1
|
Mahendran TR, Cynthia B, Thevendran R, Maheswaran S. Prospects of Innovative Therapeutics in Combating the COVID-19 Pandemic. Mol Biotechnol 2025; 67:2598-2606. [PMID: 39085563 DOI: 10.1007/s12033-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The sudden global crisis of COVID-19, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demands swift containment measures due to its rapid spread and numerous problematic mutations, which complicate the establishment of herd immunity. With escalating fatalities across various nations no foreseeable end in sight, there is a pressing need to create swiftly deployable, rapid, cost-effective detection, and treatment methods. While various steps are taken to mitigate the transmission and severity of the disease, vaccination is proven throughout mankind history as the best method to acquire immunity and circumvent the spread of infectious diseases. Nonetheless, relying solely on vaccination might not be adequate to match the relentless viral mutations observed in emerging variants of SARS-CoV-2, including alterations to their RBD domain, acquisition of escape mutations, and potential resistance to antibody binding. Beyond the immune system activation achieved through vaccination, it is crucial to develop new medications or treatment methods to either impede the infection or enhance existing treatment modalities. This review emphasizes innovative treatment strategies that aim to directly disrupt the virus's ability to replicate and spread, which could play a role in ending the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Thamby Rajah Mahendran
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Binsin Cynthia
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ramesh Thevendran
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia
- Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Solayappan Maheswaran
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia.
- Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia.
| |
Collapse
|
2
|
Lee M, Kwon JS, Kim SH, Woo S, Oh SS. Electrochemical pan-variant detection of SARS-CoV-2 through host cell receptor-mimicking molecular recognition. Biosens Bioelectron 2025; 278:117311. [PMID: 40044551 DOI: 10.1016/j.bios.2025.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The persistent emergence of new SARS-CoV-2 variants has presented significant challenges to vaccines and antiviral therapeutics, highlighting the need for the development of methods that ensure variant-independent responses. This study introduces a unique sensor capable of electrochemically detecting SARS-CoV-2 across a wide range of variants. The comprehensive detection is achieved by using a peptide-DNA hybrid, R7-02, as the capture probe, mimicking the binding interface between a SARS-CoV-2 spike protein and a host cell receptor, hACE2. Since the first step of viral infection is the binding of the spike protein to hACE2 regardless of variant type, the hACE2-mimicking probe can naturally acquire the pan-variant recognition capability. In constructing the sensor, the R7-02 probes are positioned on electrodes via a tetrahedral DNA nanostructure for enhanced detection efficiency. Since R7-02 directly captures the externally-exposed spike protein, our approach does not require sample pretreatments, such as virus particle lysis, unlike conventional diagnostic methods. The R7-02-embedded sensor demonstrated high sensitivity towards Omicron and its major subvariants-commonly known as 'stealth Omicron' (BA.5, BA.2.75, BQ.1.1, and XBB.1.5)-with a detection limit as low as 811.9 pM, along with robust specificity for SARS-CoV-2 against influenza and other human coronaviruses. The sensor also successfully detected SARS-CoV-2 directly from non-treated saliva samples of COVID-19-positive patients. Given the comprehensive and sensitive detection capability, combined with its simple operation, our receptor-mimicking probe-based electrochemical sensor holds the potential to be a sustainable and effective point-of-care diagnostic tool, offering a promising solution to the constant challenges posed by the endemic presence of SARS-CoV-2.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
3
|
Brownless ALR, Rheaume E, Kuo KM, Kamerlin SCL, Gumbart JC. Using Machine Learning to Analyze Molecular Dynamics Simulations of Biomolecules. J Phys Chem B 2025. [PMID: 40423571 DOI: 10.1021/acs.jpcb.4c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.
Collapse
Affiliation(s)
- Alfie-Louise R Brownless
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elisa Rheaume
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katie M Kuo
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Joyce JD, Moore GA, Thompson CK, Bertke AS. Guinea Pigs Are Not a Suitable Model to Study Neurological Impacts of Ancestral SARS-CoV-2 Intranasal Infection. Viruses 2025; 17:706. [PMID: 40431717 DOI: 10.3390/v17050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Neurological symptoms involving the central nervous system (CNS) and peripheral nervous system (PNS) are common complications of acute COVID-19 as well as post-COVID conditions. Most research into these neurological sequalae focuses on the CNS, disregarding the PNS. Guinea pigs were previously shown to be useful models of disease during the SARS-CoV-1 epidemic. However, their suitability for studying SARS-CoV-2 has not been experimentally demonstrated. To assess the suitability of guinea pigs as models for SARS-CoV-2 infection and the impact of SARS-CoV-2 infection on the PNS, and to determine routes of CNS invasion through the PNS, we intranasally infected wild-type Dunkin-Hartley guinea pigs with ancestral SARS-CoV-2 USA-WA1/2020. We assessed PNS sensory neurons (trigeminal ganglia, dorsal root ganglia), autonomic neurons (superior cervical ganglia), brain regions (olfactory bulb, brainstem, cerebellum, cortex, hippocampus), lungs, and blood for viral RNA (RT-qPCR), protein (immunostaining), and infectious virus (plaque assay) at three- and six-days post infection. We show that guinea pigs, which have previously been used as a model of SARS-CoV-1 pulmonary disease, are not susceptible to intranasal infection with ancestral SARS-CoV-2, and are not useful models in assessing neurological impacts of infection with SARS-CoV-2 isolates from the early pandemic.
Collapse
Affiliation(s)
- Jonathan D Joyce
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Greyson A Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Christopher K Thompson
- School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Andrea S Bertke
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Xue J, Dou C, Shi Y, Fu Y, Du X, Yang H, Yu L, Li X, Zhao X, Li Y. Glyco-based building blocks for the chemical synthesis of glycoproteins. Int J Biol Macromol 2025; 313:144141. [PMID: 40368212 DOI: 10.1016/j.ijbiomac.2025.144141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Glycoproteins, which are conjugates of glycans and proteins, are crucial in a wide variety of physiological and disease processes. Understanding the structures and functions of glycoproteins, as well as the regulation of glycosylation, is essential for studying the causes of diseases for intervention therapy. However, the detailed structure-function relationships and therapeutic applications of glycoproteins are hindered by their structural complexity and heterogeneity. Chemical protein synthesis is a powerful and effective strategy for producing homogeneous glycoforms of glycoproteins. The chemical synthesis of glycoproteins involves ligating different peptide and/or glycopeptide fragments, and the preparation of glycopeptide fragments requires the assembly of amino acid and glyco-based building blocks. This review provides a comprehensive and systematic survey of glyco-based building blocks for synthesizing homogeneous glycopeptides and glycoproteins, encompassing glyco-amino acids for direct SPPS and glyco-based donors for convergent sugar assembly. Additionally, an analysis of the applications of these building blocks in the chemical synthesis of representative glycoproteins with therapeutic potential is presented.
Collapse
Affiliation(s)
- Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chunhui Dou
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Yejiao Shi
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; School of Medicine, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiaoru Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Hao Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Longjie Yu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuemei Zhao
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
6
|
Kondo T, Suzuki R, Yajima H, Kawahara S, Yamaya K, Ichikawa T, Tsujino S, Suzuki S, Tamura T, Hashiguchi T, Fukuhara T. Determinants of susceptibility to SARS-CoV-2 infection in murine ACE2. J Virol 2025:e0054325. [PMID: 40353671 DOI: 10.1128/jvi.00543-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor to enter host cells, and primary receptor recognition of the spike protein is a major determinant of the host range of SARS-CoV-2. Since the emergence of SARS-CoV-2, a considerable number of variants have emerged. However, the determinants of host tropism of SARS-CoV-2 remain elusive. We conducted infection assays with chimeric recombinant SARS-CoV-2 carrying the spike protein from 10 viral variants, assessing their entry efficiency using mammalian ACE2 orthologs from species that have close contact with humans. We found that only murine ACE2 exhibited different susceptibilities to infection with the SARS-CoV-2 variants. Moreover, we revealed that the mutation N501Y in the viral spike protein has a crucial role in determining the infectivity of cells expressing murine ACE2 and of mice in vivo. Next, we identified six amino acid substitutions at 24, 30, 31, 82, 83, and 353 in murine ACE2 that allowed for viral entry of the variants to which murine ACE2 was previously resistant. Furthermore, we showed that ACE2 from a species closely related to mice, Mus caroli, is capable of supporting entry of the viral variants that could not use murine ACE2. These results suggest that few ACE2 orthologs have different susceptibility to infection with SARS-CoV-2 variants as observed for murine ACE2. Collectively, our study reveals critical amino acids in ACE2 and the SARS-CoV-2 spike protein that are involved in the host tropism of SARS-CoV-2, shedding light on interspecies susceptibility to infection.IMPORTANCESARS-CoV-2 can infect many species besides humans, leading to the evolution of the virus and adaptation to other animal hosts, which could trigger a new COVID-19 wave. The SARS-CoV-2 spike protein utilizes ACE2 as a receptor for entry into host cells. The interaction of ACE2 with the spike protein determines the host range of SARS-CoV-2. In this study, using chimeric viruses carrying the spike protein of SARS-CoV-2 variants to infect cells expressing different ACE2 orthologs from species humans come in close contact with, we confirmed murine ACE2 alone showed different susceptibility to the variants. We identified residues in murine ACE2 and the viral spike that restrict viral entry. Furthermore, an ACE2 ortholog from a species genetically close to mice mediated entry of SARS-CoV-2 variants incapable of infecting mice. This research highlights the uniquely limited susceptibility of mice to different SARS-CoV-2 variants and provides invaluable insights into the host tropism of SARS-CoV-2.
Collapse
Affiliation(s)
- Takashi Kondo
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: IVReD, Hokkaido University, Sapporo, Japan
| | - Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sachiho Kawahara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kodai Yamaya
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaya Ichikawa
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: IVReD, Hokkaido University, Sapporo, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: IVReD, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: IVReD, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department of Virology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
7
|
Wani MM, Cooper JM, Migliorini M, Strickland DK. The LDL receptor related protein 1 (LRP1) facilitates ACE2-mediated endocytosis of SARS-CoV2 spike protein-containing pseudovirions. J Biol Chem 2025:110227. [PMID: 40349772 DOI: 10.1016/j.jbc.2025.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, employs the viral spike (S) protein to associate with host cells. While angiotensin-converting enzyme 2 (ACE2) is a major receptor for the SARS-CoV-2 spike protein, evidence reveals that other cellular receptors may also contribute to viral entry. We interrogated the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the involvement of SARS-CoV-2 viral entry. Employing surface plasmon resonance studies, we demonstrated high affinity binding of the trimeric SARS-CoV-2 spike protein to purified LRP1. Further, we observed high affinity interaction of the SARS-CoV-2 spike protein with other low-density lipoprotein receptor (LDLR) family members as well, including LRP2 and the very low-density lipoprotein receptor (VLDLR). Binding of the SARS-CoV-2 spike protein to LRP1 was mediated by its receptor binding domain (RBD). Several LRP1 ligands require surface exposed lysine residues for their interaction with LRP1, and chemical modification of lysine residues on the RBD with sulfo-NHS-acetate ablated binding to LRP1. Using cellular model systems, we demonstrated that cells expressing LRP1, but not those lacking LRP1, rapidly internalized purified 125I-labeled S1 subunit of the SARS-CoV-2 spike protein. LRP1-mediated internalization of the 125I-labeled S1 subunit was enhanced in cells expressing ACE2. By employing pseudovirion particles containing a murine leukemia virus core and luciferase reporter that express the SARS-CoV-2 spike protein on their surface, we confirmed that LRP1 facilitates ACE2-mediated psuedovirion endocytosis. Together, these data implicate LRP1, and perhaps other LDLR family members as host factors for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mashhood M Wani
- The Center for Vascular and Inflammatory Diseases, Departments of
| | - Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, Departments of; Physiology and
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, Departments of
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, Departments of; Physiology and; Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.
| |
Collapse
|
8
|
Zhang L, Mao Z, Li W, Chi S, Cheng H, Wang Z, Wang C, Liu Z. Promoting Drug Delivery to the Brain by Modulating the Transcytosis Process across the Blood-Brain Barrier. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27030-27048. [PMID: 40179275 DOI: 10.1021/acsami.5c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The blood-brain barrier (BBB) presents a major challenge in the theranostics of brain diseases by impeding the delivery of drugs to the brain. Currently the most common strategy for transferring substances across the BBB is receptor-mediated transcytosis, which is restricted by several key factors, including insufficient endocytosis by brain microvessel endothelial cells (BMECs) due to underexpressed pinocytotic vesicles, lysosomal retention, and limited exocytosis to the brain parenchyma. We report a hybrid cell membrane (HCM)-coated and 2-methacryloyloxyethyl phosphorylcholine (MPC)-modified nanocarrier to promote drug delivery across the BBB by modulating the transcytosis process. The HCM incorporates a brain metastatic tumor cell membrane for recognition of BMECs and a GFP-293-S cell membrane expressing Spike protein to facilitate membrane fusion between the nanocarrier and BMECs, thereby bypassing vesicle-dependent endocytosis and enhancing cellular uptake. Membrane fusion reduces the chance of lysosomal retention, and MPC modification enhances exocytosis into the brain parenchyma via the interaction of MPC with transporters expressed on the abluminal endothelial membrane. The nanocarrier achieves significantly improved delivery of CuS, a photothermal agent, to the brain and thus enables highly efficient therapy of brain glioma.
Collapse
Affiliation(s)
- Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhennan Mao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Weibin Li
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Siyu Chi
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Hemei Cheng
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zijun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Caixia Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Sharma D, Dhiman I, Das S, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advances in Therapeutic Peptides: Innovations and Applications in Treating Infections and Diseases. ACS OMEGA 2025; 10:17087-17107. [PMID: 40352490 PMCID: PMC12059905 DOI: 10.1021/acsomega.5c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Peptides have become a powerful frontier in modern medicine, offering a promising therapeutic solution for various diseases and advancing rapidly in pharmaceutical development. These small amino acid chains, with their innovative design, have attracted significant attention due to their versatility and high receptor specificity, which minimizes off-target effects, along with enhanced therapeutic efficacy, biodegradability, low toxicity, and minimal immunogenicity. They are being explored for use in several clinical domains, like metabolic diseases, immunomodulation, and cancer. Furthermore, antimicrobial peptides (AMPs) have grown to be a promising strategy to combat the worldwide challenge of antibiotic resistance, demonstrating promising results against multidrug-resistant organisms. Both natural and engineered peptides have been discovered and investigated, whereas numerous others are progressing toward clinical trials in a number of therapeutic domains. Recent improvements with surface modification, such as peptide engineering, peptide cyclization, PEGylation, and the utilization of synthetic amino acids to enhance their pharmacokinetic profiles and overcome the inherent disadvantages of these peptides have made it possible for the area to continue to advance. Moreover, their therapeutic potential has been further enhanced by innovative delivery methods, such as self-assembling peptides, nanocarriers, and alternate routes of administration. This Review critically states the potential of peptides as versatile therapeutics along with their modifications and advancements to drive the significant progress to treat infections and chronic diseases, along with their potential benefits and challenges.
Collapse
Affiliation(s)
- Deepshikha Sharma
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Isha Dhiman
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda, West Bengal 732103, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Devlina Das Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda, West Bengal 732103, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
10
|
Khalid H, Ahmad I, Sarfraz A, Iqbal A, Nishan U, Dib H, Ullah R, Sheheryar S, Shah M. Screening Asian Medicinal Plants for SARS-CoV-2 Inhibitors: A Computational Approach. Chem Biodivers 2025; 22:e202402548. [PMID: 39670960 DOI: 10.1002/cbdv.202402548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/14/2024]
Abstract
This work aimed to evaluate the antiviral potential of compounds from Asian medicinal plants against SARS-CoV-2's main protease and spike glycoprotein, identifying dual inhibitors from these plants that target both proteins through advanced virtual screening, molecular dynamics simulations, and pharmacophore analysis. An in-house library of 335 antiviral natural products was prepared from the selected medicinal plants. Following the virtual screening of this library against the main protease and spike glycoprotein, top compounds were subjected to downstream analysis for evaluating druggability potential and toxicity analysis. Molecular dynamic simulations were performed to confirm the stability of interactions between the ligands and target proteins. Our analysis demonstrated 67 compounds as dual inhibitors. The six top dual inhibitors, namely trans-delta-viniferin, trans-E-viniferin, 3,4-DHPEA-EDA, oleuropein aglycone, lactucopicrin, and 11β,13-dihydrolactucopicrin, exhibited superior docking scores and met drug-likeness criteria, including Lipinski's rule, bioavailability, and favorable ADME and toxicity profiles. Trans-delta-viniferin and trans-E-viniferin, featuring a stilbene scaffold, emerged as the most promising candidates due to their stable interactions, minimal fluctuations, and consistent hydrogen bonding across SARS-CoV-2's Mpro and S-protein in MD simulations, while 3,4-DHPEA-EDA displayed comparatively less stability. All compounds demonstrated key pharmacophoric features and lacked mutagenicity or PAINS alerts, although lactucopicrin and 11β,13-dihydrolactucopicrin showed risks for hepatotoxicity. Overall, the critical bonding and drug-like features, biological activity spectra, and favorable medicinal characteristics predict their biological behavior in laboratory testing. Although additional experimental validations are necessary, our findings indicate that the three lead compounds-namely, trans-delta-viniferin, trans-E-viniferin, and 3,4-DHPEA-EDA, isolated from traditional medicinal plants-are promising novel dual inhibitors of two critical SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Anwar Iqbal
- Department of Chemical Sciences, University of Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
11
|
Rao Y, Qin C, Espinosa B, Wang TY, Feng S, Savas AC, Henley J, Comai L, Zhang C, Feng P. Targeting CTP synthetase 1 to restore interferon induction and impede nucleotide synthesis in SARS-CoV-2 infection. mBio 2025:e0064925. [PMID: 40298378 DOI: 10.1128/mbio.00649-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Despite the global impact caused by the most recent SARS-CoV-2 pandemic, our knowledge of the molecular underpinnings of its highly infectious nature remains incomplete. We report here that SARS-CoV-2 exploits cellular CTP synthetase 1 (CTPS1) to promote CTP synthesis and suppress interferon (IFN) induction. In addition to catalyzing CTP synthesis, CTPS1 also deamidates interferon regulatory factor 3 (IRF3) to dampen interferon induction. Screening a SARS-CoV-2 expression library, we identified several viral proteins that interact with CTPS1. Functional analyses demonstrate that ORF8 and Nsp8 activate CTPS1 to deamidate IRF3 and negate IFN induction, whereas ORF7b and ORF8 activate CTPS1 to promote CTP synthesis. These results highlight CTPS1 as a signaling node that integrates cellular metabolism and innate immune response. Indeed, small-molecule inhibitors of CTPS1 deplete CTP and boost IFN induction in SARS-CoV-2-infected cells, thus effectively impeding SARS-CoV-2 replication and pathogenesis in mouse models. Our work uncovers an intricate mechanism by which a viral pathogen couples immune evasion to metabolic activation to fuel viral replication. Inhibition of the cellular CTPS1 offers an attractive means to develop antiviral therapy against highly mutagenic viruses.IMPORTANCEOur understanding of the underpinnings of highly infectious SARS-CoV-2 is rudimentary at best. We report here that SARS-CoV-2 activates CTPS1 to promote CTP synthesis and suppress IFN induction, thus coupling immune evasion to activated nucleotide synthesis. Inhibition of the key metabolic enzyme not only depletes the nucleotide pool but also boosts host antiviral defense, thereby impeding SARS-CoV-2 replication. Targeting cellular enzymes presents a strategy to counter the rapidly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Bianca Espinosa
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, California, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jill Henley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Zheng J, Pang Q, Fu Z. Replication Features of SARS-CoV-2 and Advantages of Targeting S Protein with Aptamers to Block Viral Entry. ACS OMEGA 2025; 10:15840-15851. [PMID: 40321580 PMCID: PMC12044446 DOI: 10.1021/acsomega.4c10933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 05/08/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus of the coronaviridae family. The virus enters the cell through binding to the corresponding receptor angiotensin-converting enzyme 2 (ACE2) on host cell membrane with the spike protein (S protein) on its envelope; thus, we can design inhibitors that bind the S protein to block the entry of the virus into cells. Aptamers are single stranded DNA or RNA molecules that can form specific three-dimensional structures and bind their target molecules with high affinity and specificity and thus are promising candidates for S protein inhibitors. This paper reviews the replication cycle and cell entry mechanisms of SARS-CoV-2 as well as the preparation principle and characteristics of aptamers, features a discussion of the advantages of using aptamers to target the S protein to prevent SARS-CoV-2 from infecting cells, and finally summarizes the research progress in S protein-blocking aptamers.
Collapse
Affiliation(s)
| | | | - Zhaoying Fu
- Yan’an Medical College, Yan’an University, Yan’an 716000, China
| |
Collapse
|
13
|
Fan Q, Liu C, Guo H, Tang S, Wang H, Zhou B, Sun Y, Wang M, Ge X, Liu L, Ju B, Zhang Z. A distinctive IGHV3-66 SARS-CoV-2 neutralizing antibody elicited by primary infection with an Omicron variant. Structure 2025:S0969-2126(25)00139-X. [PMID: 40306272 DOI: 10.1016/j.str.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/24/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
SARS-CoV-2 Omicron sub-variants continuously evolve under the pressure of neutralizing antibodies (nAbs), eliminating numerous potential elite monoclonal nAbs. The IGHV3-53/3-66 public nAbs have great potential for neutralizing SARS-CoV-2. However, it has been unclear whether a primary Omicron infection could also induce IGHV3-53/3-66 nAbs. In this study, we report an IGHV3-66-encoding monoclonal nAb, ConBA-998, that was elicited by primary infection with BA.1. ConBA-998 is an Omicron-dependent nAb with high binding affinity that triggers the shedding of the S1 subunit from the spike protein. The cryo-electron microscopy (cryo-EM) structure revealed the interactions between ConBA-998 and the Omicron BA.1 spike protein. ConBA-998 has a distinctive binding mode to receptor-binding domain (RBD) that differs from canonical IGHV3-53/3-66 nAbs. Overall, our findings indicate that Omicron may elicit unique specific nAbs distinct from those induced by pre-Omicron variants, providing further insights into SARS-CoV-2 variant-specific antibody responses.
Collapse
Affiliation(s)
- Qing Fan
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Congcong Liu
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Huimin Guo
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Shilong Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Haiyan Wang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Bing Zhou
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Yuehong Sun
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Miao Wang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Xiangyang Ge
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China.
| | - Bin Ju
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province 518112, China.
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province 518112, China; Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province 518112, China.
| |
Collapse
|
14
|
Oruçoğlu B, Çetin İ, Şimşek H, Topçul M, Çalışkan M, Aydın C, Kavaklı IH, Okyar A, Gül Ş. Identification of potential SARS-CoV-2 inhibitors among well-tolerated drugs using drug repurposing and in vitro approaches. Sci Rep 2025; 15:13975. [PMID: 40263343 PMCID: PMC12015351 DOI: 10.1038/s41598-025-88388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/24/2025] Open
Abstract
The 3C-like protease (3CLpro) is essential in the SARS-CoV-2 life cycle and a promising target for antiviral drug discovery, as no similar proteases exist in humans. This study aimed to identify effective SARS-CoV-2 inhibitors among FDA-approved drugs. Previous computational analysis revealed several drugs with high binding affinity to the 3CLpro active site. In vitro enzymatic assays confirmed that ten of these drugs effectively inhibited the enzyme. To evaluate their impact on viral replication, we used non-infectious SARS-CoV-2 sub-genomic replicons in lung and intestinal cells. Amcinonide, eltrombopag, lumacaftor, candesartan, and nelfinavir inhibited replication at low micromolar concentrations. Lumacaftor showed IC50 values of 964 nM in Caco-2 cells and 458 nM in Calu-3 cells, while candesartan had IC50 values of 714 nM and 1.05 µM, respectively. Furthermore, dual combination experiments revealed that amcinonide, pimozide, lumacaftor, and eltrombopag acted as potent inhibitors at nanomolar concentrations when combined with candesartan. This study highlights lumacaftor, candesartan, and nelfinavir as effective inhibitors of SARS-CoV-2 replication in vitro and emphasizes their potential for repurposing as antiviral treatments. These findings support future clinical trials and may lead to breakthroughs in COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Betül Oruçoğlu
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Türkiye
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Türkiye
| | - İdil Çetin
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Türkiye
| | - Handan Şimşek
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Türkiye
| | - Mehmet Topçul
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Türkiye
| | - Mahmut Çalışkan
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Türkiye
| | - Cihan Aydın
- Department of Molecular Biology, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Türkiye
- Istanbul Medeniyet University Science and Advanced Technology Research Center (IMU-BILTAM), Istanbul, Türkiye
| | - I Halil Kavaklı
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, İstanbul University, Istanbul, Türkiye
| | - Şeref Gül
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Türkiye.
| |
Collapse
|
15
|
Durden C, Auckland LD, Tang W, Hamer GL, Hamer SA. High SARS-CoV-2 Exposure in Feline Residents of a Cat Café in Texas, United States, 2021-2022. Vet Sci 2025; 12:389. [PMID: 40284891 PMCID: PMC12031236 DOI: 10.3390/vetsci12040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Congregate animal settings can serve as foci for the increased transmission of pathogens, including zoonoses. Domestic cats have been shown to be reservoirs for SARS-CoV-2 but the public health importance of infected cats has not yet been determined. A population of indoor-only residential cats at a cat café in central Texas with a high level of human interaction was evaluated for infection with SARS-CoV-2 in a longitudinal study in 2021-2022. Among 25 cats, none were qRT-PCR-positive, while 50% harbored SARS-CoV-2-neutralizing antibodies, including 1 that remained seropositive for >8 months. The high level of human exposure in this unique congregate cat setting-in which dozens of new visitors interact with the cats every day-likely facilitated the human-to-cat transmission of SARS-CoV-2 that led to a 50% infection prevalence in cats. This work was conducted when the Delta and Omicron variants predominated. Given that feline susceptibility to infection and shedding of a virus may vary across different viral variants, veterinary surveillance may be an important component of veterinary and human health risk assessments.
Collapse
Affiliation(s)
- Cassandra Durden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (C.D.); (L.D.A.)
| | - Lisa D. Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (C.D.); (L.D.A.)
| | - Wendy Tang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (W.T.); (G.L.H.)
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (W.T.); (G.L.H.)
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (C.D.); (L.D.A.)
| |
Collapse
|
16
|
Alshahrani M, Parikh V, Foley B, Verkhivker G. Exploring Diverse Binding Mechanisms of Broadly Neutralizing Antibodies S309, S304, CYFN-1006 and VIR-7229 Targeting SARS-CoV-2 Spike Omicron Variants: Integrative Computational Modeling Reveals Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.15.649027. [PMID: 40376091 PMCID: PMC12080943 DOI: 10.1101/2025.04.15.649027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. The cross-neutralization activity of antibodies against Omicron variants is governed by a complex and delicate interplay of multiple energetic factors and interaction contributions. In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309, and T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of this energetic analysis demonstrate a good agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. The results of this study dissect distinct energetic mechanisms of binding and importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Broad-spectrum antibodies CYFN1006 and VIR-7229 maintain efficacy across multiple variants and achieve neutralization by targeting convergent evolution hotspots while enabling tolerance to mutations in these positions through structural adaptability and compensatory interactions at the binding interface. The results of this study underscore the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutralization activity of the latest generation of antibodies.
Collapse
|
17
|
Gong J, Ge L, Zeng Y, Yang C, Luo Y, Kang J, Zou T, Xu H. The influence of SARS-CoV-2 spike protein exposure on retinal development in the human retinal organoids. Cell Biosci 2025; 15:43. [PMID: 40217547 PMCID: PMC11987193 DOI: 10.1186/s13578-025-01383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Pregnant women are considered a high-risk population for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as the virus can infect the placenta and embryos. Recently, SARS-CoV-2 has been widely reported to cause retinal pathological changes and to infect the embryonic retina. The infection of host cells by SARS-CoV-2 is primarily mediated through spike (S) protein, which also plays a crucial role in the pathogenesis of SARS-CoV-2. However, it remains poorly understood how the S protein of SARS-CoV-2 affects retinal development, and the underlying mechanism has not yet been clarified. METHODS We used human embryonic stem cell-derived retinal organoids (hEROs) as a model to study the effect of S protein exposure at different stages of retinal development. hEROs were treated with 2 μg/mL of S protein on days 90 and 280. Immunofluorescence staining, RNA sequencing, and RT-PCR were performed to assess the influence of S protein exposure on retinal development at both early and late stages. RESULTS The results showed that ACE2 and TMPRSS2, the receptors facilitating SARS-CoV-2 entry into host cells, were expressed in hEROs. Exposure to the S protein induced an inflammatory response in both the early and late stages of retinal development in the hEROs. Additionally, RNA sequencing indicated that early exposure of the S protein to hEROs affected nuclear components and lipid metabolism, while late-stages exposure resulted in changes to cell membrane components and the extracellular matrix. CONCLUSION This work highlights the differential effects of SARS-CoV-2 S protein exposure on retinal development at both early and late stages, providing insights into the cellular and molecular mechanisms underlying SARS-CoV-2-induced developmental impairments in the human retina.
Collapse
Affiliation(s)
- Jing Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yushan Luo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
18
|
Oliveira ASF, Kearns FL, Rosenfeld MA, Casalino L, Tulli L, Berger I, Schaffitzel C, Davidson AD, Amaro RE, Mulholland AJ. Allosteric modulation by the fatty acid site in the glycosylated SARS-CoV-2 spike. eLife 2025; 13:RP97313. [PMID: 40208235 PMCID: PMC11984958 DOI: 10.7554/elife.97313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Tulli
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Imre Berger
- School of Chemistry, University of BristolBristolUnited Kingdom
- School of Biochemistry, University of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal Biology, School of ChemistryBristolUnited Kingdom
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University WalkBristolUnited Kingdom
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San DiegoLa JollaUnited States
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
19
|
Alsahafi T, Bouback T, Albeshri A, Alnhhas S, Ali M, Moatasim Y, Kutkat O, Gaballah M, Alfasi F, Mater EH, Al-Sarraj F, Badierah R, Alotibi IA, Almulaiky YQ. Antiviral potential of Melissa officinalis extracts against influenza and emerging coronaviruses. Sci Rep 2025; 15:12118. [PMID: 40204903 PMCID: PMC11982357 DOI: 10.1038/s41598-025-96417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Melissa officinalis is a perennial medicinal plant traditionally used for its diverse biological activities, including antiviral properties. This study investigates the antiviral efficacy of various extracts, including water, acetone, alkaloid, non-alkaloid, ethanol, and methanol extracts, against influenza A (H1N1), SARS-CoV-2, and MERS-CoV. The water extract demonstrated significant inhibitory effects on SARS-CoV-2 (IC50 = 421.9 µg/mL) and MERS-CoV (IC50 = 222.1 µg/mL) in Vero E6 cells (an African green monkey kidney cell line), with a CC50 of 4221 µg/mL, indicating a favorable selectivity index. Additionally, it exhibited strong activity against H1N1 in Madin-Darby canine kidney cell line (MDCK cells) (IC50 = 57.30 µg/mL, CC50 = 3073 µg/mL). Among all the extracts, the methanol extract showed the highest antiviral activity. It has IC50 = 2.549 µg/ml and selectivity index (SI) = 230 against H1N1.While it showed IC50 = 10.83 µg/ml against SARS-CoV-2 and 9.82 µg/ml against MERS-CoV with SI values of 54.2 and 59.77, respectively. Molecular docking studies revealed that 5-Methyl-5 H-naphtho[2,3-c]carbazole,7 H-Dibenzo[b, g]carbazole, 7-methyl, hesperidin, luteolin-7-glucoside-3'-glucuronide, Melitric acid A, and other compounds exhibited high binding affinities to the receptor-binding domains (RBDs) of SARS-CoV-2 and MERS-CoV spike glycoproteins, suggesting their potential to interfere with viral entry. Furthermore, GC-MS-identified bioactive compounds, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), paromomycin, and phenolic acids, demonstrated additional antiviral potential. These results underscore the potential of M. officinalis extracts as natural antiviral agents, offering a foundation for further in vitro and in vivo validation and potential therapeutic applications against respiratory viral infections, including coronaviruses and influenza viruses.
Collapse
Affiliation(s)
- Tasneem Alsahafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdulaziz Albeshri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Alnhhas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Ali
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Mohamed Gaballah
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Fahad Alfasi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mater
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raied Badierah
- Medical Laboratory, King Abdulaziz University Hospital, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Ibrahim A Alotibi
- Medical Laboratory, King Abdulaziz University Hospital, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q Almulaiky
- The Applied College, University of Jeddah, Jeddah, Saudi Arabia.
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen.
| |
Collapse
|
20
|
Gheeraert A, Leroux V, Mias-Lucquin D, Karami Y, Vuillon L, Chauvot de Beauchêne I, Devignes MD, Rivalta I, Maigret B, Chaloin L. Subtle Changes at the RBD/hACE2 Interface During SARS-CoV-2 Variant Evolution: A Molecular Dynamics Study. Biomolecules 2025; 15:541. [PMID: 40305276 PMCID: PMC12024731 DOI: 10.3390/biom15040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The SARS-CoV-2 Omicron variants show different behavior compared to the previous variants, especially with respect to the Delta variant, which promotes a lower morbidity despite being much more contagious. In this perspective, we performed molecular dynamics (MD) simulations of the different spike RBD/hACE2 complexes corresponding to the WT, Delta and four Omicron variants. Carrying out a comprehensive analysis of residue interactions within and between the two partners allowed us to draw the profile of each variant by using complementary methods (PairInt, hydrophobic potential, contact PCA). PairInt calculations highlighted the residues most involved in electrostatic interactions, which make a strong contribution to the binding with highly stable interactions between spike RBD and hACE2. Apolar contacts made a substantial and complementary contribution in Omicron with the detection of two hydrophobic patches. Contact networks and cross-correlation matrices were able to detect subtle changes at point mutations as the S375F mutation occurring in all Omicron variants, which is likely to confer an advantage in binding stability. This study brings new highlights on the dynamic binding of spike RBD to hACE2, which may explain the final persistence of Omicron over Delta.
Collapse
Affiliation(s)
- Aria Gheeraert
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
| | - Vincent Leroux
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Dominique Mias-Lucquin
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Yasaman Karami
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Vuillon
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
| | - Isaure Chauvot de Beauchêne
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Marie-Dominique Devignes
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
- ENS, CNRS, Laboratoire de Chimie UMR 5182, 69364 Lyon, France
| | - Bernard Maigret
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
21
|
Barroso da Silva FL, Paco K, Laaksonen A, Ray A. Biophysics of SARS-CoV-2 spike protein's receptor-binding domain interaction with ACE2 and neutralizing antibodies: from computation to functional insights. Biophys Rev 2025; 17:309-333. [PMID: 40376405 PMCID: PMC12075047 DOI: 10.1007/s12551-025-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/24/2025] [Indexed: 05/18/2025] Open
Abstract
The spike protein encoded by the SARS-CoV-2 has become one of the most studied macromolecules in recent years due to its central role in COVID-19 pathogenesis. The spike protein's receptor-binding domain (RBD) directly interacts with the host-encoded receptor protein, ACE2. This review critically examines computational insights into RBD's interaction with ACE2 and with therapeutic antibodies designed to interfere with this interaction. We begin by summarizing insights from early computational studies on pre-pandemic SARS-CoV-1 RBD interactions and how these early studies shaped the understanding of SARS-CoV-2. Next, we highlight key theoretical contributions that revealed the molecular mechanisms behind the binding affinity of SARS-CoV-2 RBD against ACE2, and the structural changes that have enhanced the infectivity of emerging variants. Special attention is given to the "RBD charge rule", a predictive framework for determining variant infectivity based on the electrostatic properties of the RBD. Towards applying the computational insights to therapy, we discuss a multiscale computational protocol for optimizing monoclonal antibodies to improve binding affinity across multiple spike protein variants, including representatives from the Omicron family. Finally, we explore how these insights can inform the development of future vaccines and therapeutic interventions for combating future coronavirus diseases.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Prof Zeferino Vaz, S/no, Ribeirão Preto, São Paulo BR-14040-903 Brazil
- Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Engineering Building I (EB1), Raleigh, NC 27695-7905 USA
| | - Karen Paco
- Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr., Claremont, CA 91711 USA
| | - Aatto Laaksonen
- Department of Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 210009 People’s Republic of China
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Laboratorievägen 14, 97187 Luleå, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr., Claremont, CA 91711 USA
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 USA
| |
Collapse
|
22
|
Guo L, Chen Z, Lin S, Yang F, Yang J, Wang L, Zhang X, Yuan X, He B, Cao Y, Li J, Zhao Q, Lu G. Structural basis and mode of action for two broadly neutralizing nanobodies targeting the highly conserved spike stem-helix of sarbecoviruses including SARS-CoV-2 and its variants. PLoS Pathog 2025; 21:e1013034. [PMID: 40215243 PMCID: PMC12052392 DOI: 10.1371/journal.ppat.1013034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 05/05/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
The persistent emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlights the need for developing broad-spectrum antiviral agents. Here, we report the identification of two sarbecovirus S2-specific alpaca nanobodies, namely H17 and H145, that effectively neutralize known SARS-CoV-2 variants (including the Omicron subvariants) and other sarbecoviruses (such as SARS-CoV, PANG/GD, WIV1, and HKU3). The two nanobodies recognize a linear epitope (D1139PLQPELDSFKEEL1152) in the upper region of the S2 stem-helix (SH), which is highly conserved among SARS-CoV-2 variants and other sarbecoviruses. The complex structure of the nanobody bound to the epitope SH-peptide reveal that nanobody binding will impede the refolding of S2, effectively neutralizing the virus. Moreover, the nanobodies bind viral S2 in an acidification-insensitive manner, demonstrating their capacity for entry inhibition especially when viruses enter via the endosomal route. Finally, H17 and H145 possess a better taking-action window for virus neutralization, superior to the RBD-targeting nanobodies that exert neutralization by competing against ACE2 binding. Taken together, the results suggest that anti-SH nanobodies H17 and H145 are promising broad-spectrum drug candidates for preventing and treating the pandemic infections by SARS-CoV-2 variants and other sarbecoviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Wang R, Zhou P, Xu W, Li D, Xue S, Guo Z, Li J, Jin L, Zuo C, Chen H, Li R, Li X, Lou J. An Auger electron-loaded theranostic biosensor triggered by the ACE2-mediated virus/host endocytosis. Talanta 2025; 285:127288. [PMID: 39632316 DOI: 10.1016/j.talanta.2024.127288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Accurate diagnosis and effective antiviral strategies are critical to combat acute infection and to avoid damage to the host. Due to their restricted radiation range and energy, Auger electron emitters have shown potential as a RNA-destructing radionuclide therapy in oncology and infection. Focusing on the process of angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis, Technetium-99m-labeled DX600 (99mTc-DX600) was synthesized as an Auger electron vector to specifically bind to surface-expressed ACE2 proteins on 293T-hACE2 cells (293T cells stably expressing human ACE2), and Technetium-99m-loaded microvesicles (99mTc-MVs) served as an antiviral tracer and effector in pseudovirus infection. The whole-body ACE2 expression evaluation was non-invasive, meanwhile, the enhanced green fluorescent protein expression of pseudoviruses was substantially inhibited as a result of the 99mTc-DX600 loading of microvesicles, though the mitochondrial and DNA stabilities of the host cells were not affected. Furthermore, the in vivo distribution of 99mTc-DX600 in humanized ACE2 mice was demonstrated to be both ACE2-specific and long-lasting, and an antiviral effect was fully exhibited with two cycles of intravenous injection at a dosage of 37 MBq. Taking advantage of the ACE2-mediated interaction and natural trigger mechanism of virus-induced endocytosis, 99mTc-MV represents a theranostic biosensor of Auger electrons that can expose viral RNA to lethal amounts of radiation, with the host cells receiving no detrimental radiation.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Pan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Wen Xu
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Shuai Xue
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Zhongqiu Guo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Jie Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Hui Chen
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China.
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China; Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Jingjing Lou
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
24
|
Ferková S, Lepage M, Désilets A, Assouvie K, Lemieux G, Brochu I, Froehlich U, Gravel-Trudeau A, Vastra J, Jean F, Sarret P, Leduc R, Boudreault PL. Optimizing the pharmacokinetics and selectivity of TMPRSS2 inhibitors. Eur J Med Chem 2025; 294:117579. [PMID: 40382841 DOI: 10.1016/j.ejmech.2025.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025]
Abstract
Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone significant genomic mutations, contributing to resistance against existing 2019 coronavirus disease (COVID-19) treatments. In a previous study, we identified N-0385, a potent host-directed inhibitor of transmembrane serine protease 2 (TMPRSS2), which has therapeutic efficacy towards SARS-CoV-2 infection. However, in further evaluation of its preclinical druggability, N-0385 displayed unfavorable pharmacokinetic properties, including high bioavailability (99 %) following intranasal (IN) administration. This can lead to substantial systemic exposure and potential adverse effects due to off-target interactions. Here, we designed a library of peptidomimetic compounds with P3 site modifications on an optimized scaffold. We sought to maintain sub-nanomolar potency against TMPRSS2 (Kis < 2 nM), reduce pseudovirus infection, while addressing the lack of selectivity and excessive lung uptake. Notably, inhibitor 9, which contains Asp at the P3 position, achieved a two-fold increase in TMPRSS2 inhibitory potency (Ki = 0.13 ± 0.03 nM), a >700-fold selectivity over Factor Xa (FXa), and showed superior selectivity against other proteases (matriptase, transmembrane serine protease 6 (TMPRSS6), thrombin, furin, and tPA). Despite concerns about the role of FXa in the coagulation cascade, compound 9 had no impact on coagulation or thrombolysis 2 h after in vitro treatment. In the air-liquid interface (ALI) model of the lung epithelium, compound 9 displayed a 1.5-fold decrease in permeability compared to N-0385 and demonstrated sustained stability in lungs (11 h) and plasma (13 h). Taken together, our data demonstrate that continued optimization of this type of inhibitors will lead to improved therapeutics for the treatment of SARS-CoV-2 infection by IN administration.
Collapse
Affiliation(s)
- Sára Ferková
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kevin Assouvie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Isabelle Brochu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alice Gravel-Trudeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jules Vastra
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
25
|
Weiss S, Lin HM, Acosta E, Komarova NL, Chen P, Wodarz D, Baine I, Duerr R, Wajnberg A, Gervais A, Bastard P, Casanova JL, Arinsburg SA, Swartz TH, Aberg JA, Bouvier NM, Liu ST, Alvarez RA, Chen BK. Post-transfusion activation of coagulation pathways during severe COVID-19 correlates with COVID-19 convalescent plasma antibody profiles. J Clin Invest 2025; 135:e181136. [PMID: 40091845 PMCID: PMC11910229 DOI: 10.1172/jci181136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Early antibody therapy can prevent severe SARS-CoV-2 infection (COVID-19). However, the effectiveness of COVID-19 convalescent plasma (CCP) therapy in treating severe COVID-19 remains inconclusive. To test a hypothesis that some CCP units are associated with a coagulopathy hazard in severe disease that offsets its benefits, we tracked 304 CCP units administered to 414 hospitalized COVID-19 patients to assess their association with the onset of unfavorable post-transfusion D-dimer trends. CCP recipients with increasing or persistently elevated D-dimer trajectories after transfusion experienced higher mortality than those whose D-dimer levels were persistently low or decreasing after transfusion. Within the CCP donor-recipient network, recipients with increasing or persistently high D-dimer trajectories were skewed toward association with a minority of CCP units. In in vitro assays, CCP from "higher-risk" units had higher cross-reactivity with the spike protein of human seasonal betacoronavirus OC43. "Higher-risk" CCP units also mediated greater Fcγ receptor IIa signaling against cells expressing SARS-CoV-2 spike compared with "lower-risk" units. This study finds that post-transfusion activation of coagulation pathways during severe COVID-19 is associated with specific CCP antibody profiles and supports a potential mechanism of immune complex-activated coagulopathy.
Collapse
Affiliation(s)
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, UCSD, La Jolla, California, USA
| | - Ian Baine
- Department of Transfusion Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ralf Duerr
- Department of Medicine
- Department of Microbiology, and
- Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Ania Wajnberg
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | - Nicole M. Bouvier
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sean T.H. Liu
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
26
|
Guercetti J, Alorda M, Sappia L, Galve R, Duran-Corbera M, Pulido D, Berardi G, Royo M, Lacoma A, Muñoz J, Padilla E, Castañeda S, Sendra E, Horcajada JP, Gutierrez-Galvez A, Marco S, Salvador JP, Marco MP. Immuno-μSARS2 Chip: A Peptide-Based Microarray to Assess COVID-19 Prognosis Based on Immunological Fingerprints. ACS Pharmacol Transl Sci 2025; 8:871-884. [PMID: 40109734 PMCID: PMC11915183 DOI: 10.1021/acsptsci.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
A multiplexed microarray chip (Immuno-μSARS2) aiming at providing information on the prognosis of the COVID-19 has been developed. The diagnostic technology records information related to the profile of the immunological response of patients infected by the SARS-CoV-2 virus. The diagnostic technology delivers information on the avidity of the sera against 28 different peptide epitopes and 7 proteins printed on a 25 mm2 area of a glass slide. The peptide epitopes (12-15 mer) derived from structural proteins (Spike and Nucleocapsid) have been rationally designed, synthesized, and used to develop Immuno-μSARS2 as a multiplexed and high-throughput fluorescent microarray platform. The analysis of 755 human serum samples (321 from PCR+ patients; 288 from PCR- patients; 115 from prepandemic individuals and classified as hospitalized, admitted to intensive-care unit (ICU), and exitus) from three independent cohorts has shown that the chips perform with a 98% specificity and 91% sensitivity identifying RT-PCR+ patients. Computational analysis utilized to correlate the immunological signatures of the samples analyzed indicate significant prediction rates against exitus conditions with 82% accuracy, ICU admissions with 80% accuracy, and 73% accuracy over hospitalization requirement compared to asymptomatic patients' fingerprints. The miniaturized microarray chip allows simultaneous determination of 96 samples (24 samples/slide) in 90 min and requires only 10 μL of sera. The diagnostic approach presented for the first time here could have a great value in assisting clinicians in decision-making based on the information provided by the Immuno-μSARS2 regarding progression of the disease and could be easily implemented in diagnostics of other infectious diseases.
Collapse
Affiliation(s)
- Julian Guercetti
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marc Alorda
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
| | - Luciano Sappia
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roger Galve
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Macarena Duran-Corbera
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Pulido
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ginevra Berardi
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Royo
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Muñoz
- Servicio de Microbiología del Laboratorio de Referencia de Catalunya, 08820 Barcelona, Spain
| | - Eduardo Padilla
- Servicio de Microbiología del Laboratorio de Referencia de Catalunya, 08820 Barcelona, Spain
| | - Silvia Castañeda
- Servicio de Enfermedades Infecciosas del Hospital del Mar de Barcelona, COVID-MAR group, 08003 Barcelona, Spain
| | - Elena Sendra
- Servicio de Enfermedades Infecciosas del Hospital del Mar de Barcelona, COVID-MAR group, 08003 Barcelona, Spain
| | - Juan P Horcajada
- Servicio de Enfermedades Infecciosas del Hospital del Mar de Barcelona, COVID-MAR group, 08003 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Agustín Gutierrez-Galvez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
| | - Santiago Marco
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
| | - J-Pablo Salvador
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Babutzka S, Gehrke M, Papadopoulou A, Diedrichs-Möhring M, Giannaki M, Hennis L, Föhr B, Kooyman C, Osterman A, Yannaki E, Wildner G, Ammer H, Michalakis S. A novel platform for engineered AAV-based vaccines. Mol Ther Methods Clin Dev 2025; 33:101418. [PMID: 40008090 PMCID: PMC11850754 DOI: 10.1016/j.omtm.2025.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Engineering of adeno-associated virus (AAV) capsids allowed for the development of gene therapy vectors with improved tropism and enhanced transduction efficiency. Capsid engineering can also be used to adapt the AAV technology for applications outside gene therapy. Here, we investigated modified AAV capsids as scaffolds for the presentation of large immunogenic antigens to elicit a strong and specific immune response against pathogens. Using SARS-CoV-2 as a model pathogen, we introduced ∼200 amino acids of the SARS-CoV-2 receptor-binding domain (RBD) into a surface-exposed variable loop region of AAV2 and AAV9, resulting in AAV2.RBD and AAV9.RBD capsids (AAV.RBDs). This engineering endowed AAV.RBDs with SARS-CoV-2-like properties, such as angiotensin-converting enzyme 2 receptor affinity. In line with this, AAV.RBDs were neutralized by sera from human donors vaccinated against SARS-CoV-2. When administered subcutaneously to rabbits, AAV.RBDs elicited a strong humoral response against SARS-CoV-2 RBD. Moreover, the AAV.RBDs were able to trigger RBD-specific cellular immune responses in peripheral human lymphocytes. In conclusion, this novel AAV-based next-generation vaccine platform allows for the presentation of large antigenic sequences to elicit strong and specific immune responses. This versatile vaccine technology could be explored in the context of diseases where conventional immunization approaches have been unsuccessful.
Collapse
Affiliation(s)
- Sabrina Babutzka
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Miranda Gehrke
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
| | | | - Maria Giannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
| | - Lena Hennis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Bastian Föhr
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Cale Kooyman
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, LMU Munich, 80336 Munich, Germany
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 91895, USA
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Ammer
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
28
|
Swart IC, Debski-Antoniak OJ, Zegar A, de Bouter T, Chatziandreou M, van den Berg M, Drulyte I, Pyrć K, de Haan CAM, Hurdiss DL, Bosch BJ, Oliveira S. A bivalent spike-targeting nanobody with anti-sarbecovirus activity. J Nanobiotechnology 2025; 23:196. [PMID: 40059135 PMCID: PMC11892322 DOI: 10.1186/s12951-025-03243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The continued emergence and zoonotic threat posed by coronaviruses highlight the urgent need for effective antiviral strategies with broad reactivity to counter new emerging strains. Nanobodies (or single-domain antibodies) are promising alternatives to traditional monoclonal antibodies, due to their small size, cost-effectiveness and ease of bioengineering. Here, we describe 7F, a llama-derived nanobody, targeting the spike receptor binding domain of sarbecoviruses and SARS-like coronaviruses. 7F demonstrates potent neutralization against SARS-CoV-2 and cross-neutralizing activity against SARS-CoV and SARS-like CoV WIV16 pseudoviruses. Structural analysis reveals 7F's ability to induce the formation of spike trimer dimers by engaging with two SARS-CoV-2 spike RBDs, targeting the highly conserved class IV region, though concentration dependent. Bivalent 7F constructs substantially enhance neutralization potency and breadth, up to more recent SARS-CoV-2 variants of concern. Furthermore, we demonstrate the therapeutic potential of bivalent 7F against SARS-CoV-2 in the fully differentiated 3D tissue cultures mirroring the epithelium of the human airway ex vivo. The broad sarbecovirus activity and distinctive structural features of bivalent 7F underscore its potential as promising antiviral against emerging and evolving sarbecoviruses.
Collapse
Affiliation(s)
- Iris C Swart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Oliver J Debski-Antoniak
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aneta Zegar
- Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Thijs de Bouter
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianthi Chatziandreou
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Max van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Ieva Drulyte
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Krzysztof Pyrć
- Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Cornelis A M de Haan
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daniel L Hurdiss
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Iqbal Z, Asim M, Khan UA, Sultan N, Ali I. Computational electrostatic engineering of nanobodies for enhanced SARS-CoV-2 receptor binding domain recognition. Front Mol Biosci 2025; 12:1512788. [PMID: 40129869 PMCID: PMC11931142 DOI: 10.3389/fmolb.2025.1512788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel computational approach for engineering nanobodies (Nbs) for improved interaction with receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD (7VYR_R) was selected and refined for subsequent Nb-RBD interactions. By leveraging electrostatic complementarity (EC) analysis, we engineered and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5) based on the CeVICA library's SR6c3 Nb. Through targeted modifications in the complementarity-determining regions (CDR) and framework regions (FR), we optimized electrostatic interactions to improve binding affinity and specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1 and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and AS2, respectively, due to a preference for residues that conferred superior binding complementarities. Furthermore, ECSbs significantly outperformed SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior binding free energies of -182.58 kcal.mol-1 and -119.07 kcal.mol-1, respectively, compared to SR6c3 (-105.50 kcal.mol-1). ECSbs exhibited significantly higher thermostability (100.4-148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1). Similarly, enhanced electrostatic complementarity was also observed for ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-RBD (0.233). Surface analyses confirmed optimized electrostatic patches and reduced aggregation propensity in the engineered Nb. This integrated EC and structural engineering approach successfully developed engineered Nbs with enhanced binding specificity, increased thermostability, and reduced aggregation, laying the groundwork for novel therapeutic applications targeting the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al Hofuf, Saudi Arabia
| | - Muhammad Asim
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Umair Ahmad Khan
- Medical and Allied Department, Faisalabad Medical University, Faisalabad, Pakistan
| | - Neelam Sultan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
30
|
Jiang M, Hou J, Chai Q, Yin S, Liu Q. Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection. Cells 2025; 14:394. [PMID: 40136643 PMCID: PMC11940791 DOI: 10.3390/cells14060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary fibrosis due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the leading cause of death in patients with COVID-19. β-catenin, a key molecule in the Wnt/β-catenin signaling pathway, has been shown to be involved in the development of pulmonary fibrosis (e.g., idiopathic pulmonary fibrosis, silicosis). In this study, we developed a SARS-CoV-2-infected A549-hACE2 cell model to evaluate the efficacy of the A549-hACE2 monoclonal cell line against SARS-CoV-2 infection. The A549-hACE2 cells were then subjected to either knockdown or overexpression of the effector β-catenin, and the modified cells were subsequently infected with SARS-CoV-2. Additionally, we employed transcriptomics and raw letter analysis approaches to investigate other potential effects of β-catenin on SARS-CoV-2 infection. We successfully established a model of cellular fibrosis induced by SARS-CoV-2 infection in lung-derived cells. This model can be utilized to investigate the molecular biological mechanisms and cellular signaling pathways associated with virus-induced lung fibrosis. The results of our mechanistic studies indicate that β-catenin plays a significant role in lung fibrosis resulting from SARS-CoV-2 infection. Furthermore, the inhibition of β-catenin mitigated the accumulation of mesenchymal stroma in A549-hACE2 cells. Additionally, β-catenin knockdown was found to facilitate multi-pathway crosstalk following SARS-CoV-2 infection. The fact that β-catenin overexpression did not exacerbate cellular fibrosis may be attributed to the activation of PPP2R2B.
Collapse
Affiliation(s)
| | | | | | | | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (M.J.); (J.H.); (Q.C.); (S.Y.)
| |
Collapse
|
31
|
Adilović M. COVID-19 related complications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:259-314. [PMID: 40246346 DOI: 10.1016/bs.pmbts.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The COVID-19 pandemic has significantly impacted global healthcare systems, revealed vulnerabilities and prompted a re-evaluation of medical practices. Acute complications from the virus, including cardiovascular and neurological issues, have underscored the necessity for timely medical interventions. Advances in diagnostic methods and personalized therapies have been pivotal in mitigating severe outcomes. Additionally, Long COVID has emerged as a complex challenge, affecting various body systems and leading to respiratory, cardiovascular, neurological, psychological, and musculoskeletal problems. This broad spectrum of complications highlights the importance of multidisciplinary management approaches that prioritize therapy, rehabilitation, and patient-centered care. Vulnerable populations such as paediatric patients, pregnant women, and immunocompromised individuals face unique risks and complications, necessitating continuous monitoring and tailored management strategies to reduce morbidity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta, Sarajevo, Bosnia and Herzegovina.
| |
Collapse
|
32
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Akıl C, Xu J, Shen J, Zhang P. Unveiling the Complete Spectrum of SARS-CoV-2 Fusion Stages by In Situ Cryo-ET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640151. [PMID: 40060467 PMCID: PMC11888396 DOI: 10.1101/2025.02.25.640151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
SARS-CoV-2 entry into host cells is mediated by the spike protein, which drives membrane fusion. While cryo-EM has revealed stable prefusion and postfusion conformations of the spike, the transient intermediate states during the fusion process have remained poorly understood. Here, we designed a near-native viral fusion system that recapitulates SARS-CoV-2 entry and used cryo-electron tomography (cryo-ET) to capture fusion intermediates leading to complete fusion. The spike protein undergoes extensive structural rearrangements, progressing through extended, partially folded, and fully folded intermediates prior to fusion-pore formation, a process that is dependent on protease cleavage and inhibited by the WS6 S2 antibody. Upon interaction with ACE2 receptor dimer, spikes cluster at membrane interfaces and following S2' cleavage concurrently transition to postfusion conformations encircling the hemifusion and pre-fusion pores in a distinct conical arrangement. Subtomogram averaging revealed that the WS6 S2 antibody binds to the spike's stem-helix, crosslinks and clusters prefusion spikes and inhibits refolding of fusion intermediates. These findings elucidate the complete process of spike-mediated fusion and SARS-CoV-2 entry, highlighting the neutralizing mechanism of S2-targeting antibodies.
Collapse
Affiliation(s)
- Caner Akıl
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jialu Xu
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Juan Shen
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| |
Collapse
|
35
|
Ghasemitarei M, Taeb H, Ghorbi T, Yusupov M, Ala-Nissila T, Bogaerts A. The effect of cysteine oxidation on conformational changes of SARS-CoV-2 spike protein using atomistic simulations. Sci Rep 2025; 15:6890. [PMID: 40011543 PMCID: PMC11865280 DOI: 10.1038/s41598-025-90918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
The SARS-CoV-2 Spike (S) protein plays a central role in viral entry into host cells, making it a key target for therapeutic interventions. Oxidative stress, often triggered during viral infections, can cause oxidation of cysteine in this protein. Here we investigate the impact of cysteine oxidation, specifically the formation of cysteic acid, on the conformational dynamics of the SARS-CoV-2 S protein using atomistic simulations. In particular, we examine how cysteine oxidation influences the transitions of the S protein's receptor-binding domain (RBD) between "down" (inaccessible) and "up" (accessible) states, which are critical for host cell receptor engagement. Using solvent-accessible surface area (SASA) analysis, we identify key cysteine residues susceptible to oxidation. The results of targeted molecular dynamics (TMD) and umbrella sampling (US) simulations reveal that oxidation reduces the energy barrier for RBD transitions by approximately 30 kJ mol-1, facilitating conformational changes and potentially enhancing viral infectivity. Furthermore, we analyze the interactions between oxidized cysteine residues and glycans, as well as alterations in hydrogen bonds and salt bridges. Our results show that oxidation disrupts normal RBD dynamics, influencing the energy landscape of conformational transitions. Our work provides novel insights into the role of cysteine oxidation in modulating the structural dynamics of the SARS-CoV-2 S protein, highlighting potential targets for antiviral strategies aimed at reducing oxidative stress or modifying post-translational changes. These findings contribute to a deeper understanding of viral infectivity and pathogenesis under oxidative conditions.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Applied Physics, Aalto University, P.O. Box 15600, 00076, Aalto, Espoo, Finland.
| | - Hoda Taeb
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Tayebeh Ghorbi
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, 100174, Tashkent, Uzbekistan
| | - Maksudbek Yusupov
- Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, 100207, Tashkent, Uzbekistan
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 15600, 00076, Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Belgium
| |
Collapse
|
36
|
Brennecke B, Civili B, Sabale PM, Barluenga S, Meyer B, Winssinger N. Self-assembled proteomimetic (SAP) with antibody-like binding from short PNA-peptide conjugates. Proc Natl Acad Sci U S A 2025; 122:e2412850122. [PMID: 39951509 PMCID: PMC11848287 DOI: 10.1073/pnas.2412850122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
Affinity proteins based on a three-helix bundle (affibodies, alphabodies, and computationally de novo designed ones) have been shown to be a general platform to discover binders with properties reminiscent of antibodies, combining high target specificity with affinities reaching well below the nanomolar. Herein, we report a strategy, coined self-assembled proteomimetic (SAP), to mimic such three-helix bundle architecture with a hybridization-enforced two-helix coiled coil that is obtained by templated native chemical ligation (T-NCL) of PNA-peptide conjugates. This SAP strategy stands out by its synthetic accessibility, reducing the length on the longest synthetic peptide to less than 30 amino acids which is readily attainable by standard SPPS methodologies. We show that the T-NCL dramatically accelerates the ligation, enabling this chemistry to proceed in a combinatorial fashion at low micromolar concentrations. We demonstrate that small combinatorial libraries of SAPs can be prepared in one operation and used directly in affinity selections against a target of interest with an LC-MS analysis of the fittest binders. Moreover, we show that the underlying design paradigm is functional for SAPs based on structurally distinct three-helix peptides aimed at different therapeutic targets, namely HER2 and spike's RBD, reaching picomolar affinities. We further illustrate that the affinity of the SAP can be allosterically regulated using a toehold displacement of the hybridizing PNAs to disrupt the coiled coil stabilization. Finally, we show that an RBD-targeting SAP effectively inhibits viral entry of SARS-CoV-2 with an IC50 of 2.8 nM.
Collapse
Affiliation(s)
- Benjamin Brennecke
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Beatrice Civili
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Pramod M. Sabale
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Benjamin Meyer
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva1211, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
37
|
Wang C, Tang X, Jiang C, Zhang Y, Han B, Sun Y, Guo J, Peng H, Wang Z, Wang Y, Zhang J, Zhang Y, Jiang C. Intradermal delivery of SARS-CoV-2 RBD3-Fc mRNA vaccines via a needle-free injection system induces robust immune responses in rats. Front Immunol 2025; 16:1530736. [PMID: 40034698 PMCID: PMC11872709 DOI: 10.3389/fimmu.2025.1530736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Needle-free injection system (NFIS) is easy to operate and can decrease needle phobia. Besides, NFIS can increase the interaction of antigens in a more dispersed manner with immune cell at local injection site, which may improve the immune responses of mRNA vaccines. Although SARS-CoV-2 mRNA vaccines have great success, universal vaccines are urgently needed. Delivering universal mRNA vaccines by NFIS is preferred to combat COVID-19. Methods RBD3-Fc mRNA expressing BA.4, Delta, and prototype RBD, and human IgG Fc with YTE mutation was designed and synthesized. The safety and immune responses of universal RBD3-Fc naked mRNA and mRNA-LNP vaccines delivered intradermally using NFIS (named GV-01) and intramuscularly via needles were evaluated and compared in rats. Results The prime-boost regimen administered by two routes resulted in potent immune responses and intradermal delivery displays comparable or better performance in terms of binding antibodies, neutralizing antibodies and T cell responses. Naked mRNA vaccines were functional, but less effective than mRNA-LNP vaccines. Discussion The above results suggest that RBD3-Fc vaccines are safe and immunogenic and NFIS can be used as an alternative to needles/syringes for the inoculation of mRNA-LNP vaccines to elicit robust systematic immune responses.
Collapse
MESH Headings
- Animals
- Injections, Intradermal
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Rats
- SARS-CoV-2/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/genetics
- RNA, Messenger/immunology
- Female
- Male
- T-Lymphocytes/immunology
- Needles
Collapse
Affiliation(s)
- Cenrong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Tang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
| | - Chenghan Jiang
- College of Agriculture, Yanbian University, Yanbian, China
| | - Yu Zhang
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Bo Han
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Yi Sun
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Jianfeng Guo
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Hanyu Peng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zihan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yipeng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
38
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Mutational Scanning and Binding Free Energy Computations of the SARS-CoV-2 Spike Complexes with Distinct Groups of Neutralizing Antibodies: Energetic Drivers of Convergent Evolution of Binding Affinity and Immune Escape Hotspots. Int J Mol Sci 2025; 26:1507. [PMID: 40003970 PMCID: PMC11855367 DOI: 10.3390/ijms26041507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes with neutralizing antibodies from four distinct groups (A-D), including group A LY-CoV016, group B AZD8895 and REGN10933, group C LY-CoV555, and group D antibodies AZD1061, REGN10987, and LY-CoV1404. Using coarse-grained simplified simulation models, rapid energy-based mutational scanning, and rigorous MM-GBSA binding free energy calculations, we elucidated the molecular mechanisms of antibody binding and escape mechanisms, identified key binding hotspots, and explored the evolutionary strategies employed by the virus to evade neutralization. The residue-based decomposition analysis revealed energetic mechanisms and thermodynamic factors underlying the effect of mutations on antibody binding. The results demonstrate excellent qualitative agreement between the predicted binding hotspots and the latest experiments on antibody escape. These findings provide valuable insights into the molecular determinants of antibody binding and viral escape, highlighting the importance of targeting conserved epitopes and leveraging combination therapies to mitigate the risk of immune evasion.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Humans
- Immune Evasion
- Thermodynamics
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Binding
- Molecular Dynamics Simulation
- Evolution, Molecular
- Binding Sites
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
39
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Quantitative Characterization and Prediction of the Binding Determinants and Immune Escape Hotspots for Groups of Broadly Neutralizing Antibodies Against Omicron Variants: Atomistic Modeling of the SARS-CoV-2 Spike Complexes with Antibodies. Biomolecules 2025; 15:249. [PMID: 40001552 PMCID: PMC11853647 DOI: 10.3390/biom15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of experimental and computational studies suggests that the cross-neutralization antibody activity against Omicron variants may be driven by the balance and tradeoff between multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with epitope residues, remain largely uncharacterized. In this study, we performed molecular dynamics simulations, an ensemble-based deep mutational scanning of SARS-CoV-2 spike residues, and binding free energy computations for two distinct groups of broadly neutralizing antibodies: the E1 group (BD55-3152, BD55-3546, and BD5-5840) and the F3 group (BD55-3372, BD55-4637, and BD55-5514). Using these approaches, we examined the energetic determinants by which broadly potent antibodies can largely evade immune resistance. Our analysis revealed the emergence of a small number of immune escape positions for E1 group antibodies that correspond to the R346 and K444 positions in which the strong van der Waals and interactions act synchronously, leading to the large binding contribution. According to our results, the E1 and F3 groups of Abs effectively exploit binding hotspot clusters of hydrophobic sites that are critical for spike functions along with the selective complementary targeting of positively charged sites that are important for ACE2 binding. Together with targeting conserved epitopes, these groups of antibodies can lead expand the breadth and resilience of neutralization to the antigenic shifts associated with viral evolution. The results of this study and the energetic analysis demonstrate excellent qualitative agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. We argue that the E1 and F3 groups of antibodies targeting binding epitopes may leverage strong hydrophobic interactions with the binding epitope hotspots that are critical for the spike stability and ACE2 binding, while escape mutations tend to emerge in sites associated with synergistically strong hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
40
|
Jiang Y, Sanyal M, Hussein NA, Baghdasaryan A, Zhang M, Wang F, Ren F, Li J, Zhu G, Meng Y, Adamska JZ, Mellins E, Dai H. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. SCIENCE ADVANCES 2025; 11:eadp5539. [PMID: 39919189 PMCID: PMC11804919 DOI: 10.1126/sciadv.adp5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
The COVID-19 pandemic caused a global health crisis that resulted in millions of deaths. Effective vaccines have played central roles in curtailing the pandemic. Here, we developed a down-converting near-infrared IIb (NIR-IIb; 1500 to 1700 nanometers) luminescent, pure NaErF4@NaYF4 rare-earth nanoparticle (pEr) as vaccine carriers. The pEr nanoparticles were coated with three layers of cross-linked biocompatible polymers (pEr-P3; ~55 nanometers) and conjugated to the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Upon subcutaneous injection of the pEr-P3-RBD nanovaccine in mice, in vivo NIR-IIb imaging revealed active vaccine trafficking and migration to lymph nodes through lymphatic vessels. Two doses of the adjuvant-free vaccine elicited long-lasting (>7 months) high titers of serum viral neutralization antibody and anti-RBD immunoglobulin G, along with robust RBD-specific germinal center B cells and T follicular helper cells. We devised in vivo NIR-II molecular imaging of RBD-specific cells in lymph nodes, opening noninvasive assessments of vaccine-elicited immune responses longitudinally.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noor A. Hussein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yifan Meng
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Julia Zofia Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| |
Collapse
|
41
|
Barozi V, Tastan Bishop Ö. Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2-RBD Protein Complex. Int J Mol Sci 2025; 26:1367. [PMID: 39941135 PMCID: PMC11818624 DOI: 10.3390/ijms26031367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein's receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD-hACE2 interactions, potentially affecting viral infectivity across populations. This study identified the effects of six naturally occurring hACE2 polymorphisms with high allele frequency in the African population (S19P, K26R, M82I, K341R, N546D and D597Q) on the interaction with the S protein RBD of the BA.4/5 Omicron sub-lineage through post-molecular dynamics (MD), inter-protein interaction and dynamic residue network (DRN) analyses. Inter-protein interaction analysis suggested that the K26R variation, with the highest interactions, aligns with reports of enhanced RBD binding and increased SARS-CoV-2 susceptibility. Conversely, S19P, showing the fewest interactions and largest inter-protein distances, agrees with studies indicating it hinders RBD binding. The hACE2 M82I substitution destabilized RBD-hACE2 interactions, reducing contact frequency from 92 (WT) to 27. The K341R hACE2 variant, located distally, had allosteric effects that increased RBD-hACE2 contacts compared to WThACE2. This polymorphism has been linked to enhanced affinity for Alpha, Beta and Delta lineages. DRN analyses revealed that hACE2 polymorphisms may alter the interaction networks, especially in key residues involved in enzyme activity and RBD binding. Notably, S19P may weaken hACE2-RBD interactions, while M82I showed reduced centrality of zinc and chloride-coordinating residues, hinting at impaired communication pathways. Overall, our findings show that hACE2 polymorphisms affect S BA.4/5 RBD stability and modulate spike RBD-hACE2 interactions, potentially influencing SARS-CoV-2 infectivity-key insights for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
- National Institute for Theoretical and Computational Sciences (NITheCS), Matieland 7602, South Africa
| |
Collapse
|
42
|
Pozdnyakova V, Weber B, Cheng S, Ebinger JE. Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Rheum Dis Clin North Am 2025; 51:111-121. [PMID: 39550100 DOI: 10.1016/j.rdc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
We herein summarize currently available and clinically relevant information regarding the human immune responses to SARS-CoV-2 infection and vaccination, in relation to COVID-19 outcomes with a focus on acute respiratory distress syndrome (ARDS) and myocarditis.
Collapse
Affiliation(s)
- Valeriya Pozdnyakova
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, D4005, Los Angeles, CA 90048, USA
| | - Brittany Weber
- Carl J. and Ruth Shapiro Cardiovascular Center, Brigham and Women's Hospital, 70 Francis Street, Boston, MA 02115, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South Vicente Boulevard, Suite A3100, Los Angeles, CA 90048, USA
| | - Joseph E Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South Vicente Boulevard, Suite A3100, Los Angeles, CA 90048, USA.
| |
Collapse
|
43
|
Huang Y, Wu J, Zhang X, Zhang S, Wu S, Bao W. Dipeptidyl peptidase 4 is a cofactor for porcine epidemic diarrhea virus infection. Vet Microbiol 2025; 301:110370. [PMID: 39765007 DOI: 10.1016/j.vetmic.2025.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication. Firstly, we mapped the expression profile of DPP4 in different tissues of 7-day-old piglets and found that DPP4 was highly expressed in the liver, lung, kidney, duodenum, jejunum, and ileum tissues of piglets. In addition, the immunohistochemical results showed that DPP4 was mainly distributed at the apical of intestinal villous epithelial cells in the jejunum of piglets. Further studies revealed that DPP4 expression was significantly lower in PEDV-infected porcine jejunal tissues and IPEC-J2 cells than in uninfected controls. PEDV invasion and replication could be inhibited by DPP4 inhibitor and specific antibody. Moreover, DPP4 knockout was able to significantly inhibit PEDV infection. Then, we found that endogenous DPP4 interacted with PEDV, and that preincubation of PEDV with endogenous DPP4 reduced viral infection. Finally, we predicted the docking of DPP4 and PEDV-S1-RBD proteins in silico, showing a strong binding tendency. Taken together, our study supports the hypothesis that DPP4 is a cofactor for PEDV infection.
Collapse
Affiliation(s)
- Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu of Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Xueli Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Ling J, Lundkvist Å, Guerrini M, Ferro V, Li J, Li J. A Heparan Sulfate Mimetic RAFT Copolymer Inhibits SARS-CoV-2 Infection and Ameliorates Viral-Induced Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411737. [PMID: 39679877 PMCID: PMC11809384 DOI: 10.1002/advs.202411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Indexed: 12/17/2024]
Abstract
The high transmissibility and mutation ability of coronaviruses enable them to easily escape existing immune protection and also pose a challenge to existing antiviral drugs. Moreover, drugs only targeting viruses cannot always attenuate the "cytokine storm". Herein, a synthetic heparan sulfate (HS) mimetic, HMSA-06 is reported, that exhibited antiviral activities against both the SARS-CoV-2 prototype and Omicron strains by targeting viral entry and replication. Of particular note, HMSA-06 demonstrated more potent anti-SARS-CoV-2 effects than PG545 and Roneparstat. SARS-CoV-2 is reported to hijack autophagy to facilitate its replication, therefore boosting autophagy can attenuate SARS-CoV-2 infection. It is revealed that HMSA-06, but not a similar HS mimetic that failed to inhibit SARS-CoV-2, can upregulate cellular autophagy flux. In addition, HMSA-06 was found to robustly block the NLRP3-mediated inflammatory reaction in SARS-CoV-2 infected THP-1 derived macrophages as evidenced by a reduction in inflammasome formation and the subsequent decreased secretion of mature caspase-1 and IL-1β. The HMSA-06's inflammation inhibitory function is further confirmed using a LPS/ATP-stimulated THP-1 macrophage model. Altogether, this study has identified a promising HS mimetic to combat SARS-CoV-2-associated diseases by inhibiting viral infection and attenuating viral-induced inflammatory reaction, providing insights into the development of novel anti-coronavirus drugs in the future.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and MicrobiologyThe Biomedical CenterUppsala UniversityUppsala75123Sweden
- Zoonosis Science CenterUppsala UniversityUppsala75123Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and MicrobiologyThe Biomedical CenterUppsala UniversityUppsala75123Sweden
- Zoonosis Science CenterUppsala UniversityUppsala75123Sweden
| | - Marco Guerrini
- Istituto Di Ricerche Chimiche e Biochimiche G. RonzoniMilan20133Italy
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Jin‐Ping Li
- Department of Medical Biochemistry and MicrobiologyThe Biomedical CenterUppsala UniversityUppsala75123Sweden
- SciLifeLab UppsalaUppsala UniversityUppsala75123Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and MicrobiologyThe Biomedical CenterUppsala UniversityUppsala75123Sweden
- Zoonosis Science CenterUppsala UniversityUppsala75123Sweden
| |
Collapse
|
45
|
Yousefbeigi S, Marsusi F. Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study. J Biomol Struct Dyn 2025; 43:665-678. [PMID: 37982275 DOI: 10.1080/07391102.2023.2283158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The initial interaction between COVID-19 and the human body involves the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. Likewise, the spike protein can engage with immune-related proteins, such as toll-like receptors (TLRs) and pulmonary surfactant proteins A (SP-A) and D (SP-D), thereby triggering immune responses. In this study, we utilize computational methods to investigate the interactions between the spike protein and TLRs (specifically TLR2 and TLR4), as well as (SP-A) and (SP-D). The study is conducted on four variants of concern (VOC) to differentiate and identify common virus behaviours. An assessment of the structural stability of various variants indicates slight changes attributed to mutations, yet overall structural integrity remains preserved. Our findings reveal the spike protein's ability to bind with TLR4 and TLR2, prompting immune activation. In addition, our in-silico results reveal almost similar docking scores and therefore affinity for both ACE2-spike and TLR4-spike complexes. We demonstrate that even minor changes due to mutations in all variants, surfactant A and D proteins can function as inhibitors against the spike in all variants, hindering the ACE2-RBD interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarina Yousefbeigi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farah Marsusi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
46
|
Batool S, Chokkakula S, Jeong JH, Baek YH, Song MS. SARS-CoV-2 drug resistance and therapeutic approaches. Heliyon 2025; 11:e41980. [PMID: 39897928 PMCID: PMC11786845 DOI: 10.1016/j.heliyon.2025.e41980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
In light of the transition of COVID-19 from a pandemic to an endemic phase, there is still a dire need to address challenges associated with drug resistance, particularly among immunocompromised and high-risk populations. This review explores the current state of research on SARS-CoV-2 drug resistance and underscores the ongoing need for effective therapeutic strategies. It critically evaluates existing knowledge on resistance mechanisms and therapeutic options, aiming to consolidate information and highlight areas for future research. By examining the complex interactions between the virus and its host, the review advocates for a multifaceted approach, including combination therapies, targeted drug development, and continuous surveillance of viral mutations. It also emphasizes the impact of evolving viral variants on antiviral efficacy and suggests adaptive treatment protocols. This review aims to enhance our understanding of SARS-CoV-2 drug resistance and contribute to more effective management of COVID-19 through a discussion of promising strategies such as drug repurposing and combination therapies.
Collapse
Affiliation(s)
- Sania Batool
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
47
|
Albalawi W, Thomas J, Mughal F, Kotsiri A, Roper KJ, Alshehri A, Kelbrick M, Pollakis G, Paxton WA. SARS-CoV-2 S, M, and E Structural Glycoproteins Differentially Modulate Endoplasmic Reticulum Stress Responses. Int J Mol Sci 2025; 26:1047. [PMID: 39940816 PMCID: PMC11816748 DOI: 10.3390/ijms26031047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
We have previously shown that the hepatitis C virus (HCV) E1E2 envelope glycoprotein can regulate HIV-1 long-terminal repeat (LTR) activity through disruption to NF-κB activation. This response is associated with upregulation of the endoplasmic reticulum (ER) stress response pathway. Here, we demonstrate that the SARS-CoV-2 S, M, and E but not the N structural protein can perform similar downmodulation of HIV-1 LTR activation, and in a dose-dependent manner, in both HEK293 and lung BEAS-2B cell lines. This effect is highest with the SARS-CoV-2 Wuhan S strain and decreases over time for the subsequent emerging variants of concern (VOC), with Omicron providing the weakest effect. We developed pseudo-typed viral particle (PVP) viral tools that allowed for the generation of cell lines constitutively expressing the four SARS-CoV-2 structural proteins and utilising the VSV-g envelope protein to deliver the integrated gene construct. Differential gene expression analysis (DGEA) was performed on cells expressing S, E, M, or N to determine cell activation status. Gene expression differences were found in a number of interferon-stimulated genes (ISGs), including IF16, IFIT1, IFIT2, and ISG15, as well as for a number of heat shock protein (HSP) genes, including HSPH1, HSPA6, and HSPBP1, with all four SARS-CoV-2 structural proteins. There were also differences observed in expression patterns of transcription factors, with both SP1 and MAVS upregulated in the presence of S, M, and E but not the N protein. Collectively, the results indicate that gene expression patterns associated with ER stress pathways can be activated by SARS-CoV-2 envelope glycoprotein expression. The results suggest the SARS-CoV-2 infection can modulate an array of cell pathways, resulting in disruption to NF-κB signalling, hence providing alterations to multiple physiological responses of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Department Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Aljouf, Sakakah 72388, Saudi Arabia
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Farah Mughal
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Aurelia Kotsiri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Kelly J. Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone KT15 3NB, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Matthew Kelbrick
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| |
Collapse
|
48
|
Moharram FA, Ibrahim RR, Mahgoub S, Abdel-Aziz MS, Said AM, Huang HC, Chen LY, Lai KH, Hashad N, Mady MS. Secondary metabolites of Alternaria alternate appraisal of their SARS-CoV-2 inhibitory and anti-inflammatory potentials. PLoS One 2025; 20:e0313616. [PMID: 39854441 PMCID: PMC11760621 DOI: 10.1371/journal.pone.0313616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 01/26/2025] Open
Abstract
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells. Two novel compounds, altenuline (1), phthalic acid bis (7'/7'' pentyloxy) isohexyl ester (2), along with 1-deoxyrubralactone (3) alternariol-5-O-methyl ether (4) and alternariol (5) were identified. Molecular docking and in vitro studies showed that compounds 2 and 4 were promising to counteract SARS-CoV-2 attachment to human ACE-2. Thus, they are considered promising natural anti-viral agents. SwissADME in silico analysis was conducted to predict the drug-like potential. Immunoblotting analysis confirmed that the tested compounds (1-4) demonstrated downregulation of ACE-2 expression in the endothelial cells from the lungs with variable degrees. Furthermore, the tested compounds (1-4) showed promising anti-inflammatory activities through TNF-α: TNFR2 inhibitory activity and their inhibitory effect on the proinflammatory cytokines (TNF-α and IL-6) in LPS-stimulated monocytes. In conclusion, our study, for the first time, provides beneficial experimental confirmation for the efficiency of the A. alternate secondary metabolites for the treatment of COVID-19 as they hinder SARS-CoV-2 infection and lower inflammatory responses initiated by SARS-CoV-2. A. alternate and its metabolites are considered in developing preventative and therapeutic tactics for COVID-19.
Collapse
Affiliation(s)
- Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Reham R. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Shahenda Mahgoub
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Abdel-Aziz
- Genetic Engineering and Biotechnology Division, Microbial Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed M. Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nashwa Hashad
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
49
|
Schmidt H, Schick L, Podlech J, Renzaho A, Lieb B, Diederich S, Hankeln T, Plachter B, Kriege O. Adaptive evolution of SARS-CoV-2 during a persistent infection for 521 days in an immunocompromised patient. NPJ Genom Med 2025; 10:4. [PMID: 39820045 PMCID: PMC11739519 DOI: 10.1038/s41525-025-00463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Immunocompromised patients struggle to adequately clear viral infections, offering the virus the opportunity to adapt to the immune system in the host. Here we present a case study of a patient undergoing allogeneic hematopoietic stem cell transplantation with a 521-day follow-up of a SARS-CoV-2 infection with the BF.7.21 variant. Virus samples from five time points were submitted to whole genome sequencing. Between the first detection of SARS-CoV-2 infection and its clearance, the patient's virus population acquired 34 amino acid substitutions and 8 deletions in coding regions. With 11 amino acid substitutions in the receptor binding domain of the virus' spike protein, substitutions were 15 times more abundant than expected for a random distribution in this highly functional region. Amongst them were the substitutions S:K417T, S:N440S, S:K444R, S:V445A, S:G446N, S:L452Q, S:N460K, and S:E484V at positions that are notorious for their resistance-mediating effects. The substitution patterns found indicate ongoing adaptive evolution.
Collapse
Affiliation(s)
- Hanno Schmidt
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Lea Schick
- Third Department of Medicine-Hematology, Internal Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angélique Renzaho
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bettina Lieb
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- StarSEQ GmbH, Mainz, Germany
| | - Stefan Diederich
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Organismal and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bodo Plachter
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Kriege
- Third Department of Medicine-Hematology, Internal Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
50
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|