1
|
Wang H, Yu W, Wang T, Fang D, Wang Z, Wang Y. Therapeutic potential and pharmacological insights of total glucosides of paeony in dermatologic diseases: a comprehensive review. Front Pharmacol 2025; 15:1423717. [PMID: 39822741 PMCID: PMC11735457 DOI: 10.3389/fphar.2024.1423717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Total glucosides of paeony (TGP) are a group of monoterpenes extracted from Paeonia lactiflora Pall., primarily including metabolites such as paeoniflorin and oxypaeoniflorin. Modern pharmacological studies have shown that TGP possesses a variety of biological effects, including immunomodulatory, anti-inflammatory, hepatoprotective, nephroprotective, antidepressant, and cell proliferation regulatory activities. In recent years, clinical research has demonstrated favorable therapeutic effects of TGP on disorders of the liver, cardiovascular, nervous, endocrine, and skeletal systems. Particularly in dermatological treatments, TGP has been found to significantly improve clinical symptoms and shorten the course of the disease. However, there are still certain limitations in the scientific rigor of existing studies and in its clinical application. To assess the potential of TGP in treating dermatologic diseases, this article provides a review of its botanical sources, preparation and extraction processes, quality control, and major chemical metabolites, as well as its pharmacological research and clinical applications in dermatology. Additionally, the mechanisms of action, research gaps, and future directions for TGP in the treatment of dermatologic diseases are discussed, offering valuable guidance for future clinical research on TGP in dermatology.
Collapse
Affiliation(s)
- Huige Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenchao Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dianwei Fang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeyun Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhong Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Jalali A, Jafari F, Behnamrad S, Zarshenas MM, Zhang X, Kashkooe A. The Genus Paeonia: A Review of the Targeted Signaling Pathways and Underlying Mechanisms of Pharmacological and Clinical Properties. Curr Drug Discov Technol 2025; 22:e100724231842. [PMID: 38988165 DOI: 10.2174/0115701638318395240703115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION The Paeoniaceae family contains only the Paeonia genus and is considered a major group of flowering plants. Several traditional and pharmacological applications of Paeoniaceae herbs have been described. This paper aimes to determine the pharmacological activities of the most prevalent herbs from the genus Paeonia by focusing on their underlying mechanism of action and signaling pathways, providing insight for further in-depth research on the medicinal resources of Paeonia. METHODS The "Paeoniaceae" keyword was searched from 1st January 1995 to 15th May 2024 through the PubMed and Scopus databases. Only papers related to pharmacology, pharmaceutics, and toxicology were extracted. The possible pharmacological activity of the Paeonia plants, including their underlying mechanisms of action and signaling pathways, was subsequently discussed. RESULTS Following our venture, only 15 Paeonia herbs were adequately evaluated for their pharmacological applications. Paeonia lactiflora Pall., Paeonia suffruticosa Andrews, and Paeonia emodi Royle are among the most prevalent Paeonia plants that have attracted increased attention in modern pharmacological studies. Paeonia herbs possess various pharmacological applications, such as antiinflammatory, anti-allergic, anticancer, antimicrobial, cardiovascular protective, cosmetic and skincare, radical scavenging, hepatoprotective and anti-ulcerative, anti-diabetic, musculoskeletal, and neuroprotective effects, and can be used as alternative therapies under critical medical conditions. CONCLUSION Among the applications of Paeonia herbs, anti-inflammatory and antioxidant activities are critical, as most other pharmacological effects are attributed to them. In other words, nuclear factor (NF)-κB and nuclear factor erythroid 2-related factor 2 (Nrf2) can be considered the most important signaling pathways involved in the pharmacological activity of Paeonia herbs.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shima Behnamrad
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Kim TW. Paeoniflorin Induces ER Stress-Mediated Apoptotic Cell Death by Generating Nox4-Derived ROS under Radiation in Gastric Cancer. Nutrients 2023; 15:5092. [PMID: 38140352 PMCID: PMC10745742 DOI: 10.3390/nu15245092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Gastric cancer is one of the most prevalent cancer types worldwide, and its resistance to cancer therapies, such as chemotherapy and radiotherapy, has made treating it a major challenge. Paeoniflorin (PF) is one potential pharmacological treatment derived from paeony root. However, in cancer, the molecular mechanisms and biological functions of PF are still unclear. In the present study, we found that PF exerts anti-tumor effects in vivo and in vitro and induces apoptotic cell death through ER stress, calcium (Ca2+), and reactive oxygen species (ROS) release in gastric cancer cells. However, ROS inhibition by DPI and NAC blocks cell death and the PERK signaling pathway via the reduction of Nox4. Moreover, PF triggers a synergistic inhibitory effect of the epithelial-mesenchymal transition (EMT) process under radiation exposure in radiation-resistant gastric cancer cells. These findings indicate that PF-induced Ca2+ and ROS release overcomes radioresistance via ER stress and induces cell death under radiation in gastric cancer cells. Therefore, PF, in combination with radiation, may be a powerful strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
| |
Collapse
|
4
|
Zhou LF, Lu R. Successful treatment of Morbihan disease with total glucosides of paeony: A case report. World J Clin Cases 2022; 10:6688-6694. [PMID: 35979289 PMCID: PMC9294874 DOI: 10.12998/wjcc.v10.i19.6688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Morbihan disease is a rare cutaneous disorder characterized by non-pitting edema and erythema of the upper two-thirds of the face. In severe cases, orbital and facial contour changes may affect the visual field, and there is no guideline for the standard treatment of this disease. Existing treatment methods have been reported to be associated with long medication cycle, easy recurrence after drug withdrawal, and multiple adverse reactions.
CASE SUMMARY A 55-year-old Chinese woman presented to our hospital with non-pitting edema and erythema of the upper two thirds of her face for 5 mo. Physical examination showed obvious edema and erythema on the upper face. The boundary was unclear, the lesions were hard and non-pitting, and infiltration was obvious by touch. Pathological examination revealed mild hyperkeratosis of the epidermis, nodular inflammatory lesions in the dermis, epithelioid granuloma, and inflammatory cell infiltration with lymphocytes and histiocytes around skin appendages and blood vessels. Alcian blue staining, acid fast staining, silver staining and periodic acid-Schiff staining were negative. The patient was diagnosed with Morbihan disease. She was treated with prednisone acetate and tripterygium wilfordii polyglycoside tablets for 4 mo, and the edema was slightly reduced, but transaminase levels were significantly increased. Compound glycyrrhizin capsules were administered for liver protection for 1 mo; however, facial edema did not significantly improve and transaminase levels continued to increase. Total glucosides of paeony capsules were then administered for 4 mo, and transaminase level returned to normal and the patient’s facial edema disappeared completely.
CONCLUSION Total glucosides of paeony has a remarkable effect in Morbihan disease, without adverse reactions.
Collapse
Affiliation(s)
- Li-Feng Zhou
- Department of Dermatology, The 942nd Hospital of the PLA Joint Logistic Support Force, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Rong Lu
- Department of Pathology, The 942nd Hospital of the PLA Joint Logistic Support Force, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
5
|
Li P, Shen J, Wang Z, Liu S, Liu Q, Li Y, He C, Xiao P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113708. [PMID: 33346027 DOI: 10.1016/j.jep.2020.113708] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia, which comprises approximately 52 shrubs or herbaceous perennials around the world, is the only genus of the Paeoniaceae and is pervasively distributed in Asia, southern Europe, and North America. Many species of the genus Paeonia have been used for centuries in ethnomedical medical systems. AIM OF THE REVIEW The present study aims to summarize the traditional uses, clinical applications, and toxicology of the genus Paeonia, to critically evaluate the state-of-the-art phytochemical and pharmacological studies of this genus published between 2011 and 2020, and to suggest directions for further in-depth research on Paeonia medicinal resources. MATERIALS AND METHODS Popular and widely used databases such as PubMed, Scopus, Science Direct, and Google Scholar were searched using the various search strings; from these searches, a number of citations related to the traditional uses, phytochemistry, biological activities, clinical application, and toxicology of the genus Paeonia were retrieved. RESULTS The use of 21 species, 2 subspecies, and 7 varieties of the genus Paeonia as traditional herbal remedies has been reported, and many ethnomedicinal uses, such as the treatment of hematemesis, blood stasis, dysmenorrhea, amenorrhea, epilepsy, spasms, and gastritis, have been recorded. The roots and root bark are the most frequently reported parts of the plants used in medicinal applications. In phytochemical investigations, 451 compounds have been isolated from Paeonia plants to date, which contains monoterpenoid glucosides, flavonoids, tannins, stilbenes, triterpenoids and steroids, and phenols. Studies of their pharmacological activities have revealed the antioxidant, anti-inflammatory, antitumour, antibacterial, antiviral, cardiovascular protective, and neuroprotective properties of the genus Paeonia. In particular, some bioactive extracts and compounds (total glucosides of peony (TGP), paeonol, and paeoniflorin) have been used as therapeutic drugs or tested in clinical trials. In addition to the "incompatibility" of the combined use of "shaoyao" and Veratrum nigrum L. roots in traditional Chinese medicine theory, Paeonia was considered to have no obvious toxicity based on the available toxicological tests. CONCLUSION A large number of phytochemical and pharmacological reports have indicated that Paeonia is an important medicinal herb resource, and some of its traditional uses including the treatment of inflammation and cardiovascular diseases and its use as a neuroprotective agent, have been partially confirmed through modern pharmacological studies. Monoterpenoid glucosides are the main active constituents. Although many compounds have been isolated from Paeonia plants, the biological activities of only a few of these compounds (paeoniflorin, paeonol, and TGP) have been extensively investigated. Some paeoniflorin structural analogues and resveratrol oligomers have been preliminarily studied. With the exception of several species (P. suffruticosa, P. ostii, P. lactiflora, and P. emodi) that are commonly used in folk medicine, many medicinal species within the genus do not receive adequate attention. Conducting phytochemical and pharmacological experiments on these species can provide new clues that may lead to the discovery of medicinal resources. It is necessary to identify the effective phytoconstituents of crude extracts of Paeonia that displayed pharmacological activities by bioactivity-guided isolation. In addition, comprehensive plant quality control, and toxicology and pharmacokinetic studies are needed in the future studies.
Collapse
Affiliation(s)
- Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Zhiqiang Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
6
|
Comparative Analyses of Radix Paeoniae Alba with Different Appearance Traits and from Different Geographical Origins Using HPLC Fingerprints and Chemossmetrics. Chromatographia 2020. [DOI: 10.1007/s10337-020-03961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112913. [PMID: 32371143 DOI: 10.1016/j.jep.2020.112913] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Alba (PRA, called baishao in China), the root of Paeonia lactiflora Pall., has shown a rich medicinal value for more than 2000 years. PRA is used in local medicine and traditional medicine for autoimmune diseases associated with inflammation. At present, total glucosides of paeony (TGP), the main active ingredient of PRA, has been developed into a preparation for the treatment of autoimmune diseases, as TGP exhibits the effect of regulating immunity, anti-inflammatory, and analgesic effects. AIM OF THE REVIEW TGP was developed and applied to inflammation-related autoimmune diseases in modern clinical practice. Based on its application in traditional prescriptions, this article reviews PRA's botany and phytochemistry (including its extraction process and quality control), and discusses the clinical application and pharmacological research of TGP as an anti-inflammatory drug from the perspective of ethnopharmacology. Additionally, we review modern pharmacological and molecular-target research on TGP and discuss the mechanisms of TGP in treating autoimmune diseases. Through a systematic literature review, we also highlight the clinical efficacy of TGP in the treatment of immune diseases, and provide a reference for the continued scientific development and quality control of TGP so that its wider application and clinical value can be fully realized. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Total glucosides of paeony", "Paeonia lactiflora Pall. ", "Paeonia veitchii Lynch", "Paeoniae Radix Alba or white peony", "Paeoniae Radix Rubra or red peony", "Paeoniflorin", "Albiflorin", "Autoimmune diseases", and their combinations. In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS Approximately 15 compounds have been identified in TGP, of which paeoniflorin and albiflorin are the most common constituents. In recent years, studies have found that TGP and its main chemical components are effective in the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, oral lichen planus, and Sjogren's syndrome. TGP has a variety of pharmacological effects related to PRA traditional effects, including anti-organ-damage, anti-inflammatory, analgesic, antioxidant, cardiovascular, and nervous-system protection. Previously published reports on TGP treatment of autoimmune diseases have shown that TGP regulates intracellular pathways, such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathways. However, there is no standardized preparation method for TGP, and there is insufficient quality control of formulations. Many related pharmacological studies have not tested TGP components, and the validity of such pharmacological results requires further verification. CONCLUSIONS Modern pharmacological research on TGP is based on the traditional usage of PRA, and its folk medicinal value in the treatment of autoimmune diseases has now been verified. In particular, TGP has been developed into a formulation used clinically for the treatment of autoimmune diseases. The combination of TGP capsules and chemicals to treat autoimmune diseases has the effect of increasing efficacy and reducing toxicity. Based on further research on its preparation, quality control, and mechanisms of action, TGP is expected to eventually play a greater role in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Huajuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Jie Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Lin Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Shengju Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Xin Nie
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yi Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Qiang Fu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Maoyuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yao He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
You G, Li C, Mao Y, Ren X, Liu Y, Wang M. A comparative analysis of raw and processed Radix Paeoniae Alba samples using HPLC, chemometrics, and antioxidant activity. Biomed Chromatogr 2020; 34:e4901. [DOI: 10.1002/bmc.4901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Guangjiao You
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Chenghao Li
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Yingying Mao
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Xiaoliang Ren
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanan Liu
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
9
|
Peng J, Lu X, Xie K, Xu Y, He R, Guo L, Han Y, Wu S, Dong X, Lu Y, Liu Z, Cao W, Gong M. Dynamic Alterations in the Gut Microbiota of Collagen-Induced Arthritis Rats Following the Prolonged Administration of Total Glucosides of Paeony. Front Cell Infect Microbiol 2019; 9:204. [PMID: 31245305 PMCID: PMC6581682 DOI: 10.3389/fcimb.2019.00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease linked to chronic inflammation. Dysbiosis of the gut microbiota has been proposed to contribute to the risk of RA, and a large number of researchers have investigated the gut-joint axis hypothesis using the collagen-induced arthritis (CIA) rats. However, previous studies mainly involved short-term experiments; very few used the CIA model to investigate changes in gut microbiota over time. Moreover, previous research failed to use the CIA model to carry out detailed investigations of the effects of drug treatments upon inflammation in the joints, hyperplasia of the synovium, imbalance in the ratios of Th1/Th2 and Th17/Treg cells, intestinal cytokines and the gut microbiota following long-term intervention. In the present study, we carried out a 16-week experiment to investigate changes in the gut microbiota of CIA rats, and evaluated the modulatory effect of total glucosides of paeony (TGP), an immunomodulatory agent widely used in the treatment of RA, after 12 weeks of administration. We found that taxonomic differences developed in the microbial structure between the CIA group and the Control group. Furthermore, the administration of TGP was able to correct 78% of these taxonomic differences, while also increase the relative abundance of certain forms of beneficial symbiotic bacteria. By the end of the experiment, TGP had reduced body weight, thymus index and inflammatory cell infiltration in the ankle joint of CIA rats. Furthermore, the administration of TGP had down-regulated the synovial content of VEGF and the levels of Th1 cells and Th17 cells in CIA rats, and up-regulated the levels of Th2 cells and Treg cells. The administration of TGP also inhibited the levels of intestinal cytokines, secretory immunoglobulin A (SIgA) and Interferon-γ (IFN-γ). In conclusion, the influence of TGP on dynamic changes in gut microbiota, along with the observed improvement of indicators related to CIA symptoms during 12 weeks of administration, supported the hypothesis that the microbiome may play a role in TGP-mediated therapeutic effects in CIA rats. The present study also indicated that the mechanism underlying these effects may be related to the regulation of intestinal mucosal immunity remains unknown and deserves further research attention.
Collapse
MESH Headings
- Animals
- Ankle Joint/pathology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Bacteria/classification
- Bacteria/drug effects
- Body Weight/drug effects
- Collagen/adverse effects
- Cytokines/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal
- Dysbiosis
- Feces/microbiology
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/genetics
- Gastrointestinal Microbiome/physiology
- Glucosides/pharmacology
- Immunity
- Immunity, Mucosal
- Immunoglobulin A, Secretory
- Immunomodulation
- Inflammation
- Interferon-gamma/metabolism
- Male
- Paeonia/chemistry
- Rats
- Rats, Sprague-Dawley
- Symbiosis
- T-Lymphocytes, Regulatory/drug effects
- Th1 Cells/drug effects
- Th17 Cells/drug effects
- Th2 Cells/drug effects
- Vascular Endothelial Growth Factor A
Collapse
Affiliation(s)
- Jine Peng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xuran Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Kaili Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yongsong Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Rui He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Li Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yaxin Han
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Sha Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xuerong Dong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Zhengyue Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Wei Cao
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
10
|
Yu F, Xu N, Zhao B, Ren X, Zhang F. Successful treatment of isolated oral lichen planus on lower lip with traditional Chinese medicine and topical wet dressing: A case report. Medicine (Baltimore) 2018; 97:e13630. [PMID: 30558050 PMCID: PMC6320154 DOI: 10.1097/md.0000000000013630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Biopsy is very important for the diagnosis of oral lichen planus (OLP) on the lips. Traditional Chinese medicine (TCM) can be used to coordinate the whole body, soften and eliminate swellings and masses, and regulate the functions of qi and blood. Therefore, TCM could be an effective and safe treatment for OLP. Wet dressing is particularly important for the treatment of lip diseases. We report on a rare case of OLP on the lower lip. PATIENT CONCERNS A 38-year-old female patient presenting with a history of recurrent erosion, bleeding, and pain on her lower lip for 10 years. DIAGNOSES Erosive OLP of the lower lip. INTERVENTIONS The patient was treated for 4 months using TCM comprising "Qingwen Jiedu Kouyankang granules," total Paeonia glucosides, and a combination of hormones and anti-inflammatory agents applied locally using a wet dressing. OUTCOMES Lip erosion was improved remarkably after 1 month, and there was no recurrence or aggravation of the condition. The duration of the follow-up period was 5 months. LESSONS The therapeutics used here were effective and safe for the treatment of OLP and could improve the quality of life in patients with lip erosion. The therapeutics provide new insight into the treatment of OLP on the lip.
Collapse
Affiliation(s)
| | - Na Xu
- Department of Oral Medicine
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - XiuYun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | | |
Collapse
|
11
|
Prophylactic Neuroprotection of Total Glucosides of Paeoniae Radix Alba against Semen Strychni-Induced Neurotoxicity in Rats: Suppressing Oxidative Stress and Reducing the Absorption of Toxic Components. Nutrients 2018; 10:nu10040514. [PMID: 29677121 PMCID: PMC5946299 DOI: 10.3390/nu10040514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Strychnos alkaloids (SAs) are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP). An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs) in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.
Collapse
|
12
|
EGHB010, a Standardized Extract of Paeoniae Radix and Glycyrrhizae Radix, Inhibits VEGF-Induced Tube Formation In Vitro and Retinal Vascular Leakage and Choroidal Neovascularization In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1568702. [PMID: 29234364 PMCID: PMC5646325 DOI: 10.1155/2017/1568702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
EGHB010 is a hot water extract of the rhizome mixture of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fisch. Choroidal neovascularization (CNV) and vascular leakage are the common pathophysiologies of age-related macular degeneration. In this study, we aimed to evaluate the effect of EGHB010 on retinal vascular leakage and laser-induced CNV in a rat model. Vascular endothelial growth factor- (VEGF-) induced tube formation was assayed in human retinal microvascular endothelial cells. Intravitreal VEGF-induced blood-retinal barrier breakdown was assayed in Sprague-Dawley rats. Experimental CNV was induced by laser photocoagulation in Brown Norway rats. EGHB010 (50 and 100 mg/kg/day) was administered orally for 10 days after laser photocoagulation. Choroidal flat mounts were prepared to measure the lesion size of CNV. Incubation of retinal vascular endothelial cells with EGHB010 (12.5 and 25 μg/mL) resulted in the inhibition of VEGF-induced tube formation in a dose-dependent manner. VEGF-mediated retinal vascular leakage was blocked by the oral administration of EGHB010. The CNV area was significantly lower in EGHB010-treated rats than in vehicle-treated rats. These results suggest that EGHB010 is a potent antiangiogenic agent. Thus, the oral administration of EGHB010 may have a beneficial effect in the treatment of vascular leakage and CNV in patients with age-related macular degeneration.
Collapse
|
13
|
Anti-tumor effect of Radix Paeoniae Rubra extract on mice bladder tumors using intravesical therapy. Oncol Lett 2016; 12:904-910. [PMID: 27446367 PMCID: PMC4950246 DOI: 10.3892/ol.2016.4698] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2016] [Indexed: 01/26/2023] Open
Abstract
Radix Paeoniae Rubra (RPR) is the dried root of Paeonia lactiflora Pallas and Paeonia veitchii Lynch, and is a herbal medicine that is widely used in traditional Chinese medicine for the treatment of blood-heat and blood-stasis syndrome, similarly to Cortex Moutan. The present study identified the same three components in RPR and Cortex Moutan extracts. In addition, it has been reported that RPR has an anti-cancer effect. Bladder cancer is the seventh most common type of cancer worldwide. Due to the high recurrence rate, identifying novel drugs for bladder cancer therapy is essential. In the present study, RPR extract was evaluated as a bladder cancer therapy in vitro and in vivo. The present results revealed that RPR extract reduced the cell viability of bladder cancer cells with a half maximal inhibitory concentration of 1-3 mg/ml, and had an extremely low cytotoxic effect on normal urothelial cells. Additionally, RPR decreased certain cell cycle populations, predominantly cells in the G1 phase, and caused a clear sub-G increase. In a mouse orthotopic bladder tumor model, intravesical application of RPR extract decreased the bladder tumor size without altering the blood biochemical parameters of the mice. In summary, the present results demonstrate the anti-proliferative properties of RPR extract on bladder cancer cells, and its anti-bladder tumor effect in vivo. Compared to Cortex Moutan extract, RPR extract may provide a more effective alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer.
Collapse
|
14
|
Parker S, May B, Zhang C, Zhang AL, Lu C, Xue CC. A Pharmacological Review of Bioactive Constituents ofPaeonia lactifloraPallas andPaeonia veitchiiLynch. Phytother Res 2016; 30:1445-73. [DOI: 10.1002/ptr.5653] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Shefton Parker
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Brian May
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Claire Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Anthony Lin Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
| | - Chuanjian Lu
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
- Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
- Guangdong Provincial Academy of Chinese Medical Sciences; Guangzhou China
- The Second Clinical College; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Charlie Changli Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences; RMIT University; PO Box 71 Bundoora Victoria 3083 Australia
- Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
- Guangdong Provincial Academy of Chinese Medical Sciences; Guangzhou China
- The Second Clinical College; Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
15
|
Lee YM, Kim CS, Jo K, Sohn EJ, Kim JS, Kim J. Inhibitory effect of Samul-tang on retinal neovascularization in oxygen-induced retinopathy. Altern Ther Health Med 2015; 15:271. [PMID: 26264147 PMCID: PMC4534021 DOI: 10.1186/s12906-015-0800-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/03/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Retinal neovascularization is a common cause of vision loss in proliferative diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration. Samul-tang (SMT) is a widely used traditional herbal medicine in East Asia and is also known as Shimotsu-to in Japanese and Si-Wu decoction in Chinese. This study was designed to evaluate the inhibitory effect of SMT on retinal pathogenic angiogenesis in a mouse model of oxygen-induced retinopathy (OIR). METHOD The mice were exposed to a 75% concentration of oxygen for five days, starting on postnatal day 7 (P7-P12). The mice were then exposed to room air and were intraperitoneally injected with SMT (10 mg/kg or 50 mg/kg) once per day for five days (P12-P16). On P17, we measured retinal neovascularization and evaluated both the expression of angiogenesis-related proteins and changes in the gene expression level in the mRNA. RESULTS SMT reduced the area of the central retina and reduced retinal neovascularization in OIR mice. The protein array revealed that SMT reduced the level of SDF-1 protein expression. Quantitative real-time PCR revealed that the HIF-1α, SDF-1, CXCR4 and VEGF mRNA levels in the retinas of OIR mice were elevated compared with those of normal control mice. However, SMT decreased the levels of HIF-1α, SDF-1, CXCR4 and VEGF mRNA in OIR mice. CONCLUSION We are the first to elucidate that SMT inhibits the retinal pathogenic angiogenesis induced by ischemic retinopathy in OIR mice. SMT significantly inhibited retinal neovascularization by downregulating HIF-1α, SDF-1, CXCR4 and VEGF. Based on the results of our study, SMT could be a useful herbal medicine for treating ischemic retinopathy.
Collapse
|
16
|
Periplasmic expression optimization of VEGFR2 D3 adopting response surface methodology: Antiangiogenic activity study. Protein Expr Purif 2013; 90:55-66. [DOI: 10.1016/j.pep.2013.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
|
17
|
Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. Int Immunopharmacol 2012; 14:27-31. [PMID: 22705050 DOI: 10.1016/j.intimp.2012.06.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 01/04/2023]
|
18
|
Wang R, Peng X, Wang L, Tan B, Liu J, Feng Y, Yang S. Preparative purification of peoniflorin and albiflorin from peony rhizome using macroporous resin and medium-pressure liquid chromatography. J Sep Sci 2012; 35:1985-92. [DOI: 10.1002/jssc.201200120] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/13/2012] [Accepted: 04/19/2012] [Indexed: 01/04/2023]
Affiliation(s)
| | - Xiaoguo Peng
- College of Pharmaceutical Science; Soochow University; Suzhou; China
| | - Liming Wang
- College of Pharmaceutical Science; Soochow University; Suzhou; China
| | - Beibei Tan
- College of Pharmaceutical Science; Soochow University; Suzhou; China
| | - Jiangyun Liu
- College of Pharmaceutical Science; Soochow University; Suzhou; China
| | - Yulin Feng
- College of Pharmacy; Jiangxi University of Chinese Traditional Medicine; Nanchang; China
| | | |
Collapse
|