1
|
Assefa GM, Roberts JA, Mohammed SA, Sime FB. What are the optimal pharmacokinetic/pharmacodynamic targets for β-lactamase inhibitors? A systematic review. J Antimicrob Chemother 2024; 79:946-958. [PMID: 38459763 PMCID: PMC11062945 DOI: 10.1093/jac/dkae058] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Pharmacokinetic/pharmacodynamic (PK/PD) indices are widely used for the selection of optimum antibiotic doses. For β-lactam antibiotics, fT>MIC, best relates antibiotic exposure to efficacy and is widely used to guide the dosing of β-lactam/β-lactamase inhibitor (BLI) combinations, often without considering any PK/PD exposure requirements for BLIs. OBJECTIVES This systematic review aimed to describe the PK/PD exposure requirements of BLIs for optimal microbiological efficacy when used in combination with β-lactam antibiotics. METHODS Literature was searched online through PubMed, Embase, Web of Science, Scopus and Cochrane Library databases up to 5 June 2023. Studies that report the PK/PD index and threshold concentration of BLIs approved for clinical use were included. Narrative data synthesis was carried out to assimilate the available evidence. RESULTS Twenty-three studies were included. The PK/PD index that described the efficacy of BLIs was fT>CT for tazobactam, avibactam and clavulanic acid and fAUC0-24/MIC for relebactam and vaborbactam. The optimal magnitude of the PK/PD index is variable for each BLI based on the companion β-lactam antibiotics, type of bacteria and β-lactamase enzyme gene transcription levels. CONCLUSIONS The PK/PD index that describes the efficacy of BLIs and the exposure measure required for their efficacy is variable among inhibitors; as a result, it is difficult to make clear inference on what the optimum index is. Further PK/PD profiling of BLI, using preclinical infection models that simulate the anticipated mode(s) of clinical use, is warranted to streamline the exposure targets for use in the optimization of dosing regimens.
Collapse
Affiliation(s)
- Getnet M Assefa
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Jason A Roberts
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Herston Infectious Disease Institute (HeIDI), Metro North Health, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emerging and Pain Medicine, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Solomon A Mohammed
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Fekade B Sime
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Wenker SAM, Alabdulkarim N, Readman JB, Slob EMA, Satta G, Ali S, Gadher N, Shulman R, Standing JF. Defining the pharmacokinetic/pharmacodynamic index of piperacillin/tazobactam within a hollow-fibre infection model to determine target attainment in intensive care patients. JAC Antimicrob Resist 2024; 6:dlae036. [PMID: 38476774 PMCID: PMC10928666 DOI: 10.1093/jacamr/dlae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Background It is important to optimize dosing schemes of antibiotics to maximize the probability of therapeutic success. The recommended pharmacokinetic/pharmacodynamic (PK/PD) index for piperacillin/tazobactam therapy in clinical studies ranges widely (50%-100% fT>1-4×MIC). Dosing schemes failing to achieve PK/PD targets may lead to negative treatment outcomes. Objectives The first aim of this study was to define the optimal PK/PD index of piperacillin/tazobactam with a hollow-fibre infection model (HFIM). The second aim was to predict whether these PK/PD targets are currently achieved in critically ill patients through PK/PD model simulation. Patients and methods A dose-fractionation study comprising 21 HFIM experiments was performed against a range of Gram-negative bacterial pathogens, doses and infusion times. Clinical data and dose histories from a case series of nine patients with a known bacterial infection treated with piperacillin/tazobactam in the ICU were collected. The PK/PD index and predicted plasma concentrations and therefore target attainment of the patients were simulated using R version 4.2.1. Results fT >MIC was found to be the best-fitting PK/PD index for piperacillin/tazobactam. Bactericidal activity with 2 log10 cfu reduction was associated with 77% fT>MIC. Piperacillin/tazobactam therapy was defined as clinically 'ineffective' in ∼78% (7/9) patients. Around seventy-one percent (5/7) of these patients had a probability of >10% that 2 log10 cfu reduction was not attained. Conclusions Our dose-fractionation study indicates an optimal PK/PD target in piperacillin/tazobactam therapies should be 77% fT>MIC for 2 log10 kill. Doses to achieve this target should be considered when treating patients in ICU.
Collapse
Affiliation(s)
- Suzanne A M Wenker
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Najla Alabdulkarim
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Clinical Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - John B Readman
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elise M A Slob
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, Haaglanden Medical Center, The Hague, The Netherlands
| | - Giovanni Satta
- Department of Infection, University College London Hospitals NHS Foundation Trust, London, UK
| | - Shanom Ali
- Environmental Research Laboratory, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nishma Gadher
- Pharmacy Department, CMORE, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rob Shulman
- Pharmacy Department, CMORE, University College London Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Pharmacy, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
3
|
Pharmacokinetic/Pharmacodynamic Index Linked to In Vivo Efficacy of the Ampicillin-Ceftriaxone Combination against Enterococcus faecalis. Antimicrob Agents Chemother 2023; 67:e0096622. [PMID: 36695584 PMCID: PMC9933695 DOI: 10.1128/aac.00966-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Combination therapy with ampicillin plus ceftriaxone (AMP+CRO) is the first-line therapy for treating severe infections due to Enterococcus faecalis. However, the pharmacokinetic/pharmacodynamic (PK/PD) index linked to the in vivo efficacy of the combination is not yet defined, hindering dose optimization in the clinic. Because classical PK/PD indices are not directly applicable to antimicrobial combinations, two novel indices were tested in the optimized murine model of infection by E. faecalis to delineate the potentiation of AMP by CRO: the time above the CRO threshold (T>threshold) and the time above the AMP instantaneous MIC (T>MICi). The potential clinical relevance was evaluated by simulating human doses of AMP and CRO. Hill's equation fitted well the exposure-response data in terms of T>threshold, with a CRO threshold of 1 mg/L. The required exposures were 46%, 49%, and 52% for stasis and 1- and 2-log10 killing, respectively. Human ceftriaxone doses of 2 g every 12 h (q12h) would reach the target in >90% of strains with thresholds ≤64 mg/L. The AMP T>MICi index also fitted well, and the required exposures were 37%, 41%, and 46% for stasis and 1- and 2-log10 killing, respectively. In humans, the addition of CRO would allow use of lower AMP doses to reach the same T>MICi and to treat strains with higher MICs. This is the first report of the PK/PD indices and required magnitudes linked to AMP+CRO against E. faecalis; these results can be used as the basis to guide the design of clinical trials to improve combined therapy against enterococci.
Collapse
|
4
|
Igarashi Y, Takemura W, Liu X, Kojima N, Morita T, Chuang VTG, Enoki Y, Taguchi K, Matsumoto K. Development of an optimized and practical pharmacokinetics/pharmacodynamics analysis method for aztreonam/nacubactam against carbapenemase-producing K. pneumoniae. J Antimicrob Chemother 2023; 78:991-999. [PMID: 36775998 PMCID: PMC10068424 DOI: 10.1093/jac/dkad033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Nacubactam, a new β-lactamase inhibitor with antibacterial activity, is being developed as a single drug to be co-administered with cefepime or aztreonam. However, determining pharmacokinetics/pharmacodynamics (PK/PD) parameters in β-lactam/β-lactamase inhibitor combinations remains challenging. We aimed to establish a practical PK/PD analysis method for aztreonam/nacubactam that incorporates instantaneous MIC (MICi). METHODS Based on chequerboard MIC measurements, MICi of aztreonam against carbapenemase-producing Klebsiella pneumoniae in the presence of nacubactam was simulated. RESULTS The mean change in the bacterial count of thigh-infected mice in an in vivo PD study was plotted based on %fT>MICi and analysed using the inhibitory effect sigmoid Imax model. fT>MICi calculated from the PK experiments showed a high correlation with the in vivo bactericidal effect, suggesting that fT>MICi is the optimal PK/PD parameter for aztreonam/nacubactam. The target values of fT>MICi achieving growth inhibition, 1 log10 kill and 2 log10 kill, were 22, 38% and 75%, respectively. CONCLUSIONS The PK/PD analysis method proposed in this study is promising for determining practical PK/PD parameters in combination therapy. In addition, this is the first report of aztreonam/nacubactam showing a potent in vivo therapeutic effect against NDM-producing K. pneumoniae.
Collapse
Affiliation(s)
- Yuki Igarashi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Wataru Takemura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Xiaoxi Liu
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Nana Kojima
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takumi Morita
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Victor Tuan Giam Chuang
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
5
|
Nichols WW, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vivo translational biology and pharmacokinetics/pharmacodynamics (PK/PD). J Antimicrob Chemother 2022; 77:2341-2352. [PMID: 35660869 DOI: 10.1093/jac/dkac172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review describes the translational in vivo and non-clinical pharmacokinetics/pharmacodynamics (PK/PD) research that supported clinical trialling and subsequently licensing approval of ceftazidime/avibactam, a new β-lactam/β-lactamase inhibitor combination aimed at the treatment of infections by Enterobacterales and Pseudomonas aeruginosa. The review thematically follows on from the co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac171). Avibactam protected ceftazidime in animal models of infection with ceftazidime-resistant, β-lactamase-producing bacteria. For example, a single subcutaneous dose of ceftazidime at 1024 mg/kg yielded little effect on the growth of ceftazidime-resistant, blaKPC-2-carrying Klebsiella pneumoniae in the thighs of neutropenic mice (final counts of 4 × 108 to 8 × 108 cfu/thigh). In contrast, co-administration of avibactam in a 4:1 ratio (ceftazidime:avibactam) was bactericidal in the same model (final counts of 2 × 104 to 3 × 104 cfu/thigh). In a rat abdominal abscess model, therapy with ceftazidime or ceftazidime/avibactam (4:1 w/w) against blaKPC-2-positive K. pneumoniae resulted in 9.3 versus 3.3 log cfu/abscess, respectively, after 52 h. With respect to PK/PD, in Monte Carlo simulations, attainment of unbound drug exposure targets (ceftazidime fT>8 mg/L and avibactam fT>1 mg/L, each for 50% of the dosing interval) for the labelled dose of ceftazidime/avibactam (2 and 0.5 g, respectively, q8h by 2 h IV infusion), including dose adjustments for patients with impaired renal function, ranged between 94.8% and 99.6% of patients, depending on the infection modelled.
Collapse
|
6
|
Caiana RRA, Santos CS, de Oliveira RN, Freitas JCR. Scientific and Technological Prospecting of 1H-1,2,3-Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The use of 1H-1,2,3-triazoles has become an important scaffold for applications in different technological sectors. Therefore, we sought to carry out a technological monitoring to understand the international scenario involving 1H-1,2,3-triazoles from the patents filed, in addition to evaluating the relationship between the growth in the number of patents and the improvement of strategies for obtaining of these compounds via a metal-catalyzed azide-alkyne cycloaddition reaction. Technological monitoring was performed with the support of the PatentInspiration® platform, using the keywords "1,2,3-triazol", "1,2,3-triazole", and "1,2,3-triazolyl". A total of 960 registered patents were found, most for the years 2014 and 2019. The main filers were prestigious multinational companies such as Syngenta, Merck, Sandoz, Pfizer, and Bayer. The United States, China, Japan, and Germany lead patent registrations, mainly addressing innovations in chemistry and metallurgy, human needs, and new technologies. These results help to understand the state of innovation for this topic, pointing out the characteristics of the main discoveries concerning 1H-1,2,3-triazole derivatives.
Collapse
Affiliation(s)
| | - Cosme Silva Santos
- Department of Chemistry, Federal Rural University of Pernambuco, 52171-900, Recife-PE, Brazil
| | | | | |
Collapse
|
7
|
Wang XX, Ma CT, Jiang YX, Ge YJ, Liu FY, Xu WG. Cefoperazone sodium/sulbactam sodium vs piperacillin sodium/tazobactam sodium for treatment of respiratory tract infection in elderly patients. World J Clin Cases 2021; 9:8694-8701. [PMID: 34734047 PMCID: PMC8546814 DOI: 10.12998/wjcc.v9.i29.8694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Respiratory tract infections in the elderly are difficult to cure and can easily recur, thereby posing a great threat to patient prognosis and quality of life.
AIM To investigate the therapeutic effects of different antibiotics in elderly patients with respiratory tract infection.
METHODS Seventy-four elderly patients with respiratory tract infection were randomly allocated to a study (n = 37; treated with cefoperazone sodium/sulbactam sodium) or control (n = 37; treated with piperacillin sodium/tazobactam sodium on the basis of routine symptomatic support) group. Both groups were treated for 7 d. Time to symptom relief (leukocyte recovery; body temperature recovery; cough and sputum disappearance; and rale disappearance time), treatment effect, and laboratory indexes [procalcitonin (PCT), C-reactive protein (CRP), white blood cell count (WBC), and neutrophil percentage (NE)] before and 7 d after treatment and the incidence of adverse reactions were assessed.
RESULTS In the study group, the time to WBC normalization (6.79 ± 2.09 d), time to body temperature normalization (4.15 ± 1.08 d), time to disappearance of cough and sputum (6.19 ± 1.56 d), and time to disappearance of rales (6.68 ± 1.43 d) were shorter than those of the control group (8.89 ± 2.32 d, 5.81 ± 1.33 d, 8.77 ± 2.11 d, and 8.69 ± 2.12 d, respectively; P = 0.000). Total effective rate was higher in the study group (94.59% vs 75.68%, P = 0.022). Serum PCT (12.89 ± 3.96 μg/L), CRP (19.62 ± 6.44 mg/L), WBC (20.61 ± 6.38 × 109/L), and NE (86.14 ± 7.21%) levels of the study group before treatment were similar to those of the control group (14.05 ± 4.11 μg/L, 18.79 ± 5.96 mg/L, 21.21 ± 5.59 × 109/L, and 84.39 ± 6.95%, respectively) with no significant differences (P = 0.220, 0.567, 0.668, and 0.291, respectively). After 7 d of treatment, serum PCT, CRP, WBC, and NE levels in the two groups were lower than those before treatment. Serum PCT (2.01 ± 0.56 μg/L), CRP (3.11 ± 1.02 mg/L), WBC (5.10 ± 1.83 × 109/L), and NE (56.35 ± 7.17%) levels were lower in the study group than in the control group (3.29 ± 0.64 μg/L, 5.67 ± 1.23 mg/L, 8.13 ± 3.01 × 109/L, and 64.22 ± 8.08%, respectively; P = 0.000). There was no significant difference in the incidence of adverse reactions between the groups (7.50% vs 12.50%, P = 0.708).
CONCLUSION Piperacillin sodium/tazobactam sodium is superior to cefoperazone sodium/ sulbactam sodium in the treatment of elderly patients with respiratory tract infection with a similar safety profile.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Department of Cadre Health, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| | - Cheng-Tai Ma
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266011, Shandong Province, China
| | - Yan-Xia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266011, Shandong Province, China
| | - Yun-Jie Ge
- Department of Cadre Health, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| | - Fa-Yun Liu
- Department of Pulmonary, Shandong Qingdao Hospital of Integrated Traditional Chinese and Western Medicine, Qingdao 266011, Shandong Province, China
| | - Wen-Gang Xu
- Department of Pulmonary, Shandong Qingdao Hospital of Integrated Traditional Chinese and Western Medicine, Qingdao 266011, Shandong Province, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This article aims to give a state-of-the-art assessment of treatment options for bloodstream infection because of ceftriaxone-resistant Gram-negative bacilli, especially those caused by extended-spectrum beta-lactamase (ESBL) or AmpC-producing Enterobacteriaceae. In particular, this review assesses whether current data support 'carbapenem-sparing options' for treatment of these serious infections. RECENT FINDINGS The MERINO trial refuted earlier observational studies some of which showed equivalence in outcomes between beta-lactam/beta-lactamase inhibitor combinations and carbapenems for treatment of bloodstream infection because of ceftriaxone-resistant Escherichia coli or Klebsiella spp. Although numerous factors influence mortality following bloodstream infection, the variability in piperacillin/tazobactam MICs observed in the MERINO trial make this a less secure option than meropenem. However, the search for carbapenem-sparing options continues with four randomized controlled trials (RCTs) in progress and a number of other options in clinical development. SUMMARY Hard outcomes from RCTs are still needed before intravenous carbapenems can be displaced as the treatment of choice for ceftriaxone-resistant Gram-negative bacilli.
Collapse
|
9
|
Veillette JJ, Winans SA, Maskiewicz VK, Truong J, Jones RN, Forland SC. Pharmacokinetics and Pharmacodynamics of High-Dose Piperacillin-Tazobactam in Obese Patients. Eur J Drug Metab Pharmacokinet 2021; 46:385-394. [PMID: 33743171 PMCID: PMC8093170 DOI: 10.1007/s13318-021-00677-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/09/2022]
Abstract
Background and Objective Standard piperacillin–tazobactam (P-T) dosing may be suboptimal in obesity, but high-dose regimens have not been studied. We prospectively evaluated the pharmacokinetics and pharmacodynamics of standard- and high-dose P-T in obese adult inpatients. Methods Those receiving standard-dose P-T with BMI ≥ 30 kg/m2 weighing 105–139 kg or ≥ 140 kg were given up to 6.75 g or 9 g every 6 h, respectively. Patients were monitored closely for safety. Elimination phase blood samples were drawn for 28 patients on standard and high doses to calculate the pharmacokinetic values using a one-compartment model. The likelihood of pharmacodynamic target attainment (100% fT > 16/4 mg/L) on various P-T regimens was calculated using each patient’s own pharmacokinetic values. Results Piperacillin and tazobactam half-lives ranged from 0.5–10.6 to 0.9–15.0 h, while volumes of distribution ranged from 13.6–54.8 to 11.5–60.1 L, respectively. Predicted dose requirements for target attainment ranged from 2.25 g every 6 h in hemodialysis patients to a 27 g/24-h continuous infusion in a patient with a short P-T half-life. An amount of 4.5 g every 6 h would have met the target for only 1/12 (8%) patients with creatinine clearance ≥ 80 mL/min and 13/28 (46%) for all enrolled patients. One patient (3%) experienced an adverse event deemed probably related to high-dose P-T. Conclusion Some patients required high P-T doses for target attainment, but dosing requirements were highly variable. Doses up to 6.75 g or 9 g every 6 h may be tolerable; however, studies are needed to see if high dosing, prolonged infusions, or real-time therapeutic drug monitoring improves outcomes in obese patients. Clinical trial registration (clinicaltrials.gov) NCT01923363. Supplementary Information The online version contains supplementary material available at 10.1007/s13318-021-00677-1.
Collapse
Affiliation(s)
- John J Veillette
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA.
| | - S Alexander Winans
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | - Victoria K Maskiewicz
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | - James Truong
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | | | - Steven C Forland
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA.,Department of Pharmacy, Loma Linda University Medical Center, Loma Linda, CA, USA.,Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
10
|
Jimenez-Toro I, Rodriguez CA, Zuluaga AF, Otalvaro JD, Vesga O. A new pharmacodynamic approach to study antibiotic combinations against enterococci in vivo: Application to ampicillin plus ceftriaxone. PLoS One 2020; 15:e0243365. [PMID: 33290425 PMCID: PMC7723291 DOI: 10.1371/journal.pone.0243365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
The combination of ampicillin (AMP) and ceftriaxone (CRO) is considered synergistic against Enterococcus faecalis based on in vitro tests and the rabbit endocarditis model, however, in vitro assays are limited by the use of fixed antibiotic concentrations and the rabbit model by poor bacterial growth, high variability, and the use of point dose-effect estimations, that may lead to inaccurate assessment of antibiotic combinations and hinder optimal translation. Here, we tested AMP+CRO against two strains of E. faecalis and one of E. faecium in an optimized mouse thigh infection model that yields high bacterial growth and allows to define the complete dose-response relationship. By fitting Hill’s sigmoid model and estimating the parameters maximal effect (Emax) and effective dose 50 (ED50), the following interactions were defined: synergism (Emax increase ≥2 log10 CFU/g), antagonism (Emax reduction ≥1 log10 CFU/g) and potentiation (ED50 reduction ≥50% without changes in Emax). AMP monotherapy was effective against the three strains, yielding valid dose-response curves in terms of dose and the index fT>MIC. CRO monotherapy showed no effect. The combination AMP+CRO against E. faecalis led to potentiation (59–81% ED50 reduction) and not synergism (no changes in Emax). Against E. faecium, the combination was indifferent. The optimized mouse infection model allowed to obtain the complete dose-response curve of AMP+CRO and to define its interaction based on pharmacodynamic parameter changes. Integrating these results with the pharmacokinetics will allow to derive the PK/PD index bound to the activity of the combination, essential for proper translation to the clinic.
Collapse
Affiliation(s)
- Ivone Jimenez-Toro
- GRIPE, School of Medicine, University of Antioquia, Medellín, Colombia
- Integrated Laboratory of Specialized Medicine (LIME), School of Medicine, University of Antioquia, Medellín, Colombia
| | - Carlos A. Rodriguez
- GRIPE, School of Medicine, University of Antioquia, Medellín, Colombia
- Integrated Laboratory of Specialized Medicine (LIME), School of Medicine, University of Antioquia, Medellín, Colombia
- * E-mail:
| | - Andres F. Zuluaga
- GRIPE, School of Medicine, University of Antioquia, Medellín, Colombia
- Integrated Laboratory of Specialized Medicine (LIME), School of Medicine, University of Antioquia, Medellín, Colombia
| | - Julian D. Otalvaro
- Integrated Laboratory of Specialized Medicine (LIME), School of Medicine, University of Antioquia, Medellín, Colombia
| | - Omar Vesga
- GRIPE, School of Medicine, University of Antioquia, Medellín, Colombia
- Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| |
Collapse
|
11
|
Dhaese S, Heffernan A, Liu D, Abdul-Aziz MH, Stove V, Tam VH, Lipman J, Roberts JA, De Waele JJ. Prolonged Versus Intermittent Infusion of β-Lactam Antibiotics: A Systematic Review and Meta-Regression of Bacterial Killing in Preclinical Infection Models. Clin Pharmacokinet 2020; 59:1237-1250. [PMID: 32710435 DOI: 10.1007/s40262-020-00919-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Administering β-lactam antibiotics via prolonged infusions for critically ill patients is mainly based on preclinical evidence. Preclinical data on this topic have not been systematically reviewed before. OBJECTIVES The aim of this study was to describe the pharmacokinetic/pharmacodynamic (PK/PD) indices and targets reported in preclinical models and to compare the bactericidal efficacy of intermittent and prolonged infusions of β-lactam antibiotics. METHODS The MEDLINE and EMBASE databases were searched. To compare the bactericidal action of β-lactam antibiotics across different modes of infusion, the reported PK/PD outcomes, expressed as the percentage of time (T) that free (f) β-lactam antibiotic concentrations remain above the minimal inhibitory concentration (MIC) (%fT>MIC) or trough concentration (Cmin)/MIC of individual studies, were recomputed relative to the area under the curve of free drug to MIC ratio (fAUC24/MIC). A linear mixed-effects meta-regression was performed to evaluate the impact of the β-lactam class, initial inoculum, Gram stain, in vivo or in vitro experiment and mode of infusion on the reduction of bacterial cells (in colony-forming units/mL). RESULTS Overall, 33 articles were included for review, 11 of which were eligible for meta-regression. For maximal bactericidal activity, intermittent experiments reported a PK/PD target of 40-70% fT>MIC, while continuous experiments reported a steady-state concentration to MIC ratio of 4-8. The adjusted effect of a prolonged as opposed to intermittent infusion on bacterial killing was small (coefficient 0.66, 95% confidence interval - 0.78 to 2.11). CONCLUSIONS Intermittent and prolonged infusions of β-lactam antibiotics require different PK/PD targets to obtain the same level of bacterial cell kill. The additional effect of a prolonged infusion for enhancing bacterial killing could not be demonstrated.
Collapse
Affiliation(s)
- Sofie Dhaese
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium.
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Aaron Heffernan
- School of Medicine, Griffith University, Southport, QLD, Australia
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - David Liu
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Veronique Stove
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Vincent H Tam
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Jeffrey Lipman
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Anesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nimes, France
| | - Jason A Roberts
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Anesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nimes, France
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Dhaese S, Van Vooren S, Boelens J, De Waele J. Therapeutic drug monitoring of β-lactam antibiotics in the ICU. Expert Rev Anti Infect Ther 2020; 18:1155-1164. [PMID: 32597263 DOI: 10.1080/14787210.2020.1788387] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Individualizing antibiotic therapy is paramount to improve clinical outcomes while minimizing the risk of toxicity and antimicrobial therapy. β-lactam antibiotics are amongst the drugs most commonly prescribed in the Intensive Care Unit (ICU). The pharmacokinetics of β-lactam antibiotics are profoundly altered in critically ill patients, leading to the failure of standard drug dosing regimens to result in adequate drug concentrations. Therapeutic Drug Monitoring (TDM) of β-lactam antibiotics is a promising tool to help optimize β-lactam antibiotic therapy. AREAS COVERED The rationale behind TDM for β-lactam antibiotics is explained, as well as some more practical aspects such as when to sample, what concentrations to strive for and how to use it in clinical practice. We also discuss microbiological and analytical considerations, knowledge gaps, and future perspectives of β-lactam antibiotics TDM in ICU patients. EXPERT OPINION TDM of β-lactam antibiotics has been studied intensively in recent years. While TDM may not yet be widely available, and targets need to be further refined, TDM of β-lactam antibiotics will help to optimize antibiotic therapy in the critically ill patient, as an integrated part of an antimicrobial stewardship program.
Collapse
Affiliation(s)
- Sofie Dhaese
- Department of Internal Medicine and Pediatrics, Ghent University Hospital , Ghent, Belgium
| | - Sarah Van Vooren
- Department of Diagnostic Sciences, Ghent University Hospital , Ghent, Belgium
| | - Jerina Boelens
- Department of Diagnostic Sciences, Ghent University Hospital , Ghent, Belgium
| | - Jan De Waele
- Department of Internal Medicine and Pediatrics, Ghent University Hospital , Ghent, Belgium
| |
Collapse
|
13
|
Kim HK, Choi SM, Kang G, Park KH, Lee DG, Park WB, Rhee SJ, Lee S, Jung SI, Jang HC. Comparison of In Vivo Pharmacokinetics and Pharmacodynamics of Vancomycin Products Available in Korea. Yonsei Med J 2020; 61:301-309. [PMID: 32233172 PMCID: PMC7105400 DOI: 10.3349/ymj.2020.61.4.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Few studies have been investigated the in vivo efficacy of generic vancomycin products available outside of the United States. In this study, we aimed to compare the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of five generic vancomycin products available in Korea with those of the innovator. MATERIALS AND METHODS The in vitro vancomycin purity of each product was examined using high-pressure liquid chromatography. Single-dose PK analyses were performed using neutropenic mice. The in vivo efficacy of vancomycin products was compared with that of the innovator in dose-effect experiments (25 to 400 mg/kg per day) using a thigh-infection model with neutropenic mice. RESULTS Generic products had a lower proportion of vancomycin B (range: 90.3-93.8%) and a higher proportion of impurities (range: 6.2-9.7%) than the innovator (94.5% and 5.5%, respectively). In an in vivo single-dose PK study, the maximum concentration (Cmax) values of each generic were lower than that of the innovator, and the geographic mean area under the curve ratios of four generics were significantly lower than that of the innovator (all p<0.1). In the thigh-infection model, the maximum efficacies of generic products reflected in maximal effect (Emax) values were not significantly different from the innovator. However, the PD profile curves of some generic products differed significantly from that of the innovator in mice injected with a high level of Mu3 (all p≤0.05). CONCLUSION Some generic vancomycin products available in Korea showed inferior PK and PD profiles, especially in mice infected with hetero-vancomycin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Su-Mi Choi
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Wan-Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Su-jin Rhee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
14
|
Verma NK, Mondal D, Bera S. Pharmacological and Cellular Significance of Triazole-Surrogated Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191021114906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
:
Heterocyclic compounds have been at the hierarchy position in academia, and
industrial arena, particularly the compounds containing triazole-core are found to be potent
with a broad range of biological activities. The resistance of triazole ring towards
chemical (acid and base) hydrolysis, oxidative and reductive reaction conditions, metabolic
degradation and its higher aromatic stabilization energy makes it a better heterocyclic
core as therapeutic agents. These triazole-linked compounds are used for clinical purposes
for antifungal, anti-mycobacterium, anticancer, anti-migraine and antidepressant
drugs. Triazole scaffolds are also found to act as a spacer for the sake of covalent attachment
of the high molecular weight bio-macromolecules with an experimental building
blocks to explore structure-function relationships. Herein, several methods and strategies
for the synthesis of compounds with 1,2,3-triazole moiety exploring Hüisgen, Meldal and Sharpless 1,3-dipolar
cycloaddition reaction between azide and alkyne derivatives have been deliberated for a series of representative
compounds. Moreover, this review article highlights in-depth applications of the [3+2]-cycloaddition reaction
for the advances of triazole-containing antibacterial as well as metabolic labelling agents for the in vitro and in
vivo studies on cellular level.
Collapse
Affiliation(s)
- Naimish Kumar Verma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| |
Collapse
|
15
|
Agudelo M, Rodriguez CA, Zuluaga AF, Vesga O. Nontherapeutic equivalence of a generic product of imipenem-cilastatin is caused more by chemical instability of the active pharmaceutical ingredient (imipenem) than by its substandard amount of cilastatin. PLoS One 2019; 14:e0211096. [PMID: 30726248 PMCID: PMC6364906 DOI: 10.1371/journal.pone.0211096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/02/2019] [Indexed: 11/25/2022] Open
Abstract
Background We demonstrated therapeutic nonequivalence of “bioequivalent” generics for meropenem, but there is no data with generics of other carbapenems. Methods One generic product of imipenem-cilastatin was compared with the innovator in terms of in vitro susceptibility testing, pharmaceutical equivalence, pharmacokinetic (PK) and pharmacodynamic (PD) equivalence in the neutropenic mouse thigh, lung and brain infection models. Both pharmaceutical forms were then subjected to analytical chemistry assays (LC/MS). Results and conclusion The generic product had 30% lower concentration of cilastatin compared with the innovator of imipenem-cilastatin. Regarding the active pharmaceutical ingredient (imipenem), we found no differences in MIC, MBC, concentration or potency or AUC, confirming equivalence in terms of in vitro activity. However, the generic failed therapeutic equivalence in all three animal models. Its Emax against S. aureus in the thigh model was consistently lower, killing from 0.1 to 7.3 million less microorganisms per gram in 24 hours than the innovator (P = 0.003). Against K. pneumoniae in the lung model, the generic exhibited a conspicuous Eagle effect fitting a Gaussian equation instead of the expected sigmoid curve of the Hill model. In the brain infection model with P. aeruginosa, the generic failed when bacterial growth was >4 log10 CFU/g in 24 hours, but not if it was less than 2.5 log10 CFU/g. These large differences in the PD profile cannot be explained by the lower concentration of cilastatin, and rather suggested a failure attributable to the imipenem constituent of the generic product. Analytical chemistry assays confirmed that, besides having 30% less cilastatin, the generic imipenem was more acidic, less stable, and exhibited four different degradation masses that were absent in the innovator.
Collapse
Affiliation(s)
- Maria Agudelo
- GRIPE: Grupo Investigador de Problemas en Enfermedades Infecciosas, University of Antioquia (UdeA) Medical School, Medellín, Colombia
- Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Carlos A. Rodriguez
- GRIPE: Grupo Investigador de Problemas en Enfermedades Infecciosas, University of Antioquia (UdeA) Medical School, Medellín, Colombia
- CIEMTO: Centro de Información de Medicamentos y Tóxicos, University of Antioquia (UdeA) Medical School, Medellín, Colombia
| | - Andres F. Zuluaga
- GRIPE: Grupo Investigador de Problemas en Enfermedades Infecciosas, University of Antioquia (UdeA) Medical School, Medellín, Colombia
- CIEMTO: Centro de Información de Medicamentos y Tóxicos, University of Antioquia (UdeA) Medical School, Medellín, Colombia
| | - Omar Vesga
- GRIPE: Grupo Investigador de Problemas en Enfermedades Infecciosas, University of Antioquia (UdeA) Medical School, Medellín, Colombia
- Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
- * E-mail:
| |
Collapse
|
16
|
Crass RL, Pai MP. Pharmacokinetics and Pharmacodynamics of β-Lactamase Inhibitors. Pharmacotherapy 2019; 39:182-195. [PMID: 30589457 DOI: 10.1002/phar.2210] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel β-lactamase inhibitors have extended the reach of new and existing β-lactams against multidrug-resistant bacteria expressing β-lactamases. The efficacy of these combination therapeutics relies on a complex two-component pharmacodynamic (PD) system where the β-lactamase inhibitor inactivates the bacterial β-lactamase enzyme and frees the companion β-lactam to act against its penicillin-binding protein target. Despite considerable investigation into the pharmacokinetics (PK) and pharmacodynamics of β-lactams, the pharmacology of their companion β-lactamase inhibitors has only recently been rigorously explored. This review describes the diversity of β-lactamase enzymes, mechanisms of enzyme inhibition, and factors impacting the efficacy of clinically available β-lactamase inhibitors. Relevant PK differences among available inhibitors and the PK/PD properties of these agents are described independently of their companion β-lactams. In the modern era of antibiotic resistance, a comprehensive understanding of the pharmacology, PK, and PD of β-lactamase inhibitors is paramount to maximizing the therapeutic efficacy of existing β-lactam/β-lactamase inhibitor combinations and protecting novel agents in the drug development pipeline.
Collapse
Affiliation(s)
- Ryan L Crass
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|