1
|
Valapala VNG, Dasari N, Kolli VK, Mandapaka M. Impact of 25-hydroxy vitamin D levels in severe acute respiratory syndrome coronavirus 2 patients with respect to clinical and biochemical profile: An experience from a tertiary care hospital. Clin Nutr ESPEN 2024; 60:187-194. [PMID: 38479909 DOI: 10.1016/j.clnesp.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Among the many micronutrients, Vitamin D deficiency has been associated with the severity of Severe Acute Respiratory Syndrome Coronavirus 2 patients. DESIGN AND METHODS A retrospective observational study was conducted on Severe acute respiratory syndrome coronavirus 2 patients admitted to a tertiary care hospital between April 5, 2021, and May 5, 2021. RESULTS Among 285 patients,77.2 % of the patients who stayed for more than 14 days were either Vitamin D insufficient or deficient [P value < 0.05]. In our study, the mean oxygen saturation at admission was 85.7 % in the Vitamin D deficiency group compared to 95.6 % in Vitamin D sufficiency patients [P value < 0.05]. Mean serum ferritin was 398 ng/ml in the Vitamin D deficiency group compared to 393 ng/ml in Vitamin D sufficiency patients [P value > 0.05]. The mean C-reactive protein was 107.6 mg/ml in the Vitamin D deficiency group compared to 21.8 ng/ml in Vitamin D sufficiency patients [P value < 0.05]. The mean D-Dimer was 2268 ng/ml in the Vitamin D deficiency group compared to 781 ng/ml in Vitamin D sufficiency patients [P value < 0.05]. In the non-survivor group,97.4 % were Vitamin D deficient and insufficient. Only 2 % of the patients who survived were Vitamin D deficient [P value < 0.05]. CONCLUSION We observed that low 25-hydroxy Vitamin D levels were associated with lower oxygen saturation and higher acute physiology and chronic health evaluation II scores, requiring a more extended stay in the hospital. C-reactive protein and D-dimers were significantly higher in Vitamin D deficient patients, suggesting severe disease. We did not find statistically significant findings in the case of the correlation of serum ferritin levels with Vitamin D status.
Collapse
Affiliation(s)
- Venkat Narayana Goutham Valapala
- Department of General Medicine, GITAM Institute of Medical Sciences and Research, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Nikhila Dasari
- Department Of Respiratory Medicine, GITAM Institute of Medical Sciences and Research, GITAM (Deemed To Be University), Visakhapatnam, 530045, India
| | - Viswa Kalyan Kolli
- Department of Biochemistry, GITAM Institute of Medical Sciences and Research, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| | - Murty Mandapaka
- Department of General Medicine, GITAM Institute of Medical Sciences and Research, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| |
Collapse
|
2
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
3
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
4
|
Paranga TG, Pavel-Tanasa M, Constantinescu D, Plesca CE, Petrovici C, Miftode IL, Moscalu M, Cianga P, Miftode EG. Comparison of C-reactive protein with distinct hyperinflammatory biomarkers in association with COVID-19 severity, mortality and SARS-CoV-2 variants. Front Immunol 2023; 14:1213246. [PMID: 37388734 PMCID: PMC10302717 DOI: 10.3389/fimmu.2023.1213246] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
C-reactive protein (CRP) has been one of the most investigated inflammatory-biomarkers during the ongoing COVID-19 pandemics caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The severe outcome among patients with SARS-CoV-2 infection is closely related to the cytokine storm and the hyperinflammation responsible for the acute respiratory distress syndrome and multiple organ failure. It still remains a challenge to determine which of the hyperinflammatory biomarkers and cytokines are the best predictors for disease severity and mortality in COVID-19 patients. Therefore, we evaluated and compared the outcome prediction efficiencies between CRP, the recently reported inflammatory modulators (suPAR, sTREM-1, HGF), and the classical biomarkers (MCP-1, IL-1β, IL-6, NLR, PLR, ESR, ferritin, fibrinogen, and LDH) in patients confirmed with SARS-CoV-2 infection at hospital admission. Notably, patients with severe disease had higher serum levels of CRP, suPAR, sTREM-1, HGF and classical biomarkers compared to the mild and moderate cases. Our data also identified CRP, among all investigated analytes, to best discriminate between severe and non-severe forms of disease, while LDH, sTREM-1 and HGF proved to be excellent mortality predictors in COVID-19 patients. Importantly, suPAR emerged as a key molecule in characterizing the Delta variant infections.
Collapse
Affiliation(s)
- Tudorita Gabriela Paranga
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Claudia Elena Plesca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Cristina Petrovici
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Petru Cianga
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| |
Collapse
|
5
|
Sun J, Ma X, Zhang M, Xie M, Zhang X, Han X, Li X, Zhou E, Wang J, Wang J. Comparisons of lymphocytes profiles and inflammatory cytokines levels in blood of patients with differed severity of infection by human adenovirus type 7. BMC Infect Dis 2023; 23:174. [PMID: 36949406 PMCID: PMC10031703 DOI: 10.1186/s12879-023-08132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Human adenovirus (HAdV) infection outbreak causes community-acquired pneumonia. Cellular immune dysfunction and hypercytokinemia play important roles in the pathogenesis of adenovirus respiratory infection. Some soluble factors in peripheral blood can assist in judging the virus-induced disease severity. The expression levels of inflammatory cytokines differ among patients with different disease severity. However, whether and how HAdV-7 infection influences the composition of blood immune cells and serum cytokine levels in patients at different disease stages, as well as the diagnosis values of these parameters, have rarely been intensively studied. We aimed to investigate lymphocytes profiles and cytokines levels in blood of patients at different disease stages upon human adenovirus type 7 (HAdV-7) infections, and explored the diagnosis values of the investigated parameters. METHODS Patients from two outbreaks of HAdV-7 in military of China were categorized into upper respiratory infection (URI) group, common pneumonia (CP) group and severe pneumonia (SP) group according to disease severity. Peripheral blood samples were subjected to routine laboratory tests, while flow cytometry and ELISA were used to measure the lymphocyte subsets and cytokines in blood, respectively. The receiver operating characteristic (ROC) curves were performed to examine the diagnostic of these blood parameters. RESULTS Signs of imbalanced lymphocytes composition and hypercytokinemia were observed in HAdV-7-infected patients. The percentages of CD3+ T cells and NK cells were significantly decreased along with the aggravation of the disease, particularly for NK cells and CD4+ T cells. The neutrophil to lymphocyte ratio (NLR) increased significantly in patients with more severe disease. In addition, the levels of serum CXCL10, IL-2 and TNF-α were positively correlated with disease severity, while reduced levels of IFN-γ and IL-10 were found in SP patients. Furthermore, analysis of ROC showed that multiple parameters including the percentage of blood CD3+ cells and serum CXCL10 level could predict the progression of HAdV-7 infection. CONCLUSION Imbalance of immune state with hypercytokinemia occurred during HAdV-7 infection. The percentages of blood immune cells such as CD3+ T cells and the levels of serum cytokines such as CXCL10 showed potential diagnosis values in HAdV-7 infection.
Collapse
Affiliation(s)
- Junping Sun
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xidong Ma
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Mingyue Zhang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Mei Xie
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xingang Zhang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xinjie Han
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xinfu Li
- Department of respiratory and critical care medicine, West Beijing Medical District of People's Liberation Army General Hospital, West Third Ring North Road, Haidian District, 100048, Beijing, China
| | - Enlu Zhou
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Junyu Wang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Jianxin Wang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China.
| |
Collapse
|
6
|
Lampart M, Zellweger N, Bassetti S, Tschudin-Sutter S, Rentsch KM, Siegemund M, Bingisser R, Osswald S, Kuster GM, Twerenbold R. Clinical utility of inflammatory biomarkers in COVID-19 in direct comparison to other respiratory infections-A prospective cohort study. PLoS One 2022; 17:e0269005. [PMID: 35622838 PMCID: PMC9140295 DOI: 10.1371/journal.pone.0269005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 01/08/2023] Open
Abstract
Background Inflammatory biomarkers are associated with severity of coronavirus disease 2019 (COVID-19). However, direct comparisons of their utility in COVID-19 versus other respiratory infections are largely missing. Objective We aimed to investigate the prognostic utility of various inflammatory biomarkers in COVID-19 compared to patients with other respiratory infections. Materials and methods Patients presenting to the emergency department with symptoms suggestive of COVID-19 were prospectively enrolled. Levels of Interleukin-6 (IL-6), c-reactive protein (CRP), procalcitonin, ferritin, and leukocytes were compared between COVID-19, other viral respiratory infections, and bacterial pneumonia. Primary outcome was the need for hospitalisation, secondary outcome was the composite of intensive care unit (ICU) admission or death at 30 days. Results Among 514 patients with confirmed respiratory infections, 191 (37%) were diagnosed with COVID-19, 227 (44%) with another viral respiratory infection (viral controls), and 96 (19%) with bacterial pneumonia (bacterial controls). All inflammatory biomarkers differed significantly between diagnoses and were numerically higher in hospitalized patients, regardless of diagnoses. Discriminative accuracy for hospitalisation was highest for IL-6 and CRP in all three diagnoses (in COVID-19, area under the curve (AUC) for IL-6 0.899 [95%CI 0.850–0.948]; AUC for CRP 0.922 [95%CI 0.879–0.964]). Similarly, IL-6 and CRP ranged among the strongest predictors for ICU admission or death at 30 days in COVID-19 (AUC for IL-6 0.794 [95%CI 0.694–0.894]; AUC for CRP 0.807 [95%CI 0.721–0.893]) and both controls. Predictive values of inflammatory biomarkers were generally higher in COVID-19 than in controls. Conclusion In patients with COVID-19 and other respiratory infections, inflammatory biomarkers harbour strong prognostic information, particularly IL-6 and CRP. Their routine use may support early management decisions.
Collapse
Affiliation(s)
- Maurin Lampart
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Núria Zellweger
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | | | - Martin Siegemund
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Stefan Osswald
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gabriela M. Kuster
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raphael Twerenbold
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, Hamburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Abstract
The coronavirus pandemic has lasted for more than a year now and still remains the leading cause of concern, worldwide. The causal agent; SARS- CoV-2, leads to the development of respiratory distress in the lower respiratory tract, sometimes leading to fatalities. Keeping in mind the discovery of mutant strains across the world, as well as the delay in vaccinations across vast populations, most people speculate boosting their immune systems as a preventive and precautionary measure. One of the most commonly observed conditions that hamper immunity; Vitamin D deficiency has been linked to the onset and the alteration of course of the disease in patients and is also being explored as a potential drug supplement. These surmises make it essential to study deep into the speculations. This review aims to overview the possible correlations between Vitamin D and COVID-19.
Collapse
|
8
|
Hsieh TH, Lin YJ, Hsioa MJ, Wang HJ, Chen LT, Yang SL, Huang CG. Transcriptome Differences in Normal Human Bronchial Epithelial Cells in Response to Influenza A pdmH1N1 or H7N9 Virus Infection. Cells 2022; 11:cells11050781. [PMID: 35269402 PMCID: PMC8909308 DOI: 10.3390/cells11050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Avian influenza A (H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. The emergence of H7N9 virus infections is a serious public health threat. To identify virus–host interaction differences between the highly virulent H7N9 and pandemic influenza H1N1 (pdmH1N1), RNA sequencing was performed of normal human bronchial epithelial (NHBE) cells infected with either virus. The transcriptomic analysis of host cellular responses to viral infection enables the identification of potential cellular factors related to infection. Significantly different gene expression patterns were found between pdmH1N1- and H7N9-infected NHBE cells. In addition, the H7N9 virus infection induced strong immune responses, while cellular repair mechanisms were inhibited. The differential expression of specific factors observed between avian H7N9 and pdmH1N1 influenza virus strains can account for variations in disease pathogenicity. These findings provide a framework for future studies examining the molecular mechanisms underlying the pathogenicity of avian H7N9 virus.
Collapse
Affiliation(s)
- Tzu-Hsuan Hsieh
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
| | - Ya-Jhu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
| | - Mei-Jen Hsioa
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
| | - Hsin-Ju Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
| | - Lu-Ting Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
| | - Shu-Li Yang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (T.-H.H.); (Y.-J.L.); (M.-J.H.); (H.-J.W.); (L.-T.C.); (S.-L.Y.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Fu B, Wu Z, Huang L, Chai Z, Zheng P, Sun Q, Gu S, Xu Q, Feng H, Tang L. A comparison of demographic, epidemiological and clinical characteristics of hospital influenza-related viral pneumonia patients. BMC Infect Dis 2021; 21:1002. [PMID: 34563110 PMCID: PMC8466655 DOI: 10.1186/s12879-021-06485-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Background Through the comparison of the demographic, epidemiological, and clinical characteristics of hospital human influenza (influenza A (H1N1) pdm09, H3N2, and B)-related and hospitalized avian-origin influenza A (H7N9)-related viral pneumonia patients, find the different between them. Methods A retrospective study was conducted in hospitalized influenza-related viral pneumonia patients. Results Human influenza A-related patients in the 35–49-year-old group were more than those with B pneumonia patients (p = 0.027), and relatively less in the ≥ 65-year-old group than B pneumonia patients (p = 0.079). The proportion of comorbid condition to human influenza A pneumonia was 58%, lower than B pneumonia and H7N9 pneumonia patients (78% vs. 77.8%; p = 0.013). The proportion of invasive mechanical ventilation (IMV), lymphocytopenia, elevated lactate dehydrogenase to hospitalized human influenza A-related viral pneumonia patients was higher than B pneumonia patients (p < 0.05), but lower than H7N9 pneumonia patients (p < 0.05). In the multivariate analysis, pulmonary consolidation (odds ratio (OR): 13.67; 95% confidence interval (CI) 1.54–121.12; p = 0.019) and positive bacterial culture (sputum) (OR: 7.71; 95% CI 2.48–24.03; p < 0.001) were independently associated with IMV, while shock (OR: 13.16; 95% CI 2.06–84.07; p = 0.006), white blood cell count > 10,000/mm3 (OR: 7.22; 95% CI 1.47–35.58; p = 0.015) and positive bacterial culture(blood or sputum) (OR: 6.27; 95% CI 1.36–28.85; p = 0.018) were independently associated with death in the three types hospitalized influenza-related viral pneumonia patients. Conclusions Hospital influenza B-related viral pneumonia mainly affects the elderly and people with underlying diseases, while human influenza A pneumonia mainly affects the young adults; however, the mortality was similar. The hospitalized human influenza A-related viral pneumonia patients was severer than B pneumonia patients, but milder than H7N9 pneumonia patients. Pulmonary consolidation and positive bacterial culture (sputum) were independently associated with IMV, while shock, white blood cell count > 10,000/mm3, and positive bacterial culture (blood or sputum) were independently associated with death to three types hospitalized influenza-related viral pneumonia patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06485-x.
Collapse
Affiliation(s)
- Bin Fu
- Department of Infectious Diseases, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, People's Republic of China
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Lingtong Huang
- Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhaohui Chai
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Peidong Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Qinmiao Sun
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Haiting Feng
- Department of Nosocomial Infection, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Shulan(Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
10
|
Luan YY, Yin CH, Yao YM. Update Advances on C-Reactive Protein in COVID-19 and Other Viral Infections. Front Immunol 2021; 12:720363. [PMID: 34447386 PMCID: PMC8382792 DOI: 10.3389/fimmu.2021.720363] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) can manifest as a viral-induced hyperinflammation with multiorgan dysfunction. It has been documented that severe COVID-19 is associated with higher levels of inflammatory mediators than a mild disease, and tracking these markers may allow early identification or even prediction of disease progression. It is well known that C-reactive protein (CRP) is the acute-phase protein and the active regulator of host innate immunity, which is highly predictive of the need for mechanical ventilation and may guide escalation of treatment of COVID-19-related uncontrolled inflammation. There are numerous causes of an elevated CRP, including acute and chronic responses, and these can be infectious or non-infectious in etiology. CRP are normally lacking in viral infections, while adaptive immunity appears to be essential for COVID-19 virus clearance, and the macrophage activation syndrome may explain the high serum CRP contents and contribute to the disease progression. Nevertheless, for the assessment of host inflammatory status and identification of viral infection in other pathologies, such as bacterial sepsis, the acute-phase proteins, including CRP and procalcitonin, can provide more important information for guiding clinical diagnosis and antibiotic therapy. This review is aimed to highlight the current and most recent studies with regard to the clinical significance of CRP in severe COVID-19 and other viral associated illnesses, including update advances on the implication of CRP and its form specifically on the pathogenesis of these diseases. The progressive understanding in these areas may be translated into promising measures to prevent severe outcomes and mitigate appropriate treatment modalities in critical COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Ying-Yi Luan
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of PLA General Hospital, Beijing, China.,Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Cheng-Hong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Sivandzadeh GR, Askari H, Safarpour AR, Ejtehadi F, Raeis-Abdollahi E, Vaez Lari A, Abazari MF, Tarkesh F, Bagheri Lankarani K. COVID-19 infection and liver injury: Clinical features, biomarkers, potential mechanisms, treatment, and management challenges. World J Clin Cases 2021; 9:6178-6200. [PMID: 34434987 PMCID: PMC8362548 DOI: 10.12998/wjcc.v9.i22.6178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
It is hypothesized that liver impairment caused by coronavirus disease 2019 (COVID-19) infection might play a central role in severe clinical presentations. Liver injury is closely associated with severe disease and, even with antiviral drugs, have a poor prognosis in COVID-19 patients. In addition to the common hepatobiliary disorders caused by COVID-19, patients with pre-existing liver diseases demand special considerations during the current pandemic. Thus, it is vital that upon clinical presentation, patients with concurrent pre-existing liver disease associated with metabolic dysfunction and COVID-19 be managed properly to prevent liver failure. Careful monitoring and early detection of liver damage through biomarkers after hospitalization for COVID-19 is underscored in all cases, particularly in those with pre-existing metabolic liver injury. The purpose of this study was to determine most recent evidence regarding causality, potential risk factors, and challenges, therapeutic options, and management of COVID-19 infection in vulnerable patients with pre-existing liver injury. This review aims to highlight the current frontier of COVID-19 infection and liver injury and the direction of liver injury in these patients.
Collapse
Affiliation(s)
- Gholam Reza Sivandzadeh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Fardad Ejtehadi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom 1417613151, Iran
| | - Armaghan Vaez Lari
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135715794, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Firoozeh Tarkesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | | |
Collapse
|
12
|
Ryabkova VA, Churilov LP, Shoenfeld Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm - The common denominator and the lessons to be learned. Clin Immunol 2021; 223:108652. [PMID: 33333256 PMCID: PMC7832378 DOI: 10.1016/j.clim.2020.108652] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of COVID-19 reminds us that the emerging and reemerging respiratory virus infections pose a continuing threat to human life. Cytokine storm syndromes of viral origin seem to have a common pathogenesis of the imbalanced immune response with the exaggerated inflammatory reaction combined with the reduction and functional exhaustion of T cells. Immunomodulatory therapy is gaining interest in COVID-19, but this strategy has received less attention in other respiratory viral infections than it deserved. In this review we suggest that based on the similarities of the immune dysfunction in the severe cases of different respiratory viral infections, some lessons from the immunomodulatory therapy of COVID-19 (particularly regarding the choice of an immunomodulatory drug, the selection of patients and optimal time window for this kind of therapy) could be applied for some cases of severe influenza infection and probably for some future outbreaks of novel severe respiratory viral infections.
Collapse
Affiliation(s)
- Varvara A Ryabkova
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Leonid P Churilov
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Yehuda Shoenfeld
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated to Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.
| |
Collapse
|
13
|
Rystedt K, Harbin NJ, Lindbaek M, Radzeviciene R, Gunnarsson R, Eggertsen R, C. Butler C, van der Velden AW, J. Verheij T, Sundvall PD. Is C-reactive protein associated with influenza A or B in primary care patients with influenza-like illness? A cross-sectional study. Scand J Prim Health Care 2020; 38:447-453. [PMID: 33174788 PMCID: PMC7782939 DOI: 10.1080/02813432.2020.1843942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Identifying influenza A or B as cause of influenza-like illness (ILI) is a challenge due to non-specific symptoms. An accurate, cheap and easy to use biomarker might enhance targeting influenza-specific management in primary care. The aim of this study was to investigate if C-reactive protein (CRP) is associated with influenza A or B, confirmed with PCR testing, in patients presenting with ILI. DESIGN Cross-sectional study. SETTING Primary care in Lithuania, Norway and Sweden. SUBJECTS A total of 277 patients at least 1 year of age consulting primary care with ILI during seasonal influenza epidemics. MAIN OUTCOME MEASURES Capillary blood CRP analysed as a point-of-care test and detection of influenza A or B on nasopharyngeal swabs in adults, and nasal and pharyngeal swabs in children using PCR. RESULTS The prevalence of positive tests for influenza A among patients was 44% (121/277) and the prevalence of influenza B was 21% (58/277). Patients with influenza A infection could not be identified based on CRP concentration. However, increasing CRP concentration in steps of 10 mg/L was associated with a significantly lower risk for influenza B with an adjusted odds ratio of 0.42 (0.25-0.70; p<.001). Signs of more severe symptoms like shortness of breath, sweats or chills and dizziness were associated with higher CRP. CONCLUSIONS There was no association between CRP and influenza A. Increased concentration of CRP was associated with a lower risk for having influenza B, a finding that lacks clinical usefulness. Hence, CRP testing should be avoided in ILI, unless bacterial pneumonia is suspected. Key points Identifying influenza A or B as cause of influenza-like illness (ILI) is a challenge due to non-specific symptoms. There was no association between concentration of CRP and influenza A. Increased concentration of CRP was associated with a lower risk for having influenza B, a finding that lacks clinical usefulness. A consequence is that CRP testing should be avoided in ILI, unless bacterial pneumonia or similar is suspected.
Collapse
Affiliation(s)
- Karin Rystedt
- Region Västra Götaland, Research and Development Primary Health Care, Research and Development Centre Skaraborg, Skövde, Sweden
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Södra Ryd Health Care Centre, Skövde, Sweden
- CONTACT Karin Rystedt Research and Development Unit Primary Health Care Skaraborg, StationsgatanSE-541 30, Sweden
| | - Nicolay Jonassen Harbin
- Department of General Practice, Antibiotic Center for Primary Care, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Morten Lindbaek
- Department of General Practice, Antibiotic Center for Primary Care, Institute of Health and Society, University of Oslo, Oslo, Norway
| | | | - Ronny Gunnarsson
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Research and Development Primary Health Care, Research and Development Centre Södra Älvsborg, Borås, Sweden
| | - Robert Eggertsen
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Research and Development Primary Health Care, Research and Development Centre Göteborg and Södra Bohuslän, Göteborg, Sweden
| | - Christopher C. Butler
- Department of Primary Care Health Services, University of Oxford, Radcliffe Observatory Quarter, Oxford, UK
| | - Alike W. van der Velden
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theo J. Verheij
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pär-Daniel Sundvall
- Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Research and Development Primary Health Care, Research and Development Centre Södra Älvsborg, Borås, Sweden
| |
Collapse
|
14
|
Identifying and quantifying robust risk factors for mortality in critically ill patients with COVID-19 using quantile regression. Am J Emerg Med 2020; 45:345-351. [PMID: 33046291 PMCID: PMC7467869 DOI: 10.1016/j.ajem.2020.08.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Many laboratory indicators form a skewed distribution with outliers in critically ill patients with COVID-19, for which robust methods are needed to precisely determine and quantify fatality risk factors. Method A total of 192 critically ill patients (142 were discharged and 50 died in the hospital) with COVID-19 were included in the sample. Quantile regression was used to determine discrepant laboratory indexes between survivors and non-survivors and quantile shift (QS) was used to quantify the difference. Logistic regression was then used to calculate the odds ratio (OR) and the predictive power of death for each risk indicator. Results After adjusting for multiple comparisons and controlling numerous confounders, quantile regression revealed that the laboratory indexes of non-survivors were significantly higher in C-reactive protein (CRP; QS = 0.835, p < .001), white blood cell counts (WBC; QS = 0.743, p < .001), glutamic oxaloacetic transaminase (AST; QS = 0.735, p < .001), blood glucose (BG; QS = 0.608, p = .059), fibrin degradation product (FDP; QS = 0.730, p = .080), and partial pressure of carbon dioxide (PCO2), and lower in oxygen saturation (SO2; QS = 0.312, p < .001), calcium (Ca2+; QS = 0.306, p = .073), and pH. Most of these indexes were associated with an increased fatality risk, and predictive for the probability of death. Especially, CRP is the most prominent index with and odds ratio of 205.97 and predictive accuracy of 93.2%. Conclusion Laboratory indexes provided reliable information on mortality in critically ill patients with COVID-19, which might help improve clinical prediction and treatment at an early stage.
Collapse
|
15
|
Gholizadeh P, Safari R, Marofi P, Zeinalzadeh E, Pagliano P, Ganbarov K, Esposito S, Khodadadi E, Yousefi M, Samadi Kafil H. Alteration of Liver Biomarkers in Patients with SARS-CoV-2 (COVID-19). J Inflamm Res 2020; 13:285-292. [PMID: 32669866 PMCID: PMC7335895 DOI: 10.2147/jir.s257078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) emerged in China and spread worldwide. In this study, we assessed the characteristics of markers of the liver in patients with COVID-19 to provide new insights in improving clinical treatment. PATIENTS AND METHODS We recruited 279 patients who confirmed COVID-19 and the data of liver biomarkers and complete blood count of patients were defined as the day onset when the patients admitted to the hospital. RESULTS The average of LDH value was 621.29 U/L in all patients with COVID-19, and CPK was 286.90 U/L. The average AST was 44.03 U/L in all patients, and ALT was 31.14 U/L. The AST/ALT ratio was 1.64 in all patients. The measurement of CRP was increased by 79.93% in all patients. Average ALT and AST values of patients with elevated ALT were significantly increased in comparison to patients with normal ALT (P-value = 0.001), while AST/ALT ratio was significantly decreased compared to patients with normal ALT (P-value= 0.014). In addition, the average LDH of patients with elevated ALT was significantly increased compared to patients with normal ALT (P-value = 0.014). CONCLUSION Hepatic injury and abnormal liver enzymes related to COVID-19 infection is an acute non-specific inflammation alteration.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rohollah Safari
- Department of Microbiology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khudaverdi Ganbarov
- Department of Microbiology, Baku State University, Baku, Republic of Azerbaijan
| | | | - Ehsaneh Khodadadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Potempa LA, Rajab IM, Hart PC, Bordon J, Fernandez-Botran R. Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections. Am J Trop Med Hyg 2020; 103:561-563. [PMID: 32588812 PMCID: PMC7410479 DOI: 10.4269/ajtmh.20-0473] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Approximately 20% of patients infected with SARS-CoV-2 (COVID-19) develop potentially life-threatening pathologies involving hyperinflammation, cytokine storm, septic shock complications, coagulation dysfunction, and multiple organ failure. Blood levels of the prototypic acute phase reactant, C-reactive protein (CRP), which is hepatically synthesized and released in response to interleukin-6 stimulation, is markedly elevated in patients with COVID-19. Markedly high CRP levels correlate with poor prognosis for survival. Insights into CRP structure–function relationships have uncovered both pro- and anti-inflammatory isoforms that may be used to monitor the extent of tissue damage associated with COVID-19 pathologies and prognoses. Herein, rationale is given for interpretation of CRP blood levels as a simple, rapid, and cost-effective way to assess disease severity and help guide therapeutic options in COVID-19 patients.
Collapse
Affiliation(s)
| | | | - Peter C Hart
- College of Pharmacy, Roosevelt University, Schaumburg, Illinois
| | - Jose Bordon
- Washington Health Institute, Washington, District of Columbia
| | - Rafael Fernandez-Botran
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
17
|
de Waal GM, de Villiers WJS, Forgan T, Roberts T, Pretorius E. Colorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability. Sci Rep 2020; 10:8777. [PMID: 32472080 PMCID: PMC7260372 DOI: 10.1038/s41598-020-65324-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Gut dysbiosis contributes to the development of a dysfunctional gut barrier, facilitating the translocation of bacteria and inflammagens, and is implicated in colorectal cancer (CRC) pathogenesis. Such 'leaky gut' conditions result in systemic inflammation, of which a hallmark is increased hypercoagulability. Fluorescence antibody confocal microscopy was used to determine circulating levels of lipopolysaccharide (LPS) in control and CRC populations. Here we showed that circulating levels of LPS are significantly elevated in the CRC population. We also showed that markers of inflammation and hypercoagulability are increased in this population. Furthermore, anomalous blood clotting and structural changes in blood components are presented. Importantly, the association between LPS levels, inflammation, and hematological dysfunction was analysed. Statistical regression models were applied to identify markers with strong association with CRC, and to investigate the correlation between markers. A core aim is enhanced biomarker discovery for CRC. We conclude that circulating LPS can promote systemic inflammation and contribute to the development of a pathological coagulation system, with resulting chronic inflammation and an activated coagulation system implicated in tumorigenesis. Blood-based screening tools are an emerging research area of interest for CRC screening. We propose the use of additional (novel) biomarkers to effectively screen for CRC.
Collapse
Affiliation(s)
- Greta M de Waal
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Willem J S de Villiers
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Internal Medicine, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy Forgan
- Consultant Colorectal Surgeon, Division of Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Academic Hospital, Western Cape, South Africa
| | - Timothy Roberts
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK
- University College London Hospital NHS Foundation Trust, 250 Euston Road, London, NW1 2PB, UK
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa.
| |
Collapse
|
18
|
Zhang Y, Zou P, Gao H, Yang M, Yi P, Gan J, Shen Y, Wang W, Zhang W, Li J, Liu P, Li L. Neutrophil-lymphocyte ratio as an early new marker in AIV-H7N9-infected patients: a retrospective study. Ther Clin Risk Manag 2019; 15:911-919. [PMID: 31413580 PMCID: PMC6661995 DOI: 10.2147/tcrm.s206930] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Avian AIV-H7N9 influenza progresses rapidly and has a high fatality rate. However, it lacks an early effective biomarker to predict disease severity and fatal outcomes successfully. Our study aimed to explore whether the neutrophil-to-lymphocyte ratio (NLR) taken within 24 h after admission can predict disease severity and fatality in AIV-H7N9-infected patients. Methods: We retrospectively studied 237 AIV-H7N9-infected patients from multiple centers from 2013 to 2015. We used univariate analysis and multivariate analysis to compare clinical variables between the survival and fatal groups to evaluate the prognostic value. Results: The NLR taken within 24 h after admission in the fatal group was significantly higher than that in the survival group (P<0.01). Our study found that NLR was independently associated with fatality. The area under the curve (AUC) of the NLR was 0.70, and moreover, when the NLR =19.94, the specificity was 100%, and the sensitivity was 28.4%. The fatality in the NLR ≥19.94 group was significantly increased relative to the patients with an NLR <19.94 (P<0.05). Conclusion: The NLR is potentially a predictive prognostic biomarker in patients infected with the AIV-H7N9 influenza virus.
Collapse
Affiliation(s)
- Yan Zhang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Pengfei Zou
- Department of Infectious Disease, Shulan Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hainv Gao
- Department of Infectious Disease, Shulan Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Meifang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ping Yi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianhe Gan
- Department of Infectious Disease, The First Affiliated Hospital, Medical College of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yinzhong Shen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Weihong Wang
- Department of Infectious Disease, Central Hospital of Huzhou, Zhejiang, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jun Li
- Department of Infectious Disease, Jiangsu Province People's Hospital, Jiangsu, People's Republic of China
| | - Peng Liu
- Department of Infectious Disease, Ningbo No.2 Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Lanjuan Li
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
19
|
Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys 2019; 671:196-202. [PMID: 31323216 PMCID: PMC7094616 DOI: 10.1016/j.abb.2019.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Organisms respond in multiple ways to microbial infections. Pathogen invasion tipically triggers an inflammatory response where acute phase proteins (APP) have a key role. Pentraxins (PTX) are a family of highly conserved APP that play a part in the host defense against infection. The larger proteins of the family are simply named pentraxins, while c-reactive proteins (CRP) and serum amyloid proteins (SAA, SAP) are known as short pentraxins. Although high APP levels have been broadly associated with bacterial infections, there is a growing body of evidence revealing increased PTX, CRP and SAP expression upon viral infection. Furthermore, CRP, PTX and SAP have shown their potential as diagnostic markers and predictors of disease outcome. Likewise, the measurement of APP levels can be valuable to determine the efficacy of antiviral therapies and vaccines. From the practical point of view, the ability of APP to reduce viral infectivity has been observed in several virus-host models. This has prompted investigation efforts to assess the role of acute phase response proteins as immunoregulatory molecules and their potential as therapeutic reagents. This work aims to present an overview of the APP response to viral infections reviewing the current knowledge in the field.
Collapse
|
20
|
Virulent Pseudorabies Virus Infection Induces a Specific and Lethal Systemic Inflammatory Response in Mice. J Virol 2018; 92:JVI.01614-18. [PMID: 30258005 DOI: 10.1128/jvi.01614-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus that infects the peripheral nervous system (PNS). The natural host of PRV is the swine, but it can infect most mammals, including cattle, rodents, and dogs. In these nonnatural hosts, PRV always causes a severe acute and lethal neuropathy called the "mad itch," which is uncommon in swine. Thus far, the pathophysiological and immunological processes leading to the development of the neuropathic itch and the death of the animal are unclear. Using a footpad inoculation model, we established that mice inoculated with PRV-Becker (virulent strain) develop a severe pruritus in the foot and become moribund at 82 h postinoculation (hpi). We found necrosis and inflammation with a massive neutrophil infiltration only in the footpad and dorsal root ganglia (DRGs) by hematoxylin and eosin staining. PRV load was detected in the foot, PNS, and central nervous system tissues by quantitative reverse transcription-PCR. Infected mice had elevated plasma levels of proinflammatory cytokines (interleukin-6 [IL-6] and granulocyte colony-stimulating factor [G-CSF]) and chemokines (Gro-1 and monocyte chemoattractant protein 1). Significant IL-6 and G-CSF levels were detected in several tissues at 82 hpi. High plasma levels of C-reactive protein confirmed the acute inflammatory response to PRV-Becker infection. Moreover, mice inoculated with PRV-Bartha (attenuated, live vaccine strain) did not develop pruritus at 82 hpi. PRV-Bartha also replicated in the PNS, and the infection spread further in the brain than PRV-Becker. PRV-Bartha infection did not induce the specific and lethal systemic inflammatory response seen with PRV-Becker. Overall, we demonstrated the importance of inflammation in the clinical outcome of PRV infection in mice and provide new insights into the process of PRV-induced neuroinflammation.IMPORTANCE Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens such as herpes simplex virus 1 and varicella-zoster virus (VZV). The natural host of PRV is the swine, but it can infect most mammals. In susceptible animals other than pigs, PRV infection always causes a characteristic lethal pruritus known as the "mad itch." The role of the immune response in the clinical outcome of PRV infection is still poorly understood. Here, we show that a systemic host inflammatory response is responsible for the severe pruritus and acute death of mice infected with virulent PRV-Becker but not mice infected with attenuated strain PRV-Bartha. In addition, we identified IL-6 and G-CSF as two main cytokines that play crucial roles in the regulation of this process. Our findings give new insights into neuroinflammatory diseases and strengthen further the similarities between VZV and PRV infections at the level of innate immunity.
Collapse
|
21
|
Sivanandy P, Zi Xien F, Woon Kit L, Tze Wei Y, Hui En K, Chia Lynn L. A review on current trends in the treatment of human infection with H7N9-avian influenza A. J Infect Public Health 2018; 12:153-158. [PMID: 30213468 DOI: 10.1016/j.jiph.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
The H7N9 subtype of avian influenza is an enzootic and airborne virus which caused an influenza outbreak in China. Infected individuals mostly worked with poultry, suggesting H7N9 virus-infected poultry as the primary source of human infection. Significantly increased levels of proinflammatory mediators (chemokines, cytokines) during virus infection could hamper the immune system and aggravate the infection. Severe cases are marked by fulminant pneumonia, acute respiratory distress syndrome (ARDS) and encephalopathy. Left untreated, the condition may rapidly progress to multi-organ failure and death. Reverse transcription polymerase chain reaction (rRT-PCR) is the gold standard diagnostic test for H7N9 avian influenza. Use of neurominidase inhibitor antivirals remain the main treatment. New antivirals are developed to counteract neurominidase inhibitor resistance H7N9 viral strains. Corticosteroid use in viral pneumonia may provoke mortality and longer viral shedding time. Subjects at high risk of contracting avian influenza H7N9 infection are recommended to receive annual seasonal influenza vaccination.
Collapse
Affiliation(s)
- Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | - Foong Zi Xien
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Woon Kit
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yeoh Tze Wei
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kuan Hui En
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lian Chia Lynn
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
23
|
Gao R, Wang L, Bai T, Zhang Y, Bo H, Shu Y. C-Reactive Protein Mediating Immunopathological Lesions: A Potential Treatment Option for Severe Influenza A Diseases. EBioMedicine 2017; 22:133-142. [PMID: 28734805 PMCID: PMC5552218 DOI: 10.1016/j.ebiom.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
Severe influenza diseases with high mortality have been frequently reported, especially in those patients infected with avian influenza A (H5N1, H7N9 or H10N8) or during a pandemic. Respiratory distress, which is attributed to alveolar damage associated with immunopathological lesions, is the most common cause of death. There is a wealth of information on pathogenesis or treatment options. In this study, we showed that high levels of C-reactive protein (CRP) were induced and correlated with complement activation in patients infected with severe influenza A (H5N1, H7N9 or H10N8), and higher levels were induced in fatal patients than in survivors. CRP treatment enhanced the phagocytosis of monocytes THP-1 to H5N1 virus as well as the expression of proinflammatory cytokines or apoptosis-associated genes in THP-1 cells or pneumocytes A-549 respectively. CRP may link to proinflammatory mediators contributing to activation of complement and boosting inflammatory response in severe influenza infections. Compound 1,6-bis(phosphocholine)-hexane improved the severity and mortality of mice infected with lethal influenza virus significantly. These observations showed that CRP is involved in deterioration of severe influenza diseases, and indicated a substantial candidate molecule for immunotherapy of severe influenza diseases.
CRP induces exacerbated immunoresponse toward overt pulmonary inflammation in severe influenza infections. CRP may link to proinflammatory mediators contributing to activation of complement and boosting inflammatory response. CRP stabilizer can alleviate the immunopathological lesions and mortality in mice infected with lethal influenza virus. Severe influenza diseases with high mortality have been frequently reported, especially in those patients infected with avian influenza A (H5N1, H7N9, or H10N8) or during a pandemic. Respiratory distress associated with immunopathological lesions is the most common cause of death in patients infected by these viruses. In this study, we found that CRP may be linked to exacerbated immunoresponse toward overt pulmonary inflammation, which led to alveolar damage and respiratory failure in severe influenza infection. Our data identified that CRP stabilizer can be used to alleviate the immunopathological lesions and mortality in mice infected with lethal influenza virus.
Collapse
Affiliation(s)
- Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China.
| | - Lijie Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China; School of Public Health(Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|