1
|
Priscilla K, Sharma V, Gautam A, Gupta P, Dagar R, Kishore V, Kumar R. Carotenoid Extraction from Plant Tissues. Methods Mol Biol 2024; 2788:3-18. [PMID: 38656505 DOI: 10.1007/978-1-0716-3782-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.
Collapse
Affiliation(s)
- Kagolla Priscilla
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Ashish Gautam
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rinku Dagar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Vimal Kishore
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India.
| |
Collapse
|
2
|
Vega EN, Ciudad-Mulero M, Fernández-Ruiz V, Barros L, Morales P. Natural Sources of Food Colorants as Potential Substitutes for Artificial Additives. Foods 2023; 12:4102. [PMID: 38002160 PMCID: PMC10670170 DOI: 10.3390/foods12224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the demand of healthier food products and products made with natural ingredients has increased overwhelmingly, led by the awareness of human beings of the influence of food on their health, as well as by the evidence of side effects generated by different ingredients such as some additives. This is the case for several artificial colorants, especially azo colorants, which have been related to the development of allergic reactions, attention deficit and hyperactivity disorder. All the above has focused the attention of researchers on obtaining colorants from natural sources that do not present a risk for consumption and, on the contrary, show biological activity. The most representative compounds that present colorant capacity found in nature are anthocyanins, anthraquinones, betalains, carotenoids and chlorophylls. Therefore, the present review summarizes research published in the last 15 years (2008-2023) in different databases (PubMed, Scopus, Web of Science and ScienceDirect) encompassing various natural sources of these colorant compounds, referring to their obtention, identification, some of the efforts made for improvements in their stability and their incorporation in different food matrices. In this way, this review evidences the promising path of development of natural colorants for the replacement of their artificial counterparts.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| |
Collapse
|
3
|
Yuan WC, Wu TY, Chu PY, Chang FR, Wu YC. High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration. Antioxidants (Basel) 2023; 12:antiox12040875. [PMID: 37107250 PMCID: PMC10135142 DOI: 10.3390/antiox12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
A highly efficient methodology for bioactive ingredient 3S,3′S-astaxanthin (3S,3′S-AST) preparation from genetically modified yeast (Kluyveromyces marxianus) with a combination of enzyme-assisted extraction and salt-assisted liquid-liquid extraction (SALLE) was achieved. The highest yield of 3S,3′S-AST indicated that FoodPro® CBL for yeast cell walls hydrolysis could significantly enhance extraction and obtain, with the help of SALLE procedure, quantified 3S,3′S-AST over 99% in purity through cation chelation. In the oxygen radical antioxidant capacity (ORAC) assay, the antioxidant capacity of high-purity 3S,3′S-AST products were 18.3 times higher than that of the original raw material extract. This new combination preparation may replace previous methods and has the potential to be scaled up in the manufacture of high-purity 3S,3′S-AST from low-value bioresources of raw materials to high-value products in the food and/or drug industries with lower cost and simple equipment.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tung-Ying Wu
- Department of Biological Science & Technology, Meiho University, Pingtung 912, Taiwan
- Department of Food Science and Nutrition, Meiho University, Pingtung 912, Taiwan
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
4
|
Yort L, Singanusong R, Yuenyong J, Sookwong P, Jiamyangyuen S. Optimization of Vitamin E Extraction from Rice Bran Oil Deodorizer Distillate using Response Surface Methodology. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rice bran oil deodorizer distillate (RBODD) is the low valuable secondary product of refinery rice bran oil. However, RBODD contains bioactive compounds such as vitamin E, gamma-oryzanols, and phytosterols. To increase value of vitamin E obtained from underutilized product, tocopherols and tocotrienols were extracted from RBODD using ethanol followed by a freezing step. The response surface method (RSM) is known as a potential tool for optimizing processing parameters in order to save time, energy, and chemical material. In current study, vitamin E extract (VEE) was extracted using ethanol and response surface method (RSM) was employed to investigate the optimum condition. The ratio of RBODD: ethanol (1:5, 1:10, and 1:15) and the incubation temperature (0, -20, and -40℃) of vitamin E extraction were used to design the experiment using a central composite design (CCD). Once the optimization process was completed, the RSM was executed using the following 5 responses simultaneously: VEET3, VEEToc, VEETot, RecoveryVEE, and YieldVEE. Results showed that values of each parameter were VEET3 (10.69-89.60 mg/g), VEEToc (2.85-23.37 mg/g), VEETot (13.53-112.97mg/g), RecoveryVEE (16.15-134.76%), and YieldVEE (12.64-44.48%). All model predictions were significant (p-value < 0.05), with non-significant lack of fit (> 0.05). In addition, the values of R2 and R2(Adj) of model were in the range of 0.922-0.988 and 0.893-0.982, respectively. According to these findings, response values were associated with RBODD:ethanol ratio and the incubation temperature. The ratio 1:9.5 (RBODD: Ethanol) and incubation temperature at -26.5 ℃ provided the optimal condition for vitamin E extraction from RBODD. At this optimum condition, it was determined that the predicted responses for VEET3, VEEToc, VEETot, RecoveryVEE, and YieldVEE were 81.87 mg/g, 23.70 mg/g, 103.64 mg/g, 123.63 %, and 20.05%, respectively. The obtained product with high content of tocopherol and tocotrienol can be used as ingredient in food as well as pharmaceutical applications.
Collapse
Affiliation(s)
- Laichheang Yort
- 1Department of Ago-Industry, Faculty of Agriculture, Natural Resources, and Environments, Naresuan University, Phitsanulok, Thailand
| | - Riantong Singanusong
- Department of Ago-Industry, Faculty of Agriculture, Natural Resources, and Environments, Naresuan University, Phitsanulok, Thailand
| | - Jitkunya Yuenyong
- 2Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phumon Sookwong
- 2Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sudarat Jiamyangyuen
- 1Department of Ago-Industry, Faculty of Agriculture, Natural Resources, and Environments, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
5
|
Yu Z, Xia M, Li X, Wang R, Liu W, Zheng R, Wang Z, Yang L, Shi Y. Characterization of carotenoids in Lycium barbarum fruit by using UPC2-PDA-Q-TOF-MSE couple with deep eutectic solvents extraction and evaluation of their 5α-reductase inhibitory activity. Front Chem 2022; 10:1052000. [PMID: 36426103 PMCID: PMC9679622 DOI: 10.3389/fchem.2022.1052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
Carotenoids from Lycium barbarum fruits have possessed pharmacological efficacy against eye diseases, cardiovascular disorders, cancer, and benign prostatic hyperplasia. However, the efficient extraction, rapid characterization and activities evaluation of Lycium carotenoids remains a challenge. To concentrate and characterize Lycium carotenoids, we have developed ultrasound-assisted extraction methods with different deep eutectic solvents (DESs) and analyzed carotenoids by ultra-performance convergence chromatography coupled with photo diode array detector and quadrupole time-of-flight mass spectrometry (UPC2-PDA-Q-TOF-MSE). DESs containing choline chloride and malonic acid presented better extraction efficiency and were more environmentally friendly than other extraction methods. Carotenoids were more quickly profiled (in 11 min) by UPC2 compared to by UPLC (in 35 min), with seventeen main peaks were characterized in the MS fragmentation patterns. The in vitro 5α-reductase inhibitory activity of DESs extracts, fractions and components were subsequently assessed, and the predominant component zeaxanthin dipalmitate (ZD) exhibited potent inhibitory activity. Our study provides a chemical and pharmacological basis for the further development of potential new drugs based on Lycium carotenoids.
Collapse
Affiliation(s)
- Zhonglian Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengqin Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueping Li
- Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruirong Zheng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yanhong Shi, ; Li Yang,
| | - Yanhong Shi
- Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yanhong Shi, ; Li Yang,
| |
Collapse
|
6
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
7
|
Leyva-Jiménez FJ, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Lozano-Sánchez J, Oliver-Simancas R, Alañón ME, Castangia I, Segura-Carretero A, Arráez-Román D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants (Basel) 2022; 11:antiox11081552. [PMID: 36009270 PMCID: PMC9404794 DOI: 10.3390/antiox11081552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, green and advanced extraction technologies have gained great interest to revalue several food by-products. This by-product revaluation is currently allowing the development of high value-added products, such as functional foods, nutraceuticals, or cosmeceuticals. Among the high valued-added products, cosmeceuticals are innovative cosmetic formulations which have incorporated bioactive natural ingredients providing multiple benefits on skin health. In this context, the extraction techniques are an important step during the elaboration of cosmetic ingredients since they represent the beginning of the formulation process and have a great influence on the quality of the final product. Indeed, these technologies are claimed as efficient methods to retrieve bioactive compounds from natural sources in terms of resource utilization, environmental impact, and costs. This review offers a summary of the most-used green and advanced methodologies to obtain cosmetic ingredients with the maximum performance of these extraction techniques. Response surface methodologies may be applied to enhance the optimization processes, providing a simple way to understand the extraction process as well as to reach the optimum conditions to increase the extraction efficiency. The combination of both assumes an economic improvement to attain high value products that may be applied to develop functional ingredients for cosmetics purposes.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Rodrigo Oliver-Simancas
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - M. Elena Alañón
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Ines Castangia
- Deparment of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
8
|
Microalgal carotenoids: A promising alternative to synthetic dyes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Optimization of supercritical fluid extraction of dihydrotanshinone, cryptotanshinone, tanshinone I, and tanshinone IIA from Salvia miltiorrhiza with a peanut oil modifier. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Cassani L, Marcovich NE, Gomez-Zavaglia A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Res Int 2022; 152:110924. [DOI: 10.1016/j.foodres.2021.110924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
|
11
|
High-pressure fluid technologies: Recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Optimum Parameters for Extracting Three Kinds of Carotenoids from Pepper Leaves by Response Surface Methodology. SEPARATIONS 2021. [DOI: 10.3390/separations8090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To determine the optimum parameters for extracting three carotenoids including zeaxanthin, lutein epoxide, and violaxanthin from pepper leaves by response surface methodology (RSM), a solvent of acetone and ethyl acetate (1:2) was used to extract carotenoids with four independent factors: ultrasound time (20–60 min); ratio of sample to solvent (1:12–1:4); saponification time (10–50 min); and concentration of saponification solution (KOH–methanol) (10–30%). A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to zeaxanthin (R2 = 75.95%, p < 0.0197), lutein epoxide (R2 = 90.24%, p < 0.0001), and violaxanthin (R2 = 73.84%, p < 0.0809) content. The optimum joint extraction conditions of zeaxanthin, lutein epoxide, and violaxanthin were 40 min, 1:8, 32 min, and 20%, respectively. The optimal predicted contents for zeaxanthin (0.823022 µg/g DW), lutein epoxide (4.03684 µg/g dry; DW—dry weight), and violaxanthin (16.1972 µg/g DW) in extraction had little difference with the actual experimental values obtained under the optimum extraction conditions for each response: zeaxanthin (0.8118 µg/g DW), lutein epoxide (3.9497 µg/g DW), and violaxanthin (16.1590 µg/g DW), which provides a theoretical basis and method for cultivating new varieties at low temperatures and weak light resistance.
Collapse
|
13
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
14
|
Chen QH, Wu BK, Pan D, Sang LX, Chang B. Beta-carotene and its protective effect on gastric cancer. World J Clin Cases 2021; 9:6591-6607. [PMID: 34447808 PMCID: PMC8362528 DOI: 10.12998/wjcc.v9.i23.6591] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/16/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Beta-carotene is an important natural pigment that is very beneficial to human health. It is widely found in vegetables and fruits. The three main functions are antioxidant effects, cell gap junction-related functions and immune-related functions. Because of its diverse functions, beta-carotene is believed to prevent and treat many chronic diseases. Gastric cancer is one of the most important diseases it can treat. Gastric cancer is a type of cancer with a high incidence. Its etiology varies, and the pathogenesis is complex. Gastric cancer seriously affects human health. The role of beta-carotene, a natural nutrient, in gastric cancer has been explored by many researchers, including molecular mechanisms and epidemiological studies. Molecular studies have mainly focused on oxidative stress, cell cycle, signal transduction pathways and immune-related mechanisms of beta-carotene in gastric cancer. Many epidemiological surveys and cohort studies of patients with gastric cancer have been conducted, and the results of these epidemiological studies vary due to the use of different research methods and analysis of different regions. This paper will summarize the results of these studies, mainly in terms of molecular mechanisms and epidemiological research results, which will provide a systematic basis for future studies of the treatment and prognosis of gastric cancer. This paper will help researchers identify new research directions.
Collapse
Affiliation(s)
- Qian-Hui Chen
- Department of Intensive Care Unit, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bao-Kang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
15
|
Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications - A review. CHEMOSPHERE 2021; 271:129525. [PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Rambabu K
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Selangor Darul Ehsan, Malaysia.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Duy LX, Toan TQ, Anh DV, Hung NP, Huong TTT, Long PQ, Dat NM, Le DTT, Pham DTN, Nhan NPT, Manh DV. Optimization of canthaxanthin extraction from fermented biomass of Paracoccus carotinifacuens VTP20181 bacteria strain isolated in Vietnam. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-117-125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The bacterium strain Paracoccus carotinifaciens VTP20181 isolated in Vietnam produces canthaxanthin, a carotenoid widely used in the food and pharmaceutical industries. The aim of this work was to determine optimal parameters for canthaxanthin extraction from fermented biomass of P. carotinifaciens VTP20181.
Study objects and methods. First, a series of single factor investigations were carried out in regard to maximal carotenoid content in the biomass extract obtained by using ultrasonic waves. Four parameters of the extraction process, such as extraction temperature, solvent/material ratio, extraction time, and ultrasonic output power, were studied. The obtained results were then optimized by using Response Surface Methodology (RSM) and Box-Behnken experimental design.
Results and discussion. The optimal technological parameters of the extraction process included extraction temperature of 35°C, solvent/material ratio of 9.5:1 (v/w), extraction time of 90 min, and ultrasonic output power of 145 W. Under optimal conditions, canthaxanthin and total carotenoid contents were determined as 14.95 ± 0.12 and 18.21 ± 0.11 mg/g respectively, which were compatible with theoretical calculations ‒ 15.074 and 18.263 mg/g, respectively.
Conclusion. Current results confirmed that the strain of halophilic P. carotinifaciens VTP20181 is a potential source for canthaxanthin biosynthesis.
Collapse
|
17
|
Gea-Botella S, Agulló L, Martí N, Martínez-Madrid MC, Lizama V, Martín-Bermudo F, Berná G, Saura D, Valero M. Carotenoids from persimmon juice processing. Food Res Int 2021; 141:109882. [PMID: 33641941 DOI: 10.1016/j.foodres.2020.109882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/18/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study was the use and revalorization of two persimmon by-products A and B generated in the juice production process. The by-product B resulting from a pectinase enzymatic treatment of peels and pulp to optimize juice extraction was especially suitable for recovery of valuable bioactive carotenoids. The extraction solvents and solvent combinations used were: ethanol, acetone, ethanol/acetone (50:50 v/v) and ethanol/acetone/hexane (25:25:50 v/v/v). HPLC-DAD analysis detected and identified a total of nine individual carotenoids namely violaxanthin, neoxanthin, antheraxanthin, lutein, zeaxanthin, β-cryptoxanthin 5,6-epoxide, β-cryptoxanthin, α-carotene, and β-carotene. β-cryptoxanthin and β-carotene represented 49.2% and 13.2% of the total carotenoid content (TCC) in the acetone extract from by-product B. TCC contributed greatly to antioxidant activity of acetone extract derived from this by-product. Pectinase enzymatic treatment of persimmon peels and pulp followed by absolute acetone extraction of carotenoids could be an efficient method to obtain a rich extract in these compounds that could be used as nutraceutical ingredient.
Collapse
Affiliation(s)
- S Gea-Botella
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Avenida de la Universidad s/n, 03202 Elche, Alicante, Spain
| | - L Agulló
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Avenida de la Universidad s/n, 03202 Elche, Alicante, Spain
| | - N Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Avenida de la Universidad s/n, 03202 Elche, Alicante, Spain
| | - M C Martínez-Madrid
- Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández de Elche (UMH), Campus de Orihuela, Carretera de Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - V Lizama
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - F Martín-Bermudo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - G Berná
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - D Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Avenida de la Universidad s/n, 03202 Elche, Alicante, Spain
| | - M Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Avenida de la Universidad s/n, 03202 Elche, Alicante, Spain.
| |
Collapse
|
18
|
|
19
|
Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: A response surface methodology approach. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101194] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Ahmad MN, Mohd Azli NH, Ismail H, Mohamed Iqbal MA, Mat Piah B, Normaya E. Inhibitory effects of
Manihot esculenta
extracts on
Food‐Borne
pathogens and their antioxidant properties: Supercritical fluid extraction, statistical analysis, and molecular docking study. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
- IUM Poison CentreInternational Islamic University Malaysia Kuantan Malaysia
| | - Nur Hidayah Mohd Azli
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| | | | - Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources EngineeringUniversiti Malaysia Pahang Kuantan Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| |
Collapse
|
21
|
de Melo M, Vieira P, Şen A, Pereira H, Portugal I, Silva C. Optimization of the supercritical fluid extraction of Quercus cerris cork towards extraction yield and selectivity to friedelin. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Albuquerque BR, Oliveira MBPP, Barros L, Ferreira ICFR. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Crit Rev Food Sci Nutr 2020; 61:805-835. [PMID: 32267162 DOI: 10.1080/10408398.2020.1746904] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Color additives are important for the food industry to improve sensory quality lost during food process and to expand the variety of products. In general, artificial colorants have lower cost and better stability than the natural ones. Nevertheless, studies have reported their association with some health disorders. Furthermore, consumers have given greater attention to food products with health beneficial effects, which has provided a new perspective for the use of natural colorants. In this context, fruits are an excellent alternative source of natural compounds, that allow the obtainment of a wide range of colorant molecules, such as anthocyanins, betalains, carotenoids, and chlorophylls. Furthermore, in addition to their coloring ability, they comprise different bioactive properties. However, the extraction and application of natural colorants from fruits is still a challenge, since these compounds show some stability problems, in addition to issues related to the sustainability of raw-materials providing. To overcome these limitations, several studies have reported optimized extraction and stabilization procedures. In this review, the major pigments found in fruits and their extraction and stabilization techniques for uses as food additives will be looked over.
Collapse
Affiliation(s)
- Bianca R Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
23
|
Priyanka, Khanam S. Selection of suitable model for the supercritical fluid extraction of carrot seed oil: A parametric study. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Alagoz Y, Dhami N, Mitchell C, Cazzonelli CI. cis/trans Carotenoid Extraction, Purification, Detection, Quantification, and Profiling in Plant Tissues. Methods Mol Biol 2020; 2083:145-163. [PMID: 31745919 DOI: 10.1007/978-1-4939-9952-1_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reverse phase high-performance liquid chromatography (HPLC) is the method of choice used in biological, health, and food research to identify, quantify, and profile carotenoid species. The identification and quantification of cis- and/or trans-carotene and xanthophyll isomers in plant tissues can be affected by the method of sample preparation and extraction, as well as the HPLC column chemistry and the solvent gradient. There is a high degree of heterogeneity in existing methods in terms of their ease, efficiency, and accuracy. We describe a simple carotenoid extraction method and two different optimised HPLC methods utilizing C18 or C30 reverse-phase columns. We outline applications, advantages, and disadvantages for using these reverse phase columns to detect xanthophylls and cis-carotenes in wild-type photosynthetic leaves and mutant dark-grown etiolated seedlings, respectively. Resources are provided to profile individual species based upon their spectral properties and retention time, as well as quantify carotenoids by their composition and absolute levels in different plant tissues.
Collapse
Affiliation(s)
- Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Chris Mitchell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia.
| |
Collapse
|
25
|
Mujeeb M, Abidin L, Aqil M, Najmi A, Ahmad A. Computer-aided Box–Behnken outlook towards optimization of extraction of lawsone from mehendi leaves. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_345_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Green Chemistry Extractions of Carotenoids from Daucus carota L.-Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules 2019; 24:molecules24234339. [PMID: 31783600 PMCID: PMC6930531 DOI: 10.3390/molecules24234339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple reviews have been published on various aspects of carotenoid extraction. Nevertheless, none of them focused on the discussion of recent green chemistry extraction protocols, especially for the carotenoids extraction from Daucus carota L. This group of bioactive compounds has been chosen for this review since most of the scientific papers proved their antioxidant properties relevant for inflammation, stress-related disorders, cancer, or neurological and neurodegenerative diseases, such as stroke and Alzheimer's Disease. Besides, carrots constitute one of the most popular sources of carotenoids. In the presented review emphasis has been placed on the supercritical carbon dioxide and enzyme-assisted extraction techniques for the relevant tetraterpenoids. The detailed descriptions of these methods, as well as practical examples, are provided. In addition, the pros and cons of each method and comparison with the standard solvent extraction have been discussed.
Collapse
|
27
|
Sánchez-Camargo ADP, Gutiérrez LF, Vargas SM, Martinez-Correa HA, Parada-Alfonso F, Narváez-Cuenca CE. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104574] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Liu LX, Zhang Y, Zhou Y, Li GH, Yang GJ, Feng XS. The Application of Supercritical Fluid Chromatography in Food Quality and Food Safety: An Overview. Crit Rev Anal Chem 2019; 50:136-160. [PMID: 30900462 DOI: 10.1080/10408347.2019.1586520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li-xia Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang-jian Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Persic M, Jakopic J, Hudina M. The effect of post-harvest technologies on selected metabolites in persimmon (Diospyros kaki Thunb.) fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:854-860. [PMID: 30006943 DOI: 10.1002/jsfa.9255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tannins are frequently a main focus in the investigation of de-astringency treatments of persimmon, and the effect of a controlled atmosphere on other phytochemicals is often overlooked. In the present study, changes in the content of total soluble and insoluble phenolics, soluble tannins, saponins, and carotenoids, as well as changes in primary metabolites, were monitored. RESULTS Generally, treatment with ethylene induced a decrease in total phenolic content, whereas, when treated with CO2 , the content of total phenolics remained unchanged compared to the level of total phenolics before treatment. Treatment with apple-sourced ethylene did not significantly affect the level of total phenolics. Additionally, for both varieties, 'Kaki Tipo' and 'Rojo Brillante', the share of insoluble phenolics strongly increased when treated with CO2 , whereas, when treated with ethylene, the same change applied for the ratio of soluble phenolics. The content of carotenoids varied markedly among treatments and varieties, whereas the content of total saponins remained unchanged, regardless of the treatment and variety. CONCLUSION The results obtained in the present study show that the content of metabolites in persimmon was affected markedly and variedly using post-harvest technology. Apart from the treatment used, changes in the content of metabolites are also affected markedly by the persimmon variety. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martina Persic
- Department of Agronomy, Chair for Fruit Growing, Viticulture and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerneja Jakopic
- Department of Agronomy, Chair for Fruit Growing, Viticulture and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Hudina
- Department of Agronomy, Chair for Fruit Growing, Viticulture and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Dai Q, Yang Y, Chen K, Cheng Z, Ni Y, Li J. Optimization of Supercritical CO2
Operative Parameters to Simultaneously Increase the Extraction Yield of Oil and Pentacyclic Triterpenes from Artichoke Leaves and Stalks by Response Surface Methodology and Ridge Analysis. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianqian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Yudi Yang
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Kai Chen
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Zhan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| |
Collapse
|
31
|
Cheng D, Zhang Y, Liu H, Zhang H, Tan K, Ma H, Li S, Zheng H. An improving method for extracting total carotenoids in an aquatic animal Chlamys nobilis. Food Chem 2018; 280:45-50. [PMID: 30642505 DOI: 10.1016/j.foodchem.2018.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/16/2018] [Accepted: 12/09/2018] [Indexed: 01/17/2023]
Abstract
In the present study, an improving method for extracting carotenoids in aquatic animals using ultrasound-assisted extraction (UAE) was developed. The theoretical optimum extraction condition (ultrasonic power, temperature and time of 246.77 W, 37.64 °C and 29.03 min, respectively) based on the maximum extracted total carotenoids content (TCC) (141.13 µg/g) was predicted by single-factor experiments and response surface methodology. Additional experiments were then carried out under practical extraction conditions to verify the predicted value for TCC. The optimum practical extraction condition was at ultrasonic power, extraction temperature and extraction time of 240 W, 38 °C and 29 min, respectively, where the TCC (137.88 ± 1.22 µg/g) similar to the predicted value. On the other hand, a much lower total carotenoid of 107.75 ± 2.60 μg/g was obtained by the 2 h conventional extraction of carotenoids (CEC). The UAE in carotenoids extraction has higher efficiency, shorter processing time, and less acetone than the CEC.
Collapse
Affiliation(s)
- Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yun Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
32
|
Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Adadi P, Barakova NV, Krivoshapkina EF. Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5925-5947. [PMID: 29851485 DOI: 10.1021/acs.jafc.8b01407] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carotenoids are the most powerful nutrients (medicine) on earth due to their potent antioxidant properties. The ability of these tetraterpenoids in obviating human chronic ailments like cancer, cardiovascular disease, osteoporosis, and diabetes has drawn public attention toward these novel compounds. Conventionally, carotenoids have been extracted from plant materials and agro-industrial byproduct using different solvents, but these procedures result in contaminating the target compound (carotenoids) with extraction solvents. Furthermore, some utilized solvents are not safe and hence are harmful to the environment. This has attracted criticism from consumers, ecologists, environmentalists, and public health workers. However, there is clear consumer preference for carotenoids from natural origin without traces of extracting solvent. Therefore, this review seeks to discuss methods for higher recovery of pure carotenoids without contamination from a solvent. Methods such as enzyme-based extraction, supercritical fluid extraction, microwave-assisted extraction, Soxhlet extraction, ultrasonic extraction, and postextraction treatment (saponification) are discussed. Merits and demerits of these methods along with health concerns during intake of carotenoids were also considered.
Collapse
Affiliation(s)
- Parise Adadi
- ITMO University , Lomonosova Street 9 , 191002 , St. Petersburg , Russia Federation
| | | | | |
Collapse
|
34
|
Kua YL, Gan S, Morris A, Ng HK. Optimization of simultaneous carotenes and vitamin E (tocols) extraction from crude palm olein using response surface methodology. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1407760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yin Leng Kua
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suyin Gan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Andrew Morris
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hoon Kiat Ng
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| |
Collapse
|
35
|
Soquetta MB, Terra LDM, Bastos CP. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2017.1411978] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marcela Bromberger Soquetta
- Department of Process Engineering, Technology Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Lisiane de Marsillac Terra
- Department of Process Engineering, Technology Center, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Caroline Peixoto Bastos
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
36
|
Saini RK, Keum YS. Carotenoid extraction methods: A review of recent developments. Food Chem 2018; 240:90-103. [DOI: 10.1016/j.foodchem.2017.07.099] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/19/2017] [Indexed: 11/15/2022]
|
37
|
Separation and purification of four phenolic compounds from persimmon by high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:78-85. [DOI: 10.1016/j.jchromb.2017.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022]
|
38
|
Zhang X, Ji F, Li Y, He T, Han Y, Wang D, Lin Z, Chen S. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography. ANAL SCI 2018; 34:407-413. [PMID: 29643302 DOI: 10.2116/analsci.17p434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2023]
Abstract
In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO2) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, Rs = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, Rs = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.
Collapse
Affiliation(s)
| | - Feng Ji
- Analytical Center, Department of Analytical Instruments, Shimadzu (China) Co
| | - Yueqi Li
- Analytical Center, Department of Analytical Instruments, Shimadzu (China) Co
| | - Tian He
- School of Pharmaceutical Sciences, Peking University
| | - Ya Han
- School of Pharmaceutical Sciences, Peking University
| | - Daidong Wang
- School of Pharmaceutical Sciences, Peking University
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University
| |
Collapse
|
39
|
Wang ZD, Li LH, Xia H, Wang F, Yang LG, Wang SK, Sun GJ. Optimisation of steam distillation extraction oil from onion by response surface methodology and its chemical composition. Nat Prod Res 2018; 32:112-115. [PMID: 28503942 DOI: 10.1080/14786419.2017.1327863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Oil extraction from onion was performed by steam distillation. Response surface methodology was applied to evaluate the effects of ratio of water to raw material, extraction time, zymolysis temperature and distillation times on yield of onion oil. The maximum extraction yield (1.779%) was obtained as following conditions: ratio of water to raw material was 1, extraction time was 2.5 h, zymolysis temperature was 36° and distillation time was 2.6 h. The experimental values agreed well with those predicted by regression model. The chemical composition of extracted onion oil under the optimum conditions was analysed by gas chromatography-mass spectrometry technology. The results showed that sulphur compounds, like alkanes, sulphide, alkenes, ester and alcohol, were the major components of onion oil.
Collapse
Affiliation(s)
- Zhao Dan Wang
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
- b College of Life Science and Engineering , Chongqing Three Gores University , Wanzhou , China
| | - Li Hua Li
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
| | - Hui Xia
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
| | - Feng Wang
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
| | - Li Gang Yang
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
| | - Shao Kang Wang
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
| | - Gui Ju Sun
- a Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition & Food Hygiene, School of Public Health , Southeast University , Nanjing , China
| |
Collapse
|
40
|
An overview of dermatological and cosmeceutical benefits of Diospyros kaki and its phytoconstituents. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Bolzan AB, Pereira EA. Elaboração e caracterização de doce cremoso de caqui com adição de sementes da araucária. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.6116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo A inovação é um dos pilares para o alcance do desenvolvimento sustentável e, para a inserção de um novo produto alimentício no mercado, abordagens que englobem pesquisas em ciência e tecnologia se fazem necessárias. Visando propor uma alternativa para o uso do pinhão e o aproveitamento de frutos de clima temperado, cultivados no Estado do Paraná, foi elaborado um doce cremoso de caqui, substituindo-se parcialmente a polpa por diferentes concentrações de pinhão nas formulações (0, 5 e 10%). Foram realizadas análises de sólidos solúveis, atividade de água, pH, acidez total titulável, teor de umidade, cinzas, cor e textura, além da caracterização microbiológica dos produtos. Atendendo aos padrões de identidade e qualidade quanto às características físicas, químicas e microbiológicas, a inserção de sementes de pinhão e a consequente redução no teor de polpa promoveram, do ponto de vista tecnológico, o desenvolvimento adequado deste produto inovador. Os valores da atividade de água, a concentração de açúcares e a baixa acidez observados no produto tornaram o ambiente desfavorável ao desenvolvimento de micro-organismos, condições estas associadas às boas práticas de fabricação. A alteração na formulação padrão influenciou na análise instrumental do perfil de textura, devido à presença de amido da semente de pinhão. Os parâmetros de cor apresentaram resultados de baixa luminosidade, o que reporta a produtos pouco translúcidos, o que é característico de alimentos de alto teor de açúcares, concentrados por evaporação. No espaço de cor notou-se a expressão da cromaticidade a* e b*, que apontam para a predominância das cores amarelo e vermelho, característicos do fruto de origem. As investigações abordadas revelam a aplicabilidade tecnológica do pinhão, contribuindo para a agregação de valor através da diversificação de produtos e mostrando-se como uma alternativa para geração de recursos financeiros para pequenos produtores rurais através do extrativismo, garantindo a conservação de espécies da Floresta com Araucária.
Collapse
|
42
|
Rauf A, Uddin G, Patel S, Khan A, Halim SA, Bawazeer S, Ahmad K, Muhammad N, Mubarak MS. Diospyros, an under-utilized, multi-purpose plant genus: A review. Biomed Pharmacother 2017; 91:714-730. [PMID: 28499243 DOI: 10.1016/j.biopha.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
The genus Diospyros from family Ebenaceae has versatile uses including edible fruits, valuable timber, and ornamental uses. The plant parts of numerous species have been in use as remedies in various folk healing practices, which include therapy for hemorrhage, incontinence, insomnia, hiccough, diarrhea etc. Phytochemical constituents such as terpenoids, ursanes, lupanes, polyphenols, tannins, hydrocarbons, and lipids, benzopyrones, naphthoquinones, oleananes, and taraxeranes have been isolated from different species of this genus. The biological activities of these plants such as antioxidant, anti-inflammatory, analgesic, antipyretic, anti-diabetic, antibacterial, anthelmintic, antihypertensive, cosmeceutical, enzyme-inhibitory etc. have been validated by means of an in vitro, in vivo, and clinical tests. As a rich reserve of pharmacologically important components, this genus can accelerate the pace of drug discovery. Accordingly, the aim of the present review is to survey and summarize the recent literature pertaining to the medicinal and pharmacological uses of Diospyros, and to select experimental evidence on the pharmacological properties of this genus. In addition, the review also aims at identifying areas that need development to make use of this genus, especially its fruit and phytochemicals as means for economic development and for drug discovery.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Sobia Ahsan Halim
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan; Department of Biochemistry Kinnaird College for Women, 93-Jail Road, Lahore, Pakistan
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| | - Khalid Ahmad
- Department of Environmental, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | |
Collapse
|
43
|
Optimization of pressure-enhanced solid-liquid extraction of flavonoids from Flos Sophorae and evaluation of their antioxidant activity. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int J Mol Sci 2017; 18:E96. [PMID: 28067795 PMCID: PMC5297730 DOI: 10.3390/ijms18010096] [Citation(s) in RCA: 531] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023] Open
Abstract
Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.
Collapse
Affiliation(s)
- Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Yan Z, Wang C, Hou L, Liu J, Jiang S, Liu Q. Extraction of Oleoresin from Dao-Kou Roasted Chicken Flavor Spice Blends Using Supercritical Carbon Dioxide. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0614-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|