1
|
Jadoon WA, Khan YA, Varol M, Onjia A, Mohany M. Comprehensive analysis and risk assessment of fine road dust in Abbottabad city (Pakistan) with heavy traffic for potentially toxic elements. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136788. [PMID: 39740543 DOI: 10.1016/j.jhazmat.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic. The current study also evaluated PTE associated pollution, ecological and health risks, and potential sources of these elements. The average concentrations (in mg kg-1) of PTEs in road dust were highest for Fe (15540), followed by Mn (304), Zn (139), Cu (50.0), Pb (21.5), Cr (13.0), Ni (10.3), Co (6.66), and Cd (0.236). The levels of Co, Cr, Mn, Ni, and Fe were below the upper continental crust (UCC) averages, while Cd, Cu, Pb, and Zn exceeded them. Spatially, Cd, Cu, Pb, and Zn were found at higher levels near traffic hotspots, bus stands and automobile workshops. Road dust in Abbottabad exhibited unpolluted to moderate pollution levels (geo-accumulation index), with Cd, Cu, Zn, and Pb at 23 % of the sites. The enrichment factor results indicated a significant anthropogenic influence, with Cd being significantly enriched and Zn, Cu, and Pb moderately enriched. The contamination factor results revealed moderate contamination by (Cd: 2.62, Zn: 2.08, Cu: 1.79, Pb: 1.27). Single metal risk index showed that 61 % of the sites posed considerable to very high ecological risks due to Cd, which was highlighted as a significant concern. The absolute principal component scores-multiple linear regression model identified three factors contributing to PTE pollution: lithogenic (Co, Fe, Mn, Ni), traffic-related (Cd, Cu, Pb, Zn), and mixed sources (Cr), with contributions of 52.8 %, 35.8 %, and 11.4 %, respectively. The PTE hazard quotient and total hazard index values for children and adults were below the safe risk level of 1, indicating no non-carcinogenic health risks. The cumulative carcinogenic risk values to the residents were also within acceptable limits. However, children's susceptibility to non-carcinogenic risks is higher due to their behavior and lower body weight. This study highlights the accumulation of PTEs in Abbottabad's environment, which poses challenges to long-term sustainability, particularly amid unplanned tourism. Therefore, urgent measures are necessary to mitigate PTE pollution and preserve tourist spots and public health.
Collapse
Affiliation(s)
- Waqar Azeem Jadoon
- Department of Earth and Environmental Sciences, Hazara University Mansehra, 21130, Pakistan
| | - Yousaf Ali Khan
- Department of Mathematics and Statistics, Hazara University Mansehra, 21130, Pakistan
| | - Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Turkey.
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11120, Serbia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Ding R, Cheng Z, Xing J, Chen F, Zhang Y, Wang Y, Wang W, Song X, Ye Q, Zhang L, Liu Y. Characteristics, sources, and health risks of PM 2.5-bound trace elements at a national park site in southern China. Sci Rep 2025; 15:7367. [PMID: 40025151 PMCID: PMC11873196 DOI: 10.1038/s41598-025-86936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/15/2025] [Indexed: 03/04/2025] Open
Abstract
The health effects of trace elements in PM2.5 have been the subject of widespread public concern. In this study, the 18 trace elements in PM2.5 samples collected at a national park were measured to analyze their concentrations, sources, and health risks. The results showed that the average concentration of 18 trace elements was 191.99 ng/m3 (0.89-1638.28). Higher concentrations of crustal elements are associated with northwestern air masses and southeastern air masses, while higher concentrations of anthropogenic elements are associated with southwestern air masses. The total non-carcinogenic risk of the harmful elements was below the acceptable threshold, for both adults (0.723) and children (0.448). The total carcinogenic risk of the hazardous elements was above the safe level for both adults and children, and the carcinogenic risk of the hazardous elements is As > Ni > Cr > Pb. Natural sources, vehicle emissions, coal combustion, biomass combustion, and industrial sources were identified by both the Absolute Principal Component Score-Multiple Linear Regression (APCS-MLR) model and the Positive matrix factorization (PMF) model. Both the APCS-MLR-HRA model and the PMF-HRA model indicated that vehicle emissions and industrial sources were the main contributors to non-carcinogenic risks, while industrial and coal combustion sources were the main contributors to carcinogenic risks. Mn was the main contributor to the non-carcinogenic risk, while As was the main contributor to the carcinogenic risk. Mn and As should be prioritized as control elements to address the higher non-carcinogenic and carcinogenic risks from vehicle emissions, industrial, and coal combustion sources.
Collapse
Affiliation(s)
- Runping Ding
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhenyu Cheng
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiaoping Xing
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Feifeng Chen
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yangwen Zhang
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Wang
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Wenhua Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaoyan Song
- College of Geosciences and Engineering, North China University of Water Resources & Electric Power, Zhengzhou, 450046, China
| | - Qing Ye
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Linping Zhang
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuanqiu Liu
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
3
|
Khan R, Basir MS, Anik AH, Akhi SZ, Khan MHR, Sultana S, Aldawood S, Parvez MS, Idris AM, Roy DK. Sources and distribution of potentially toxic elements in urban road dust: A comparative insights and risk assessment of two polluted cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125768. [PMID: 39889943 DOI: 10.1016/j.envpol.2025.125768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
This study provides a comprehensive comparative analysis of seven potentially toxic elements (PTEs) from thirty samples using instrumental neutron activation analysis on the roadside dust samples collected from a south-western city (Khulna) and a highly urban megacity (Dhaka), Bangladesh. The mean concentrations (μg.g-1) of Cr, Mn, Fe, Co, Zn, As, and Sb in the analyzed dust samples were 67.5±33.2, 386±136, 25648±5334, 6.86±1.79, 98±63, 3.02±1.08, and 1.37±1.10, respectively in Khulna city and 66.7±6.9, 547±110, 25150±1723, 8.39±0.65, 125±17, 3.63±0.56, and 0.75±0.28, respectively, in Dhaka city, showing uneven distribution in both cities. PMF modelling and multivariate statistical approaches demonstrated that 65.68% anthropogenic and 34.32% geogenic sources for Khulna city, whereas 64.93% mixed (anthropogenic and geogenic) and 35.07% anthropogenic sources were the main contributors of measured elements in Dhaka city. In both cities, anthropogenic contributions were primarily linked to traffic emissions and industrial activity. Various geo-environmental indicators, including element-specific (Igeo, EF, CF), site-specific (Cd, mCd, PLI, NIPI), and ecological indices (Eri, RI), were used to assess the contamination characteristics of PTEs and contamination levels in both cities were in the following decreasing order: Sb >Zn >Cr >Fe >As >Mn >Co, whereas individual ecological risks were in the following decreasing order: Sb(34.28) >As(6.28) >Co(1.98) >Cr(1.47) >Zn(1.46) >Mn(0.50) in Khulna, and Sb(18.64) >As(7.56) >Co(2.43) >Zn(1.86) >Cr(1.45) >Mn(0.71) in Dhaka. The study site demonstrated lower potential ecological risks, even though non-carcinogenic and carcinogenic risks from various exposure pathways appeared minimal. Notably, children in both urban cities exhibited heightened vulnerability compared to adults.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh.
| | - Md Samium Basir
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Sayma Zahan Akhi
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | | | - Sadiya Sultana
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh; Physics Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
| | - Dhiman Kumer Roy
- Department of Geology and Mining, University of Barishal, Barishal, 8254, Bangladesh
| |
Collapse
|
4
|
Khan C, Malik RN, Chen J. Human exposure to chromite mining pollution, the toxicity mechanism and health impact. Heliyon 2024; 10:e40083. [PMID: 39553619 PMCID: PMC11566874 DOI: 10.1016/j.heliyon.2024.e40083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
Significant amounts of toxic metal-containing mining waste are produced by chromium mining activities, along with the production of air pollutants. The presence of toxic metals in various environmental media including air, water, and soil, along with their chemical species such as hexavalent chromium, pose major health hazards for both directly exposed mining workers and the population residing near the mining areas. Highlighting the requirements for enhanced environmental protection and safety measures, this comprehensive review shed light on the global environmental pollution stemming from chromite mining activities. Based on the published literature, the study also investigated into the pollution caused by toxic metals and explored their probable health effects on exposed individuals. The exposure routes and the mechanisms of toxic metal induced carcinogenicity in the exposed groups were assessed. Additionally, the generated reactive species in exposed individuals and the toxicity mechanisms of hexavalent chromium were discussed. Considering these findings, this review proposed the necessity of cross-sectional biomonitoring studies involving occupationally exposed workers from chromite mining operations. The anticipated impact of this review is to influence the global and national chromite mining industry, instigating improvements in occupational settings, real-time pollution monitoring, and healthcare provisions for exposed workers.
Collapse
Affiliation(s)
- Changaiz Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Isinkaralar O, Isinkaralar K, Nguyen TNT. Toxic metal accumulation, health risk, and distribution in road dust from the urban traffic-intensive environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60792-60803. [PMID: 39392576 DOI: 10.1007/s11356-024-35253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Owing to increasing levels of potentially toxic metals in road dust, air pollutants suspended in the air, pose significant health risks due to rapid, unplanned urbanization and industrialization. This study investigated the pollution status and health risks of trace metals (i.e., Cr, Cd, Ni, Cu, and Pb) in road dust collected from 16 locations across six land-use categories in Eskişehir, Türkiye, including residential, roadside, traffic, tram stations, and car industrial areas. The analysis of trace metals revealed distinct types of urban pollution based on these functional areas. In areas with heavy traffic, high concentrations of the elements, especially Zn, Cr, and Ni, would indicate significant toxic metal pollution. The overall contamination was evaluated using three indices: enrichment factor (EF 0.45-65.75), geo-accumulation index (Igeo - 2.50-4.18), and pollution index (PI 0.27-27.22). Human health risks of potentially toxic trace metals in urban road dust were evaluated for children and adult groups based on hazardous index (HI) and total cancer risk (TCR). The health risk assessments revealed that children (mean HIchildren 8.62E - 01; TCRchildren 6.99E + 04) are more vulnerable to toxic metal exposure than adults (mean HIadults 1.01E - 01; TCRadults 3.01E + 04), with ingestion being the primary exposure route over dermal contact and inhalation. In conclusion, we have captured the interaction between road dust and health risks, especially for children.
Collapse
Affiliation(s)
- Oznur Isinkaralar
- Department of Landscape Architecture, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Tuyet Nam Thi Nguyen
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Lu X, Zhang L, Lin GM, Lu JG, Cui ZB. Analysis of Differential Gene Expression under Acute Lead or Mercury Exposure in Larval Zebrafish Using RNA-Seq. Animals (Basel) 2024; 14:2877. [PMID: 39409826 PMCID: PMC11475140 DOI: 10.3390/ani14192877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
This study was first conducted to investigate the effects of acute lead exposure on developing zebrafish embryos or larvae from 24 to 120 h post-fertilization (hpf). Our data showed that treatment with 50-200 μM lead significantly affected larval survivability and morphology compared to the respective control. Second, we chose 120 hpf larvae treated with 12.5 μM lead for RNA sequencing due to its exposure level being sufficient to produce toxic effects with minimum death and lead bioaccumulation in developing zebrafish. A total of 137.45 million raw reads were obtained, and more than 86% of clean data were mapped to the zebrafish reference genome. Differential expression profiles generated 116 up- and 34 down-regulated genes upon lead exposure. The most enriched GO terms for representative DEGs were ion transport and lipid metabolism. Third, a comparison with the dataset of mercury-regulated gene expression identified 94 genes (64 up-regulated and 30 down-regulated) for exposure specific to lead, as well as 422 genes (338 up-regulated and 84 down-regulated) for exposure specific to mercury. In addition, 56 genes were co-regulated by micromolar mercury and lead treatment, and the expression of thirteen genes, including mt2, ctssb.1, prdx1, txn, sqrdl, tmprss13a, socs3a, trpv6, abcb6a, gsr, hbz, fads2, and zgc:92590 were validated by qRT-PCR. These genes were mainly associated with metal ion binding, proteolysis, antioxidant activity, signal transduction, calcium ion or oxygen transport, the fatty acid biosynthetic process, and protein metabolism. Taken together, these findings help better understand the genome-wide responses of developing zebrafish to lead or mercury and provide potential biomarkers for acute exposure to toxic metals.
Collapse
Affiliation(s)
- Xing Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
| | - Gen-Mei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (G.-M.L.); (J.-G.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Jian-Guo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (G.-M.L.); (J.-G.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zong-Bin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
7
|
Isinkaralar O, Isinkaralar K, Nguyen TNT. Spatial distribution, pollution level and human health risk assessment of heavy metals in urban street dust at neighbourhood scale. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2055-2067. [PMID: 38955818 PMCID: PMC11493832 DOI: 10.1007/s00484-024-02729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Urban street dust (UStD) is a vital issue for human health and is crucial for urban sustainability. This study aims to enhance the creation of safe, affordable, and resilient cities by examining environmental contamination and health risks in urban residential areas. Specifically, it investigates the concentrations and spatial distribution of chromium (Cr), cadmium (Cd), nickel (Ni), copper (Cu), lead (Pb), and zinc (Zn) in UStD in Yenimahalle, Ankara. The mean concentrations of Zn, Cr, Pb, Cd, Ni, and Cu in UStD were 97.98, 66.88, 55.22, 52.45, 38.37, and 3.81 mg/kg, respectively. The geoaccumulation pollution index (Igeo) values for these elements were: Cd (5.12), Ni (1.61), Cr (1.21), Pb (1.13), Cu (0.78), and Zn (0.24). These indices indicate that the area is moderately polluted with Cr, Pb, and Ni, uncontaminated to moderately contaminated with Cu and Zn, and extremely polluted with Cd. The hazard index (HI) values for Cr, Cd, Ni, Cu, Pb, and Zn were below the non-carcinogenic risk threshold for adults, indicating no significant risk. However, for children, the HI values for Pb, Ni, Cd, and Zn were 3.37, 1.80, 1.25, and 1.25, respectively, suggesting a higher risk. Carcinogenic risk (RI) of Cd, Ni, and Pb was significant for both children and adults, indicating that exposure through ingestion, inhalation, and dermal contact is hazardous. The findings highlight the need for strategic mitigation measures for both natural and anthropogenic activities, providing essential insights for residents, policymakers, stakeholders, and urban planners.
Collapse
Affiliation(s)
- Oznur Isinkaralar
- Department of Landscape Architecture, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Tuyet Nam Thi Nguyen
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Cao Y, Liu M, Zhang W, Zhang X, Li X, Wang C, Zhang W, Liu H, Wang X. Characterization and childhood exposure assessment of toxic heavy metals in household dust under true living conditions from 10 China cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171669. [PMID: 38494014 DOI: 10.1016/j.scitotenv.2024.171669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Health hazards caused by metal exposure in household dust are concerning environmental health problems. Exposure to toxic metals in household dust imposes unclear but solid health risks, especially for children. In this multicenter cross-sectional study, a total of 250 household dust samples were collected from ten stratified cities in China (Panjin, Shijiazhuang, Qingdao, Lanzhou, Luoyang, Ningbo, Xi'an, Wuxi, Mianyang, Shenzhen) between April 2018 and March 2019. Questionnaire was conducted to gather information on individuals' living environment and health status in real-life situations. Multivariate logistic regression and principal component analysis were conducted to identify risk factors and determine the sources of metals in household dust. The median concentration of five metals in household dust from 10 cities ranged from 0.03 to 73.18 μg/g. Among the five heavy metals, only chromium in household dust of Mianyang was observed significantly both higher in the cold season and from the downwind households. Mercury, cadmium, and chromium were higher in the third-tier cities, with levels of 0.08, 0.30 and 97.28 μg/g, respectively. There were two sources with a contribution rate of 38.3 % and 25.8 %, respectively. Potential risk factors for increased metal concentration include long residence time, close to the motorway, decoration within five years, and purchase of new furniture within one year. Under both moderate and high exposure scenarios, chromium showed the highest level of exposure with 6.77 × 10-4 and 2.28 × 10-3 mg·kg-1·d-1, and arsenic imposed the highest lifetime carcinogenic risk at 1.67 × 10-4 and 3.17 × 10-4, respectively. The finding highlighted the priority to minimize childhood exposure of arsenic from household dust.
Collapse
Affiliation(s)
- Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenying Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaotong Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Weiyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
9
|
Saeed T, Abbasi NA, Zahid MT, Fatima N, Ullah K, Khokhar MF. Toxicological profile and potential health concerns through metals and trace elements exposure in brick kiln workers from Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:150. [PMID: 38578528 DOI: 10.1007/s10653-024-01937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
This study examined levels of lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and arsenic (As) in blood, hair, and nails of 18 brick kiln workers from three brick kiln units located around a metropolitan city, Lahore, Pakistan. All the trace elements except Hg and As were detected in the studied matrices of Brick kiln workers. In general, brick kiln workers reflect the highest concentration of Pb, followed by Cd, Cr, and Cu. Of the pollutants analyzed, Pb has the highest mean (min-max) concentrations at 0.35 (0.09-0.65) in blood (μg/mL), 0.34 (0.14-0.71) in hairs (μg/g), and 0.44 (0.32-0.59) in nails (μg/g) of brick kiln workers. Following Pb, the trend was Cd 0.17 (0.10-0.24), Cu 0.11(0.03-0.27), and Cr 0.07 (0.04-0.08) in blood (μg/mL), followed by Cr 0.11(0.05-0.20), Cd 0.09 (0.03-0.13), and Cu 0.08 (0.04-0.16) in hairs (μg/g) and Cu 0.16 (0.05-0.36), Cd 0.13 (0.11-0.17), and Cr 0.10 (0.05-0.14) in nails (μg/g) respectively. Relatively higher concentrations of metals and other trace elements in blood depicts recent dietary exposure. The difference of trace elements except Pb was non-significant (P > 0.05) among studied matrices of workers as well as between Zigzag and traditional exhaust-based brick kilns. The concentrations of Pb, Cd and Cr in blood of brick kilns workers are higher than the values reported to cause health problems in human populations. It is concluded that chronic exposure to metals and other trace elements may pose some serious health risks to brick kiln workers which needs to be addressed immediately to avoid future worst-case scenarios.
Collapse
Affiliation(s)
- Talha Saeed
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
- Institute of Environmental Sciences & Engineering (IESE), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan.
| | - Muhammad Talha Zahid
- Institute of Environmental Sciences & Engineering (IESE), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Noor Fatima
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Kaleem Ullah
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences & Engineering (IESE), National University of Science & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
10
|
Eqani SAMAS, Alamdar A, Nawaz I, Shah SSA, Khanam T, Hayder QUA, Sohail M, Katsoyiannis IA, Shen H. Human biomonitoring of trace metals from different altitudinal settings of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25486-25499. [PMID: 38472570 DOI: 10.1007/s11356-024-32766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Human biomonitoring of toxic trace elements is of critical importance for public health protection. The current study aims to assess the levels of selected trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) into paired human nail and hair samples (n = 180 each) from different altitudinal setting along the Indus River, and which were measured by using inductively coupled plasma mass spectrometry (ICP-MS). The human samples (hair and nail) were collected from four different ecological zones of Pakistan which include frozen mountain zone (FMZ), wet mountain zone (WMZ), riverine delta zone (RDZ), and low-lying southern areas (LLZ). Our results showed the following occurrence trends into studied hair samples: higher values (ppm) of Zn (281), Co (0.136), and Mn (5.65) at FMZ; Cr (1.37), Mn (7.83), and Ni (1.22) at WMZ; Co (0.15), Mn (11.89), and Ni (0.99) at RDZ; and Mn (8.99) and Ni (0.90) at LLZ. While in the case of nails, the levels (ppm) of Mn (9.91) at FMZ and Mn (9.38, 24.1, and 12.5), Cr (1.84, 3.87, and 2.33), and Ni (10.69, 8.89, and 12.6) at WMZ, RDZ and LLZ, respectively, showed higher concentration. In general, among the studied trace elements, Mn and Ni in hair/nail samples were consistently higher and exceeded the WHO threshold/published reference values in most of the studied samples (> 50-60%) throughout the Indus basin. Similarly, hair/nail Pb values were also higher in few cases (2-10%) at all studied zones and exceeded the WHO threshold/published reference values. Our area-wise comparisons of studied metals exhibited altitudinal trends for Cd, Cr, Zn, and Mn (p < 0.05), and surprisingly, the values were increasing from south to north (at higher altitudes) and indicative of geogenic sources of the studied toxic elements, except Mn, which was higher at lower floodplain areas. Estimated daily intake (EDI) values showed that food and drinking water had the highest contribution towards Zn, Cu, Mn, and Ni and accumulation at all studied zones. Whereas, dust also acts as the main exposure route for Mn, Co, Cr, and Cd followed by the food, and water.
Collapse
Affiliation(s)
| | - Ambreen Alamdar
- Environment Health Sciences and Managment, Health Services Academy, Islamabad, Pakistan
| | - Ismat Nawaz
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Sayyam Abbas Shah
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tasawar Khanam
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Qurat Ul Ain Hayder
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Sohail
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- Department of Zoology, University of Central Punjab, Sargodha Campus, Lahore, Pakistan
| | - Ioannis A Katsoyiannis
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| |
Collapse
|
11
|
Aguilera A, Gallegos Á, Luna V, Hernández L, Gutiérrez M, Amaro D, Goguitchaichvili A, Quintana P, Bautista F. Higher heavy metal contamination indoors than outdoors during COVID-19 in Mexico City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16696-16709. [PMID: 38326683 PMCID: PMC10894124 DOI: 10.1007/s11356-024-32085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
People spend most of their time indoors, especially during the coronavirus disease. Prolonged exposure to heavy metal-contaminated dust can be harmful to human health. The objectives of this study were to identify the contamination level in outdoor and indoor dust, compare contamination in both environments, and assess the human health risk. Two-hundred thirty-nine samples of dust were taken by Mexico City citizens in 38 homes on the weekends of May 2020. Heavy metal concentrations were measured through XRF. The contamination level was set using the contamination factor with a local and global background value, mixed linear models were used to identify indoor and outdoor differences, and USEPA human health risk methodology was used. Pb, Zn, and Cu had the highest contamination levels, followed by Sr and Mn, using both the local and global background values. The Pb, Zn, and Cu contamination was greater indoors, while higher Mn, Sr, and Fe were detected outdoors. According to the outdoor/indoor ratios, the main sources of Ca, Pb, Zn, and Cu must be indoors, while the main sources of Fe, Mn, Sr, Y, and Ti are outdoors. A human health risk was not detected, as the hazard index was lower than one. However, ailments can be developed due to exposure to Pb, Mn, and Fe in children (hazard index > 0.1). A higher risk due to Pb exposition was found indoors. Indoor environments in Mexico City were more contaminated by heavy metals and represented a higher risk to human health than outdoors during the pandemic isolation.
Collapse
Affiliation(s)
- Anahí Aguilera
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico
| | - Ángeles Gallegos
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico
| | - Víctor Luna
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Luciano Hernández
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Margarita Gutiérrez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Daniel Amaro
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Avto Goguitchaichvili
- Instituto de Geofísica, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico
| | - Patricia Quintana
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados. Carr. Mérida - Progreso, Loma Bonita, 97205, Merida, Yucatan, Mexico
| | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P, 58190, Morelia, Michoacan, Mexico.
- Colegio de Postgraduados, Periférico Carlos A. Molina S/N Km. 3, Periférico Carlos A Molina SN, Ranchería Río Seco y Montaña, 86500, Heroica Cardenas, Tabasco, Mexico.
| |
Collapse
|
12
|
Nduka JK, Umeh TC, Kelle HI, Okeke FC, Iloka GC, Okafor PC. Ecological pollution features and health risk exposure to heavy metals via street dust and topsoil from Nkpor and Onitsha in Anambra, Nigeria. Environ Anal Health Toxicol 2024; 39:e2024005-0. [PMID: 38631397 PMCID: PMC11079403 DOI: 10.5620/eaht.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 04/19/2024] Open
Abstract
The manuscript presents the investigation results on the pollution and risk of metal mines, and it is considered an important report on environmental pollution near mines in Nigeria, with archival value. The research involved soil sampling and heavy metal analysis for about 12 months in three metal mines. Based on these results, the paper provides information on pollution levels and hazards using well-known methods like pollution and ecological risk indexes. The increasing population in urban communities attracted by various industrial, economic and social activities causes contamination of atmospheric environment that can affect human health. We investigated heavy metal distributions, correlation coefficient among elements, ecological indices and probable health risk assessment in street dust and topsoil from Nkpor and Onitsha urban suburb, Nigeria. The mean concentration of heavy metals in car dust from Onitsha and Nkpor suburb follows thus: Fe > Mn > Cu > As > Pb > Ni > Cr. The decreasing trend of heavy metal in rooftop dust from both area: Fe > Mn > Cu > Pb > As > Ni > Cr whereas metal contents in topsoil were: Fe > Mn > Cu > Pb > Ni > Cr > As for both areas. The degree of pollution indices was characterized by contamination factor (CF), geo-accumulation factor (I-geo), pollution load index (PLI), Nemerow (PN), ecological and potential ecological risk index (ER and PERI) which indicated low pollution in the urban street environment. The results of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that the estimated heavy metals displayed sources from atmospheric deposition, natural origin and anthropogenic sources. Risk assessment revealed that ingestion of dust and soil was the significant route for heavy metals exposure to the populace followed by inhalation, then dermal contact. Considering all factors, non-cancer risk was more prominent in children than adults and no significant health hazard could be attributed to both aged groups as of the period of study except for As and Ni that needs constant monitoring to avoid exceeding organ damaging threshold limit of 1 × 10-4.
Collapse
Affiliation(s)
- John Kanayochukwu Nduka
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | - Theresa Chisom Umeh
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | | | - Francisca Chioma Okeke
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | - Genevieve Chinyere Iloka
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | | |
Collapse
|
13
|
Rao L, Zheng C, Chen JB, Cai JZ, Yang ZB, Xu XX, Lv GC, Xu CL, Wang GY, Man YB, Wong MH, Cheng Z. Ecological and human health hazards of soil heavy metals after wildfire: A case study of Liangshan Yi autonomous prefecture, China. CHEMOSPHERE 2024; 352:141506. [PMID: 38395367 DOI: 10.1016/j.chemosphere.2024.141506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Soil samples were collected in at different depths from the conflagration area in Liangshan Yi Autonomous Region, China, to investigate the distribution characteristics and ecological and human health risks of heavy metals after a wildfire. The samples collected comprise wildfire ash (WA) above the soil surface, ash soil (AS) 0-5 cm, and plain soil (PS) 5-15 cm below the soil surface. Additionally, reference soil (RS) was collected from a nearby unburned area at the same latitude as the conflagration area. The results showed that the concentrations of zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd) in the WA and AS were significantly higher than in reference soil (RS) (p < 0.05). Concentrations of Pb in the PS were 2.52 times higher than that in RS (17.9 mg kg-1) (p < 0.05). The AS and WA had the highest Index of potential ecological risks (RI > 600). In addition, The Cd in AS and WA contributed the most to the highest Improved nemerow index (INI) and RI with a contribution of more than 80%. The concentration of heavy metals was used to establish non-carcinogenic effects and cancer risks in humans via three exposure pathways: accident ingestion of soil, dermal contact with soil, and inhalation of soil particles. Hazard index (HI) values of each sample were all less than 1, indicating the non-carcinogenic risk was within the acceptable range and would not adversely affect the local population's health. The Cancer risk (CR) values of Cr, As, Cd, and Ni were all below 1 × 10-6, indicating that heavy metal pollution from this wildfire did not pose a cancer risk to residents.
Collapse
Affiliation(s)
- Lin Rao
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bin Chen
- College of Source and Environment, Xichang University, Xichang, China
| | - Jun-Zhuo Cai
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Zhan-Biao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Xun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Guo-Chun Lv
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Chang-Lian Xu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Gui-Yin Wang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yu-Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming-Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
14
|
Bauer JA, Romano ME, Jackson BP, Bellinger D, Korrick S, Karagas MR. Associations of Perinatal Metal and Metalloid Exposures with Early Child Behavioral Development Over Time in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2024; 16:135-148. [PMID: 38694196 PMCID: PMC11060719 DOI: 10.1007/s12403-023-00543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 05/04/2024]
Abstract
Research on the neurodevelopmental effects of metal(loid)s has focused mainly on outcomes assessed at one time point, even though brain development progresses over time. We investigated biomarkers of perinatal exposure to metals and changes in child behavior over time. We followed 268 participants from the prospective New Hampshire Birth Cohort Study between birth and age 5 years. We measured arsenic (As), copper (Cu), manganese (Mn), lead (Pb), selenium (Se), and zinc (Zn) in toenails from 6-week-old infants. The Behavioral Symptoms Index (BSI), externalizing, and internalizing symptoms were assessed using the Behavior Assessment System for Children, 2nd edition (BASC-2) at ages 3 and 5 years. Multivariable linear regression was used to estimate associations of metals with behavior change, calculated as the difference in symptom raw scores between 3 and 5 years, in addition to the associations for symptom scores at 3 and 5 years separately. Sex-specific associations were also explored using stratified models and a sex-metal interaction term. Adjusted associations of metals and change in behavior varied by exposure and outcome. Each 1 μg/g increase in ln toenail Cu was associated with improved behavior between 3 and 5 years [BSI: β = - 3.88 (95%CI: - 7.12, - 0.64); Externalizing problems: β = - 2.20 (95%CI: - 4.07, - 0.33)]. Increasing Zn was associated with increased externalizing behavior over time (β = 3.42 (95%CI: 0.60, 6.25). Sex-stratified analyses suggested more pronounced associations among boys compared to girls. Perinatal exposure to metals may alter behavioral development between ages 3 and 5 years. Findings support the need for more research on associations between metals and neurodevelopment over longer time periods.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - David Bellinger
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, MA, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| |
Collapse
|
15
|
Buljovčić M, Živančev J, Antić I, Đurišić-Mladenović N. Heavy elements in indoor dust from Serbian households: pollution status, sources, and potential health risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:50-60. [PMID: 36170597 DOI: 10.1080/09603123.2022.2128077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Occurrence of five heavy elements (HEs) was analyzed in indoor dust (n = 45) in households from four settlements in Vojvodina Province, Serbia. Overall medians (mg/kg) of Pb (5.6), Ni (5.2), Cu (27), and Cr (6.8) were below soil background values, while median for Cd (1.1) exceeded it. Pollution load index showed that the households' microenvironment in examined region might be regarded as unpolluted. Integrated pollution index revealed low contamination by Pb, Ni, and Cr, but high with Cu and Cd. Source apportionment by principal component analysis and positive matrix factorization suggested two possible sources: outdoor pollution and household materials. Hazard index was below safe limit (<1), indicating no adverse non-carcinogenic health effects. Estimated total carcinogenic risk for children and adult population was not negligible. Results indicated that attention should be paid to the presence of HE in indoors to conduct effective control measures and to ensure the health of the population.
Collapse
Affiliation(s)
- Maja Buljovčić
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Jelena Živančev
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Igor Antić
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
16
|
Hussain S, Khanam T, Ullah S, Aziz F, Sattar A, Hussain I, Saddique MAB, Maqsood A, Ding C, Wang X, Yang J. Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan. TOXICS 2023; 11:958. [PMID: 38133359 PMCID: PMC10747213 DOI: 10.3390/toxics11120958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
In developing countries, like Pakistan, the pursuit of urbanization and economic development disrupts the delicate ecosystem, resulting in additional biogeochemical emissions of heavy metals into the human habitat and posing significant health risks. The levels of these trace elements in humans remain unknown in areas at higher risk of pollution in Pakistan. In this investigation, selected trace metals including Copper (Cu), Chromium (Cr), Lead (Pb) Cadmium (Cd), Cobalt (Co), Nickel (Ni), and Arsenic (As) were examined in human hair, urine, and nail samples of different age groups from three major cities (Muzaffargarh, Multan, and Vehari) in Punjab province, Pakistan. The results revealed that the mean concentrations (ppm) of Cr (1.1) and Cu (9.1) in hair was highest in Muzaffargarh. In urine samples, the mean concentrations (μg/L) of Co (93), As (79), Cu (69), Cr (56), Ni (49), Cd (45), and Pb (35) were highest in the Multan region, while As (34) and Cr (26) were highest in Vehari. The mean concentrations (ppm) of Ni (9.2), Cr (5.6), and Pb (2.8), in nail samples were highest in Vehari; however, Multan had the highest Cu (28) concentration (ppm). In urine samples, the concentrations of all the studied metals were within permissible limits except for As (34 µg/L) and Cr (26 µg/L) in Vehari. However, in nail samples, the concentrations of Ni in Multan (8.1 ppm), Muzaffargarh (9 ppm), Vehari (9.2 ppm), and Cd (3.69 ppm) in Muzaffargarh exceeded permissible limits. Overall, the concentrations of metals in urine, nail, and hair samples were higher in adults (39-45 age group). Cr, Cu, and Ni revealed significantly higher concentrations of metals in hair and water in Multan, whereas As in water was significantly (p < 0.001) correlated with urinary As in Multan, indicating that the exposure source was region-specific.
Collapse
Affiliation(s)
- Sajjad Hussain
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.H.); (S.U.)
- Layyah Institute, University of Lahore, Layyah 31200, Pakistan
| | - Tasawar Khanam
- Ecohealth and Toxicology Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan;
- Department of Zoology, University of Chakwal, Chakwal 48800, Pakistan
| | - Subhan Ullah
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.H.); (S.U.)
| | - Fouzia Aziz
- Department of Economics, University of Layyah, Layyah 31200, Pakistan
- Department of Economics, Women University, Multan 60000, Pakistan
| | - Abdul Sattar
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Imran Hussain
- Environmental Biotechnology Laboratory, Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22020, Pakistan;
| | | | - Amna Maqsood
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (C.D.); (X.W.)
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (C.D.); (X.W.)
| | - Jianjun Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Saeed T, Abbasi NA, Zahid T, Fatima N, ullah K, Kokhar MF. Toxicological profile and health risk assessment through trace elements exposure in brick kiln workers from Lahore, Pakistan.. [DOI: 10.21203/rs.3.rs-3267981/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
This study examined lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and arsenic (As) levels in blood, hair, and nails of 18 brick kiln workers from three brick kiln units located around a metropolitan city, Lahore, Pakistan. All the trace elements except Hg and As were detected in the studied matrices of Brick kiln workers. In general, brick kiln workers had the highest concentration of Pb, followed by Cd, Cr, and Cu. Among trace elements, Pb has the highest mean (min-max; µg/g)) concentrations at 0.35 (0.09–0.65) in blood, 0.34 (0.14–0.71) in hairs, and 0.44 (0.32–0.59) in nails of brick kiln workers. Following Pb, the trend was Cd 0.17 (0.10–0.24), Cu 0.11(0.03–0.27), and Cr 0.07 (0.04–0.08) in blood, followed by Cr 0.11(0.05–0.20), Cd 0.09 (0.03–0.13), and Cu 0.08 (0.04–0.16) in hairs and Cu 0.16 (0.05–0.36), Cd 0.13 (0.11–0.17), and Cr 0.10 (0.05–0.14) in nails respectively. The difference of trace metals except Pb was non-significant (P > 0.05) among studied matrices of workers as well as between Zigzag and traditional exhaust based brick kilns. Non-carcinogenic risk of Pb and Cd were above USEPA and WHO limits while Pb, Cd, and Cr carcinogenic risks were close to the threshold limits. It is concluded that chronic exposure to trace elements poses serious health risks to brick kiln workers which needs to be addressed to avoid future worst-case scenarios.
Collapse
|
18
|
Roy D, Kim J, Lee M, Park J. Adverse impacts of Asian dust events on human health and the environment-A probabilistic risk assessment study on particulate matter-bound metals and bacteria in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162637. [PMID: 36889412 DOI: 10.1016/j.scitotenv.2023.162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess the impact of Asian dust (AD) on the human health and the environment. Particulate matter (PM) and PM-bound trace elements and bacteria were examined to determine the chemical and biological hazards associated with AD days and compared with non-AD days in Seoul. On AD days, the mean PM10 concentration was ∼3.5 times higher than that on non-AD days. Elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, Ni, and Cd) were identified as major contributors to coarse and fine particles, respectively. During AD days, the study area was recognized as "severe" for pollution index and pollution load index levels, and "moderately to heavily polluted" for geoaccumulation index levels. The potential cancer risk (CR) and non-CR were estimated for the dust generated during AD events. On AD days, total CR levels were significant (in 1.08 × 10-5-2.22 × 10-5), which were associated with PM-bound As, Cd, and Ni. In addition, inhalation CR was found to be similar to the incremental lifetime CR levels estimated using the human respiratory tract mass deposition model. In a short exposure duration (14 days), high PM and bacterial mass deposition, significant non-CR levels, and a high presence of potential respiratory infection-causing pathogens (Rothia mucilaginosa) were observed during AD days. Significant non-CR levels were observed for bacterial exposure, despite insignificant levels of PM10-bound elements. Therefore, the substantial ecological risk, CR, and non-CR levels for inhalation exposure to PM-bound bacteria, and the presence of potential respiratory pathogens, indicate that AD events pose a significant risk to both human lung health and the environment. This study provides the first comprehensive examination of significant non-CR levels for bacteria and carcinogenicity of PM-bound metals during AD events.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Sharma HS, Feng L, Chen L, Huang H, Ryan Tian Z, Nozari A, Muresanu DF, Lafuente JV, Castellani RJ, Wiklund L, Sharma A. Cerebrolysin Attenuates Exacerbation of Neuropathic Pain, Blood-spinal Cord Barrier Breakdown and Cord Pathology Following Chronic Intoxication of Engineered Ag, Cu or Al (50-60 nm) Nanoparticles. Neurochem Res 2023; 48:1864-1888. [PMID: 36719560 PMCID: PMC10119268 DOI: 10.1007/s11064-023-03861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is associated with abnormal sensations and/or pain induced by non-painful stimuli, i.e., allodynia causing burning or cold sensation, pinching of pins and needles like feeling, numbness, aching or itching. However, no suitable therapy exists to treat these pain syndromes. Our laboratory explored novel potential therapeutic strategies using a suitable composition of neurotrophic factors and active peptide fragments-Cerebrolysin (Ever Neuro Pharma, Austria) in alleviating neuropathic pain induced spinal cord pathology in a rat model. Neuropathic pain was produced by constrictions of L-5 spinal sensory nerves for 2-10 weeks period. In one group of rats cerebrolysin (2.5 or 5 ml/kg, i.v.) was administered once daily after 2 weeks until sacrifice (4, 8 and 10 weeks). Ag, Cu and Al NPs (50 mg/kg, i.p.) were delivered once daily for 1 week. Pain assessment using mechanical (Von Frey) or thermal (Hot-Plate) nociceptive showed hyperalgesia from 2 weeks until 10 weeks progressively that was exacerbated following Ag, Cu and Al NPs intoxication in nerve lesioned groups. Leakage of Evans blue and radioiodine across the blood-spinal cord barrier (BSCB) is seen from 4 to 10 weeks in the rostral and caudal cord segments associated with edema formation and cell injury. Immunohistochemistry of albumin and GFAP exhibited a close parallelism with BSCB leakage that was aggravated by NPs following nerve lesion. Light microscopy using Nissl stain exhibited profound neuronal damages in the cord. Transmission electron microcopy (TEM) show myelin vesiculation and synaptic damages in the cord that were exacerbated following NPs intoxication. Using ELISA spinal tissue exhibited increased albumin, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP) and heat shock protein (HSP 72kD) upregulation together with cytokines TNF-α, IL-4, IL-6, IL-10 levels in nerve lesion that was exacerbated following NPs intoxication. Cerebrolysin treatment significantly reduced hyperalgesia and attenuated BSCB disruption, edema formation and cellular changes in nerve lesioned group. The levels of cytokines were also restored near normal levels with cerebrolysin treatment. Albumin, GFAP, MABP and HSP were also reduced in cerebrolysin treated group and thwarted neuronal damages, myelin vesiculation and cell injuries. These neuroprotective effects of cerebrolysin with higher doses were also effective in nerve lesioned rats with NPs intoxication. These observations suggest that cerebrolysin actively protects spinal cord pathology and hyperalgesia following nerve lesion and its exacerbation with metal NPs, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100700, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Z Ryan Tian
- Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, 21201, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, 75185, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.
| |
Collapse
|
20
|
Din I, Khan S, Hesham AEL, Irum S, Daqiang C. Mine Wastewater Treatment with Upflow Anaerobic Fixed Film Reactors. MINE WATER AND THE ENVIRONMENT 2023; 42:340-347. [DOI: 10.1007/s10230-023-00929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/23/2023] [Indexed: 09/02/2023]
|
21
|
Zhou X, Xie M, Zhao M, Wang Y, Luo J, Lu S, Li J, Liu Q. Pollution characteristics and human health risks of PM 2.5-bound heavy metals: a 3-year observation in Suzhou, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01568-x. [PMID: 37072576 PMCID: PMC10113128 DOI: 10.1007/s10653-023-01568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to analyze the temporal trends, pollution levels, and health risks associated with eleven PM2.5-bound heavy metals (Sb, Al, As, Hg, Cd, Cr, Mn, Ni, Pb, Se and Tl). A total of 504 PM2.5 samples were collected in Suzhou from January 2019 to December 2021. The pollution levels were estimated based on enrichment factors (EFs) which can be used to calculate the enrichment of heavy metals in PM2.5 and determine whether the concentrations of PM2.5-bound heavy metals are influenced by the crustal or anthropogenic sources, and the health risk of PM2.5-bound heavy metals via inhalation was assessed following US EPA's Risk Assessment Guidance for Superfund (RAGS). The annual average concentration of PM2.5 was 46.76 μg m-3, which was higher than the WHO recommended limit of 5 μg m-3. The average of the sum of eleven PM2.5-bound heavy metals was 180.61 ng m-3, dominated by Al, Mn, and Pb. The concentration of PM2.5 in 2020 was significantly lower than that in 2019 and 2021. The PM2.5 and PM2.5-bound heavy metal concentrations in winter and spring were significantly higher than those in autumn and summer. The EF of As, Cr, Cd, Hg, Ni, Pb, Sb, Mn, Se, and Tl was higher than 10, indicating they were mainly from anthropogenic sources. Exposure to a single non-carcinogenic heavy metal via inhalation was unlikely to cause non-carcinogenic effects (HQ < 1), but the integrated non-carcinogenic risks should be taken seriously (HI > 1). The cumulative carcinogenic risks from the carcinogenic elements were exceeding the lower limit (1 × 10-6) of the acceptable risk range. The carcinogenic risks of As and Cr(VI) contributed 60.98% and 26.77%, respectively, which were regarded as two key carcinogenic risk factors. Overall, the government policies and countermeasures for the PM2.5 pollution control should be performed not only based on the PM2.5 concentration but also based on the PM2.5-bound heavy metals and their health risks for the local residents.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Department of Environmental Hygiene, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Mengmeng Xie
- Department of Clinical Nutrition, Suzhou Ninth People's Hospital, Suzhou, China
| | - Minxian Zhao
- Department of Environmental Hygiene, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Ying Wang
- Department of Environmental Hygiene, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jia Luo
- Physical and Chemical Laboratory, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Songwen Lu
- Department of Environmental Hygiene, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jie Li
- Department of Environmental Hygiene, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Qiang Liu
- Department of Environmental Hygiene, Suzhou Center for Disease Control and Prevention, Suzhou, China.
| |
Collapse
|
22
|
Moyebi OD, Fatmi Z, Carpenter DO, Santoso M, Siddique A, Khan K, Zeb J, Hussain MM, Khwaja HA. Fine particulate matter and its chemical constituents' levels: A troubling environmental and human health situation in Karachi, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161474. [PMID: 36646217 DOI: 10.1016/j.scitotenv.2023.161474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Like many urban centers in developing countries, the effect of air pollution in Karachi is understudied. The goal of this study was to determine the chemical characterization, temporal and seasonal variability, sources, and health impacts of fine particulate matter (PM2.5) in Karachi, Pakistan. Daily samples of PM2.5 were collected using a low-volume air sampler at two different sites (Makro and Karachi University) over the four seasons between October 2009 and August 2010. Samples were analyzed for black carbon (BC), trace metals, and water-soluble ions. Results showed that the annual average concentrations of PM2.5 at Makro and Karachi University were 114 ± 115 and 71.7 ± 56.4 μg m-3, respectively, about 22.8 and 14.3-fold higher than the World Health Organization annual guideline of 5 μg m-3. BC concentrations were 3.39 ± 1.97 and 2.70 ± 2.06 μg m-3, respectively. The concentrations of PM2.5, BC, trace metals, and ions at the two sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. The trace metals and ionic species with the highest concentrations were Pb, S, Zn, Ca, Si, Cl, Fe, and SO42-. The air quality index in the fall and winter at both sites was about 68 %, which is "unhealthy" for the general population. Positive Matrix Factorization revealed the overall contribution to PM2.5 at the Makro site came from three major sources - industrial emissions (13.3 %), vehicular emissions (59.1 %), and oil combustion (23.3 %). The estimates of expected number of deaths due to short-term exposure to PM2.5 were high in the fall and winter at both sites, with an annual mean estimate of 3592 expected number of deaths at the Makro site. Attention should be paid to the reduction of inorganic pollutants from industrial facilities, vehicular traffic, and fossil fuel combustion, due to their extremely high contribution to PM2.5 mass and health risks.
Collapse
Affiliation(s)
- Omosehin D Moyebi
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - Zafar Fatmi
- Environmental-Occupational Health & Climate Change Section, Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - David O Carpenter
- Institute for the Health and the Environment, University at Albany, Albany, NY, USA
| | | | - Azhar Siddique
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kamran Khan
- Chemistry Department, University of Karachi, Karachi, Pakistan
| | - Jahan Zeb
- Department of Environmental and Health Research, The Custodian of the Holy Two Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mirza M Hussain
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Haider A Khwaja
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
23
|
Zhang H, Dong K, Xiang S, Lin Y, Cha X, Shang Y, Xu W. A Novel Cu2+ Quantitative Detection Nucleic Acid Biosensors Based on DNAzyme and “Blocker” Beacon. Foods 2023; 12:foods12071504. [PMID: 37048325 PMCID: PMC10094606 DOI: 10.3390/foods12071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
In this paper, a “turn-off” biosensor for detecting copper (II) ions based on Cu2+-dependent DNAzyme and a “blocker” beacon were developed. Upon the copper ion being added, the Cu2+-dependent DNAzyme substrate strand was irreversibly cleaved, thereby blocking the occurrence of the ligation reaction and PCR, which inhibited the G-rich sequence from forming the G-quadruplex structure, efficiently reducing the detection signal. This method had the characteristics of strong specificity and high sensitivity compared with the existing method due to the application of ligation-dependent probe signal recognition and amplification procedures. Under the optimized conditions, this method proved to be highly sensitive. The signal decreased as the concentration of copper ions increased, exhibiting a linear calibration from 0.03125 μM to 0.5 μM and a limit of detection of 18.25 nM. Subsequently, the selectivity of this biosensor was verified to be excellent by testing different relevant metal ions. Furthermore, this detection system of copper (II) ions was successfully applied to monitor Cu2+ contained in actual water samples, which demonstrated the feasibility of the biosensor.
Collapse
Affiliation(s)
- Hanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Dong
- College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Shuna Xiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingting Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoyan Cha
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
24
|
Dai L, Deng L, Wang W, Li Y, Wang L, Liang T, Liao X, Cho J, Sonne C, Shiung Lam S, Rinklebe J. Potentially toxic elements in human scalp hair around China's largest polymetallic rare earth ore mining and smelting area. ENVIRONMENT INTERNATIONAL 2023; 172:107775. [PMID: 36739854 DOI: 10.1016/j.envint.2023.107775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
There is a growing concern about human health of residents living in areas where mining and smelting occur. In order to understand the exposure to the potentially toxic elements (PTEs), we here identify and examine the cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in scalp hair of residents living in the mining area (Bayan Obo, n = 76), smelting area (Baotou, n = 57) and a reference area (Hohhot, n = 61). In total, 194 hair samples were collected from the volunteers (men = 87, women = 107) aged 5-77 years old in the three areas. Comparing median PTEs levels between the young and adults, Ni levels were significantly higher in adults living in the smelting area while Cr was highest in adults from the mining area, no significant difference was found for any of the elements in the reference area. From the linear regression model, no significant relationship between PTEs concentration, log10(PTEs), and age was found. The concentrations of Ni, Cd, and Pb in hair were significantly lower in the reference area when compared to both mining and smelting areas. In addition, Cu was significantly higher in the mining area when compared to the smelting area. Factor analysis (FA) indicated that men and women from the smelting area (Baotou) and mining area (Bayan Obo), respectively, had different underlying communality of log10(PTEs), suggesting different sources of these PTEs. Multiple factor analysis quantilized the importance of gender and location when combined with PTEs levels in human hair. The results of this study indicate that people living in mining and/or smelting areas have significantly higher PTEs (Cu, Ni, Cd, and Pb) hair levels compared to reference areas, which may cause adverse health effects. Remediation should therefore be implemented to improve the health of local residents in the mining and smelting areas.
Collapse
Affiliation(s)
- Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwoo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
25
|
Markiv B, Ruiz-Azcona L, Expósito A, Santibáñez M, Fernández-Olmo I. Short- and long-term exposure to trace metal(loid)s from the production of ferromanganese alloys by personal sampling and biomarkers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4595-4618. [PMID: 35190915 PMCID: PMC8860625 DOI: 10.1007/s10653-022-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 05/06/2023]
Abstract
The environmental exposure to trace metal(loid)s (As, Cd, Cu, Fe, Mn, Pb, and Zn) was assessed near a ferromanganese alloy plant using filters from personal particulate matter (PM) samplers (bioaccessible and non-bioaccessible fine and coarse fractions) and whole blood as short-term exposure markers, and scalp hair and fingernails as long-term biomarkers, collected from volunteers (n = 130) living in Santander Bay (northern Spain). Bioaccessible and non-bioaccessible metal(loid) concentrations in coarse and fine PM from personal samplers were determined by ICP-MS after extraction/digestion. Metal(loid) concentration in biomarkers was measured after alkaline dilution (whole blood) and acid digestion (fingernails and scalp hair) by ICP-MS as well. Results were discussed in terms of exposure, considering the distance to the main Mn source, and sex. In terms of exposure, significant differences were found for Mn in all the studied fractions of PM, As in whole blood, Mn and Cu in scalp hair and Mn and Pb in fingernails, with all concentrations being higher for those living closer to the Mn source, with the exception of Cu in scalp hair. Furthermore, the analysis of the correlation between Mn levels in the studied biomarkers and the wind-weighted distance to the main source of Mn allows us to conclude that scalp hair and mainly fingernails are appropriate biomarkers of long-term airborne Mn exposure. This was also confirmed by the significant positive correlations between scalp hair Mn and bioaccessible Mn in coarse and fine fractions, and between fingernails Mn and all PM fractions. This implies that people living closer to a ferromanganese alloy plant are exposed to higher levels of airborne metal(loid)s, mainly Mn, leading to higher levels of this metal in scalp hair and fingernails, which according to the literature, might affect some neurological outcomes. According to sex, significant differences were observed for Fe, Cu and Pb in whole blood, with higher concentrations of Fe and Pb in males, and higher levels of Cu in females; and for Mn, Cu, Zn, Cd and Pb in scalp hair, with higher concentrations in males for all metal(loid)s except Cu.
Collapse
Affiliation(s)
- B Markiv
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain.
| | - L Ruiz-Azcona
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - A Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - M Santibáñez
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - I Fernández-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
26
|
Filipoiu DC, Bungau SG, Endres L, Negru PA, Bungau AF, Pasca B, Radu AF, Tarce AG, Bogdan MA, Behl T, Nechifor AC, Hassan SSU, Tit DM. Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. TOXICS 2022; 10:toxics10120716. [PMID: 36548549 PMCID: PMC9785207 DOI: 10.3390/toxics10120716] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
Increased environmental pollution, urbanization, and a wide variety of anthropogenic activities have led to the release of toxic pollutants into the environment, including heavy metals (HMs). It has been found that increasing concentrations of HMs lead to toxicity, mineral imbalances, and serious diseases, which are occurring more and more frequently. Therefore, testing has become imperative to detect these deficiencies in a timely manner. The detection of traces of HMs, especially toxic ones, in human tissues, various biological fluids, or hair is a complex, high-precision analysis that enables early diagnosis, addressing people under constant stress or exposed to a toxic environment; the test also targets people who have died in suspicious circumstances. Tissue mineral analysis (TMA) determines the concentration of toxic minerals/metals at the intracellular level and can therefore determine correlations between measured concentrations and imbalances in the body. Framing the already-published information on the topic, this review aimed to explore the toxicity of HMs to human health, the harmful effects of their accumulation, the advantages vs. the disadvantages of choosing different biological fluids/tissues/organs necessary for the quantitative measurement of HM in the human body, as well as the choice of the optimal method, correlated with the purpose of the analysis.
Collapse
Affiliation(s)
- Dana Claudia Filipoiu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (S.G.B.); (L.E.)
| | - Laura Endres
- Department of Psycho-neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (S.G.B.); (L.E.)
| | - Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Bianca Pasca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi 248007, India
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
27
|
Obasi CN, Frazzoli C, Orisakwe OE. Heavy metals and metalloids exposure and in vitro fertilization: Critical concerns in human reproductive medicine. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1037379. [PMID: 36478891 PMCID: PMC9720145 DOI: 10.3389/frph.2022.1037379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Exposures to heavy metals and metalloids have been associated with decreased fecundity and fertility in couples conceiving via assisted reproduction. Heavy metals and metalloids can alter the homeostasis of critical hormones controlling sexual maturation by binding to critical hormones and receptors. This may disrupt the time course of sexual maturation directly or indirectly affecting reproductive competence in males and females. The present review aims to provide a summarized overview of associations between heavy metal exposure, reproductive concerns, and IVF outcomes. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) in Google Scholar, Scopus, EMBASE and PubMed databases. Initial search produced 1,351 articles from which 30 articles were eligible to be included in the systematic review. From our results, 16 articles reported associations between selected heavy metals and IVF outcomes, while 14 articles summarized the role of heavy metals in reproductive concerns. For the studies on IVF outcomes, different human samples were examined for heavy metals. Heavy metals and metalloids (Pb, Hg, Cd, Cr, Mn, As) correlated negatively with oocyte fertilization/pregnancy rates in hair, follicular fluid, serum, urine and seminal plasma samples, while Cd and Hg in whole blood samples showed no associations. For the studies on reproductive concerns, high levels of heavy metals/metalloids were implicated in the following conditions: infertility (Cd, Pb, Ba, U), spontaneous abortion/miscarriage (Pb, Cd, Sb), congenital heart disease (Al, Mg, Cd), PCOS (As, Cd, Hg, Pb), endometriosis (Pb) and uterine leiomyomata (Hg). Taken together, the results of our study suggest that the impact of heavy metals and metalloids exposure on reproductive health may contribute to the failure rates of in vitro fertilization.
Collapse
Affiliation(s)
- Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Dysmetabolic and Aging-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
28
|
Wang B, Gao F, Li Y, Lin C, Cheng H, Duan X. Assessment of Children's Metal Exposure via Hand Wipe, Outdoor Soil and Indoor Dust and Their Associations with Blood Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14614. [PMID: 36361494 PMCID: PMC9653965 DOI: 10.3390/ijerph192114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The soil environment contributes considerably to human exposure to metals. This study aimed to comprehensively compare children's exposure to soil metals using different sampling approaches (i.e., hand wipe, indoor dust and outdoor soil) and assessment strategies, combing the method of external exposure evaluation and the correlation with internal biomarkers. Environmental exposure samples (hand wipe, outdoor soil and indoor dust), blood samples and child-specific exposure factors were simultaneously collected for 60 children aged 3 to 12 years from an area of northwestern China. Eight typical toxic metals were analyzed. Results showed that metal levels in hand wipes were associated with children's age, years of residency and the ground types of the play areas. Hand-to-mouth contact was an important pathway for children's metal exposure, with the corresponding oral exposure cancer risk to Cr already exceeding the maximum acceptable level. In comparison, metal concentrations in hand wipes were one to seven times higher than those in outdoor soil and indoor dust. Even greater discrepancies were found for the estimated exposure dose, which could lead to differences of several to dozens of times. In addition, Pb, Mn and Cr in hand wipes were significantly correlated with those in blood, whereas no relationships were found with soil and dust. This study indicates that the selection of different sampling and assessing strategies could lead to great differences in children metal exposure outcomes. It also suggests that hand wipe, which could reflect the true and integrated exposure level and the individual difference, serves as a better matrix to assess children's metal exposure compared to soil and dust. Further studies should standardize the sampling method for hand wipes and verify its applicability for other age groups.
Collapse
Affiliation(s)
- Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yujie Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Chen Y, Hu Z, Bai H, Shen W. Variation in Road Dust Heavy Metal Concentration, Pollution, and Health Risk with Distance from the Factories in a City-Industry Integration Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114562. [PMID: 36361440 PMCID: PMC9656356 DOI: 10.3390/ijerph192114562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/23/2023]
Abstract
Road dust samples around three typical factories, F1, F2, and F3, in the National Zhengzhou Economic and Technology Development Zone (ZETZ), China, were collected to study the variation in heavy metal concentration (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn), pollution, and health risk with distance from the factories. The results indicated that the concentrations of all the elements near F1 were higher than near both F2 and F3. Apart from Co, Mn, and Cu in some dust samples, all the element concentrations were higher than the corresponding background values (BCs), to varying degrees. The spatial distributions of the heavy metals surrounding the factories followed the normal distribution. The peak values of element concentrations occurred at 300~400 m away from the factories, except for Hg, which continued increasing more than 500 m away from the factories. The fluctuation curves of the pollution load index value calculated according to the BCs for F1, F2, and F3 all had two peaks, a "small peak" and a "large peak", appearing at about 30 m and 300 m, respectively. For the hazard index and the total carcinogenic risk, the peak values all appeared at 400 m, with the curves following the normal distribution. Exposure to road dust containing non-carcinogenic and carcinogenic elements around F1 was greater than around F2 or F3. In conclusion, our results provide a reference for pursuing effective prevention of dust heavy metal pollution around modern manufacturing factories.
Collapse
Affiliation(s)
- Yinan Chen
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450018, China
| | - Zhiqiang Hu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
| | - He Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Shen
- The College of Environment and Planning, Henan University, Kaifeng 475001, China
| |
Collapse
|
30
|
Gutiérrez-González E, Fernández-Navarro P, Pastor-Barriuso R, García-Pérez J, Castaño-Vinyals G, Martín-Sánchez V, Amiano P, Gómez-Acebo I, Guevara M, Fernández-Tardón G, Salcedo-Bellido I, Moreno V, Pinto-Carbó M, Alguacil J, Marcos-Gragera R, Gómez-Gómez JH, Gómez-Ariza JL, García-Barrera T, Varea-Jiménez E, Núñez O, Espinosa A, Molina de la Torre AJ, Aizpurua-Atxega A, Alonso-Molero J, Ederra-Sanz M, Belmonte T, Aragonés N, Kogevinas M, Pollán M, Pérez-Gómez B. Toenail zinc as a biomarker: Relationship with sources of environmental exposure and with genetic variability in MCC-Spain study. ENVIRONMENT INTERNATIONAL 2022; 169:107525. [PMID: 36150295 DOI: 10.1016/j.envint.2022.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Toenails are commonly used as biomarkers of exposure to zinc (Zn), but there is scarce information about their relationship with sources of exposure to Zn. OBJECTIVES To investigate the main determinants of toenail Zn, including selected sources of environmental exposure to Zn and individual genetic variability in Zn metabolism. METHODS We determined toenail Zn by inductively coupled plasma mass spectrometry in 3,448 general population controls from the MultiCase-Control study MCC-Spain. We assessed dietary and supplement Zn intake using food frequency questionnaires, residential proximity to Zn-emitting industries and residential topsoil Zn levels through interpolation methods. We constructed a polygenic score of genetic variability based on 81 single nucleotide polymorphisms in genes involved in Zn metabolism. Geometric mean ratios of toenail Zn across categories of each determinant were estimated from multivariate linear regression models on log-transformed toenail Zn. RESULTS Geometric mean toenail Zn was 104.1 µg/g in men and 100.3 µg/g in women. Geometric mean toenail Zn levels were 7 % lower (95 % confidence interval 1-13 %) in men older than 69 years and those in the upper tertile of fibre intake, and 9 % higher (3-16 %) in smoking men. Women residing within 3 km from Zn-emitting industries had 4 % higher geometric mean toenail Zn levels (0-9 %). Dietary Zn intake and polygenic score were unrelated to toenail Zn. Overall, the available determinants only explained 9.3 % of toenail Zn variability in men and 4.8 % in women. DISCUSSION Sociodemographic factors, lifestyle, diet, and environmental exposure explained little of the individual variability of toenail Zn in the study population. The available genetic variants related to Zn metabolism were not associated with toenail Zn.
Collapse
Affiliation(s)
- Enrique Gutiérrez-González
- Spanish Agency for Food Safety and Nutrition, Ministry for Consumer Affairs, Alcala 56 St, 28014 Madrid, Spain
| | - Pablo Fernández-Navarro
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Roberto Pastor-Barriuso
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Javier García-Pérez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Vicente Martín-Sánchez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Institute of Biomedicine (IBIOMED), University of León, Campus Universitario de Vegazana, 24071 León, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Sub-Directorate for Public Health and Addictions of Gipuzkoa, Health Department of the Basque Government, Antso Jakituna Hiribidea, 35, 20010 San Sebastian, Spain; Epidemiology and Public Health Area, Biodonostia Health Research Institute, Paseo Dr. Begiristain, 20014 San Sebastian, Spain
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria-IDIVAL, Calle Cardenal Herrera Oria, 39011 Santander, Spain
| | - Marcela Guevara
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Public Health Institute of Navarra, C. Leyre, 15, 31003 Pamplona, Navarra, Spain; V, C. de Irunlarrea, 3, 31008 Pamplona, Navarra, Spain
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Health Research Institute of Asturias (ISPA), University of Oviedo, Av. del Hospital Universitario, 33011 Oviedo, Spain
| | - Inmaculada Salcedo-Bellido
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Av. de la Investigación, 11, 18016 Granada, Spain
| | - Victor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Avinguda de la Granvia de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
| | - Marina Pinto-Carbó
- Cancer and Public Health Area, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Centre for Health and Environmental Research, Huelva University, s, Campus El Carmen, Avda. Andalucía, 21071 Huelva, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Epidemiology Unit and Girona Cancer Registry, Catalan Institute of Oncology (ICO), IDIBGI, Oncology Coordination Plan, Department of Health Government of Catalonia, Carrer del Dr. Castany, 17190 Girona, Spain; University of Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Jesús Humberto Gómez-Gómez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Campus de Ciencias de la Salud, Carretera Buenavista, 30120 El Palmar Murcia, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, C/ Menéndez Pelayo, 21002 Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, C/ Menéndez Pelayo, 21002 Huelva, Spain
| | - Elena Varea-Jiménez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Olivier Núñez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Ana Espinosa
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Antonio J Molina de la Torre
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Institute of Biomedicine (IBIOMED), University of León, Campus Universitario de Vegazana, 24071 León, Spain
| | - Amaia Aizpurua-Atxega
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Health Department of the Basque Government, Antso Jakituna Hiribidea, 35, 20010 San Sebastian, Spain
| | - Jessica Alonso-Molero
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria-IDIVAL, Calle Cardenal Herrera Oria, 39011 Santander, Spain
| | - María Ederra-Sanz
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Public Health Institute of Navarra, C. Leyre, 15, 31003 Pamplona, Navarra, Spain; V, C. de Irunlarrea, 3, 31008 Pamplona, Navarra, Spain
| | - Thalia Belmonte
- Public Health Department, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Epidemiology Section, Division of Public Health, Department of Health, C. San Martín de Porres, 6, 28035 Madrid, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Marina Pollán
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Beatriz Pérez-Gómez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain.
| |
Collapse
|
31
|
Mussabekova S, Mkhitaryan X. Person identification using the composition of elements in human hair. J Med Life 2022; 15:1419-1430. [PMID: 36567836 PMCID: PMC9762368 DOI: 10.25122/jml-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/31/2022] [Indexed: 12/27/2022] Open
Abstract
If an individual cannot be identified, it is necessary to conduct a forensic medical examination. In this case, all possible group indexes are investigated. In this study, the content of elements in hair was investigated to identify individuals by territory, age, profession, or gender. The level of 14 micro- and macroelements (Cu, Zn, Co, Fe, Cr, Mn, Cd, As, Pb, Ni, P, Ca, K and Mg) was determined in hair samples of men and women from five age categories (21 to >60) using inductively coupled plasma atomic emission spectroscopy. The samples were analyzed taking into account the health condition, gender, place of residence, occupation, work experience, and age. A correlation between the content of elements in people's hair and their place of residence was observed. The difference in the content of elements in the hair of urban and rural residents was substantial and statistically significant (p<0.05). Moreover, there were significant differences related to age (p<0.0051) and gender (p<0.05). The current research detected significant differences in the content of the chemical elements in the hair of the groups tested, which can be used as personal identification indicators depending on occupation, work experience, and environmental factors.
Collapse
Affiliation(s)
- Saule Mussabekova
- Department of Pathology, Karaganda Medical University, Karaganda, Kazakhstan
| | - Xeniya Mkhitaryan
- Department of Informatics and Biostatistics, Karaganda Medical University, Karaganda, Kazakhstan,Corresponding Author: Xeniya Mkhitaryan, Department of Informatics and Biostatistics, Karaganda Medical University, Karaganda, Kazakhstan. E-mail:
| |
Collapse
|
32
|
Hussain SJ, Ali S, Hussain J, Ali S, Hussain J, Hussain M, Hussain I. Contamination and Human Health Risk Assessment of Toxic Trace Elements in Drinking Water of Gilgit-Baltistan, Pakistan. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022. [DOI: 10.47836/pjst.31.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study investigated the contamination level and risk associated with toxic trace elements in springs’ water from Gilgit-Baltistan, Pakistan. Toxic trace elements, including Hg, As, and Zn, were analyzed by metalyzer, HM 2000 serial no. MY-011-006, while elements such as Cr, Al, B, Ni, Cu, Mn, and Fe were analyzed using Metalometer HM 2000 serial no. MM005-007, the United Kingdom. The mean concentrations of TTEs in water samples from Skardu were ordered as, Mn < Cu < Fe < Zn < Al < Cr < As < Ni < Hg, in Gilgit, Mn < Cu < Zn < Ni < B < Cr < Fe < As < Hg, in Ghizer Cu < Mn < Zn < Ni < Cr < Fe < As < Hg, while in Nagar the concentration of TTEs in water samples were ordered as Cu < Mn < Fe < Ni < Al < Cr < Zn < As < Hg. Results obtained from this study showed that the concentrations of As, Hg, Ni, Cr, Al, and Mn in some water samples were higher than the limits recommended by WHO and Pak-NDWQS. However, the chronic daily intake indices (CDIs) and health risk index (HRI) in all samples were found below the US-EPA standards. The correlation analysis revealed a positive association among different elements, which revealed that the sources of TTES in water samples were mainly geological strata and anthropogenic activities.
Collapse
|
33
|
Wei J, Deng S, Lu J. A Single Soil Washing with Humic Substance Can Achieve the Risk-Based Remedial Target for Nickel Contaminated Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:623-629. [PMID: 35292835 DOI: 10.1007/s00128-021-03399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Risk-based soil remediation and management have become a global environmental issue. Here, a nickel (Ni)-contaminated site was selected to conduct the risk-based remediation strategy. The Health and Environment Risk Assessment Software was used to calculate the human health risk and the remedial target value (RTV) of Ni. Soil highly contaminated with Ni (424.30 mg kg-1) could cause an unacceptable carcinogenic risk (1.41 × 10-6), which needs further remediation. Hence, a soluble humic substance (HS) was used as the washing agent to remove Ni. After a single wash at pH 4 and 8, the Ni concentrations in soil were reduced to 278.05 and 288.27 mg kg-1, both below the RTV (300 mg kg-1). Furthermore, sequential extraction analysis revealed that the residual Ni was maintained stably in the soil after HS washing. These findings suggested that HS is a promising washing agent for Ni-contaminated soil remediation under the guidance of risk control.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, Jiangsu, China.
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, China.
| |
Collapse
|
34
|
From dust to the sources: The first quantitative assessment of the relative contributions of emissions sources to elements (toxic and non-toxic) in the urban roads of Tehran, Iran. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
35
|
Evans MN, Waller S, Müller CT, Goossens B, Smith JA, Bakar MSA, Kille P. The price of persistence: Assessing the drivers and health implications of metal levels in indicator carnivores inhabiting an agriculturally fragmented landscape. ENVIRONMENTAL RESEARCH 2022; 207:112216. [PMID: 34656630 DOI: 10.1016/j.envres.2021.112216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.
Collapse
Affiliation(s)
- Meaghan N Evans
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia.
| | - Simon Waller
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Benoit Goossens
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia; Sustainable Places Institute, Cardiff University, Cardiff, CF10 3BA, UK; Sabah Wildlife Department, Kota Kinabalu, 88100, Malaysia
| | - Jeremy A Smith
- School of Applied Sciences, University of South Wales, CF37 4BB, UK
| | | | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
36
|
GC-MS Analysis, Heavy Metals, Biological, and Toxicological Evaluation of Reseda muricata and Marrubium vulgare Methanol Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2284328. [PMID: 35356243 PMCID: PMC8959963 DOI: 10.1155/2022/2284328] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023]
Abstract
The usage of herbal remedy is growing vividly all around the world. Though, ecological contamination particularly with heavy metals carriages thoughtful problem on quality of medicinal plants and their foodstuffs. In the world, 80% of the population depend on traditional medicine, while information on the levels of heavy metal such as Zn, Mn, Cu, Cr, Pb, As, Cd, and Cr in plants utilized for making of herbal remedies is unavailable. Therefore, the purpose of this study was to assess phytochemicals, biological activities, and heavy metal analysis of Reseda muricata and Marrubium vulgare grown in different parts of Saudi Arabia. Qualitative phytochemical analysis of R. muricata and M. vulgare confirmed the presence of alkaloids, flavonoids, tannins, phenol, and saponins. Methanol extracts of both Reseda muricata and Marrubium vulgare were characterized with the help of GC-MS. Antioxidants, antimicrobial, and brine sharp lethal toxicity of the both species were also evaluated.
Collapse
|
37
|
Saleh SM, El-Sayed WA, El-Manawaty MA, Gassoumi M, Ali R. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications. BIOSENSORS 2022; 12:197. [PMID: 35448257 PMCID: PMC9032517 DOI: 10.3390/bios12040197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
A new preparation route for high-luminescent blue-emission pepsin copper nanoclusters (Pep-CuNCs) is introduced in this work. The synthesized nanoclusters are based on a pepsin molecule, which is a stomach enzyme that works to digest proteins that exist in undigested food. Here, we have developed an eco-friendly technique through microwave-assisted fast synthesis. The resulting copper nanoclusters (CuNCs) exhibit significant selectivity towards Pb(II) ions. The pepsin molecule was utilized as a stabilizer and reducing agent in the production procedure of Pep-CuNCs. The characteristics of the resulting Pep-CuNCs were studied in terms of size, surface modification, and composition using various sophisticated techniques. The CuNCs responded to Pb(II) ions through the fluorescence quenching mechanism of the CuNCs' fluorescence. Thus, great selectivity of Pep-CuNCs towards Pb(II) ions was observed, allowing sensitive determination of this metal ion at lab-scale and in the environment. The CuNCs have detection limits for Pb(II) in very tenuous concentration at a nanomalar scale (11.54 nM). The resulting Pep-CuNCs were utilized significantly to detect Pb(II) ions in environmental samples. Additionally, the activity of Pep-CuNCs on different human tumor cell lines was investigated. The data for the observed behavior indicate that the Pep-CuNCs displayed their activity against cancer cells in a dose dependent manner against most utilized cancer cell lines.
Collapse
Affiliation(s)
- Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| | - Malek Gassoumi
- Department of Physics, College of Science, Qassim University, P.O. Box 64, Buraidah 51452, Saudi Arabia;
- Laboratory of Condensed Matter and Nanosciences, University of Monastir, Monastir 5000, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Science College, Suez University, Suez 43518, Egypt
| |
Collapse
|
38
|
Singh A, Singh G. Human health risk assessment in PM 10 -bound trace elements, seasonal patterns, and source apportionment study in a critically polluted coking coalfield area of India. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:469-478. [PMID: 34101976 DOI: 10.1002/ieam.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Jharia Coalfield (JCF) has been affected by coalmine fire and subsidence problems for several years. The emission of particulate pollutants is due to the history of unscientific and unregulated coal mining in the JCF area. In the present study (conducted in the year 2019), seasonal variations, possible causes, and human health hazards of particulate matter (PM10 )-bound trace metals like Cd, Cu, Fe, Cr, Ni, Mn, Co, Pb, Zn, and As were estimated. The mean concentration of PM10 (418 ± 67 µg/m3 ) exceeded the limit of NAAQS (National Ambient Air Quality Standards India, 2009) by a factor of 4.18. PM10 -bound trace metal concentrations were found in the order of Fe > Mn > Cu > Zn > Cr > Pb > Co > Ni > Cd > As. The maximum trace metal concentrations of all the metals studied were observed at the mining areas of JCF affected by coalmine fire. Human health carcinogenic and noncarcinogenic risks in children and adults were estimated through exposure pathways, ingestion, dermal contact, and inhalation. The cancer risk was evaluated as excess cancer risk (ECR). Noncancer risk estimates were evaluated as the hazard index (HI) and the hazard quotient (HQ). The HI and HQ values for Cr, Cu, Cd, As, and Pb at coalmine-fire-affected areas were observed to be higher than the value of safe dose (≤1), showing a possible noncarcinogenic risk to the inhabitants as a result of multielemental toxicity. The ECR values (>10-6) in JCF areas suggested a carcinogenic risk to the populace of the area, owing to inhalation of PM10 -linked Cd. Active mine fire (related to mining activities), higher transportation load, and resuspended particulate matter from road transportation were identified as the possible causes of the estimated risks based on principal component analysis and Pearson correlation analyses. Integr Environ Assess Manag 2022;18:469-478. © 2021 SETAC.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Gurdeep Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
39
|
Liu X, Wang D, Wang L, Tang J. Dissolved biochar eliminates the effect of Cu(II) on the transfer of antibiotic resistance genes between bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127251. [PMID: 34583164 DOI: 10.1016/j.jhazmat.2021.127251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 05/25/2023]
Abstract
The proliferation of antibiotic resistance genes (ARGs) has posed significant risks to human and environmental health. Research has confirmed that Cu(II) could accelerate the conjugative transfer of ARGs between bacteria. This study found that adding dissolved biochar effectively weakened or eliminated the Cu(II)-facilitated efficient transfer of ARGs. The efficiency of conjugative transfer was promoted after treatment with Cu(II) (0.05 mg/L) or dissolved biochar at a pyrolysis temperature of 300 °C. When exposed to the combination of Cu(II) and dissolved biochar, the transfer frequency was significantly reduced; this occurred regardless of the Cu(II) concentration or pyrolysis temperature of dissolved biochar. In particular, when the Cu(II) concentration exceeded 0.5 mg/L, the transfer efficiency was entirely inhibited. Gene expression analysis indicated that different treatments affect transfer efficiency by regulating the expression of three global regulatory genes: korA, korB, and trbA. Among them, humic acid repressed the expression of these genes; however, Cu(II) formed complex with the humic acid-like components, gradually weakening the inhibitive effect of these components. The promotion of low molecule organic matters dominated, resulting in a dynamic decline in the transfer efficiency. This study provides a new environmental contaminant treatment approach to eliminate the heavy metal-facilitated transfer of ARGs between bacteria.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
40
|
Al-Shidi HK, Al-Reasi HA, Sulaiman H. Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:264-276. [PMID: 32281889 DOI: 10.1080/09603123.2020.1751806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Dust samples from roads classified based on traffic volumes (low, medium and high traffic) were collected from Muscat, Oman, and then analyzed for a dozen heavy metals. Their contents varied widely with mercury and iron, having the lowest and highest concentrations (0.59-0.80 and 406.10-429.00 ppm, respectively). Contrary to most metals detected, mercury and arsenic did not only exhibit increasing trends from low to high categories, but they also were significantly correlated to each other and traffic volumes, suggesting that both might originate from vehicular emissions. While the calculations revealed that the potential ecological risk index (RI) for selected metals in the dust samples was at a considerable level, the hazard index (HI) was within the safe threshold value (HI < 1). Overall, our findings imply minor prejudicial health risks to the general public nevertheless, children would be relatively more vulnerable to the impact of metals associated with dust.
Collapse
Affiliation(s)
| | | | - Hameed Sulaiman
- Department of Biology, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
41
|
Roy A, Bhattacharya T. Ecological and human health risks from pseudo-total and bio-accessible metals in street dusts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:101. [PMID: 35038018 DOI: 10.1007/s10661-021-09658-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/27/2021] [Indexed: 05/25/2023]
Abstract
Street dust samples were collected from industrial and commercial cities (Jamshedpur and Ranchi during monsoon and post-monsoon seasons) for detecting the levels of Cr, Cd, Cu, Ni, Pb, Zn, As, Co, Al, and Mn. The industrial city recorded higher metal concentrations compared to commercial. Similar trend of pseudo-total metal concentrations was observed in both the seasons at industrial city (Al > Mn > Zn > Cr > Pb > Cu > Ni > Cd) and only monsoon season at commercial city (Al > Mn > Zn > Cu > Cr > Pb > Ni > Cd). Zn > Cd was the most bioaccessible metal throughout the cities (monsoon and post-monsoon). The geochemical parameters (Igeo, EF, CF) were highest for Cd and lowest for Ni (both cities for the two seasons). Pollution Load Indices (PLI zone) were highest during the post-monsoon season in the industrial city. The highest carcinogenic risk was posed by Cr ranging from 1.87E-05 to 4.80E-05, in both the cities through ingestion and inhalation pathways. Children were found at higher risks, while the bioaccessible fractions posed neither carcinogenic nor non-carcinogenic threats to the population. Principal component analysis and correlation analysis indicated the influence of vehicular and industrial emissions, especially steel industry and coal-based thermal power plants as the major source of metals in street-dust. The outcomes of this work will be useful in providing baseline information of pollution along with their consequent environmental and human health risks of Jharkhand state.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India, 835215
| | - Tanushree Bhattacharya
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India, 835215.
| |
Collapse
|
42
|
Luo H, Wang Q, Guan Q, Ma Y, Ni F, Yang E, Zhang J. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126878. [PMID: 34418825 DOI: 10.1016/j.jhazmat.2021.126878] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, the potential hazards of heavy metals in dust storms were investigated by collecting dust storm samples, measuring their heavy metal concentrations, and using index evaluation, spatial analysis, positive matrix factorization (PMF) model and risk assessment model. Heavy metals in dust storms were contaminated by anthropogenic sources leading to their concentrations being higher than the background values. The enrichment factors and geoaccumulation indices showed that the heavy metals came from both natural and anthropogenic sources, Cu, Ni, Zn and Pb are strongly influenced by anthropogenic sources. Heavy metals in dust storms were divided into four sources: Cu and Ni were attributed to industrial sources mainly from local mining and metal processing; Cr was mainly contributed by industrial sources related to industrial production such as coal combustion; Pb and Zn were mainly contributed by transportation sources; and Ti, V, Mn, Fe, and As were from natural and agricultural sources. The level of comprehensive ecological risk of heavy metals in dust storms were low, but there were moderate and above risks at individual sites. Both adults and children had the highest carcinogenic and non-carcinogenic risks from the ingestion route, and the risk for children was higher than that for adults.
Collapse
Affiliation(s)
- Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingzheng Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yunrui Ma
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Enqi Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
43
|
Klinčić D, Tariba Lovaković B, Jagić K, Dvoršćak M. Polybrominated diphenyl ethers and the multi-element profile of house dust in Croatia: Indoor sources, influencing factors of their accumulation and health risk assessment for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149430. [PMID: 34399331 DOI: 10.1016/j.scitotenv.2021.149430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Given the large amount of time people spend indoors today, human exposure to indoor contaminants causes increasing public health concerns. The present study reports for the first time the levels of 7 polybrominated diphenyl ether (PBDE) congeners, and 18 trace elements measured in dust samples collected in 68 households from Zagreb, Croatia. Based on the obtained data from dust analysis and the questionnaire on the house characteristics and habits of the residents, we aimed to assess the possible indoor sources of PBDEs/elements, and the associated health risks. Mass concentrations of ΣPBDE ranged from 0.16 and 200.09 ng g-1 dust (median 4.19 ng g-1 dust). The most frequently detected congeners were BDE-99 and BDE-183 found in >88% of samples, while for trace elements, Al, Fe, Zn, Mn and Cu were found at the highest concentrations (enumerated in the descending order). The regression analysis indicated that renovation, number of residents and hours spent using electronic devices are significant predictors for determining PBDE dust concentrations, while the house age, and the house area were identified as the most important contributors for most trace elements. Our health risk assessment considering dust ingestion and dermal absorption of analyzed dust indicated that no adverse health effects are expected in toddlers and adults from exposure to PBDEs or trace elements in house dust. However, calculating the worst case exposure scenario based on the maximum measured concentrations and high dust intake rates, it was estimated that there is a risk of potential adverse health effects for Co (HI > 1). Even though the cases of high exposure to toxic elements from dust are sporadic, and not common among the general population, this exposure scenario should be included whenever assessing the background exposure of children.
Collapse
Affiliation(s)
- Darija Klinčić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia.
| | - Karla Jagić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia
| | - Marija Dvoršćak
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia
| |
Collapse
|
44
|
Ali M, Walait S, Farhan Ul Haque M, Mukhtar S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68846-68861. [PMID: 34282546 DOI: 10.1007/s11356-021-15436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution especially heavy metal-contaminated soils adversely affects the microbial communities associated with the rhizosphere and phyllosphere of plants growing in these areas. In the current study, we identified and characterized the rhizospheric and phyllospheric bacterial strains from Avena fatua and Brachiaria reptans with the potential for antimicrobial activity and heavy metal resistance. A total of 18 bacterial strains from the rhizosphere and phyllosphere of A. fatua and 19 bacterial strains from the rhizosphere and phyllosphere of B. reptans were identified based on 16S rRNA sequence analysis. Bacterial genera, including Bacillus, Staphylococcus, Pseudomonas, and Enterobacter were dominant in the rhizosphere and phyllosphere of A. fatua and Bacillus, Marinobacter, Pseudomonas, Enterobacter, and Kocuria, were the dominating bacterial genera from the rhizosphere and phyllosphere of B. reptans. Most of the bacterial strains were resistant to heavy metals (Cd, Pb, and Cr) and showed antimicrobial activity against different pathogenic bacterial strains. The whole-genome sequence analysis of Pseudomonas putida BR-PH17, a strain isolated from the phyllosphere of B. reptans, was performed by using the Illumina sequencing approach. The BR-PH17 genome contained a chromosome with a size of 5774330 bp and a plasmid DNA with 80360 bp. In this genome, about 5368 predicted protein-coding sequences with 5539 total genes, 22 rRNAs, and 75 tRNA genes were identified. Functional analysis of chromosomal and plasmid DNA revealed a variety of enzymes and proteins involved in antibiotic resistance and biodegradation of complex organic pollutants. These results indicated that bacterial strains identified in this study could be utilized for bioremediation of heavy metal-contaminated soils and as a novel source of antimicrobial drugs.
Collapse
Affiliation(s)
- Muskan Ali
- Lahore College for Women University, Near Wapda Flats, Jail Rd, Jubilee Town, Lahore, Punjab, 54000, Pakistan
| | - Sadia Walait
- Riphah International University, Faisalabad, Adjacent Fish Farm, Satayana Rd, Faisalabad, Punjab, 44000, Pakistan
| | | | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
45
|
Dingle JH, Kohl L, Khan N, Meng M, Shi YA, Pedroza-Brambila M, Chow CW, Chan AWH. Sources and composition of metals in indoor house dust in a mid-size Canadian city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117867. [PMID: 34375850 DOI: 10.1016/j.envpol.2021.117867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
House dust is an important medium for exposure to persistent pollutants, such as metals. Detailed characterization of metal composition is needed to identify sources and potential health impacts of exposure. In this study we show that specific metals in dust dominate in different locations within residential homes in a mid-size Canadian city (Fort McMurray, Alberta), up to two years after a major wildfire event in 2016. Dust samples were collected in high-traffic (e.g. bedroom, N = 186), low-traffic (e.g. basement, N = 158), and entranceway areas (N = 171) of residential homes (N = 125), and analyzed for 25 trace metal elements using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The profile of metal concentrations in the entranceway resembled that of outdoor soils, especially for crustal elements. On the other hand, Cu, Zn, and Pb concentrations in dust sampled in indoor living areas were on average three to six times higher than in other indoor locations indicating indoor sources for these elements. In general, Pb concentrations were similar or lower than in an average Canadian residence, but a substantial fraction showed anomalously high concentrations in the low-traffic areas, particularly on concrete surfaces in basements. Notably, the 2016 wildfires showed limited influence on metal concentrations in indoor dust, despite the widespread concerns in the community about long term exposure. Enrichment factor ratio calculations and principal component analysis showed two classes of sources of metals in dust that represent geogenic-outdoor sources and anthropogenic-indoor sources. Overall, we demonstrate that outdoor and indoor sources of dust impact its composition, and these influences are reflected in the different areas of a home.
Collapse
Affiliation(s)
- Justin H Dingle
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Lukas Kohl
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Nadiha Khan
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Meng Meng
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Yuelun A Shi
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Marcia Pedroza-Brambila
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Chung-Wai Chow
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada; University of Toronto, Faculty of Medicine, 1 King's College Cir, Toronto, ON, M5S 1A8, Canada; University of Toronto, Dalla Lana School of Public Health, 155 College St, Toronto, ON, M5T 3M7, Canada
| | - Arthur W H Chan
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
46
|
Xu Z, Mi W, Mi N, Fan X, Tian Y, Zhou Y, Zhao YN. Heavy metal pollution characteristics and health risk assessment of dust fall related to industrial activities in desert steppes. PeerJ 2021; 9:e12430. [PMID: 34760398 PMCID: PMC8571961 DOI: 10.7717/peerj.12430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
China’s desert steppe is the transition zone between the grasslands in central China and the arid desert. Ecological security in this region has long been a subject of debate, both in the local and academic communities. Heavy metals and other pollutants are readily released during industrial production, combustion, and transportation, aggravating the vulnerability of the desert steppes. To understand the impact of industrial activiteis on the heavy metal content of dust fall in the desert steppe, a total of 37 dust fall samples were collected over 90 days. An inductively-coupled plasma mass spectrometer (NexION 350X) was used to measure the concentration of heavy metals Cu, Cd, Cr, Pb, Mn, Co, and Zn in the dust. Using comprehensive pollution index and multivariate statistical analysis methods, we explored the characteristics and sources of heavy metal pollution. We also quantitatively assessed the carcinogenic risks of heavy metals resulting from dust reduction with the help of health risk assessment models. The heavy metals’ comprehensive pollution index values in the study area’s dust fall were ranked as follows: Zn > Cd > Pb > Mn > Cu > Co > Cr. Among these, Zn, Cd, and Pb were significant pollution factors in the study area, and were affected by industrial production and transportation. The high pollution index was concentrated in the north of the research industrial park and on both sides of a highway. The seven heavy metals’ total non-carcinogenic risk index (HI) values were ranked as follows: Mn > Co > Pb > Zn > Cr > Cu > Cd (only the HI of Mn was greater than one). Excluding Mn, the non-carcinogenic and carcinogenic risk index values of the other six heavy metals were within acceptable ranges. Previous studies have also shown that industrial transportation and production have had a significant impact on the heavy metal content of dust fall in the desert steppe.
Collapse
Affiliation(s)
- Zhe Xu
- College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Wenbao Mi
- College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.,School of Geography and Planning, Ningxia University, Yinchuan, Ningxia, China
| | - Nan Mi
- College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xingang Fan
- West Development Research Center, Ningxia University, Yinchuan, Ningxia, China
| | - Ying Tian
- College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yao Zhou
- College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Ya-Nan Zhao
- College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
47
|
Wang HZ, Cai LM, Wang S, Hu GC, Chen LG. A comprehensive exploration on pollution characteristics and health risks of potentially toxic elements in indoor dust from a large Cu smelting area, Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57569-57581. [PMID: 34091847 DOI: 10.1007/s11356-021-14724-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Large-scale smelting activities release large amounts of potentially toxic elements (PTEs) in fine particles. These particles floating in the air eventually settle on leaves, roads, and even indoors. In smelting areas, indoor environments are generally considered relatively safe. However, these areas are not taken seriously and need to be assessed. This paper systematically studied pollution characteristics, main sources and health risks of ten potentially toxic elements, PTEs (Mn, Ni, Cu, Zn, Hg, Cd, As, Cr, Pb, and Tl), of dust samples from different indoor environments in smelting areas using various methods. Therefore, this study analyzed dust samples from 35 indoor environments. The enrichment factors showed that the indoor dust samples were extremely enriched by Cd and Cu and significantly enriched by Hg, Pb, As, and Zn. The result of the spatial distribution showed that the high-value PTEs were mainly distributed near the Cu smeltery. Three sources were quantitatively assigned for these PTEs, and they were industrial smelting and traffic activities (44.40%), coal-fired activities (18.11%), and natural existence (37.49%). Based on the calculation of health risk, the value of THI for children was 7.57, indicating a significant non-carcinogenic risk. For carcinogenic risk, the values of TCR for children and adults were 2.91×10-2 and 2.97×10-3, respectively, which were much higher than the acceptable risk value 1×10-4. Combining health risk assessment with source discrimination, we found that the industrial discharges and traffic activities were the most main source of non-cancer and cancer risks. Therefore, smelting activities should be more strictly monitored, and traffic emission management should be strengthened.
Collapse
Affiliation(s)
- Han-Zhi Wang
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, 430100, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Li-Mei Cai
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, 430100, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
- Center for Environmental Health Research, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China.
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Urban Environment and Ecology, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Guo-Cheng Hu
- Center for Environmental Health Research, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China.
| | - Lai-Guo Chen
- State Environmental Protection Key Laboratory of Urban Environment and Ecology, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| |
Collapse
|
48
|
Mehmood K, Bao Y, Abbas R, Petropoulos GP, Ahmad HR, Abrar MM, Mustafa A, Abdalla A, Lasaridi K, Fahad S. Pollution characteristics and human health risk assessments of toxic metals and particle pollutants via soil and air using geoinformation in urbanized city of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58206-58220. [PMID: 34110590 DOI: 10.1007/s11356-021-14436-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and particle pollutants in urbanized cities have significantly increased over the past few decades mainly due to rapid urbanization and unplanned infrastructure. This research aimed at estimating the concentration of toxic metals and particle pollutants and the associated risks to public health across different land-use settings including commercial area (CA), urban area (UA), residential area (RA), and industrial area (IA). A total of 47 samples for both soil and air were collected from different land-use settings of Faisalabad city in Pakistan. Mean concentrations of toxic metals such as Mn, Zn, Pb, Ni, Cr, Co, and Cd in all land-use settings were 92.68, 4.06, 1.34, 0.16, 0.07, 0.03, and 0.02 mg kg-1, respectively. Mean values of PM10, PM2.5, and Mn in all land-use settings were found 5.14, 1.34, and 1.9 times higher than the World Health Organization (WHO) guidelines. Mn was found as the most hazardous metal in terms of pollution load index (PLI) and contamination factor (CF) in the studied area. Health risk analysis for particle pollutants using air quality index (AQI) and geoinformation was found in the range between good to very critical for all the land-use settings. The hazard quotient (HQ) and hazard index (HI) were higher for children in comparison to adults, suggesting that children may be susceptible to potentially higher health risks. However, the cancer risk (CR) value for Pb ingestion (1.21 × 10-6) in children was lower than the permissible limit (1 × 10-4 to 1 × 10-6). Nonetheless, for Cr inhalation, CR value (1.09 × 10-8) was close to tolerable limits. Our findings can be of valuable assistance toward advancing our understanding of soil and air pollutions concerning public health in different land-use settings of the urbanized cities of Pakistan.
Collapse
Affiliation(s)
- Khalid Mehmood
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) / CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yansong Bao
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) / CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Roman Abbas
- Multan Medical and Dental College, Multan, Pakistan
| | - George P Petropoulos
- Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Mohsin Abrar
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Alwaseela Abdalla
- Agricultural Research Corporation, P.O. Box 126, 11111, Wad Medani, Sudan
| | - Katia Lasaridi
- Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
49
|
Ahamad A, Janardhana Raju N, Madhav S, Gossel W, Ram P, Wycisk P. Potentially toxic elements in soil and road dust around Sonbhadra industrial region, Uttar Pradesh, India: Source apportionment and health risk assessment. ENVIRONMENTAL RESEARCH 2021; 202:111685. [PMID: 34293313 DOI: 10.1016/j.envres.2021.111685] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 05/25/2023]
Abstract
Potentially toxic elements (PTEs) are directly linked with various kinds of adverse health issues. Available reports related to symptoms of mercury contamination in the local population of the study region motivated us to carry out this work in detail. To estimate potentially toxic elements (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn) contamination status, a total of 48 samples of soil & road dust from industrial clusters were collected and analyzed for source identification and human health risk assessment in the Sonbhadra region of Uttar Pradesh, India. As per upper continental crust (UCC) for soil and road dust, the highest increment of As value in Obra and Hg value in Anpara was observed. The value of Hg exceeded the background value by 6.5 and 12.25 times in soil and 5 and 11.5 times in road dust of Obra and Anpara clusters, respectively. Contamination factor (CF) and Enrichment factor (EF) value in soil and road dust showed very strong contamination and significant enrichment of Hg whereas moderate contamination and moderate enrichment of As were observed in both the clusters. The hazard quotient (HQ) value of potentially toxic elements in soil and road dust of Obra and Anpara were found <1 for three pathways in adults and children, except Fe for ingestion pathway for children in both clusters. The HQ value for adults was observed to be low compared to children. Cancer risk associated with potentially toxic elements in soil and road dust for both clusters were found safe (under the guideline 10-4-10-6) in adult and children instances for three pathways. Principal component analysis (PCA) justified the metal content in soil and road dust controlled by the mixed type of both natural and anthropogenic sources.
Collapse
Affiliation(s)
- Arif Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sughosh Madhav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Wolfgang Gossel
- Department of Hydrogeology and Environmental Geology, Institute of Geosciences, Martin Luther University, Halle (Saale), 06120, Germany
| | - Prahlad Ram
- SERB, Vasant Square Mall, Department of Science and Technology, New Delhi, India
| | - Peter Wycisk
- Department of Hydrogeology and Environmental Geology, Institute of Geosciences, Martin Luther University, Halle (Saale), 06120, Germany
| |
Collapse
|
50
|
Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction. SUSTAINABILITY 2021. [DOI: 10.3390/su132011516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Roadside dust resulting from industrialization of society has an adverse effect on the environment and human health. However, despite the global research progress in this field, to date, no bibliometric report on the subject has been documented. Hence, bibliometric mapping is important to assess the quality and quantity of the global research activities on road dust. Data were retrieved from the Web of Science Core Collection and Scopus, while RStudio software was used for data analysis. A total of 1186 publications were retrieved from these databases, and progressive growth in the subject over the last 10 years was observed, considering the positive correlation (y = 0.0024 × 3 − 0.1454 × 2 + 2.6061 × −8.5371; R2 = 0.961) obtained for these indices. China had the highest publications, and environmental science-related journals dominated publications on road dust. The findings suggest that other regions of the world, such as the Middle East and Africa, need to channel their research efforts toward this field, considering the shortage of publications on the subject from these regions. Therefore, this study shows that assessing research activity on road dust is important for planning impactful research directions and setting protective and adaptive policies related to the field.
Collapse
|