion This study identified characteristic genes related to the immune microenvironment in OA, providing new insight into the risk factors of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinwei Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
39
|
Zhao J, Xia Y. Low shear stress protects chondrocytes from IL-1β-induced apoptosis by activating ERK5/KLF4 signaling and negatively regulating miR-143-3p. J Orthop Surg Res 2024; 19:656. [PMID: 39402582 PMCID: PMC11476932 DOI: 10.1186/s13018-024-05140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study investigated the protective effects of low fluid shear stress (FSS ≤ 2 dyn/cm²) against interleukin-1β (IL-1β)-induced chondrocyte apoptosis and explored the underlying molecular mechanisms. METHODS Chondrocytes were cultured under four conditions: control, IL-1β stimulation, low FSS, and combined low FSS + IL-1β stimulation. Apoptosis was assessed using Hoechst staining and flow cytometry. Western blotting determined the expression of caspase-3 (CASP3), caspase-8 (CASP8), and NF-κB p65. Quantitative real-time PCR measured miR-143-3p expression. The roles of miR-143-3p and the extracellular signal-regulated kinase 5 (ERK5)/Krüppel-like factor 4 (KLF4) signaling pathway were further investigated using miR-143-3p mimics and inhibitors, an ERK5 inhibitor, and a KLF4 overexpression vector. RESULTS IL-1β induced significant chondrocyte apoptosis, which was markedly inhibited by low FSS. Mechanistically, low FSS suppressed miR-143-3p expression, thereby enhancing ERK5 signaling. This activated ERK5 subsequently upregulated KLF4 expression, further mitigating IL-1β-induced damage. Importantly, miR-143-3p overexpression under low FSS conditions exacerbated IL-1β-induced apoptosis, while miR-143-3p inhibition attenuated it. Consistent with this, ERK5 inhibition augmented IL-1β-induced apoptosis, whereas KLF4 overexpression suppressed it. CONCLUSION Low FSS protects chondrocytes from IL-1β-induced apoptosis by suppressing miR-143-3p and activating the ERK5/KLF4 signaling pathway. This study reveals a novel mechanism by which mechanical stimulation protects cartilage.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
40
|
Selim AM, Elsabagh YA, El-Sawalhi MM, Ismail NA, Senousy MA. Serum lncRNA ITGB2-AS1 and ICAM-1 as novel biomarkers for rheumatoid arthritis and osteoarthritis diagnosis. BMC Med Genomics 2024; 17:247. [PMID: 39379962 PMCID: PMC11462822 DOI: 10.1186/s12920-024-01993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The complete circulating long non-coding RNAs (lncRNAs) signature of rheumatoid arthritis (RA) and osteoarthritis (OA) is still uncovered. The lncRNA integrin subunit beta 2 (ITGB2)-anti-sense RNA 1 (ITGB2-AS1) affects ITGB2 expression; however, there is a gap in knowledge regarding its expression and clinical usefulness in RA and OA. This study investigated the potential of serum ITGB2-AS1 as a novel diagnostic biomarker and its correlation with ITGB2 expression and its ligand intercellular adhesion molecule-1 (ICAM-1), disease activity, and severity in RA and primary knee OA patients. SUBJECTS Forty-three RA patients, 35 knee OA patients, and 22 healthy volunteers were included. RESULTS Compared with healthy controls, serum ITGB2-AS1 expression was upregulated in RA patients but wasn't significantly altered in knee OA patients, whereas serum ICAM-1 protein levels were elevated in both diseases. ITGB2-AS1 showed discriminative potential for RA versus controls (AUC = 0.772), while ICAM-1 displayed diagnostic potential for both RA and knee OA versus controls (AUC = 0.804, 0.914, respectively) in receiver-operating characteristic analysis. In the multivariate analysis, serum ITGB2-AS1 and ICAM-1 were associated with the risk of developing RA, while only ICAM-1 was associated with the risk of developing knee OA. A panel combining ITGB2-AS1 and ICAM-1 showed profound diagnostic power for RA (AUC = 0.9, sensitivity = 86.05%, and specificity = 91.67%). Interestingly, serum ITGB2-AS1 positively correlated with disease activity (DAS28) in RA patients and with ITGB2 mRNA expression in both diseases, while ICAM-1 positively correlated with ITGB2 expression in knee OA patients. CONCLUSION Our study portrays serum ITGB2-AS1 as a novel potential diagnostic biomarker of RA that correlates with disease activity. A predictive panel combining ITGB2-AS1 and ICAM-1 could have clinical utility in RA diagnosis. We also spotlight the association of ICAM-1 with knee OA diagnosis. The correlation of serum ITGB2-AS1 with ITGB2 expression in both diseases may be insightful for further mechanistic studies.
Collapse
Affiliation(s)
- Aliaa M Selim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Yumn A Elsabagh
- Department of Rheumatology and Clinical Immunology, Internal Medicine, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha M El-Sawalhi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Nabila A Ismail
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
41
|
Zhang P, Yang J, Wang Z, Wang H, An M, Yakufu M, Wang W, Liu Y, Liu W, Li C. An injectable self-lubricating supramolecular polymer hydrogel loaded with platelet lysate to boost osteoarthritis treatment. J Control Release 2024; 376:20-36. [PMID: 39362609 DOI: 10.1016/j.jconrel.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Globally, osteoarthritis (OA) is the most prevalent joint disease and is characterized by infiltration of M1 macrophages in the synovium, anabolic-catabolic imbalance of the extracellular matrix (ECM), increased articular shear force and overproduction of reactive oxygen species (ROS). Disease-modifying OA drugs are not yet available, and treatments for OA focus solely on reducing pain and inflammation and have limited therapeutic effect. Herein, we developed an injectable self-lubricating poly(N-acryloyl alaninamide) (PNAAA) hydrogel loaded with platelet lysate (PL) (termed "PNAAA@PL") for treating OA. Tribological and drug release tests revealed suitable lubrication properties and sustained release of bioactive factors in PNAAA@PL. In vitro experiments showed that PNAAA@PL alleviated interleukin-1β (IL-1β)-induced anabolic-catabolic imbalance of chondrocytes and repolarized pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype via intracellular ROS scavenging. Additionally, the PNAAA@PL hydrogel enhanced the migratory capacity and chemotaxis ability of stem cells, which are essential for chondrogenesis. In vivo, the functionalized PNAAA@PL hydrogel acted like synovial fluid following intra-articular injection into a rat OA model with anterior cruciate ligament transection, ultimately attenuating cartilage degeneration and synovitis. According to molecular mechanism studies, PNAAA@PL repairs cartilage in the OA model by inhibiting the NF-ĸB pathway. Overall, this self-lubricating PNAAA@PL hydrogel offers a comprehensive strategy for preventing OA progression by engineering a biophysiochemical microenvironment to generate high-quality hyaline cartilage.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Mingyang An
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihemuti Yakufu
- Department of Orthopedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, China
| | - Wenliang Wang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yujie Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunbao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
42
|
Guo J, Su K, Wang L, Feng B, You X, Deng M, Toh WS, Wu J, Cheng B, Xia J. Poly( p-coumaric acid) nanoparticles alleviate temporomandibular joint osteoarthritis by inhibiting chondrocyte ferroptosis. Bioact Mater 2024; 40:212-226. [PMID: 38973989 PMCID: PMC11224931 DOI: 10.1016/j.bioactmat.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Oxidative stress and inflammation are key drivers of osteoarthritis (OA) pathogenesis and disease progression. Herein we report the synthesis of poly(p-coumaric) nanoparticles (PCA NPs) from p-courmaic acid (p-CA), a naturally occurring phytophenolic acid, to be a multifunctional and drug-free therapeutic for temporomandibular joint osteoarthritis (TMJOA). Compared to hyaluronic acid (HA) that is clinically given as viscosupplementation, PCA NPs exhibited long-term efficacy, superior anti-oxidant and anti-inflammatory properties in alleviating TMJOA and repairing the TMJ cartilage and subchondral bone in a rat model of TMJOA. Notably, TMJ repair mediated by PCA NPs could be attributed to their anti-oxidant and anti-inflammatory properties in enhancing cell proliferation and matrix synthesis, while reducing inflammation, oxidative stress, matrix degradation, and chondrocyte ferroptosis. Overall, our study demonstrates a multifunctional nanoparticle, synthesized from natural p-coumaric acid, that is stable and possess potent antioxidant, anti-inflammatory properties and ferroptosis inhibition, beneficial for treatment of TMJOA.
Collapse
Affiliation(s)
- Jiaxin Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Kai Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Bingyu Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Miao Deng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Faculty of Dentistry, National University of Singapore, 119085, Singapore
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511455, PR China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| |
Collapse
|
43
|
Zhou F, Chen M, Qian Y, Yuan K, Han X, Wang W, Guo JJ, Chen Q, Li B. Enhancing Endogenous Hyaluronic Acid in Osteoarthritic Joints with an Anti-Inflammatory Supramolecular Nanofiber Hydrogel Delivering HAS2 Lentivirus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400542. [PMID: 38593309 DOI: 10.1002/smll.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) management remains challenging because of its intricate pathogenesis. Intra-articular injections of drugs, such as glucocorticoids and hyaluronic acid (HA), have certain limitations, including the risk of joint infection, pain, and swelling. Hydrogel-based therapeutic strategies have attracted considerable attention because of their enormous therapeutic potential. Herein, a supramolecular nanofiber hydrogel is developed using dexamethasone sodium phosphate (DexP) as a vector to deliver lentivirus-encoding hyaluronan synthase 2 (HAS2) (HAS2@DexP-Gel). During hydrogel degradation, HAS2 lentivirus and DexP molecules are slowly released. Intra-articular injection of HAS2@DexP-Gel promotes endogenous HA production and suppresses synovial inflammation. Additionally, HAS2@DexP-Gel reduces subchondral bone resorption in the anterior cruciate ligament transection-induced OA mice, attenuates cartilage degeneration, and delays OA progression. HAS2@DexP-Gel exhibited good biocompatibility both in vitro and in vivo. The therapeutic mechanisms of the HAS2@DexP-Gel are investigated using single-cell RNA sequencing. HAS2@DexP-Gel optimizes the microenvironment of the synovial tissue by modulating the proportion of synovial cell subpopulations and regulating the interactions between synovial fibroblasts and macrophages. The innovative nanofiber hydrogel, HAS2@DexP-Gel, effectively enhances endogenous HA production while reducing synovial inflammation. This comprehensive approach holds promise for improving joint function, alleviating pain, and slowing OA progression, thereby providing significant benefits to patients.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yufan Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xuequan Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Center for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832099, P. R. China
| | - Jiong Jiong Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
44
|
Zeng L, Yang K, Yu G, Chen J, Long Z, Xiang W, Liu S, Zheng Y, Yan Y, Hao M, Sun L. Efficacy and safety of culture-expanded mesenchymal stromal cell therapy in the treatment of 4 types of inflammatory arthritis: A systematic review and meta-analysis of 36 randomized controlled trials. Semin Arthritis Rheum 2024; 68:152498. [PMID: 38970896 DOI: 10.1016/j.semarthrit.2024.152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE This study aims to assess the effectiveness and safety of mesenchymal stem cell (MSC) transplantation in the treatment of inflammatory arthritis. METHODS Two researchers conducted a comprehensive search of Chinese and English databases from their inception until July 2023. The literature screening and data extraction were then performed. Statistical analysis was carried out using RevMan 5.4 software. RESULTS A total of 36 relevant RCTs, involving 2,076 participants, were ultimately included in this study. These RCTs encompassed four types of inflammatory arthritis, namely rheumatoid arthritis (RA), osteoarthritis (OA), ankylosing spondylitis (AS), and systemic sclerosis (SSc). The results demonstrated that MSC therapy exhibited improvements in the Visual Analog Scale (VAS) for pain in OA patients (bone marrow: SMD=-0.95, 95 % CI: -1.55 to -0.36, P = 0.002; umbilical cord: SMD=-2.03, 95 % CI: -2.99 to -1.07, P < 0.0001; adipose tissue: SMD=-1.26, 95 % CI: -1.99 to -0.52, P = 0.0009). Specifically, MSCs sourced from adipose tissue showed enhancements in Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain (P = 0.0001), WOMAC physical function (P = 0.001), and total WOMAC scores (P = 0.0003). As for MSC therapy in RA, AS, and SSc, the current systematic review suggests a potential therapeutic effect of MSCs on these inflammatory arthritic conditions. Safety assessments indicated that MSC therapy did not increase the incidence of adverse events. CONCLUSION MSCs have the potential to alleviate joint pain and improve joint function in patients with inflammatory arthritis. Moreover, MSC therapy appears to be relatively safe and could be considered as a viable alternative treatment option for inflammatory arthritis.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Shuman Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yaru Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
45
|
Fragassi A, Greco A, Palomba R. Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties. J Xenobiot 2024; 14:1268-1292. [PMID: 39311151 PMCID: PMC11417909 DOI: 10.3390/jox14030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects.
Collapse
Affiliation(s)
- Agnese Fragassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonietta Greco
- Department of Medicine and Surgery, NanoMedicine Center (NANOMIB), University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
46
|
Qiu S, Shi Y, Zang H, Sun X, Wang Q, Fu X, Shen H, Mo F, Zhang Y, Chen X, Zhou J, Li L, Lin G. Multifunctional injectable microspheres for osteoarthritis therapy via spatiotemporally modulating macrophage polarization and inflammation. NPJ Regen Med 2024; 9:22. [PMID: 39289387 PMCID: PMC11408510 DOI: 10.1038/s41536-024-00368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Local injection of anti-inflammatory drugs for osteoarthritis emerged as a promising administration in the clinic, and sustained-release dosage forms have great potential for future therapeutic applications. Controlling the response of patients only in the acute inflammatory phase is currently the focus of therapeutic interventions. To relieve acute pain in patients and to improve the long-term prognosis effect of osteoarthritis treatment, we designed a two-pronged approach in this research: an injectable double-layer microsphere containing a "nonsteroidal anti-inflammatory drug - macrophage polarizing factor" was constructed. The results indicated that microspheres could regulate the intra-articular environment by inhibiting local inflammatory cytokine production, promoting macrophage polarization to the M2-phenotype, and increasing the expression of cartilage repair factors. Polymers chosen could govern the biocompatibility of microspheres and control the release sequence of the two drugs. Injection of microspheres into the degenerative articular cavity of rats leads to suppressed inflammation and well-promoted cartilage regeneration.
Collapse
Affiliation(s)
- Shengnan Qiu
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hengchang Zang
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Xiaochen Sun
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, 250002, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xianglei Fu
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hua Shen
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Fanyang Mo
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Yankun Zhang
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Xiangqin Chen
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Jiamin Zhou
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Lian Li
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| | - Guimei Lin
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
47
|
Maheshwari R, Sharma M, Chidrawar VR. Development of engineered transferosomal gel containing meloxicam for the treatment of osteoarthritis. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:830-839. [PMID: 38657858 DOI: 10.1016/j.pharma.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE .In this study, we investigated the potential of meloxicam (MLX) developed as transferosomal gel as a novel lipidic drug delivery system to address osteoarthritis (OTA), a degenerative joint disease that causes pain and stiffness. By incorporating meloxicam into a transferosomal gel, our aim was to provide a targeted and efficient delivery system capable of alleviating symptoms and slowing down the progression of OTA. MATERIAL AND METHODS Classical lipid film hydration technique was utilized to formulate different transferosomal formulations. Different transferosomal formulations were prepared by varying the molar ratio of phospholipon-90H (phosphodylcholine) to DSPE (50:50, 60:40, 70:30, 80:20, and 90:10) and per batch, 80mg of total lipid was used. The quality control parameters such as entrapment efficiency, particle size and morphology, polydispersity and surface electric charge, in vitro drug release, ex vivo permeation and stability were measured. RESULTS The optimized transferosomal formulations revealed a small vesicle size (121±12nm) and greater MLX entrapment (68.98±2.3%). Transferosomes mediated gel formulation MLX34 displayed pH (6.3±0.2), viscosity (6236±12.3 cps), spreadability (13.77±1.77 gm.cm/sec) and also displayed sustained release pattern of drug release (81.76±7.87% MLX released from Carbopol-934 gel matrix in 24h). MLX34 revealed close to substantial anti-inflammatory response, with ∼81% inhibition of TNF-α in 48h. Physical stability analysis concluded that refrigerator temperature was the preferred temperature to store transferosomal gel. CONCLUSION MLX loaded transferosomes containing gel improved the skin penetration and therefore resulted into increased inhibition of TNF-α level.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India.
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
48
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
49
|
Yu S, Shu X, Wang X, Sheng Y, Li S, Wang Y, Zhang Y, Tao J, Jiang X, Wu C. The novel HSP90 monoclonal antibody 9B8 ameliorates articular cartilage degeneration by inhibiting glycolysis via the HIF-1 signaling pathway. Heliyon 2024; 10:e35603. [PMID: 39229534 PMCID: PMC11369415 DOI: 10.1016/j.heliyon.2024.e35603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative disease that affects the bones and joints, particularly in middle-aged and elderly individuals. It is characterized by progressive joint pain, swelling, stiffness, and deformity. Notably, treatment with a heat shock protein 90 (HSP90) inhibitor has significantly curtailed cartilage destruction in a rat model of OA. Although the monoclonal antibody 9B8 against HSP90 is recognized for its anti-tumor properties, its potential therapeutic impact on OA remains uncertain. This study investigated the effects of 9B8 on OA and its associated signaling pathways in interleukin-1β (IL-1β)-stimulated human chondrocytes and a rat anterior cruciate ligament transection (ACLT) model. A specific concentration of 9B8 preserved cell viability against IL-1β-induced reduction. In vitro, 9B8 significantly reduced the expression of extracellular matrix-degrading enzyme such as disintegrin and metallopeptidase-4 (ADAMTS4) of thrombospondin motifs, matrix metalloproteinase-13 (MMP-13), as well as cellular inflammatory factors such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which were upregulated by IL-1β. In vivo, 9B8 effectively protected the articular cartilage and subchondral bone of the rat tibial plateau from ACLT-induced damage. Additionally, gene microarray analysis revealed that IL-1β substantially increased the expression of SLC2A1, PFKP, and ENO2 within the HIF-1 signaling pathway, whereas 9B8 suppressed the expression of these genes. Thus, 9B8 effectively mitigates ACLT-induced osteoarthritis in rats by modulating the HIF-1 signaling pathway, thereby inhibiting overexpression involved in glycolysis. These results collectively indicate that 9B8 is a promising novel drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Shunan Yu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xiong Shu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xinyu Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Shan Li
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Ying Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Yanzhuo Zhang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Jiangfeng Tao
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xu Jiang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| |
Collapse
|
50
|
Wang F, Xiao J, Li M, He Q, Wang X, Pan Z, Li S, Wang H, Zhou C. Picroside II suppresses chondrocyte pyroptosis through MAPK/NF-κB/NLRP3 signaling pathway alleviates osteoarthritis. PLoS One 2024; 19:e0308731. [PMID: 39208260 PMCID: PMC11361613 DOI: 10.1371/journal.pone.0308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Picroside II (P-II) is the main bioactive constituent of Picrorhiza Kurroa, a traditional Chinese herb of interest for its proven anti-inflammatory properties. Its beneficial effects have been noted across several physiological systems, including the nervous, circulatory, and digestive, capable of treating a wide range of diseases. Nevertheless, the potential of Picroside II to treat osteoarthritis (OA) and the mechanisms behind its efficacy remain largely unexplored. AIM This study aims to evaluate the efficacy of Picroside II in the treatment of osteoarthritis and its potential molecular mechanisms. METHODS In vitro, we induced cellular inflammation in chondrocytes with lipopolysaccharide (LPS) and subsequently treated with Picroside II to assess protective effect on chondrocyte. We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of Picroside II on cell viability and select the optimal Picroside II concentration for subsequent experiments. We explored the effect of Picroside II on chondrocyte pyroptosis and its underlying molecular mechanisms by qRT-PCR, Western blot (WB) and immunofluorescence. In vivo, we established the destabilization of the medial meniscus surgery to create an OA mouse model. The therapeutic effects of Picroside II were then assessed through Micro-CT scanning, Hematoxylin-eosin (H&E) staining, Safranin O-Fast Green (S&F) staining, immunohistochemistry and immunofluorescence. RESULTS In in vitro studies, toluidine blue and CCK-8 results showed that a certain concentration of Picroside II had a restorative effect on the viability of chondrocytes inhibited by LPS. Picroside II notably suppressed the expression levels of caspase-1, IL-18, and IL-1β, which consequently led to the reduction of pyroptosis. Moreover, Picroside II was shown to decrease NLRP3 inflammasome activation, via the MAPK/NF-κB signaling pathway. In vivo studies have shown that Picroside II can effectively reduce subchondral bone destruction and osteophyte formation in the knee joint of mice after DMM surgery. CONCLUSIONS Our research suggests that Picroside II can inhibit chondrocyte pyroptosis and ameliorate osteoarthritis progression by modulating the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanchen Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xintian Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaofeng Pan
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|