1
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
2
|
Gâta VA, Pașca A, Roman A, Muntean MV, Morariu DȘ, Bonci EA, Dina C, Ungureanu L. The Expression of Forkhead Box P3 T Regulatory Lymphocytes as a Prognostic Factor in Malignant Melanomas. Int J Mol Sci 2024; 25:6377. [PMID: 38928083 PMCID: PMC11204253 DOI: 10.3390/ijms25126377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Since transcription factor Forkhead Box P3 (FoxP3) was identified as a specific regulatory T cell (Treg) marker, researchers have scrutinized its value as a potential novel therapeutic target or a prognostic factor in various types of cancer with inconsistent results. The present analysis was performed to assess the influence of Treg FoxP3 expression on the prognosis of primary melanoma and to evaluate the correlations with various clinicopathological prognostic factors. We analyzed all eligible patients with stage pT3 primary malignant melanomas treated in a tertiary cancer center. Immunohistochemical staining for Treg FoxP3 expression was performed on retrospectively identified paraffin blocks and subsequently correlated with the outcomes of the patients. A total of 81% of the patients presented a positive Treg FoxP3 expression, being correlated with a higher risk of lymph node metastasis, tumor relapse, and death. Moreover, positive expression was statistically associated with a shorter OS. The tumor relapse rate was estimated at 36.7%. A positive expression of Treg FoxP3 and lymph node metastasis were associated with a higher risk of death based on multivariate analysis. Treg FoxP3 expression may be used as an independent prognostic factor in patients with malignant melanoma to evaluate tumor progression and survival.
Collapse
Affiliation(s)
- Vlad Alexandru Gâta
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Andrei Pașca
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Andrei Roman
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Maximilian Vlad Muntean
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
- Department of Plastic and Reconstructive Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Eduard Alexandru Bonci
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Champalimaud“ Research and Clinical Centre, 1400-038 Lisbon, Portugal
| | - Constantin Dina
- Department of Anatomy, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | - Loredana Ungureanu
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Sauer N, Szlasa W, Szewczyk A, Novickij V, Saczko J, Baczyńska D, Daczewska M, Kulbacka J. Effects of Nanosecond Pulsed Electric Field on Immune Checkpoint Receptors in Melanoma Cells. Pharmaceuticals (Basel) 2023; 16:1362. [PMID: 37895833 PMCID: PMC10610193 DOI: 10.3390/ph16101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Checkpoint molecules such as PD-1, LAG-3, and TIM-3 are currently under extensive investigation for their roles in the attenuation of the immune response in cancer. Various methods have been applied to overcome the challenges in this field. This study investigated the effects of nanosecond pulsed electric field (nsPEF) treatment on the expression of immune checkpoint molecules in A375 and C32 melanoma cells. The researchers found that the nsPEF treatment was able to enhance membrane permeabilization and morphological changes in the cell membrane without being cytotoxic. We found that the effects of nsPEFs on melanoma included (1) the transport of vesicles from the inside to the outside of the cells, (2) cell contraction, and (3) the migration of lipids from inside the cells to their peripheries. The treatment increased the expression of PD-1 checkpoint receptors. Furthermore, we also observed potential co-localization or clustering of MHC class II and PD-1 molecules on the cell surface and the secretion of cytokines such as TNF-α and IL-6. These findings suggest that nsPEF treatment could be a viable approach to enhance the delivery of therapeutic agents to cancer cells and to modulate the tumor microenvironment to promote an antitumor immune response. Further studies are needed to explore the mechanisms underlying these effects and their impacts on the antitumor immune response, and to investigate the potential of nsPEF treatment in combination with immune checkpoint inhibitors to improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, 08217 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
4
|
Finall A, Murphy K, Frazer RD. Improving care of melanoma patients through efficient, integrated cellular-molecular pathology workflows using tissue samples with low tumour nuclear content. J Clin Pathol 2023; 76:612-617. [PMID: 35428674 DOI: 10.1136/jclinpath-2022-208194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
Abstract
AIMS The aim of this quality improvement project was to improve the turnaround time of B-raf proto-oncogene (BRAF) mutation testing in patients with malignant melanoma to support oncologists in making timely treatment decisions. METHODS This is a prospective in-house verification of the Idylla BRAF test as compared with DNA panel next-generation sequencing (NGS) performed at an external laboratory. RESULTS The Idylla BRAF test had an overall concordance of 95% compared with NGS. This was considered sufficiently good for use in patients with a poor performance status who were at risk of rapid clinical deterioration. Reliable results can be generated using the Idylla BRAF test in tissue sections with tumour neoplastic cell content below 50%. We present a multidisciplinary clinical care algorithm to support dual testing. CONCLUSIONS The Idylla BRAF test has the potential to make a significant positive impact on progression-free survival of malignant melanoma patients due to its rapid turnaround time. The Idylla BRAF test can be used as an adjunct to NGS for timely management of patients, particularly those with a poor performance status at presentation.
Collapse
Affiliation(s)
- Alison Finall
- Cellular Pathology, Swansea Bay University Health Board, Swansea, UK
- Medical School, Swansea University, Swansea, UK
| | - Kate Murphy
- Cellular and Molecular Pathology Department, Swansea Bay University Health Board, Swansea, UK
- Institute of Life Science, Swansea University, Swansea, UK
| | | |
Collapse
|
5
|
Mallardo D, Giannarelli D, Vitale MG, Galati D, Trillò G, Esposito A, Isgrò MA, D'Angelo G, Festino L, Vanella V, Trojaniello C, White A, De Cristofaro T, Bailey M, Pignata S, Caracò C, Petrillo A, Muto P, Maiolino P, Budillon A, Warren S, Cavalcanti E, Ascierto PA. Nivolumab serum concentration in metastatic melanoma patients could be related to outcome and enhanced immune activity: a gene profiling retrospective analysis. J Immunother Cancer 2022; 10:jitc-2022-005132. [PMID: 36424033 PMCID: PMC9693654 DOI: 10.1136/jitc-2022-005132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nivolumab is an anti-PD-1 antibody approved for treating metastatic melanoma (MM), for which still limited evidence is available on the correlation between drug exposure and patient outcomes. METHODS In this observational retrospective study, we assessed whether nivolumab concentration is associated with treatment response in 88 patients with MM and if the patient's genetic profile plays a role in this association. RESULTS We observed a statistically significant correlation between nivolumab serum concentration and clinical outcomes, measured as overall and progression-free survival. Moreover, patients who achieved a clinical or partial response tended to have higher levels of nivolumab than those who reached stable disease or had disease progression. However, the difference was not statistically significant. In particular, patients who reached a clinical response had a significantly higher concentration of nivolumab and presented a distinct genetic signature, with more marked activation of ICOS and other genes involved in effector T-cells mediated proinflammatory pathways. CONCLUSIONS In conclusion, these preliminary results show that in patients with MM, nivolumab concentration correlates with clinical outcomes and is associated with an increased expression of ICOS and other genes involved in the activation of T effectors cells.
Collapse
Affiliation(s)
| | | | | | - Domenico Galati
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Giusy Trillò
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Assunta Esposito
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | - Grazia D'Angelo
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Lucia Festino
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Vito Vanella
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | - Andrew White
- NanoString Technologies Inc, Seattle, Washington, USA
| | | | | | - Sandro Pignata
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Corrado Caracò
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | - Paolo Muto
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Piera Maiolino
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Alfredo Budillon
- Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Sarah Warren
- NanoString Technologies Inc, Seattle, Washington, USA
| | | | | |
Collapse
|
6
|
Targeted Therapy and Immunotherapy in Melanoma. Dermatol Clin 2022; 41:65-77. [DOI: 10.1016/j.det.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Li L, Lu S, Ma C. Anti-proliferative and pro-apoptotic effects of curcumin on skin cutaneous melanoma: Bioinformatics analysis and in vitro experimental studies. Front Genet 2022; 13:983943. [PMID: 36171883 PMCID: PMC9510772 DOI: 10.3389/fgene.2022.983943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: To reveal the potential mechanisms of curcumin for the treatment of skin cutaneous melanoma (SKCM) and its identify novel prognostic biomarkers. Methods: We searched the Cancer Genome Atlas and Traditional Chinese Medicine Systems Pharmacology database for the data on SKCM and curcumin. We conducted data analysis using R and online tools. The propagation and migration of SKCM cells were assessed with CCK-8 and scratch wound assays, respectively. We assessed apoptosis by TUNEL assay and western blot. Results: The survival analysis revealed that the mRNA expressions of DPYD, DPYS, LYN, PRKCQ, and TLR1 were significantly related to a favorable overall survival in SKCM patients. Additionally, the mRNA expression level of DPYD was associated with GPI, LYN, PCSK9, PRKCQ, and TLR1 mRNAs. GSEA results showed that the prognostic hub genes were augmented with ultraviolet, apoptosis, and metastasis. Curcumin expressed proliferation and migration of SK-MEL-1 cells (p < 0.05), and induced apoptosis (p < 0.05) significantly. Conclusion: Curcumin may have potential therapeutic effects in SKCM by inhibiting cell proliferation and migration and inducing apoptosis by regulating oxygen-related signaling pathways. The hub genes might be identified as novel biomarkers for SKCM.
Collapse
Affiliation(s)
- Long Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chao Ma,
| |
Collapse
|
8
|
Extra Virgin Olive Oil Secoiridoids Modulate the Metabolic Activity of Dacarbazine Pre-Treated and Treatment-Naive Melanoma Cells. Molecules 2022; 27:molecules27103310. [PMID: 35630786 PMCID: PMC9146374 DOI: 10.3390/molecules27103310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile—composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)—of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.
Collapse
|
9
|
Therapeutic Efficacy of Pharmacological Ascorbate on Braf Inhibitor Resistant Melanoma Cells In Vitro and In Vivo. Cells 2022; 11:cells11071229. [PMID: 35406796 PMCID: PMC8997901 DOI: 10.3390/cells11071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
High-dose ascorbate paradoxically acts as a pro-oxidant causing the formation of hydrogen peroxide in an oxygen dependent manner. Tumor cells (in particular melanoma cells) show an increased vulnerability to ascorbate induced reactive oxygen species (ROS). Therefore, high-dose ascorbate is a promising pharmacological approach to treating refractory melanomas, e.g., with secondary resistance to targeted BRAF inhibitor therapy. BRAF mutated melanoma cells were treated with ascorbate alone or in combination with the BRAF inhibitor vemurafenib. Viability, cell cycle, ROS production, and the protein levels of phospho-ERK1/2, GLUT-1 and HIF-1α were analyzed. To investigate the treatment in vivo, C57BL/6NCrl mice were subcutaneously injected with D4M.3A (BrafV600E) melanoma cells and treated with intraperitoneal injections of ascorbate with or without vemurafenib. BRAF mutated melanoma cell lines either sensitive or resistant to vemurafenib were susceptible to the induction of cell death by pharmacological ascorbate. Treatment of BrafV600E melanoma bearing mice with ascorbate resulted in plasma levels in the pharmacologically active range and significantly improved the therapeutic effect of vemurafenib. We conclude that intravenous high-dose ascorbate will be beneficial for melanoma patients by interfering with the tumor’s energy metabolism and can be safely combined with standard melanoma therapies such as BRAF inhibitors without pharmacological interference.
Collapse
|
10
|
Liu K, Zhang L, Li X, Zhao J. High expression of lncRNA HSD11B1-AS1 indicates favorable prognosis and is associated with immune infiltration in cutaneous melanoma. Oncol Lett 2022; 23:54. [PMID: 34992686 PMCID: PMC8721861 DOI: 10.3892/ol.2021.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Cutaneous melanoma is an aggressive malignant cancer associated with poor prognosis. Identification of reliable biomarkers for predicting prognosis of melanoma contributes to improved clinical outcome and disease management. Long non-coding RNAs (lncRNAs) serve a crucial regulatory role of oncogenesis and tumor suppression in melanoma. Using data from The Cancer Genome Atlas database, novel lncRNA 11β-hydroxysteroid dehydrogenase type 1-antisense RNA 1 (HSD11B1-AS1) was identified, which was significantly downregulated in malignant melanoma and its downregulation was significantly associated with poor clinicopathological characteristics, including advanced T and pathological stage, Clark level, Breslow depth and ulceration and worse prognosis. Multivariate analysis showed that HSD11B1-AS1, as well as N stage and Breslow depth, were independent prognostic factors in cutaneous melanoma, and nomograms suggested a good predictive value of 1-, 3- and 5-year overall survival, progression-free interval and disease-specific survival. In vitro experiments verified the decreased HSD11B1-AS1 expression in melanoma cell lines compared with human epidermal melanocytes. Moreover, cell experiments in vitro, including Cell Counting Kit-8, colony formation, wound healing and Transwell assay, suggested that overexpression of HSD11B1-AS1 significantly inhibited melanoma cell proliferation, migration and invasion. Functional enrichment showed significantly enriched pathways in IFN-γ and -α response, TNF-α signaling via NF-κB and IL-2/STAT-5 and IL-6/JAK/STAT-3 signaling. In addition, immune infiltration analysis demonstrated that HSD11B1-AS1 may function by accelerating immune response regulation and the immune cell infiltration of various immunocytes, especially T, T helper 1, activated dendritic and B cells. The present study revealed HSD11B1-AS1 as a potential therapeutic target and promising biomarker for diagnosis and prognosis of cutaneous melanoma.
Collapse
Affiliation(s)
- Kaiyuan Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Li Zhang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xiuli Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China.,Department of Dermatology, Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
11
|
Huang L, Zhai Y, Fajardo CD, Lang D. YK-4-279 Attenuates Progression of Pre-Existing Pigmented Lesions to Nodular Melanoma in a Mouse Model. Cancers (Basel) 2021; 14:143. [PMID: 35008307 PMCID: PMC8749984 DOI: 10.3390/cancers14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/25/2022] Open
Abstract
More options are needed for the effective treatment of melanoma. In a previous study, we discovered the small molecule drug YK-4-279 almost completely inhibited tumor progression in the BrafCA;Tyr-CreERT2;Ptenflox/flox transgenic mouse model. YK-4-279 had no effect on tumor initiation but blocked progression of invasive melanoma. Our current study was designed as a treatment model, where YK-4-279 was administered during pigmented lesion formation. The study design included the use of three groups: (1) a control group that received only DMSO without a drug (MOCK), (2) mice following our prior studies with YK-4-279 administered at the time of tumor induction (YK-4-279), and (3) mice treated during tumor initiation (YK-4-279 delay). While the MOCK mice had progression of tumors, both YK-4-279 and YK-4-279 delay groups had a significant block or delay of progression. The majority of mice in the YK-4-279 groups had a block of progression, while the YK-4-279 delay group had either a partial block (60% in male mice or 29% in females) or a delay in disease progression in females (28 days in controls to 50 days in YK-4-279 delay group). Here, we demonstrate that YK-4-279 has a significant impact on blocking or delaying tumor progression in a pre-clinical treatment model of melanoma.
Collapse
Affiliation(s)
| | | | | | - Deborah Lang
- Department of Dermatology, Boston University, Boston, MA 02118, USA; (L.H.); (Y.Z.); (C.D.F.)
| |
Collapse
|
12
|
Betancourt LH, Gil J, Sanchez A, Doma V, Kuras M, Murillo JR, Velasquez E, Çakır U, Kim Y, Sugihara Y, Parada IP, Szeitz B, Appelqvist R, Wieslander E, Welinder C, de Almeida NP, Woldmar N, Marko‐Varga M, Eriksson J, Pawłowski K, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Lindberg H, Oskolas H, Lee B, Berge E, Sjögren M, Eriksson C, Kim D, Kwon HJ, Knudsen B, Rezeli M, Malm J, Hong R, Horvath P, Szász AM, Tímár J, Kárpáti S, Horvatovich P, Miliotis T, Nishimura T, Kato H, Steinfelder E, Oppermann M, Miller K, Florindi F, Zhou Q, Domont GB, Pizzatti L, Nogueira FCS, Szadai L, Németh IB, Ekedahl H, Fenyö D, Marko‐Varga G. The Human Melanoma Proteome Atlas-Complementing the melanoma transcriptome. Clin Transl Med 2021; 11:e451. [PMID: 34323402 PMCID: PMC8299047 DOI: 10.1002/ctm2.451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.
Collapse
|
13
|
Zawit M, Swami U, Awada H, Arnouk J, Milhem M, Zakharia Y. Current status of intralesional agents in treatment of malignant melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1038. [PMID: 34277838 PMCID: PMC8267328 DOI: 10.21037/atm-21-491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Prognosis of metastatic melanoma has undergone substantial improvement with the discovery of checkpoint inhibitors. Immunotherapies and targeted therapies have improved the median overall survival (OS) of metastatic melanoma from 6 months to more than 3 years. However, still about half of the patients die due to uncontrolled disease. Therefore, multiple strategies are currently being investigated to improve outcomes. One such strategy is intralesional/intratumoral (IT) therapies which can either directly kill the tumor cells or make the tumor more immunogenic to be recognized by the immune system. Talimogene laherparepvec (T-VEC), an oncolytic virus, is the first FDA approved IT therapy. This review focuses on the current status of IT agents currently under clinical trials in melanoma. Reviewed therapies include T-VEC, T-VEC with immune checkpoint inhibitors including ipilimumab and pembrolizumab or other agents, RP1, OrienX010, Canerpaturev (C-REV, HF10), CAVATAK (coxsackievirus A21, CVA21) alone or in combination with checkpoint inhibitors, oncolytic polio/rhinovirus recombinant (PVSRIPO), MAGE-A3-expressing MG1 Maraba virus, VSV-IFNbetaTYRP1, suicide gene therapy, ONCOS-102, OBP-301 (Telomelysin), Stimulation of Interferon Genes Pathway (STING agonists) including DMXAA, MIW815 (ADU-S100) and MK-1454, PV-10, toll-like receptors (TLRs) agonists including TLR-9 agonists (SD-101, CMP-001, IMO-2125 or tilsotolimod, AST-008 or cavrotolimod, MGN1703 or lefitolimod), CV8102, NKTR-262 plus NKTR-214, LHC165, G100, intralesional interleukin-2, Daromun (L19IL2 plus L19TNF), Hiltonol (poly-ICLC), electroporation including calcium electroporation and plasmid interleukin-12 electroporation (pIL-12 EP), IT ipilimumab, INT230-6 (cisplatin and vinblastine with an amphiphilic penetration enhancer), TTI-621 (SIRPαFc), CD-40 agonistic antibodies (ABBV-927 and APX005M), antimicrobial peptide LL37 and other miscellaneous agents.
Collapse
Affiliation(s)
- Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Umang Swami
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Joyce Arnouk
- Division of Hematology, Oncology and Blood and Marrow Transplantation and the Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Mohammed Milhem
- Division of Hematology, Oncology and Blood and Marrow Transplantation and the Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Division of Hematology, Oncology and Blood and Marrow Transplantation and the Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
14
|
Raimondi M, Fontana F, Marzagalli M, Audano M, Beretta G, Procacci P, Sartori P, Mitro N, Limonta P. Ca 2+ overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis 2021; 26:277-292. [PMID: 33811561 PMCID: PMC8197726 DOI: 10.1007/s10495-021-01668-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Melanoma is an aggressive tumor with still poor therapy outcomes. δ-tocotrienol (δ-TT) is a vitamin E derivative displaying potent anti-cancer properties. Previously, we demonstrated that δ-TT triggers apoptosis in human melanoma cells. Here, we investigated whether it might also activate paraptosis, a non-canonical programmed cell death. In accordance with the main paraptotic features, δ-TT was shown to promote cytoplasmic vacuolization, associated with endoplasmic reticulum/mitochondrial dilation and protein synthesis, as well as MAPK activation in A375 and BLM cell lines. Moreover, treated cells exhibited a significant reduced expression of OXPHOS complex I and a marked decrease in oxygen consumption and mitochondrial membrane potential, culminating in decreased ATP synthesis and AMPK phosphorylation. This mitochondrial dysfunction resulted in ROS overproduction, found to be responsible for paraptosis induction. Additionally, δ-TT caused Ca2+ homeostasis disruption, with endoplasmic reticulum-derived ions accumulating in mitochondria and activating the paraptotic signaling. Interestingly, by using both IP3R and VDAC inhibitors, a close cause-effect relationship between mitochondrial Ca2+ overload and ROS generation was evidenced. Collectively, these results provide novel insights into δ-TT anti-melanoma activity, highlighting its ability to induce mitochondrial dysfunction-mediated paraptosis. δ-tocotrienol induces paraptotic cell death in human melanoma cells, causing endoplasmic reticulum dilation and mitochondrial swelling. These alterations induce an impairment of mitochondrial function, ROS production and calcium overload.
Collapse
Affiliation(s)
- Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, Mengel J, Ribeiro Castello-Branco LR, Pinho RT. Bacillus Calmette-Guérin Immunotherapy for Cancer. Vaccines (Basel) 2021; 9:vaccines9050439. [PMID: 34062708 PMCID: PMC8147207 DOI: 10.3390/vaccines9050439] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG), an attenuated vaccine from Mycobacterium bovis, was initially developed as an agent for vaccination against tuberculosis. BCG proved to be the first successful immunotherapy against established human bladder cancer and other neoplasms. The use of BCG has been shown to induce a long-lasting antitumor response over all other forms of treatment against intermediate, non-invasive muscle bladder cancer Several types of tumors may now be treated by releasing the immune response through the blockade of checkpoint inhibitory molecules, such as CTLA-4 and PD-1. In addition, Toll-Like Receptor (TLR) agonists and BCG are used to potentiate the immune response against tumors. Studies concerning TLR-ligands combined with BCG to treat melanoma have demonstrated efficacy in treating mice and patients This review addresses several interventions using BCG on neoplasms, such as Leukemia, Bladder Cancer, Lung Cancer, and Melanoma, describing treatments and antitumor responses promoted by this attenuated bacillus. Of essential importance, BCG is described recently to participate in an adequate microbiome, establishing an effective response during cell-target therapy when combined with anti-PD-1 antibody, which stimulates T cell responses against the melanoma. Finally, trained immunity is discussed, and reprogramming events to shape innate immune responses are addressed.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
- Correspondence:
| | - Maiara Bonfim
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
| | - Periela da Silva Vasconcelos Sousa
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Laboratory of Molecular Virology and Marine Biotechnology, Fluminense Federal University, Niteroi, RJ 24220-008, Brazil
| | - José Mengel
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Faculty of Medicine of Petropolis, UNIFASE, Petropolis, RJ 25680-120, Brazil
| | | | - Rosa Teixeira Pinho
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
| |
Collapse
|
16
|
El Meskini R, Atkinson D, Kulaga A, Abdelmaksoud A, Gumprecht M, Pate N, Hayes S, Oberst M, Kaplan IM, Raber P, Van Dyke T, Sharan SK, Hollingsworth R, Day CP, Merlino G, Weaver Ohler Z. Distinct Biomarker Profiles and TCR Sequence Diversity Characterize the Response to PD-L1 Blockade in a Mouse Melanoma Model. Mol Cancer Res 2021; 19:1422-1436. [PMID: 33888600 DOI: 10.1158/1541-7786.mcr-20-0881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Only a subset of patients responds to immune checkpoint blockade (ICB) in melanoma. A preclinical model recapitulating the clinical activity of ICB would provide a valuable platform for mechanistic studies. We used melanoma tumors arising from an Hgftg;Cdk4R24C/R24C genetically engineered mouse (GEM) model to evaluate the efficacy of an anti-mouse PD-L1 antibody similar to the anti-human PD-L1 antibodies durvalumab and atezolizumab. Consistent with clinical observations for ICB in melanoma, anti-PD-L1 treatment elicited complete and durable response in a subset of melanoma-bearing mice. We also observed tumor growth delay or regression followed by recurrence. For early treatment assessment, we analyzed gene expression profiles, T-cell infiltration, and T-cell receptor (TCR) signatures in regressing tumors compared with tumors exhibiting no response to anti-PD-L1 treatment. We found that CD8+ T-cell tumor infiltration corresponded to response to treatment, and that anti-PD-L1 gene signature response indicated an increase in antigen processing and presentation, cytokine-cytokine receptor interaction, and natural killer cell-mediated cytotoxicity. TCR sequence data suggest that an anti-PD-L1-mediated melanoma regression response requires not only an expansion of the TCR repertoire that is unique to individual mice, but also tumor access to the appropriate TCRs. Thus, this melanoma model recapitulated the variable response to ICB observed in patients and exhibited biomarkers that differentiate between early response and resistance to treatment, providing a valuable platform for prediction of successful immunotherapy. IMPLICATIONS: Our melanoma model recapitulates the variable response to anti-PD-L1 observed in patients and exhibits biomarkers that characterize early antibody response, including expansion of the TCR repertoire.
Collapse
Affiliation(s)
- Rajaa El Meskini
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alan Kulaga
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute, Bethesda, Maryland.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michelle Gumprecht
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | | | | | - Terry Van Dyke
- Mouse Cancer Genetics Program, CCR, NCI/NIH, Frederick, Maryland
| | - Shyam K Sharan
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.,Mouse Cancer Genetics Program, CCR, NCI/NIH, Frederick, Maryland
| | | | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, CCR, NCI/NIH, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, CCR, NCI/NIH, Bethesda, Maryland
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
17
|
Villani A, Scalvenzi M, Fabbrocini G, Ocampo-Candiani J, Ocampo-Garza SS. Looking into a Better Future: Novel Therapies for Metastatic Melanoma. Dermatol Ther (Heidelb) 2021; 11:751-767. [PMID: 33866515 PMCID: PMC8163929 DOI: 10.1007/s13555-021-00525-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Even though melanoma represents a small percentage of all cutaneous cancers, it is responsible for most deaths from skin neoplasms. In early stages it can be successfully treated with surgery, but as the disease expands the survival rate drops significantly. For many years the mainstay of treatment for metastatic melanoma was chemotherapeutic agents, even though they failed to prove survival prolongation. After the advent of ipilimumab, a survival benefit and better overall response rate could be offered to the patients. Other new therapies, such as immunotherapies, targeted therapies, vaccines, and small molecules, are currently being studied. Also, combination regimens have demonstrated superiority to some monotherapies. Nowadays, ipilimumab should no longer be considered the first-line therapy given its severe toxicity and lower efficacy, while nivolumab remains efficacious and has a good safety profile. T-VEC as monotherapy has been shown to be an elegant alternative even for the elderly or cases of head and neck melanomas. If the BRAF mutation status is positive, the combination of dabrafenib and trametinib could be an option to consider. Despite the success of the novel treatments, their effectiveness is still limited. New studies have opened up new avenues for future research in melanoma treatment, which is expected to lead to better therapeutic outcomes for our patients. The objective of this review is to discuss the novel therapies for metastatic melanoma that have been tested in humans during the last 3 years to obtain a sharper perspective of the available treatment options for specific patient characteristics.
Collapse
Affiliation(s)
- Alessia Villani
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - Massimiliano Scalvenzi
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gabriella Fabbrocini
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Jorge Ocampo-Candiani
- Dermatology Department, Universidad Autónoma de Nuevo León, University Hospital "Dr. José Eleuterio González", Monterrey, NL, Mexico
| | - Sonia Sofía Ocampo-Garza
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Dermatology Department, Universidad Autónoma de Nuevo León, University Hospital "Dr. José Eleuterio González", Monterrey, NL, Mexico
| |
Collapse
|
18
|
Huang L, Zhai Y, La J, Lui JW, Moore SP, Little EC, Xiao S, Haresi AJ, Brem C, Bhawan J, Lang D. Targeting Pan-ETS Factors Inhibits Melanoma Progression. Cancer Res 2021; 81:2071-2085. [PMID: 33526511 PMCID: PMC8137525 DOI: 10.1158/0008-5472.can-19-1668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/14/2020] [Accepted: 01/22/2021] [Indexed: 02/01/2023]
Abstract
The failure of once promising target-specific therapeutic strategies often arises from redundancies in gene expression pathways. Even with new melanoma treatments, many patients are not responsive or develop resistance, leading to disease progression in terms of growth and metastasis. We previously discovered that the transcription factors ETS1 and PAX3 drive melanoma growth and metastasis by promoting the expression of the MET receptor. Here, we find that there are multiple ETS family members expressed in melanoma and that these factors have redundant functions. The small molecule YK-4-279, initially developed to target the ETS gene-containing translocation product EWS-FLI1, significantly inhibited cellular growth, invasion, and ETS factor function in melanoma cell lines and a clinically relevant transgenic mouse model, BrafCA;Tyr-CreERT2;Ptenf/f. One of the antitumor effects of YK-4-279 in melanoma is achieved via interference of multiple ETS family members with PAX3 and the expression of the PAX3-ETS downstream gene MET. Expression of exogenous MET provided partial rescue of the effects of YK-4-279, further supporting that MET loss is a significant contributor to the antitumor effects of the drug. This is the first study identifying multiple overlapping functions of the ETS family promoting melanoma. In addition, targeting all factors, rather than individual members, demonstrated impactful deleterious consequences in melanoma progression. Given that multiple ETS factors are known to have oncogenic functions in other malignancies, these findings have a high therapeutic impact. SIGNIFICANCE: These findings identify YK-4-279 as a promising therapeutic agent against melanoma by targeting multiple ETS family members and blocking their ability to act as transcription factors.
Collapse
Affiliation(s)
- Lee Huang
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Yougang Zhai
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jennifer La
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jason W. Lui
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A.,Section of Dermatology, University of Chicago, Chicago, Illinois, U.S.A.,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois, U.S.A
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | | | - Sixia Xiao
- Section of Dermatology, University of Chicago, Chicago, Illinois, U.S.A
| | - Adil J. Haresi
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Candice Brem
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jag Bhawan
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A.,To whom correspondence should be addressed: Deborah Lang, PhD, Boston University, Department of Dermatology, 609 Albany Street, room J205, Boston, Massachusetts, U.S.A. 02118 Telephone: 01-617-358-9721; Fax: 01-617-638-5515;
| |
Collapse
|
19
|
Shi S, Li C, Zhang Y, Deng C, Liu W, Du J, Li Q, Ji Y, Guo L, Liu L, Hu H, Liu Y, Cui H. Dihydrocapsaicin Inhibits Cell Proliferation and Metastasis in Melanoma via Down-regulating β-Catenin Pathway. Front Oncol 2021; 11:648052. [PMID: 33833997 PMCID: PMC8023049 DOI: 10.3389/fonc.2021.648052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dihydrocapsaicin (DHC) is one of the main components of capsaicinoids in Capsicum. It has been reported that DHC exerts anti-cancer effects on diverse malignant tumors, such as colorectal cancer, breast cancer, and glioma. However, studies focused on the effect of DHC upon melanoma have rarely been done. In the present study, melanoma A375 and MV3 cell lines were treated with DHC and the cell proliferation, migration, and invasion were significantly suppressed. Furthermore, DHC effectively inhibited xenograft tumor growth and pulmonary metastasis of melanoma cells in NOD/SCID mice model. It was identified that β-catenin, which plays significant roles in cell proliferation and epithelial-mesenchymal transition, was down-regulated after DHC treatment. In addition, cyclin D1, c-Myc, MMP2, and MMP7, which are critical in diverse cellular process regulation as downstream proteins of β-catenin, were all decreased. Mechanistically, DHC accelerates ubiquitination of β-catenin and up-regulates the beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) in melanoma cells. The DHC induced suppression of cell proliferation, migration, and invasion were partly rescued by exogenous β-catenin overexpression, both in vitro and in vivo. Taken together, DHC may serve as a candidate natural compound for human melanoma treatment through β-catenin pathway.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Department of Dermatology, Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yacong Ji
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Leiyang Guo
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lichao Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huanrong Hu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaling Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Total saponins from Rubus parvifolius L. inhibits cell proliferation, migration and invasion of malignant melanoma in vitro and in vivo. Biosci Rep 2021; 41:226784. [PMID: 33111956 PMCID: PMC7823183 DOI: 10.1042/bsr20201178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Total saponins from Rubus parvifolius L. (TSRP) are the main bioactive fractions responsible for the anti-tumor activities. The work was aimed to evaluate the anti-tumor effect of TSRP in malignant melanoma (MM) in vitro and in vivo. Methods and results: Anti-melanoma cell proliferation, invasion and migration effect of TSRP were detected in human MM A375 cells under the indicated time and dosages. In vivo anti-tumor effect of TSRP was measured in A375 xenograft immunodeficient nude mice. Sixty A375 xenografts were randomly divided into five groups: Vehicle, cyclophosphamide (CTX, 20 mg/kg), TSRP (25 mg/kg), TSRP (50 mg/kg) and TSRP (100 mg/kg) groups for 14 days’ treatment. In addition, the melanoma metastasis in lung in vivo of TSRP was detected in A375 tail vein injection mice, and the histopathalogical analysis of the lung metastasis was detected by Hematoxylin–Eosin (H&E) staining. TSRP significantly inhibited the cell proliferation, invasion and migration of A375 in vitro at the indicated time and dosages. TSRP treatment effectively blocked the tumor growth in immunodeficient nude mice. In addition, TSRP also significantly inhibited the lung metastasis of melanoma. Conclusion: The present study indicated that the TSRP has a remarkable anti-MM effect, which mainly through the inhibition of the cell invasion, migration and tumor metastasis.
Collapse
|
21
|
Tan S, Zhao Z, Qiao Y, Zhang B, Zhang T, Zhang M, Qi J, Wang X, Meng M, Zhou Q. Activation of the tumor suppressive Hippo pathway by triptonide as a new strategy to potently inhibit aggressive melanoma cell metastasis. Biochem Pharmacol 2021; 185:114423. [PMID: 33476574 DOI: 10.1016/j.bcp.2021.114423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
Metastatic melanoma has a very high mortality rate despite the availability of chemotherapy, radiotherapy, and immunotherapy; therefore, more effective therapeutics are needed. The Hippo pathway plays an inhibitory role in melanoma progression, but the tumor suppressors Salvador homolog-1 (SAV1) and large tumor suppressor 1 (LATS1) in this pathway are down-regulated in melanoma. As a result, the downstream oncogenic Yes-associated protein (YAP) is active, resulting in uncontrolled melanoma growth and metastasis. Therapeutics for remedying SAV1 and LATS1 deficiency in melanoma have not yet been reported in the literature. Here, we show that the small molecule triptonide (MW 358 Da) robustly suppressed melanoma cell tumorigenicity, migration, and invasion. Furthermore, triptonide markedly reduced tumor growth and melanoma lung metastasis in tumor-bearing mice with low toxicity. Molecular mechanistic studies revealed that triptonide promoted SAV1 and LATS1 expression, strongly activated the tumor-suppressive Hippo pathway, degraded oncogenic YAP via the lysosomal pathway, and reduced levels of tumorigenic microphthalmia-associated transcription factor (MITF) in melanoma cells. Triptonide also strongly inhibited activation of AKT, a SAV1-binding signaling protein. Collectively, our results conceptually demonstrate that induction of SAV1 and LATS1 expression and activation of the tumor-suppressive Hippo pathway by triptonide potently inhibits aggressive melanoma cell growth and metastasis. These findings suggest a new strategy for developing therapeutics to treat metastatic melanoma and highlight a novel drug candidate against aggressive melanoma.
Collapse
Affiliation(s)
- Shijie Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, PR China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China; Suzhou Institute of Systems Medicine, Suzhou 215123, PR China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, PR China; National Clinical Research Center for Hematology Diseases, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
22
|
Huang T, Li S, Fang J, Li F, Tu S. Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioact Mater 2021; 6:2158-2172. [PMID: 33511314 PMCID: PMC7815474 DOI: 10.1016/j.bioactmat.2020.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Tumor vasculature constitutes a formidable hurdle for the efficient delivery of cancer nanomedicine into tumors. The leverage of passive pathway through inter-endothelial gaps in tumor blood vessels might account for limited extravasation of nanomedicine into tumor microenvironment (TME). Herein, Annexin A1 antibody-installed mesoporous organosilica nanoplatforms carrying immunotherapeutics of anti-PD-L1 antibody (aPD-L1) and Indoximod are developed to target at caveolar Annexin-A1 protein of luminal endothelial cells and to trigger the active trans-endothelial transcytosis of nanomedicine mediated by caveolae. Such strategy enables rapid nanomedicine extravasation across tumor endothelium and relatively extensive accumulation in tumor interstitium. aPD-L1 and Indoximod release from aPD/IND@MON-aANN in a reduction-responsive manner and synergistically facilitate the intratumoral infiltration of cytotoxic T lymphocytes and reverse the immunosuppressive TME, thus demonstrating substantial anti-tumor efficacy in subcutaneous 4T1 breast tumors and remarkable anti-metastatic capacity to extend the survival of 4T1 tumor metastasis model. Moreover, aPD/IND@MON-aANN nanomedicine also exhibits distinct superiority over the combination therapy of free drugs to potently attenuate the progression of urethane-induced orthotopic lung cancers. Collectively, aPD/IND@MON-aANN nanoplatforms with boosted delivery efficiency via antibody-activated trans-endothelial pathway and enhanced immunotherapeutic efficacy provides perspectives for the development of cancer nanomedicines.
The nanomedicine overcomes tumor vascular barrier by active transcytosis via caveolae initiated by the conjugated aANXA1. The nanoplatform responsively releases aPD-L1 and Indoximod to synergistically improve the efficacy of immunotherapy. The nanomedicine shows anti-tumor capacity in mice breast cancers and lung cancers.
Collapse
Affiliation(s)
- Tinglei Huang
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuang Li
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianchen Fang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fuli Li
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuiping Tu
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Corresponding author.
| |
Collapse
|
23
|
Sun H, Miao Y, Chen Z, Wang Z, Hu C, Chen L. Hemidesmus indicus (l)-derived 2-hydroxy-4-methoxy benzoic acid attenuates dna damage and autophagy in sk-mel28 cells via p-erk pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_489_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Pisapia P, Pepe F, Iaccarino A, Sgariglia R, Nacchio M, Russo G, Gragnano G, Malapelle U, Troncone G. BRAF: A Two-Faced Janus. Cells 2020; 9:E2549. [PMID: 33260892 PMCID: PMC7760616 DOI: 10.3390/cells9122549] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gain-of-function of V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) is one of the most frequent oncogenic mutations in numerous cancers, including thyroid papillary carcinoma, melanoma, colon, and lung carcinomas, and to a lesser extent, ovarian and glioblastoma multiforme. This mutation aberrantly activates the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway, thereby eliciting metastatic processes. The relevance of BRAF mutations stems from its prognostic value and, equally important, from its relevant therapeutic utility as an actionable target for personalized treatment. Here, we discuss the double facets of BRAF. In particular, we argue the need to implement diagnostic molecular algorithms that are able to detect this biomarker in order to streamline and refine diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (P.P.); (F.P.); (A.I.); (R.S.); (M.N.); (G.R.); (G.G.); (U.M.)
| |
Collapse
|
25
|
Multivariable Analysis of 169 Cases of Advanced Cutaneous Melanoma to Evaluate Antibiotic Exposure as Predictor of Survival to Anti-PD-1 Based Immunotherapies. Antibiotics (Basel) 2020; 9:antibiotics9110740. [PMID: 33120998 PMCID: PMC7692514 DOI: 10.3390/antibiotics9110740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
Recently antibiotic exposure has been associated with worse outcomes in patients undergoing treatment with antibodies directed against programmed cell death protein-1 (PD-1). We reviewed data of 1264 patients enrolled at Melanoma Skin and Ocular Tissue Repositories at University of Iowa Hospitals and Clinic. Reviewed data included patient demographics, prior medical history, baseline hematologic and disease parameters and outcomes including progression-free survival (PFS) and overall survival (OS). Cox regression models were used to determine predictive markers. Overall, 169 patients with advanced cutaneous melanoma received anti-PD-1 based therapies. Median follow up was 18.46 (range 0.89 to 62.52) months. On multivariable analysis brain metastasis, higher absolute neutrophil count (ANC) and lower absolute lymphocyte count were associated with poorer PFS while brain and liver metastasis and lower albumin were associated with poorer OS. Prior antibiotics, radiation as well as age, gender, basal metabolic index (BMI), smoking status, BRAF mutation, line of therapy (first or latter), prior treatments (ipilimumab or BRAF inhibitors), hemoglobin, neutrophil-to-lymphocyte ratio, white blood cell, platelet and eosinophil counts were not associated with PFS or OS in multivariable analysis. Contrary to some prior studies BMI, radiation, and antibiotics were not associated with PFS or OS.
Collapse
|
26
|
Doufène K, Malki Y, Vincent LA, Cuq P, Devoisselle JM, Masurier N, Aubert-Pouëssel A. Vegetable Oil-based Hybrid Submicron Particles Loaded with JMV5038: A Promising Formulation against Melanoma. J Pharm Sci 2020; 110:1197-1205. [PMID: 33069708 DOI: 10.1016/j.xphs.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.
Collapse
Affiliation(s)
- Koceïla Doufène
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Anne Aubert-Pouëssel
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
27
|
Malapelle U, Rossi G, Pisapia P, Barberis M, Buttitta F, Castiglione F, Cecere FL, Grimaldi AM, Iaccarino A, Marchetti A, Massi D, Medicina D, Mele F, Minari R, Orlando E, Pagni F, Palmieri G, Righi L, Russo A, Tommasi S, Vermi W, Troncone G. BRAF as a positive predictive biomarker: Focus on lung cancer and melanoma patients. Crit Rev Oncol Hematol 2020; 156:103118. [PMID: 33038627 DOI: 10.1016/j.critrevonc.2020.103118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
In the era of personalized medicine, BRAF mutational assessment is mandatory in advanced-stage melanoma and non-small cell lung cancer (NSCLC) patients. The identification of actionable mutations is crucial for the adequate management of these patients. To date various drugs have been implemented in clinical practice. Similarly, various methods may be adopted for the identification of BRAF mutations. Here, we briefly review the current literature on BRAF in melanoma and NSCLC, focusing attention in particular on the different methods and drugs adopted in these patients. In addition, an overview of the real-world practice in different Italian laboratories with high expertise in molecular predictive pathology testing is provided.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda USL Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Unit of Histopathology and Molecular Diagnostics, European Institute of Oncology IRCCS, Milano, Italy
| | - Fiamma Buttitta
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Francesca Castiglione
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Antonio Maria Grimaldi
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniela Medicina
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Mele
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisabetta Orlando
- Department of Health Promotion, Mother and Child care, Internal Medicine and Medical Specialties (ProMISE), Unit of Anatomic Pathology, University of Palermo, Palermo, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University Milan Bicocca, Milan, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Luisella Righi
- Department of Oncology, San Luigi Hospital, University of Turin, Turin, Italy
| | | | - Stefania Tommasi
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - William Vermi
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
28
|
Lindenberg M, Retèl V, Rohaan M, van den Berg J, Haanen J, van Harten W. Evaluating different adoption scenarios for TIL-therapy and the influence on its (early) cost-effectiveness. BMC Cancer 2020; 20:712. [PMID: 32736535 PMCID: PMC7393723 DOI: 10.1186/s12885-020-07166-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Treatment with tumor-Infiltrating Lymphocytes (TIL) is an innovative therapy for advanced melanoma with promising clinical phase I/II study results and likely beneficial cost-effectiveness. As a randomized controlled trial on the effectiveness of TIL therapy in advanced melanoma compared to ipilimumab is still ongoing, adoption of TIL therapy by the field is confronted with uncertainty. To deal with this, scenario drafting can be used to identify potential barriers and enables the subsequent anticipation on these barriers. This study aims to inform adoption decisions of TIL by evaluating various scenarios and evaluate their effect on the cost-effectiveness. METHODS First, 14 adoption scenarios for TIL-therapy were drafted using a Delphi approach with a group of involved experts. Second, the likelihood of the scenarios taking place within 5 years was surveyed among international experts using a web-based questionnaire. Third, based on the questionnaire results and recent literature, scenarios were labeled as being either "likely" or "-unlikely". Finally, the cost-effectiveness of TIL treatment involving the "likely" scored scenarios was calculated. RESULTS Twenty-nine experts from 12 countries completed the questionnaire. The scenarios showed an average likelihood ranging from 29 to 58%, indicating that future developments of TIL-therapy were surrounded with quite some uncertainty. Eight of the 14 scenarios were labeled as "likely". The net monetary benefit per patient is presented as a measure of cost-effectiveness, where a positive value means that a scenario is cost-effective. For six of these scenarios the cost-effectiveness was calculated: "Commercialization of TIL production" (the price was assumed to be 3 times the manufacturing costs in the academic setting) (-€51,550), "Pharmaceutical companies lowering the prices of ipilimumab" (€11,420), "Using TIL-therapy combined with ipilimumab" (-€10,840), "Automatic TIL production" (€22,670), "TIL more effective" (€23,270), "Less Interleukin-2" (€20,370). CONCLUSIONS Incorporating possible future developments, TIL-therapy was calculated to be cost-effective compared to ipilimumab in the majority of "likely" scenarios. These scenarios could function as facilitators for adoption. Contrary, TIL therapy was expected to not be cost-effective when sold at commercial prices, or when combined with ipilimumab. These scenarios should be considered in the adoption decision as these may act as crucial barriers.
Collapse
Affiliation(s)
- Melanie Lindenberg
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Valesca Retèl
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Maartje Rohaan
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Joost van den Berg
- Biotherapeutics Unit (BTU), The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - John Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Wim van Harten
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. .,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands.
| |
Collapse
|
29
|
Ferraz CAA, de Oliveira Júnior RG, de Oliveira AP, Groult H, Beaugeard L, Picot L, de Alencar Filho EB, Almeida JRGDS, Nunes XP. Complexation with β-cyclodextrin enhances apoptosis-mediated cytotoxic effect of harman in chemoresistant BRAF-mutated melanoma cells. Eur J Pharm Sci 2020; 150:105353. [PMID: 32334103 DOI: 10.1016/j.ejps.2020.105353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Harman, a natural β-carboline alkaloid, has recently gained considerable interest due to its anticancer properties. However, its physicochemical characteristics and poor oral bioavailability have been limiting factors for its pharmaceutical development. In this paper, we described the complexation of harman (HAR) with β-cyclodextrin (βCD) as a promising alternative to improve its solubility and consequently its cytotoxic effect in chemoresistant melanoma cells (A2058 cell line). Inclusion complexes (βCD-HAR) were prepared using a simple method and then characterized by FTIR, NMR and SEM techniques. Through in silico studies, the mechanism of complexation of HAR with βCD was elucidated in detail. Both HAR and βCD-HAR promoted cytotoxicity, apoptosis, cell cycle arrest and inhibition of cell migration in melanoma cells. Interestingly, complexation of HAR with βCD enhanced its pro-apoptotic effect by increasing of caspase-3 activity (p < 0.05), probably due to an improvement in HAR solubility. In addition, HAR and βCD-HAR sensitized A2058 cells to vemurafenib, dacarbazine and 5FU treatments, potentializing their cytotoxic activity. These findings suggest that complexation of HAR with natural polymers such as βCD can be useful to improve its bioavailability and antimelanoma activity.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil; RENORBIO, Universidade Federal Rural de Pernambuco, Recife-PE, 52171-900, Brazil
| | | | - Ana Paula de Oliveira
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil
| | - Hugo Groult
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | - Laureen Beaugeard
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | | | | | - Xirley Pereira Nunes
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil.
| |
Collapse
|
30
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020; 9:1777625. [PMID: 32934882 PMCID: PMC7466863 DOI: 10.1080/2162402x.2020.1777625] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first, rate-limiting step of the so-called “kynurenine pathway”, which converts the essential amino acid L-tryptophan (Trp) into the immunosuppressive metabolite L-kynurenine (Kyn). While expressed constitutively by some tissues, IDO1 can also be induced in specific subsets of antigen-presenting cells that ultimately favor the establishment of immune tolerance to tumor antigens. At least in part, the immunomodulatory functions of IDO1 can be explained by depletion of Trp and accumulation of Kyn and its derivatives. In animal tumor models, genetic or pharmacological IDO1 inhibition can cause the (re)activation of anticancer immune responses. Similarly, neoplasms expressing high levels of IDO1 may elude anticancer immunosurveillance. Therefore, IDO1 inhibitors represent promising therapeutic candidates for cancer therapy, and some of them have already entered clinical evaluation. Here, we summarize preclinical and clinical studies testing IDO1-targeting interventions for oncologic indications.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
31
|
Basher F, Dhar P, Wang X, Wainwright DA, Zhang B, Sosman J, Ji Z, Wu JD. Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J Hematol Oncol 2020; 13:74. [PMID: 32517713 PMCID: PMC7285527 DOI: 10.1186/s13045-020-00896-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Melanoma patients who have detectable serum soluble NKG2D ligands either at the baseline or post-treatment of PD1/PDL1 blockade exhibit poor overall survival. Among families of soluble human NKG2D ligands, the soluble human MHC I chain-related molecule (sMIC) was found to be elevated in melanoma patients and mostly associated with poor response to PD1/PDL1 blockade therapy. METHODS In this study, we aim to investigate whether co-targeting tumor-released sMIC enhances the therapeutic outcome of PD1/PDL1 blockade therapy for melanoma. We implanted sMIC-expressing B16F10 melanoma tumors into syngeneic host and evaluated therapeutic efficacy of anti-sMIC antibody and anti-PDL1 antibody combination therapy in comparison with monotherapy. We analyzed associated effector mechanism. We also assessed sMIC/MIC prevalence in metastatic human melanoma tumors. RESULTS We found that the combination therapy of the anti-PDL1 antibody with an antibody targeting sMIC significantly improved animal survival as compared to monotherapies and that the effect of combination therapy depends significantly on NK cells. We show that combination therapy significantly increased IL-2Rα (CD25) on NK cells which sensitizes NK cells to low dose IL-2 for survival. We demonstrate that sMIC negatively reprograms gene expression related to NK cell homeostatic survival and proliferation and that antibody clearing sMIC reverses the effect of sMIC and reprograms NK cell for survival. We further show that sMIC/MIC is abundantly present in metastatic human melanoma tumors. CONCLUSIONS Our findings provide a pre-clinical proof-of-concept and a new mechanistic understanding to underscore the significance of antibody targeting sMIC to improve therapeutic efficacy of anti-PD1/PDL1 antibody for MIC/sMIC+ metastatic melanoma patients.
Collapse
Affiliation(s)
- Fahmin Basher
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.,Current address: Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xin Wang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek A Wainwright
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bin Zhang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeffrey Sosman
- Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60628, USA
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
32
|
Bristot IJ, Kehl Dias C, Chapola H, Parsons RB, Klamt F. Metabolic rewiring in melanoma drug-resistant cells. Crit Rev Oncol Hematol 2020; 153:102995. [PMID: 32569852 DOI: 10.1016/j.critrevonc.2020.102995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Several evidences indicate that melanoma, one of the deadliest types of cancer, presents the ability to transiently shift its phenotype under treatment or microenvironmental pressure to an invasive and treatment-resistant phenotype, which is characterized by cells with slow division cycle (also called slow-cycling cells) and high-OXPHOS metabolism. Many cellular marks have been proposed to track this phenotype, such as the expression levels of the master regulator of melanocyte differentiation (MITF) and the epigenetic factor JARID1B. It seems that the slow-cycling phenotype does not necessarily present a single gene expression signature. However, many lines of evidence lead to a common metabolic rewiring process in resistant cells that activates mitochondrial metabolism and changes the mitochondrial network morphology. Here, we propose that mitochondria-targeted drugs could increase not only the efficiency of target therapy, bypassing the dynamics between fast-cycling and slow-cycling, but also the sensitivity to immunotherapy by modulation of the melanoma microenvironment.
Collapse
Affiliation(s)
- Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil.
| | - Camila Kehl Dias
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Henrique Chapola
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Fábio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Bertero L, Spadi R, Osella-Abate S, Mariani S, Castellano I, Gambella A, Racca P, Morino M, Cassoni P. Metastatic colorectal cancer prior to expanded RAS assessment: evidence from long-term outcome analysis of a real-life cohort within a dedicated colorectal cancer unit. World J Surg Oncol 2020; 18:65. [PMID: 32241284 PMCID: PMC7118966 DOI: 10.1186/s12957-020-01844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular assessment and treatment of metastatic colorectal cancer (mCRC) quickly evolved during the last decades, hampering longitudinal evaluation of prognostic markers. The aim of this study was to evaluate prognostic predictors of long-term survival in a retrospective series of mCRC, treated prior to the expanded RAS assessment era. METHODS mCRC cases treated at the Città della Salute e della Scienza University Hospital (Turin, Italy) between January 2004 and December 2012 were evaluated, including cases with ≥ 5-year follow-up only. Long-term survival was defined as an overall survival (OS) ≥ 4 years based on the observed OS interquartile range values. Univariate/multivariate Cox proportional hazards regression models were performed to assess the prognostic significance of the clinical/biological features, while binary logistic regression models were used to verify their associations with long-term survival. RESULTS Two hundred and forty-eight mCRC cases were included and analyzed. Sixty out of two hundred and forty-eight (24%) patients were long-term survivors. Univariate binary logistic regression analysis demonstrated a significant association between long-term survival and age at diagnosis < 65 (OR = 2.28, p = 0.007), single metastatic site (OR = 1.89, p = 0.039), surgical resection of metastases (OR = 5.30, p < 0.001), local non-surgical treatment of metastases (OR = 4.74, p < 0.001), and a bevacizumab-including first-line treatment schedule (OR = 2.19, p = 0.024). Multivariate binary logistic regression analysis confirmed the prognostic significance of surgical resection of metastases (OR = 3.96, p < 0.001), local non-surgical treatment of metastases (OR = 3.32, p = 0.001), and of bevacizumab-including first-line treatment schedule (OR = 2.49, p = 0.024). CONCLUSION Long-term survival could be achieved in a significant rate of patients with mCRC even in an era of limited molecular characterization. Local treatment of metastases proved to be a significant predictor of long-term survival.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Rosella Spadi
- Colorectal Cancer Unit, Città della Salute e della Scienza University Hospital of Turin, Turin, Italy
| | - Simona Osella-Abate
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara Mariani
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Isabella Castellano
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Patrizia Racca
- Colorectal Cancer Unit, Città della Salute e della Scienza University Hospital of Turin, Turin, Italy
| | - Mario Morino
- General Surgery Unit, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
34
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
35
|
Verma A, Mathur R, Farooque A, Kaul V, Gupta S, Dwarakanath BS. T-Regulatory Cells In Tumor Progression And Therapy. Cancer Manag Res 2019; 11:10731-10747. [PMID: 31920383 PMCID: PMC6935360 DOI: 10.2147/cmar.s228887] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) are important members of the immune system regulating the host responses to infection and neoplasms. Tregs prevent autoimmune disorders by protecting the host-cells from an immune response, related to the peripheral tolerance. However, tumor cells use Tregs as a shield to protect themselves against anti-tumor immune response. Thus, Tregs are a hurdle in achieving the complete potential of anti-cancer therapies including immunotherapy. This has prompted the development of novel adjuvant therapies that obviate their negative effects thereby enhancing the therapeutic efficacy. Our earlier studies have shown the efficacy of the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG) by reducing the induced Tregs pool and enhance immune stimulation as well as local tumor control. These findings have suggested its potential for enhancing the efficacy of immunotherapy, besides radiotherapy and chemotherapy. This review provides a brief account of the current status of Tregs as a component of the immune-biology of tumors and various preclinical and clinical strategies pursued to obviate the limitations imposed by them in achieving therapeutic efficacy.
Collapse
Affiliation(s)
- Amit Verma
- Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Rohit Mathur
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vandana Kaul
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
36
|
Abstract
Advanced/metastatic melanoma is an aggressive cancer with a low survival rate. Traditional cytotoxic chemotherapies do not appreciably extend life and systemic cytokine/chemokine administration produces toxic side effects. By harnessing the surveillance and cytotoxic features of the immune system, immunotherapies can provide a durable response and are proved to improve disease outcomes in patients with advanced/metastatic melanoma and other cancers. Close monitoring is necessary, however, to identify and treat immune system-related adverse events before they become life-threatening. Because metastatic lesions can respond differently to immunotherapies, modified response criteria have been developed to assist physicians in tracking patient response to treatment.
Collapse
Affiliation(s)
- Adedayo A Onitilo
- Department of Hematology/Oncology, Marshfield Clinic - Weston Center, 3501 Cranberry Boulevard, Weston, WI 54476, USA.
| | - Jaimie A Wittig
- Pharmacy Services, Marshfield Medical Center, 1000 North Oak Avenue, Marshfield, WI 54449, USA
| |
Collapse
|
37
|
Zhang RX, Li YY, Liu CJ, Wang WN, Cao Y, Bai YH, Zhang TJ. Advanced primary amelanotic malignant melanoma of the esophagus: A case report. World J Clin Cases 2019; 7:3160-3167. [PMID: 31624769 PMCID: PMC6795737 DOI: 10.12998/wjcc.v7.i19.3160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Primary malignant melanoma of the esophagus accounts for 0.1%-0.2% of all esophageal malignancies, including melanotic and amelanotic melanomas. Primary amelanotic malignant melanoma of the esophagus is extremely rare, and only about 20 cases have been published in the literature to date. Most primary malignant melanomas of the esophagus are diagnosed following development of metastatic lesions and thus have a very poor prognosis. The median survival duration of patients with metastatic melanoma has been reported to be 6.2 mo.
CASE SUMMARY A 49-year-old woman was referred to our hospital with a diagnosis of esophageal cancer. Endoscopy, biopsy, imaging evaluation, and physical examination at our hospital indicated a diagnosis of advanced primary amelanotic malignant melanoma of the esophagus. Immunohistochemical staining confirmed melanoma. Nuclear medicine examination revealed a left iliac bone metastatic lesion. After discharge, the patient self-administered apatinib for 3 mo, followed by oral treatment with Chinese medicines (also self-administered) for 2 mo. No treatments had been taken since then. The patient has survived with no growth out to the most recent follow-up (24 mo post diagnosis), and she always presented with a positive attitude about her condition during this period.
CONCLUSION Survival following metastatic melanoma might be related to the pharmaceutical and Chinese medicine treatment and the patient's positive attitude.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Ya-Ying Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Chang-Jie Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Wei-Na Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ying Cao
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Yong-Hua Bai
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Ti-Jiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
38
|
Snyders T, Chakos D, Swami U, Latour E, Chen Y, Fleseriu M, Milhem M, Zakharia Y, Zahr R. Ipilimumab-induced hypophysitis, a single academic center experience. Pituitary 2019; 22:488-496. [PMID: 31327112 DOI: 10.1007/s11102-019-00978-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors, single or in combination, have recently become a cornerstone for the treatment of many malignancies. Ipilimumab, a CTLA-4 inhibitor, was initially FDA approved for treatment of unresectable or metastatic melanoma and subsequently in combination therapy for other cancers. Ipilimumab-induced hypophysitis (IH) risk of development varies in different studies between 0 and 17%. Furthermore, little is known on how to predict which patients will develop IH and its impact on efficacy of Ipilimumab and survival for these patients. Here we reviewed IH and its impact on progression-free survival (PFS) and overall survival (OS). METHODS Retrospective, IRB- approved review of consecutive 117 melanoma patients who received ipilimumab between 2011 and 2016 was undertaken. Demographic and clinical characteristics, treatment timing and doses, time to progression after therapy, and survival data were reviewed. Patients were predefined in two groups: patients with and without IH. Descriptive statistics were used to summarize the demographic and clinical characteristics of the study sample. All values are shown as means and standard deviation [mean (SD)] unless indicated otherwise. P < 0.05 was considered to be statistically significant. RESULTS Of the 117 patients, 15 (12.8%) with a median age of 62.1 years developed IH. In the IH cohort, 10 (66.7%) were male and were significantly older than females (median 67.7 vs. 50.8; P = 0.009). This difference was not seen in non-IH group. Male patients with IH were significantly older than males without IH (67.7 vs. 56.4 years, P = 0.020), however this difference was not observed in females. No patient who received prior cancer systemic therapy (0/30) developed IH vs. 17.2% (15/72) without prior therapy developed IH (OR 0.00; 95% CI 0.00 to 0.73, P = 0.011). Between IH and non-IH patients, there was no difference in gender, race, ethnicity, BMI, diabetes or autoimmune disease at baseline, number of administered ipilimumab cycles, presence of primary melanoma lesion, or BRAF status. IH and non-IH patients had a similar median PFS (8.1 vs. 6.8 months, HR = 0.51, 95% CI 0.24 to 1.05 P = 0.062) and OS (53.3 vs. 29.5 months; HR 0.66, 95% CI 0.30 to 1.46; P = 0.307). CONCLUSION In this study of melanoma patients treated with Ipilimumab, risk of developing IH was high (almost 13%). Older age in men and no prior cancer therapy were associated with IH higher risk. Development of IH was not associated with PFS or OS. Increased use of immune checkpoint inhibitors in the future will impact IH overall risk, thus awareness is needed. Given the lack of reliable identifiable risk factors, close monitoring of signs and symptoms after each therapy cycle is critical for early detection and treatment of hypophysitis.
Collapse
Affiliation(s)
- Travis Snyders
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| | - Daniel Chakos
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Umang Swami
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Emile Latour
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yiyi Chen
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Maria Fleseriu
- Division of Endocrinology, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Roula Zahr
- Division of Endocrinology, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
39
|
Hidaka T, Fujimura T, Aiba S. Aryl Hydrocarbon Receptor Modulates Carcinogenesis and Maintenance of Skin Cancers. Front Med (Lausanne) 2019; 6:194. [PMID: 31552251 PMCID: PMC6736988 DOI: 10.3389/fmed.2019.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that responds to a wide range of chemicals, including chemical carcinogens such as dioxins and carcinogenic polyaromatic hydrocarbons, and induces a battery of genes associated with detoxification, proliferation, and immune regulation. Recent reports suggest that AHR plays an important role in carcinogenesis and maintenance of various types of skin cancers. Indeed, AHR is a susceptibility gene for squamous cell carcinoma and a prognostic factor for melanoma and Merkel cell carcinoma. In addition, the carcinogenic effects of ultraviolet (UV) and chemical carcinogens, both of which are major environmental carcinogenetic factors of skin, are at least partly mediated by AHR, which regulates UV-induced inflammation and apoptosis, the DNA repair system, and metabolic activation of chemical carcinogens. Furthermore, AHR modulates the efficacy of key therapeutic agents in melanoma. AHR activation induces the expression of resistance genes against the inhibitors of V600E mutated B-Raf proto-oncogene, serine/threonine kinase (BRAF) in melanoma and upregulation of programmed cell death protein 1 (PD-1) in tumor-infiltrating T cells surrounding melanoma. Taken together, these findings underscore the importance of AHR in the biology of skin cancers. Development of therapeutic agents that modulate AHR activity is a promising strategy to advance chemoprevention and chemotherapy for skin cancers.
Collapse
Affiliation(s)
- Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
40
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
41
|
Durable Clinical Benefit in Patients with Advanced Cutaneous Melanoma after Discontinuation of Anti-PD-1 Therapies Due to Immune-Related Adverse Events. JOURNAL OF ONCOLOGY 2019; 2019:1856594. [PMID: 31428149 PMCID: PMC6683789 DOI: 10.1155/2019/1856594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Introduction Anti-PD-1 therapies, pembrolizumab and nivolumab, are currently the standard of care for treatment of patients with metastatic melanoma. Treatment is usually continued until toxicity or disease progression. Though these therapies are well tolerated, some patients discontinue them due to immune-related adverse events (irAE). Discontinuation of therapy brings challenges to their management due to limited treatment options and lack of long-term prognostic information for these patients. Herein, we reviewed patients at our institution to analyze their clinical outcomes. Materials and Methods Charts of 1264 consecutive patients enrolled between 8/1/2012 and 7/31/2017 at Melanoma Skin & Ocular Tissue Repositories at Holden Comprehensive Cancer Center at the University of Iowa Hospitals and Clinic were reviewed. Eligible patients were those who received single-agent anti-PD-1 therapy and subsequently discontinued it due to irAE. Reviewed data included patient demographics, prior medical history, baseline disease parameters, and outcomes. Kaplan-Meier survival analysis was done to determine progression-free survival (PFS) and overall survival (OS). Results Overall 169 patients with advanced, unresectable, or metastatic cutaneous melanoma received anti-PD-1 therapy of which 16 (9.5%) white, non-Hispanic patients with median age of 64.5 (range 35 to 81 years) discontinued treatment due to irAE. Fifteen patients received pembrolizumab and one received nivolumab. The median duration of treatment was 4.7 (range 0.7 to 11.5) months. Median follow-up was 30.3 (range 4.6 to 49.4) months. Median PFS was 24.6 months and median OS was not reached. Durable clinical benefit (time to progression or next treatment of more than 6 months from last treatment) was observed in 13 (81.2%) patients. At the time of analysis, 8 patients had progressed and 4 patients died (all-cause). Discussion Our results suggest that advanced melanoma patients discontinuing anti-PD-1 therapy due to irAE usually experience durable clinical benefit. However, caution is needed with these agents in patients with underlying autoimmune diseases.
Collapse
|
42
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
43
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019; 144:19-50. [DOI: 10.1016/j.phrs.2019.03.006] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
44
|
Cells to Surgery Quiz: May 2019. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.03.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
46
|
Lim HN, Baek SB, Jung HJ. Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways. Molecules 2019; 24:molecules24050929. [PMID: 30866426 PMCID: PMC6429308 DOI: 10.3390/molecules24050929] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 01/28/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer and highly chemoresistant. Melittin, an amphiphilic peptide containing 26 amino acid residues, is the major active ingredient from bee venom (BV). Although melittin is known to have several biological activities such as anti-inflammatory, antibacterial and anticancer effects, its antimelanoma effect and underlying molecular mechanism have not been fully elucidated. In the current study, we investigated the inhibitory effect and action mechanism of BV and melittin against various melanoma cells including B16F10, A375SM and SK-MEL-28. BV and melittin potently suppressed the growth, clonogenic survival, migration and invasion of melanoma cells. They also reduced the melanin formation in α-melanocyte-stimulating hormone (MSH)-stimulated melanoma cells. Furthermore, BV and melittin induced the apoptosis of melanoma cells by enhancing the activities of caspase-3 and -9. In addition, we demonstrated that the antimelanoma effect of BV and melittin is associated with the downregulation of PI3K/AKT/mTOR and MAPK signaling pathways. We also found that the combination of melittin with the chemotherapeutic agent temozolomide (TMZ) significantly increases the inhibition of growth as well as invasion in melanoma cells compared to melittin or TMZ alone. Taken together, these results suggest that melittin could be potentially applied for the prevention and treatment of malignant melanoma.
Collapse
Affiliation(s)
- Haet Nim Lim
- Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Seung Bae Baek
- Eco system Lab., LOCORICO, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| |
Collapse
|