1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Ito J, Miyake K, Chiba T, Takahashi K, Uchida Y, Blackshear PJ, Asahara H, Karasuyama H. Tristetraprolin-mediated mRNA destabilization regulates basophil inflammatory responses. Allergol Int 2025; 74:263-273. [PMID: 39550253 DOI: 10.1016/j.alit.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Basophils, despite being the least common granulocytes, play crucial roles in type 2 immune responses, such as chronic allergic inflammation and protective immunity against parasites. However, the molecular mechanisms regulating basophil activation and inflammatory molecule production remain poorly understood. Therefore, we investigated the role of RNA-binding proteins, specifically tristetraprolin (TTP), in regulating inflammatory molecule production in basophils. METHODS Using antigen/IgE-stimulated basophils from wild-type (WT) and TTP-knockout (TTP-KO) mice, we performed bulk RNA sequencing, transcriptome-wide mRNA stability assays, and protein analyses. We also examined mRNA expression and protein production of inflammatory molecules in TTP-KO basophils under stimulation with IL-33 or LPS. Furthermore, we evaluated the in vivo significance of TTP in basophils using basophil-specific TTP-deficient mice and a hapten oxazolone-induced atopic dermatitis model. RESULTS TTP expression was upregulated in basophils following stimulation with antigen/IgE, IL-33, or LPS. Under these stimuli, TTP-KO basophils exhibited elevated mRNA expression of inflammatory molecules, such as Il4, Areg, Ccl3, and Cxcl2, compared to WT basophils. Transcriptome-wide mRNA stability assays revealed that TTP deficiency prolonged the mRNA half-life of these inflammatory mediators. Notably, the production of these inflammatory proteins was significantly increased in TTP-KO basophils. Moreover, basophil-specific TTP-deficient mice showed exacerbated oxazolone-induced atopic dermatitis-like skin allergic inflammation. CONCLUSIONS TTP is a key regulator of basophil activation, controlling the production of inflammatory mediators through mRNA destabilization. Our in vivo findings demonstrate that the absence of TTP in basophils significantly aggravates allergic skin inflammation, highlighting its potential as a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Junya Ito
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan; Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Tomoki Chiba
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kazufusa Takahashi
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Hajime Karasuyama
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Tamari M, Ver Heul AM. Neuroimmune mechanisms of type 2 inflammation in the skin and lung. Allergol Int 2025; 74:177-186. [PMID: 40064568 DOI: 10.1016/j.alit.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 04/01/2025] Open
Abstract
Type 2 inflammation has a major role in barrier tissues such as the skin and airways and underlies common conditions including atopic dermatitis (AD) and asthma. Cytokines including interleukin 4 (IL-4), IL-5, and IL-13 are key immune signatures of type 2 inflammation and are the targets of multiple specific therapeutics for allergic diseases. Despite shared core immune mechanisms, the distinct structures and functions of the skin and airways lead to unique therapeutic responses. It is increasingly recognized that the nervous system has a major role in sensing and directing inflammatory processes. Indeed, crosstalk between type 2 immune activation and somatosensory functions mediates tissue-specific signatures such as itching in the skin. However, neuroimmune interactions are shaped by distinct neuronal and immune landscapes, and differ between the skin and airways. In the skin, dorsal root ganglia-derived neurons mediate pruritus via type 2 cytokines and neurogenic inflammation by mast cell or basophil activation. Conversely, vagal ganglia-derived neurons regulate airway immune responses by releasing neuropeptides/neurotransmitters such as calcitonin gene-related peptides, neuromedin U, acetylcholine, and noradrenaline. Sensory neuron-derived vasoactive intestinal peptide forms a feedback loop with IL-5, amplifying eosinophilic inflammation in the airways, a mechanism that is absent in the skin. These differences influence the efficacy of cytokine-targeted therapies. For instance, IL-4/IL-13-targeted therapies like dupilumab demonstrate efficacy in AD and allergic airway diseases, whereas IL-5-targeted therapies are effective in eosinophilic asthma but not AD. Understanding these neuroimmune interactions underscores the need for tailored therapeutic approaches to address allergic diseases where barrier tissues are involved.
Collapse
Affiliation(s)
- Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
4
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
6
|
Aldossary H, Karkout R, Couto K, Labrie L, Fixman ED. IL-33-experienced group 2 innate lymphoid cells in the lung are poised to enhance type 2 inflammation selectively in adult female mice. Respir Res 2024; 25:427. [PMID: 39633345 PMCID: PMC11619098 DOI: 10.1186/s12931-024-03043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
While Th2 adaptive immunity has long been considered to orchestrate type 2 inflammation in the allergic lung, group 2 innate lymphoid cells (ILC2s), with the ability to produce a similar profile of type 2 cytokines, likely participate in lung inflammation in allergic asthma. ILC2s are also implicated in sex disparities in asthma, supported by data from murine models showing they are inhibited by male sex hormones. Moreover, larger numbers of ILC2s are present in the lungs of female mice and are correlated with greater type 2 inflammation. Lung ILC2s exhibit intriguing memory-like responses, though whether these differ in males and females does not appear to have been addressed. We have examined type 2 lung inflammation in adult male and female Balb/c mice following delivery of IL-33 to the lung. While the number of ILC2s was elevated equally in males and females four weeks after exposure to IL-33, ILC2s from female mice expressed higher levels of ST2, the IL-33 cognate receptor subunit, and a larger proportion of ILC2s from females expressed the IL-25 receptor (IL-25R), which has previously been linked to memory-like ILC2 responses in mice. Our data show that the subset of ILC2s expressing IL-25R, upon activation, was more likely to produce IL-5 and IL-13. Moreover, STAT6 was absolutely required for enhanced responsiveness in this model system. Altogether, our data show that enhanced type 2 inflammation in females is linked to durable changes in ILC2 subsets with the ability to respond more robustly, in a STAT6-dependent manner, upon secondary activation by innate epithelial-derived cytokines.
Collapse
Affiliation(s)
- Haya Aldossary
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Rami Karkout
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Katalina Couto
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lydia Labrie
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Elizabeth D Fixman
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
7
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
8
|
Chhiba KD, Kuang FL. Advancing toward a unified eosinophil signature from transcriptional profiling. J Leukoc Biol 2024; 116:1324-1333. [PMID: 39213186 PMCID: PMC11602342 DOI: 10.1093/jleuko/qiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Eosinophils are granulocytes that can accumulate in increased numbers in tissues and/or peripheral blood in disease. Phenotyping of eosinophils in health and disease has the potential to improve the precision of diagnosis and choice of therapies for eosinophilic-associated diseases. Transcriptional profiling of eosinophils has been plagued by cell fragility and difficulty isolating high-quality RNA. With several technological advances, single-cell RNA sequencing has become possible with eosinophils, at least from mice, while bulk RNA sequencing and microarrays have been performed in both murine and human samples. Anticipating more eosinophil transcriptional profiles in the coming years, we provide a summary of prior studies conducted on mouse and human eosinophils in blood and tissue, with a discussion of the advantages and potential pitfalls of various approaches. Common technical standards in studying eosinophil biology would help advance the field and make cross-study comparisons possible. Knowledge gaps and opportunities include identifying a minimal set of genes that define the eosinophil lineage, comparative studies between active disease and remission vs. homeostasis or development, especially in humans, and a comprehensive comparison between murine and human eosinophils at the transcriptional level. Characterizing such transcriptional patterns will be important to understanding the complex and diverse roles of eosinophils in both health and disease.
Collapse
Affiliation(s)
- Krishan D. Chhiba
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, United States
| | - Fei Li Kuang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, United States
| |
Collapse
|
9
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
10
|
Yan Q, Liu S, Sun Y, Chen C, Yang Y, Yang S, Lin M, Long J, Lin Y, Liang J, Ai Q, Chen N. CC chemokines Modulate Immune responses in Pulmonary Hypertension. J Adv Res 2024; 63:171-186. [PMID: 37926143 PMCID: PMC11380027 DOI: 10.1016/j.jare.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) represents a progressive condition characterized by the remodeling of pulmonary arteries, ultimately culminating in right heart failure and increased mortality rates. Substantial evidence has elucidated the pivotal role of perivascular inflammatory factors and immune dysregulation in the pathogenesis of PH. Chemokines, a class of small secreted proteins, exert precise control over immune cell recruitment and functionality, particularly with respect to their migration to sites of inflammation. Consequently, chemokines emerge as critical drivers facilitating immune cell infiltration into the pulmonary tissue during inflammatory responses. This review comprehensively examines the significant contributions of CC chemokines in the maintenance of immune cell homeostasis and their pivotal role in regulating inflammatory responses. The central focus of this discussion is directed towards elucidating the precise immunoregulatory actions of CC chemokines concerning various immune cell types, including neutrophils, monocytes, macrophages, lymphocytes, dendritic cells, mast cells, eosinophils, and basophils, particularly in the context of pH processes. Furthermore, this paper delves into an exploration of the underlying pathogenic mechanisms that underpin the development of PH. Specifically, it investigates processes such as cellular pyroptosis, examines the intricate crosstalk between bone morphogenetic protein receptor type 2 (BMPR2) mutations and the immune response, and sheds light on key signaling pathways involved in the inflammatory response. These aspects are deemed critical in enhancing our understanding of the complex pathophysiology of PH. Moreover, this review provides a comprehensive synthesis of findings from experimental investigations targeting immune cells and CC chemokines. AIM OF REVIEW In summary, the inquiry into the inflammatory responses mediated by CC chemokines and their corresponding receptors, and their potential in modulating immune reactions, holds promise as a prospective avenue for addressing PH. The potential inhibition of CC chemokines and their receptors stands as a viable strategy to attenuate the inflammatory cascade and ameliorate the pathological manifestations of PH. Nonetheless, it is essential to acknowledge the current state of clinical trials and the ensuing progress, which regrettably appears to be less than encouraging. Substantial hurdles exist in the successful translation of research findings into clinical applications. The intention is that such emphasis could potentially foster the advancement of potent therapeutic agents presently in the process of clinical evaluation. This, in turn, may further bolster the potential for effective management of PH.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Yang Y, Xu L, Atkins C, Kuhlman L, Zhao J, Jeong JM, Wen Y, Moreno N, Kim KH, An YA, Wang F, Bynon S, Villani V, Gao B, Brombacher F, Harris R, Eltzschig HK, Jacobsen E, Ju C. Novel IL-4/HB-EGF-dependent crosstalk between eosinophils and macrophages controls liver regeneration after ischaemia and reperfusion injury. Gut 2024; 73:1543-1553. [PMID: 38724220 PMCID: PMC11347249 DOI: 10.1136/gutjnl-2024-332033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Long Xu
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance Atkins
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lily Kuhlman
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jie Zhao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yankai Wen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicolas Moreno
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vincenzo Villani
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Frank Brombacher
- University of Cape Town Faculty of Health Sciences, Observatory, Western Cape, South Africa
| | - Raymond Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
12
|
Yuan T, Zhou Q, Tian Y, Ou Y, Long Y, Tan Y. Innate lymphoid cells and infectious diseases. Innate Immun 2024; 30:120-135. [PMID: 39363687 PMCID: PMC11556573 DOI: 10.1177/17534259241287311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Innate lymphoid cells (ILCs) are the main resident lymphocytes that mostly reside in tissues owing to the lack of adaptive antigen receptors. These cells are involved in early anti-infective immunity, antitumour immunity, regulation of tissue inflammation, and maintenance of homeostasis in the internal environment of tissues and have been referred to as the "first armies stationed in the human body". ILCs are widely distributed in the lungs, colon, lymph nodes, oral mucosa and even embryonic tissues. Due to the advantage of their distribution location, they are often among the first cells to come into contact with pathogens.Relevant studies have demonstrated that ILCs play an early role in the defence against a variety of pathogenic microorganisms, including bacteria, viruses, fungi and helminths, before they intervene in the adaptive immune system. ILCs can initiate a rapid, nonspecific response against pathogens prior to the initiation of an adaptive immune response and can generate a protective immune response against specific pathogens, secreting different effectors to play a role.There is growing evidence that ILCs play an important role in host control of infectious diseases. In this paper, we summarize and discuss the current known infectious diseases in which ILCs are involved and ILC contribution to the defence against infectious diseases. Further insights into the mechanisms of ILCs action in different infectious diseases will be useful in facilitating the development of therapeutic strategies for early control of infections.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Qianhui Zhou
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yuqiu Tian
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - YunZhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - YingZheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
13
|
Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications. Antioxid Redox Signal 2024; 41:396-427. [PMID: 37725535 DOI: 10.1089/ars.2023.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
14
|
Chen Y, Tang H, Yao B, Pan S, Ying S, Zhang C. Basophil differentiation, heterogeneity, and functional implications. Trends Immunol 2024; 45:523-534. [PMID: 38944621 DOI: 10.1016/j.it.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Abstract
Basophils, rare granulocytes, have long been acknowledged for their roles in type 2 immune responses. However, the mechanisms by which basophils adapt their functions to diverse mammalian microenvironments remain unclear. Recent advancements in specific research tools and single-cell-based technologies have greatly enhanced our understanding of basophils. Several studies have shown that basophils play a role in maintaining homeostasis but can also contribute to pathology in various tissues and organs, including skin, lung, and others. Here, we provide an overview of recent basophil research, including cell development, characteristics, and functions. Based on an increasing understanding of basophil biology, we suggest that the precise targeting of basophil features might be beneficial in alleviating certain pathologies such as asthma, atopic dermatitis (AD), and others.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Bingpeng Yao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Sheng Pan
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China.
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Kimura G, Tagami A, Fukui R, Yaita M, Miyasaka T. Airway inflammation in a novel mouse model of asthma-COPD overlap induced by co-exposure to papain and tobacco smoke. Biochem Biophys Res Commun 2024; 709:149831. [PMID: 38552552 DOI: 10.1016/j.bbrc.2024.149831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are respiratory diseases associated with airway inflammation, which is the main pathogenesis. Although their causes and characteristics differ, in some cases, asthma and COPD may coexist in the same patient in a condition called asthma-COPD overlap (ACO). The prognosis of ACO is more unfavourable than those of asthma or COPD alone, without any treatment strategies demonstrating efficacy. Owing to its intricate spectrum of features, the detailed pathogenesis of how ACO exacerbates respiratory features remains unclear. In this study, we exposed papain-induced asthma model mice to tobacco smoke to establish an ACO mouse model, in which features of airway inflammation observed in both asthma and COPD were incorporated. This model exhibited distinctive mixed and corticosteroid-resistant airway inflammation and emphysematous changes that are characteristic of ACO. The novel mouse model established here is expected to significantly contribute to elucidating the mechanisms of the broad pathologies of ACO and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan.
| | - Ai Tagami
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Rina Fukui
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Masaki Yaita
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Tomohiro Miyasaka
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan.
| |
Collapse
|
16
|
Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules 2024; 14:546. [PMID: 38785953 PMCID: PMC11117569 DOI: 10.3390/biom14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Bronchial asthma is characterized by airway inflammation, airway hyperresponsiveness, and reversible airway obstruction. Eosinophils contribute to the pathogenesis of airway disease mainly by releasing eosinophil-specific granules, lipid mediators, superoxide anions, and their DNA. Type-2 cytokines such as interleukin (IL)-4 and IL-13 also play roles in the development of bronchial asthma. Among these cytokines, IL-4 is involved in T-cell differentiation, B-cell activation, B-cell differentiation into plasma cells, and the production of immunoglobulin E. Although IL-13 has similar effects to IL-4, IL-13 mainly affects structural cells, such as epithelial cells, smooth muscle cells, and fibroblasts. IL-13 induces the differentiation of goblet cells that produce mucus and induces the airway remodeling, including smooth muscle hypertrophy. IL-4 and IL-13 do not directly activate the effector functions of eosinophils; however, they can induce eosinophilic airway inflammation by upregulating the expression of vascular cell adhesion molecule-1 (for adhesion) and CC chemokine receptor 3 ligands (for migration). Dupilumab, a human anti-IL-4 receptor α monoclonal antibody that inhibits IL-4 and IL-13 signaling, decreases asthma exacerbations and mucus plugs and increases lung function in moderate to severe asthma. In addition, dupilumab is effective for chronic rhinosinusitis with nasal polyps and for atopic dermatitis, and IL-4/IL-13 blocking is expected to suppress allergen sensitization, including transcutaneous sensitization and atopic march.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
17
|
Zhao HH, Ma Z, Guan DS. Causal role of immune cells in obstructive sleep apnea hypopnea syndrome: Mendelian randomization study. World J Clin Cases 2024; 12:1227-1234. [PMID: 38524502 PMCID: PMC10955532 DOI: 10.12998/wjcc.v12.i7.1227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Despite being one of the most prevalent sleep disorders, obstructive sleep apnea hypoventilation syndrome (OSAHS) has limited information on its immunologic foundation. The immunological underpinnings of certain major psychiatric diseases have been uncovered in recent years thanks to the extensive use of genome-wide association studies (GWAS) and genotyping techniques using high-density genetic markers (e.g., SNP or CNVs). But this tactic hasn't yet been applied to OSAHS. Using a Mendelian randomization analysis, we analyzed the causal link between immune cells and the illness in order to comprehend the immunological bases of OSAHS. AIM To investigate the immune cells' association with OSAHS via genetic methods, guiding future clinical research. METHODS A comprehensive two-sample mendelian randomization study was conducted to investigate the causal relationship between immune cell characteristics and OSAHS. Summary statistics for each immune cell feature were obtained from the GWAS catalog. Information on 731 immune cell properties, such as morphologic parameters, median fluorescence intensity, absolute cellular, and relative cellular, was compiled using publicly available genetic databases. The results' robustness, heterogeneity, and horizontal pleiotropy were confirmed using extensive sensitivity examination. RESULTS Following false discovery rate (FDR) correction, no statistically significant effect of OSAHS on immunophenotypes was observed. However, two lymphocyte subsets were found to have a significant association with the risk of OSAHS: Basophil %CD33dim HLA DR- CD66b- (OR = 1.03, 95%CI = 1.01-1.03, P < 0.001); CD38 on IgD+ CD24- B cell (OR = 1.04, 95%CI = 1.02-1.04, P = 0.019). CONCLUSION This study shows a strong link between immune cells and OSAHS through a gene approach, thus offering direction for potential future medical research.
Collapse
Affiliation(s)
- Huang-Hong Zhao
- Department of Encephalopathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Zhen Ma
- Department of Personnel, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Dong-Sheng Guan
- Department of Neurology, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
18
|
Chen Y, Yuan Y, Peng L, Dong X, Xu Y, Wang Y, Yang Y. Effects of increasing sensitizing doses of ovalbumin on airway hyperresponsiveness in asthmatic mice. Immun Inflamm Dis 2024; 12:e1225. [PMID: 38533918 PMCID: PMC10966913 DOI: 10.1002/iid3.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 μg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 μg, while weaker responses were seen at 10, 20, and 100 μg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 μg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION Overall, this study demonstrated that sensitization with 50 μg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.
Collapse
Affiliation(s)
- Yan‐Jiao Chen
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Yu Yuan
- Deparment of Acupuncture and MoxibustionGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiP.R. China
| | - Lu Peng
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Xin‐Yi Dong
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Yu‐Dong Xu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Yu Wang
- Shanghai University of Traditional Chinese MedicineShanghaiP.R. China
| | - Yong‐Qing Yang
- Shanghai University of Traditional Chinese MedicineShanghaiP.R. China
| |
Collapse
|
19
|
Sharma M, Suratannon N, Leung D, Baris S, Takeuchi I, Samra S, Yanagi K, Rosa Duque JS, Benamar M, Del Bel KL, Momenilandi M, Béziat V, Casanova JL, van Hagen PM, Arai K, Nomura I, Kaname T, Chatchatee P, Morita H, Chatila TA, Lau YL, Turvey SE. Human germline gain-of-function in STAT6: from severe allergic disease to lymphoma and beyond. Trends Immunol 2024; 45:138-153. [PMID: 38238227 DOI: 10.1016/j.it.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.
Collapse
|
20
|
Park J, Cho Y, Yang D, Yang H, Lee D, Kubo M, Kang SJ. The transcription factor NFIL3/E4BP4 regulates the developmental stage-specific acquisition of basophil function. J Allergy Clin Immunol 2024; 153:132-145. [PMID: 37783432 DOI: 10.1016/j.jaci.2023.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Basophils are rare but important effector cells in many allergic disorders. Contrary to their early progenitors, the terminal developmental processes of basophils in which they gain their unique functional properties are unknown. OBJECTIVE We sought to identify a novel late-stage basophil precursor and a transcription factor regulating the terminal maturation of basophils. METHODS Using flow cytometry, transcriptome analysis, and functional assays, we investigated the identification and functionality of the basophil precursors as well as basophil development. We generated mice with basophil-specific deletion of nuclear factor IL-3 (NFIL3)/E4BP4 and analyzed the functional impairment of NFIL3/E4BP4-deficient basophils in vitro and in vivo using an oxazolone-induced murine model of allergic dermatitis. RESULTS We report a new mitotic transitional basophil precursor population (referred to as transitional basophils) that expresses the FcεRIα chain at higher levels than mature basophils. Transitional basophils are less responsive to IgE-linked degranulation but produce more cytokines in response to IL-3, IL-33, or IgE cross-linking than mature basophils. In particular, we found that the expression of NFIL3/E4BP4 gradually rises as cells mature from the basophil progenitor stage. Basophil-specific deletion of NFIL3/E4BP4 reduces the expression of genes necessary for basophil function and impairs IgE receptor signaling, cytokine secretion, and degranulation in the context of murine atopic dermatitis. CONCLUSIONS We discovered transitional basophils, a novel late-stage mitotic basophil precursor cell population that exists between basophil progenitors and postmitotic mature basophils. We demonstrated that NFIL3/E4BP4 augments the IgE-mediated functions of basophils, pointing to a potential therapeutic regulator for allergic diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yuri Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dongchan Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan; Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
21
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Singh BK, Yokoyama Y, Tanaka Y, Laczkó D, Deshpande DA, Kambayashi T. Diacylglycerol kinase zeta deficiency attenuates papain-induced type 2 airway inflammation. Cell Immunol 2023; 393-394:104780. [PMID: 37918056 DOI: 10.1016/j.cellimm.2023.104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Allergic airway diseases are caused by inappropriate immune responses directed against inhaled environmental antigens. We previously reported that the inhibition of diacylglycerol (DAG) kinaseζ (DGKζ),an enzyme that terminates DAG-mediated signaling,protects against T cell-mediated allergic airway inflammation by blocking Th2 cell differentiation.In this study, we tested whether DGKζ deficiency also affects allergic airway disease mediated by type 2 innate lymphoid cells (ILC2)s. DGKζ-deficient mice displayed diminished ILC2 function and reduced papain-induced airway inflammation compared to wildtype mice. Unexpectedly, however, mice with hematopoietic cell-specific deletion ofDGKζ displayed intact airway inflammation upon papain challenge. Rather, bone marrow chimera studies revealed thatDGKζ deficiency in the non-hematopoietic compartment was responsible for the reduction in papain-induced airway inflammation. These data suggest that DGK might represent a novel therapeutic target not only for T cell-dependent but also ILC2-dependent allergic airway inflammation by affecting non-hematopoietic cells.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorottya Laczkó
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
24
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
25
|
Matsuyama T, Machida K, Mizuno K, Matsuyama H, Dotake Y, Shinmura M, Takagi K, Inoue H. The Functional Role of Group 2 Innate Lymphoid Cells in Asthma. Biomolecules 2023; 13:893. [PMID: 37371472 DOI: 10.3390/biom13060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. Group 2 innate lymphoid cells (ILC2) play an important role in the pathogenesis of asthma. ILC2s lack antigen-specific receptors and respond to epithelial-derived cytokines, leading to the induction of airway eosinophilic inflammation in an antigen-independent manner. Additionally, ILC2s might be involved in the mechanism of steroid resistance. Numerous studies in both mice and humans have shown that ILC2s induce airway inflammation through inflammatory signals, including cytokines and other mediators derived from immune or non-immune cells. ILC2s and T helper type 2 (Th2) cells collaborate through direct and indirect interactions to organize type 2 immune responses. Interestingly, the frequencies or numbers of ILC2 are increased in the blood and bronchoalveolar lavage fluid of asthma patients, and the numbers of ILC2s in the blood and sputum of severe asthmatics are significantly larger than those of mild asthmatics. These findings may contribute to the regulation of the immune response in asthma. This review article highlights our current understanding of the functional role of ILC2s in asthma.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masahiro Shinmura
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
26
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
27
|
Čelakovská J, Čermáková E, Boudková P, Andrýs C, Krejsek J. The association between eosinophils (CD16 + eosinophils), basophils (CD203 + basophils), and CD23 B lymphocytes in patients with atopic dermatitis on dupilumab therapy: pilot study. Dermatol Ther (Heidelb) 2023; 13:1193-1210. [PMID: 37071375 PMCID: PMC10149537 DOI: 10.1007/s13555-023-00922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Eosinophils, basophils, and the molecule CD23 on B cells are involved in the pathophysiology of atopic dermatitis (AD). The molecule CD23 is involved in the regulation of IgE synthesis and is expressed by activated B cells. The molecule CD16 is used to assess the activation of eosinophils and CD203 of basophils. The association between the count of eosinophils, basophils, CD16+ eosinophils, CD203+ basophils and the expression of the activation marker CD23 on B cells in patients with AD (with and without dupilumab therapy) is not described. OBJECTIVE The aim of this pilot study is to evaluate the association between the blood count of eosinophils, basophils, relative CD16+ eosinophils, relative CD203+ basophils, and the expression of molecule CD23 on B cells and on their subsets (total, memory, naive, switched, non-switched) in patients suffering from AD (with and without dupilumab therapy) and in control group. METHODS A total of 45 patients suffering from AD were examined; 32 patients without dupilumab treatment (10 men, 22 women, average age 35 years), 13 patients with dupilumab treatment (7 men, 6 women, average age 43.4 years), and 30 subjects as a control group (10 men, 20 women, average age 44.7 years). Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. For statistical analysis we used non-parametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni modification and the Spearman's rank correlation coefficient; for coefficients higher than 0.41, we report R2 (percent of variation explained). RESULTS The absolute count of eosinophils was significantly higher in patients with AD (with and without dupilumab) in comparison to healthy subjects. The difference in the relative count of CD16+ eosinophils in patients with AD (with and without dupilumab therapy) compared with control is not statistically significant. In patients with dupilumab therapy the significantly lower count of relative CD203+ basophils was confirmed compared with control. The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with dupilumab therapy; in contrast, this association was low in patients with AD without dupilumab therapy and in healthy subjects. CONCLUSION The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with AD under dupilumab therapy. It suggests that IL-4 production by eosinophils may play a role in B lymphocyte activation. The significantly lower count of CD203+ basophils has been demonstrated in patients with dupilumab therapy. This reduction of CD203+ basophil count may contribute to the therapeutic effects of dupilumab by reducing the inflammatory response and allergic reactions in patients with AD.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty, Charles University, Hradec Králové, Czech Republic.
| | - Eva Čermáková
- Department of Medical Biophysics, Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Petra Boudková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| |
Collapse
|
28
|
Naito M, Kumanogoh A. Group 2 innate lymphoid cells and their surrounding environment. Inflamm Regen 2023; 43:21. [PMID: 36941691 PMCID: PMC10026507 DOI: 10.1186/s41232-023-00272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Since the discovery of group 2 innate lymphoid cells (ILC2s) in 2010, subsequent studies have revealed their developmental pathways, mechanisms of activation and regulation, and immunological roles in tissue homeostasis and tissue-specific diseases in various organs. Although ILC2s are known to express tissue-specific features depending on where they reside, how the surrounding environment affects the functions of ILC2s remains to be fully elucidated. Recent histologic analyses revealed that ILC2s resides in specific perivascular regions in peripheral tissues with their function being controlled by the surrounding cells via cytokines, lipid mediators, neurotransmitters, and cell-cell interactions through surface molecules. This review summarizes the interactions between ILC2s and surrounding cells, including epithelial cells, neurons, immune cells, and mesenchymal cells, with the objective of promoting the development of novel diagnostic and therapeutic methods for ILC2-related diseases.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative(WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative(WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
29
|
Gurram RK, Wei D, Yu Q, Butcher MJ, Chen X, Cui K, Hu G, Zheng M, Zhu X, Oh J, Sun B, Urban JF, Zhao K, Leonard WJ, Zhu J. Crosstalk between ILC2s and Th2 cells varies among mouse models. Cell Rep 2023; 42:112073. [PMID: 36735533 PMCID: PMC10394112 DOI: 10.1016/j.celrep.2023.112073] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.
Collapse
Affiliation(s)
- Rama K Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Yu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Abstract
The activation of group 2 innate lymphoid cells (ILC2s) is controlled by various tissue-derived factors, including cytokines, whereas T cells respond to foreign antigens. This review discusses the tissue-specific properties of ILC2s in skin and their involvement in human skin diseases. In a steady state, cutaneous ILC2s contribute to tissue homeostasis. In the keratinocytes of patients with atopic dermatitis (AD), the inflammatory cytokine interleukin-33 (IL-33) is overexpressed. ILC2s are stimulated by IL-33-stimulated basophils through IL-4 to produce type 2 cytokines, such as IL-5 and IL-13. According to several studies, ILC2 expression is upregulated in human AD skin lesions, and it is involved in AD pathogenesis. Dupilumab, an antibody against IL-4 receptor α, lowered the number and percentage of ILC2s in the peripheral blood of patients with AD. Cutaneous ILC2s are divided into two subgroups: circulating and skin-resident ILC2s. However, ILC2s are homogeneous cell populations that are highly diverse and plastic, and there is no consensus on the classification that should be used. The variations in the definition for cutaneous ILC2s in different studies make comparisons among studies difficult, and in particular, the weak expression of the IL-33 receptor ST2 in cutaneous ILC2s and its lack of markers have posed a great challenge to researchers. Therefore, further comprehensive analytical studies are warranted.
Collapse
Affiliation(s)
- Yasutomo Imai
- Imai Adult and Pediatric Dermatology Clinic, Osaka, Japan; Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan.
| |
Collapse
|
31
|
Möbs C, Salheiser M, Bleise F, Witt M, Mayer JU. Basophils control T cell priming through soluble mediators rather than antigen presentation. Front Immunol 2023; 13:1032379. [PMID: 36846020 PMCID: PMC9950813 DOI: 10.3389/fimmu.2022.1032379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 02/12/2023] Open
Abstract
Basophils play an important role in the development of type 2 immunity and have been linked to protective immunity against parasites but also inflammatory responses in allergic diseases. While typically classified as degranulating effector cells, different modes of cellular activation have been identified, which together with the observation that different populations of basophils exist in the context of disease suggest a multifunctional role. In this review we aim to highlight the role of basophils play in antigen presentation of type 2 immunity and focus on the contribution basophils play in the context of antigen presentation and T cell priming. We will discuss evidence suggesting that basophils perform a direct role in antigen presentation and relate it to findings that indicate cellular cooperation with professional antigen-presenting cells, such as dendritic cells. We will also highlight tissue-specific differences in basophil phenotypes that might lead to distinct roles in cellular cooperation and how these distinct interactions might influence immunological and clinical outcomes of disease. This review thus aims to consolidate the seemingly conflicting literature on the involvement of basophils in antigen presentation and tries to find a resolution to the discussion whether basophils influence antigen presentation through direct or indirect mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Johannes U. Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
32
|
Shah M, Knights AJ, Vohralik EJ, Psaila AM, Quinlan KGR. Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. J Leukoc Biol 2023; 113:191-202. [PMID: 36822180 DOI: 10.1093/jleuko/qiac009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
33
|
Lin H, Del Rio Castillo AE, González VJ, Jacquemin L, Panda JK, Bonaccorso F, Vázquez E, Bianco A. Effects of industrially produced 2-dimensional molybdenum disulfide materials in primary human basophils. NANOIMPACT 2023; 29:100451. [PMID: 36626980 DOI: 10.1016/j.impact.2023.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
MoS2 has been increasingly used in place of graphene as a flexible and multifunctional 2D material in many biomedical applications such as cancer detection and drug delivery, which makes it crucial to evaluate downstream compatibility in human immune cells. Molybdenum is a component of stainless-steel stent implants and has previously been implicated in stent hypersensitivity. In view of this, it is important to ascertain the effect of MoS2 on allergy-relevant cells. Basophils are a less commonly used immune cell type. Unlike mast cells, basophils can be easily derived from primary human blood and can act as a sentinel for allergy. However, merely testing any one type of MoS2 in basophils could result in different biological results. We thus decided to compare 2D MoS2 from the two companies BeDimensional© (BD) and Biograph Solutions (BS), manufactured with two different but commonly exploited methods (BD, deoxycholate surfactant in a high-pressure liquid exfoliation, and BS using glycine in ball-milling exfoliation) to elucidate immunological end-points common to both MoS2 and to demonstrate the need for biological verification for end-users who may require a change of supplier. We report higher histamine production in human basophils with MoS2. No effects on either surface basophil activation markers CD63 and CD203c or reactive oxygen species (ROS) production and cell viability were observed. However, different cytokine production patterns were evidenced. IL-6 and IL-1β but not TNF and GM-CSF were increased for both MoS2. BS-MoS2 increased IL-4, while BD-MoS2 decreased IL-4 and increased IL-13. Molybdate ion itself only increased IL-1β and IL-4. Deoxycholate surfactant decreased viability at 18 h and increased ROS upon basophil activation. Therefore, these results demonstrate the safety of MoS2 in human basophils in general and highlight the importance of considering manufacturer additives and variability when selecting and investigating 2D materials such as MoS2.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | | | - Viviana Jehová González
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | | | | | - Ester Vázquez
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France.
| |
Collapse
|
34
|
Shibuya R, Kim BS. Skin-homing basophils and beyond. Front Immunol 2022; 13:1059098. [PMID: 36618424 PMCID: PMC9815541 DOI: 10.3389/fimmu.2022.1059098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Basophils have been implicated in type 2 inflammation and numerous disorders in the skin such as helminth infection, atopic dermatitis, and urticaria. Although similar in form and function to tissue-resident mast cells, classical studies on basophils have centered on those from the hematopoietic compartment. However, increasing studies in tissues like the skin demonstrate that basophils may take on particular characteristics by responding to unique developmental, chemotactic, and activation cues. Herein, we highlight how recent studies in barrier immunology suggest the presence of skin-homing basophils that harbor a unique identity in terms of phenotype, function, and motility. These concepts may uniquely inform how basophils contribute to diseases at multiple epithelial surfaces and our ability to therapeutically target the innate immune system in disease.
Collapse
Affiliation(s)
- Rintaro Shibuya
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,*Correspondence: Brian S. Kim,
| |
Collapse
|
35
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
36
|
Numata T, Araya J, Okuda K, Miyagawa H, Minagawa S, Ishikawa T, Hara H, Kuwano K. Long-Term Efficacy and Clinical Remission After Benralizumab Treatment in Patients with Severe Eosinophilic Asthma: A Retrospective Study. J Asthma Allergy 2022; 15:1731-1741. [PMID: 36471877 PMCID: PMC9719274 DOI: 10.2147/jaa.s391807] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Few studies on the long-term efficacy of benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, have been conducted for patients with severe eosinophilic asthma (SEA), especially regarding the improvement of pulmonary function and clinical remission in a real-world setting. OBJECTIVE To elucidate the long-term efficacy and clinical remission rate (CRR) in patients with SEA. METHODS From July 2018 to July 2022, 23 Japanese patients with SEA received benralizumab for two years or more at Jikei University Hospital. We retrospectively evaluated the patients' characteristics, biomarkers, number of exacerbations, pulmonary function, asthma symptoms, maintenance oral corticosteroid (OCS) dose and CRR. RESULTS The mean observation period was 38.3 (24-49) months. Among the 23 patients, 10 patients switched from mepolizumab to benralizumab. After administration of benralizumab, the forced expiratory volume in one second (FEV1) increased and was maintained for two years in the biologic-naïve group and in the switching group (177 ± 404 and 151 ± 236 [mL], respectively, P = 0.80). In all patients, the %FEV1 improved from 76.7 ± 22.9% to 84.3 ± 18.4% (P = 0.016), and the number of annual exacerbations decreased from 2.5 ± 3.3 to 0.74 ± 1.7 (P = 0.014). Furthermore, the Asthma Control Test score significantly improved, and the reduction in OCS dose was maintained for three years. Ultimately, five patients met the clinical remission criteria and exhibited stabilization of pulmonary function, no exacerbation, no OCS use and well-controlled symptoms. The CRR was significantly higher in patients with a blood basophil count (BBC) ≥ 22 than in those with a BBC < 22 (/µL) (38.5% vs 0%, respectively, P = 0.046). CONCLUSION Long-term treatment with benralizumab significantly improved pulmonary function, alleviated asthma symptoms and decreased the number of exacerbations at two years in a real-world setting. The CRR may be associated with the BBC at baseline.
Collapse
Affiliation(s)
- Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Keitaro Okuda
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hanae Miyagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Takeo Ishikawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Ham J, Lim M, Kim D, Kim HY. Memory-like innate lymphoid cells in the pathogenesis of asthma. Front Immunol 2022; 13:1005517. [PMID: 36466877 PMCID: PMC9712946 DOI: 10.3389/fimmu.2022.1005517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are recently discovered innate immune cells that reside and self-renew in mucosal tissues and serve as the first line of defense against various external insults. They include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. The development and functions of ILC1-3 reflect those of their adaptive immunity TH1, TH2, and TH17 T-cell counterparts. Asthma is a heterogeneous disease caused by repeated exposure to specific allergens or host/environmental factors (e.g., obesity) that stimulate pathogenic pulmonary immune cells, including ILCs. Memory used to be a hallmark of adaptive immune cells until recent studies of monocytes, macrophages, and NK cells showed that innate immune cells can also exhibit greater responses to re-stimulation and that these more responsive cells can be long-lived. Besides, a series of studies suggest that the tissue-resident innate lymphoid cells have memory-like phenotypes, such as increased cytokine productions or epigenetic modifications following repetitive exposure to allergens. Notably, both clinical and mouse studies of asthma show that various allergens can generate memory-like features in ILC2s. Here, we discuss the biology of ILCs, their roles in asthma pathogenesis, and the evidence supporting ILC memory. We also show evidence suggesting memory ILCs could help drive the phenotypic heterogeneity in asthma. Thus, further research on memory ILCs may be fruitful in terms of developing new therapies for asthma.
Collapse
Affiliation(s)
- Jongho Ham
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - MinYeong Lim
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Dongmo Kim
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
38
|
Tomiaki C, Miyauchi K, Ki S, Suzuki Y, Suzuki N, Morimoto H, Mukoyama Y, Kubo M. Role of FK506-sensitive signals in asthmatic lung inflammation. Front Immunol 2022; 13:1014462. [PMID: 36439133 PMCID: PMC9683035 DOI: 10.3389/fimmu.2022.1014462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 04/02/2025] Open
Abstract
Asthma is airway inflammatory diseases caused by the activation of group 2 innate lymphoid cells (ILC2s) and type 2 helper T (TH2) cells. Cysteine proteases allergen cause tissue damage to airway epithelial cells and activate ILC2-mediated type 2 airway inflammation. FK506 is an immunosuppressive agent against calcium-dependent NFAT activation that is also effective against asthmatic inflammation. However, the effects of FK506 on cysteine protease allergen-mediated airway inflammation remain unclear. In this study, we investigated the suppressive effects of FK506 on airway inflammation. FK506 had a partial inhibitory effect on ILC2-dependent eosinophil inflammation and a robust inhibitory effect on T cell-dependent eosinophil inflammation in a cysteine protease-induced mouse asthma model. The infiltration of T1/ST2+ CD4 T cells in the lungs contributed to the persistence of eosinophil infiltration in the airway; FK506 completely inhibited the infiltration of T1/ST2+ CD4 T cells. In the initial phase, FK506 treatment targeted lung ILC2 activation induced by leukotriene B4 (LTB4)-mediated calcium signaling, but not IL-33 signaling. FK506 also inhibited the IL-13-dependent accumulation of T1/ST2+ CD4 T cells in the lungs of the later responses. These results indicated that FK506 potently suppressed airway inflammation by targeting ILC2 activation and T1/ST2+ CD4 T cell accumulation.
Collapse
Affiliation(s)
- Chihiro Tomiaki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Narumi Suzuki
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | | | - Yohei Mukoyama
- Global Business Development Department, Maruho Co., Ltd., Kyoto, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
39
|
Baba R, Kabata H, Shirasaki Y, Kamatani T, Yamagishi M, Irie M, Watanabe R, Matsusaka M, Masaki K, Miyata J, Moro K, Uemura S, Fukunaga K. Upregulation of IL-4 receptor signaling pathway in circulating ILC2s from asthma patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:299-304. [PMID: 37779537 PMCID: PMC10509846 DOI: 10.1016/j.jacig.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/17/2022] [Accepted: 07/31/2022] [Indexed: 10/03/2023]
Abstract
Background Group 2 innate lymphoid cells (ILC2s) produce type 2 cytokines by stimulation with epithelial cell-derived cytokines and are implicated in the pathogenesis of various allergic diseases, including asthma. However, differences in the molecular characteristics of ILC2s between patients with asthma and healthy subjects remain unclear. Objective We sought to evaluate differences in cytokine production capacity and gene expression profile of ILC2s in the peripheral blood of patients with asthma and healthy subjects. Methods We evaluated ILC2s derived from 15 patients with asthma and 7 healthy subjects using flow cytometry, live-cell imaging of secretion activity analysis, and RNA-sequencing. Results ILC2s were sorted as CD45+Lineage-CRTH2+CD127+CD161+ cells from the peripheral blood of patients with asthma and healthy subjects, and the number of ILC2s was decreased in patients with asthma (851 ± 1134 vs 2679 ± 3009 cells/20 mL blood; P = .0066). However, patient-derived ILC2s were activated to produce more IL-5 and IL-13 in response to stimulation with IL-2, IL-33, and thymic stromal lymphopoietin compared with healthy subject-derived ILC2s (P = .0032 and P = .0085, respectively). Furthermore, RNA-sequencing analysis revealed that patient-derived ILC2s had different gene expression profiles, such as increased expression in cell growth-related genes (CDKN1b, CCNG2, CCND2, CCN1), prostaglandin E receptor (PTGER2), and IL-4 receptor. In addition, a gene set of the IL-4 receptor signaling pathway was significantly upregulated in ILC2s in patients with asthma (P = .042). Conclusions Our results suggest that circulating ILC2s in patients with asthma are preactivated via the IL-4 receptor signaling pathway and produce IL-5 and IL-13 vigorously by stimulation.
Collapse
Affiliation(s)
- Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Mai Yamagishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Live Cell Diagnosis, Ltd, Asaka, Saitama, Japan
| | - Misato Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Risa Watanabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
41
|
Chauché C, Rasid O, Donachie A, McManus CM, Löser S, Campion T, Richards J, Smyth DJ, McSorley HJ, Maizels RM. Suppression of airway allergic eosinophilia by Hp-TGM, a helminth mimic of TGF-β. Immunology 2022; 167:197-211. [PMID: 35758054 PMCID: PMC9885513 DOI: 10.1111/imm.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/20/2022] [Indexed: 02/02/2023] Open
Abstract
Type 2-high asthma is a chronic inflammatory disease of the airways which is increasingly prevalent in countries where helminth parasite infections are rare, and characterized by T helper 2 (Th2)-dependent accumulation of eosinophils in the lungs. Regulatory cytokines such as TGF-β can restrain inflammatory reactions, dampen allergic Th2 responses, and control eosinophil activation. The murine helminth parasite Heligmosomoides polygyrus releases a TGF-β mimic (Hp-TGM) that replicates the biological and functional properties of TGF-β despite bearing no structural similarity to the mammalian protein. Here, we investigated if Hp-TGM could alleviate allergic airway inflammation in mice exposed to Alternaria alternata allergen, house dust mite (HDM) extract or alum-adjuvanted ovalbumin protein (OVA). Intranasal administration of Hp-TGM during Alternaria exposure sharply reduced airway and lung tissue eosinophilia along with bronchoalveolar lavage fluid IL-5 and lung IL-33 cytokine levels at 24 h. The protective effect of Hp-TGM on airway eosinophilia was also obtained in the longer T-cell mediated models of HDM or OVA sensitisation with significant inhibition of eotaxin-1, IL-4 and IL-13 responses depending on the model and time-point. Hp-TGM was also protective when administered parenterally either when given at the time of allergic sensitisation or during airway allergen challenge. This project has taken the first steps in identifying the role of Hp-TGM in allergic asthma and highlighted its ability to control lung inflammation and allergic pathology. Future research will investigate the mode of action of Hp-TGM against airway allergic eosinophilia, and further explore its potential to be developed as a biotherapeutic in allergic asthma.
Collapse
Affiliation(s)
- Caroline Chauché
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Centre for Inflammation ResearchUniversity of Edinburgh, Queen's Medical Research InstituteEdinburghUK
| | - Orhan Rasid
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Anne‐Marie Donachie
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Caitlin M. McManus
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Stephan Löser
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Tiffany Campion
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Josh Richards
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Danielle J. Smyth
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Henry J. McSorley
- Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| |
Collapse
|
42
|
Matsuyama T, Matsuyama H, Dotake Y, Takagi K, Machida K, Inoue H. The Therapeutic Potential for Targeting Group 2 Innate Lymphoid Cells in Asthma. Front Immunol 2022; 13:930862. [PMID: 35911708 PMCID: PMC9327784 DOI: 10.3389/fimmu.2022.930862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
T helper type 2 cells (Th2 cells) and group 2 innate lymphoid cells (ILC2s) play an important role in the pathophysiology of asthma, including airway eosinophilic inflammation. ILC2s are activated by epithelial-derived cytokines [interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP)] from airway epithelial cells, leading to the release of high amounts of type 2 cytokines, such as IL-5 and IL-13. ILC2s induce airway inflammation in an antigen-independent manner, and ILC2s are considered to be involved in the pathogenesis of asthma exacerbation. Furthermore, ILC2 activation might also confer steroid resistance. Many recent studies in humans and mice are increasingly demonstrating that the function of ILC2s is regulated not just by epithelial-derived cytokines but by a variety of cytokines and mediators derived from innate immune cells. Furthermore, the biologics targeting these cytokines and/or their receptors have been shown to reduce asthma exacerbations and improve lung function and quality of life in asthmatics. This article reviews the current treatment landscape for type 2 airway inflammation in asthma and discusses the therapeutic potential for targeting ILC2s.
Collapse
|
43
|
Sunaga S, Tsunoda J, Teratani T, Mikami Y, Kanai T. Heterogeneity of ILC2s in the Intestine; Homeostasis and Pathology. Front Immunol 2022; 13:867351. [PMID: 35707544 PMCID: PMC9190760 DOI: 10.3389/fimmu.2022.867351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were identified in 2010 as a novel lymphocyte subset lacking antigen receptors, such as T-cell or B-cell receptors. ILC2s induce local immune responses characterized by producing type 2 cytokines and play essential roles for maintaining tissue homeostasis. ILC2s are distributed across various organs, including the intestine where immune cells are continuously exposed to external antigens. Followed by luminal antigen stimulation, intestinal epithelial cells produce alarmins, such as IL-25, IL-33, and thymic stromal lymphopoietin, and activate ILC2s to expand and produce cytokines. In the context of parasite infection, the tuft cell lining in the epithelium has been revealed as a dominant source of intestinal IL-25 and possesses the capability to regulate ILC2 homeostasis. Neuronal systems also regulate ILC2s through neuropeptides and neurotransmitters, and interact with ILC2s bidirectionally, a process termed “neuro-immune crosstalk”. Activated ILC2s produce type 2 cytokines, which contribute to epithelial barrier function, clearance of luminal antigens and tissue repair, while ILC2s are also involved in chronic inflammation and tissue fibrosis. Recent studies have shed light on the contribution of ILC2s to inflammatory bowel diseases, mainly comprising ulcerative colitis and Crohn’s disease, as defined by chronic immune activation and inflammation. Modern single-cell analysis techniques provide a tissue-specific picture of ILC2s and their roles in regulating homeostasis in each organ. Particularly, single-cell analysis helps our understanding of the uniqueness and commonness of ILC2s across tissues and opens the novel research area of ILC2 heterogeneity. ILC2s are classified into different phenotypes depending on tissue and phase of inflammation, mainly inflammatory and natural ILC2 cells. ILC2s can also switch phenotype to ILC1- or ILC3-like subsets. Hence, recent studies have revealed the heterogeneity and plasticity of ILC2, which indicate dynamicity of inflammation and the immune system. In this review, we describe the regulatory mechanisms, function, and pathological roles of ILC2s in the intestine.
Collapse
Affiliation(s)
- Shogo Sunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| |
Collapse
|
44
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
45
|
Sugimura R, Wang CY. The Role of Innate Lymphoid Cells in Cancer Development and Immunotherapy. Front Cell Dev Biol 2022; 10:803563. [PMID: 35557940 PMCID: PMC9086356 DOI: 10.3389/fcell.2022.803563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are an elusive type of innate immune cell that was only discovered recently. Their tissue residency and dependency makes them a niche group of cells that bridge the adaptive and innate immune system. The nomenclature and classification of ILCs have been challenging due to their heterogeneity. The currently agreed ILC classification splits the cells into two categories including cytotoxic and helper ILCs. The tumour microenvironment is often hostile for immune cells. Remodeling the microenvironment and regulating other immune cells—achieved by ILCs-can enhance anti-tumor effects. How ILCs regulate other immune cells in the tumor microenvironment remains to be understood. Here we review current understanding of the role of ILCs in the tumor microenvironment. ILCs recruit CD8 positive T and memory T cells in PDAC, ILCs are also able to help CD108 positive B cells migrate toward tumour locations. In NSCLC, ILC3s are seen helping resident macrophages enhancing the mucus immunity to cancer cells. We then highlight the roles of cytokines and immune checkpoint pathways in ILCs and its implication in immunotherapy.
Collapse
|
46
|
Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. BIOSENSORS 2022; 12:bios12040244. [PMID: 35448304 PMCID: PMC9030187 DOI: 10.3390/bios12040244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.
Collapse
|
47
|
Bonam SR, Chauvin C, Levillayer L, Mathew MJ, Sakuntabhai A, Bayry J. SARS-CoV-2 Induces Cytokine Responses in Human Basophils. Front Immunol 2022; 13:838448. [PMID: 35280992 PMCID: PMC8907115 DOI: 10.3389/fimmu.2022.838448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Basophils play a key role in the orientation of immune responses. Though the interaction of SARS-CoV-2 with various immune cells has been relatively well studied, the response of basophils to this pandemic virus is not characterized yet. In this study, we report that SARS-CoV-2 induces cytokine responses and in particular IL-13, in both resting and IL-3 primed basophils. The response was prominent under IL-3 primed condition. However, either SARS-CoV-2 or SARS-CoV-2-infected epithelial cells did not alter the expression of surface markers associated with the activation of basophils, such as CD69, CD13 and/or degranulation marker CD107a. We also validate that human basophils are not permissive to SARS-CoV-2 replication. Though increased expression of immune checkpoint molecule PD-L1 has been reported on the basophils from COVID-19 patients, we observed that SARS-CoV-2 does not induce PD-L1 on the basophils. Our data suggest that basophil cytokine responses to SARS-CoV-2 might help in reducing the inflammation and also to promote antibody responses to the virus.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Laurine Levillayer
- Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France
| | | | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| |
Collapse
|
48
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Dupilumab Effects on Innate Lymphoid Cell and Helper T Cell Populations in Patients with Atopic Dermatitis. JID INNOVATIONS 2021; 1:100003. [PMID: 34909707 PMCID: PMC8659712 DOI: 10.1016/j.xjidi.2021.100003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILCs) are thought to contribute to the pathogenesis of atopic dermatitis (AD). IL-4 stimulates T helper type 2 (Th2) cells and ILC2s to proliferate and produce cytokines. Dupilumab, an antibody against the IL-4 receptor, is used in AD therapy. We speculated that its efficacy might involve blocking the activation of Th2 cells and ILC2s via IL-4. Here, we examined circulating Th2 cells and ILC2s in 27 Japanese patients with AD before and after the administration of dupilumab. Between 0 and 4 months after dupilumab administration, the percentages of Th2 cells and ILC2s were decreased. Notably, ILC2/3 ratio was decreased after dupilumab treatment. Interestingly, ILC2/3 ratio before dupilumab treatment were significantly higher in high responders than in low responders to dupilumab. To resolve the molecular signatures of the Th2 and ILC2s in AD, we sorted CD4+ T cells and ILCs from peripheral blood and analyzed their transcriptomes using the BD Rhapsody Single-cell RNA sequencing system. Between 0 and 4 months after dupilumab administration, the Th2 and ILC2 cluster gene signatures were downregulated. Thus, dupilumab might improve dermatitis by suppressing the Th2 cell and ILC2 populations and altering the Th2 and ILC2 repertoire in patients with AD.
Collapse
|
50
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|