1
|
Cai R, Ke L, Zhao Y, Zhao J, Zhang H, Zheng P, Xin L, Ma C, Lin Y. NMR-based metabolomics combined with metabolic pathway analysis reveals metabolic heterogeneity of colorectal cancer tissue at different anatomical locations and stages. Int J Cancer 2025; 156:1644-1655. [PMID: 39629979 PMCID: PMC11826128 DOI: 10.1002/ijc.35273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 02/16/2025]
Abstract
Colorectal cancer (CRC) still remains the leading cause of cancer death worldwide. This study aimed to profile the metabolic differences of colorectal cancer tissues (CCT) at different stages and sites, as compared with their distant noncancerous tissues (DNT), to investigate the temporal and spatial heterogeneities of metabolic characterization. Our NMR-based metabolomics fingerprinting revealed that many of the metabolite levels were significantly altered in CCT compared to DNT and esophageal cancer tissues, indicating deregulations of glucose metabolism, one-carbon metabolism, glutamine metabolism, amino acid metabolism, fatty acid metabolism, TCA cycle, choline metabolism, and so forth. A total of five biomarker metabolites, including glucose, glutamate, alanine, valine and histidine, were identified to distinguish between early and advanced stages of CCT. Metabolites that distinguish the different anatomical sites of CCT include glucose, glycerol, glutamine, inositol, succinate, and citrate. Those significant metabolic differences in CRC tissues at different pathological stages and sites suggested temporal and spatial heterogeneities of metabolic characterization in CCT, providing a metabolic foundation for further study on biofluid metabolism in CRC early detection.
Collapse
Affiliation(s)
- Rongzhi Cai
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| | - LiXin Ke
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| | - Yan Zhao
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| | - Jiayun Zhao
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| | - Huanian Zhang
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| | - Peie Zheng
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical ImagingEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Changchun Ma
- Radiation Oncology DepartmentCancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Yan Lin
- Radiology Department, Second Affiliated HospitalShantou University Medical CollegeShantou CityGuangdong ProvinceChina
| |
Collapse
|
2
|
Woolley CE, Domingo E, Fernandez-Tajes J, Pennel KA, Roxburgh P, Edwards J, Richman SD, Maughan TS, Kerr DJ, Soriano I, Tomlinson IP. Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis. Mol Cancer Res 2025; 23:300-312. [PMID: 39751654 PMCID: PMC7617415 DOI: 10.1158/1541-7786.mcr-24-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non-class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2-mutant and class 3-mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.
Collapse
Affiliation(s)
- Connor E. Woolley
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Kathryn A.F. Pennel
- School of Cancer Science, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Roxburgh
- School of Cancer Science, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Science, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Susan D. Richman
- Division of Pathology and Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Tim S. Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - David J. Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ignacio Soriano
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Kufrin V, Seiler A, Brilloff S, Rothfuß H, Küchler S, Schäfer S, Rahimian E, Baumgarten J, Ding L, Buchholz F, Ball CR, Bornhäuser M, Glimm H, Bill M, Wurm AA. The histone modifier KAT2A presents a selective target in a subset of well-differentiated microsatellite-stable colorectal cancers. Cell Death Differ 2025:10.1038/s41418-025-01479-7. [PMID: 40140561 DOI: 10.1038/s41418-025-01479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Lysine acetyltransferase 2 A (KAT2A) plays a pivotal role in epigenetic gene regulation across various types of cancer. In colorectal cancer (CRC), increased KAT2A expression is associated with a more aggressive phenotype. Our study aims to elucidate the molecular underpinnings of KAT2A dependency in CRC and assess the consequences of KAT2A depletion. We conducted a comprehensive analysis by integrating CRISPR-Cas9 screening data with genomics, transcriptomics, and global acetylation patterns in CRC cell lines to pinpoint molecular markers indicative of KAT2A dependency. Additionally, we characterized the phenotypic effect of a CRISPR-interference-mediated KAT2A knockdown in CRC cell lines and patient-derived 3D spheroid cultures. Moreover, we assessed the effect of KAT2A depletion within a patient-derived xenograft mouse model in vivo. Our findings reveal that KAT2A dependency is closely associated with microsatellite stability, lower mutational burden, and increased molecular differentiation signatures in CRC, independent of the KAT2A expression levels. KAT2A-dependent CRC cells display higher gene expression levels and enriched H3K27ac marks at gene loci linked to enterocytic differentiation. Furthermore, loss of KAT2A leads to decreased cell growth and viability in vitro and in vivo, downregulation of proliferation- and stem cell-associated genes, and induction of differentiation markers. Altogether, our data show that a specific subset of CRCs with a more differentiated phenotype relies on KAT2A. For these CRC cases, KAT2A might represent a promising novel therapeutic target.
Collapse
Affiliation(s)
- Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Annika Seiler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Helen Rothfuß
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sandra Küchler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Jonas Baumgarten
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- TUD Dresden University of Technology, Faculty of Biology, Dresden, Germany
| | - Martin Bornhäuser
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
| |
Collapse
|
4
|
Johnston GP, Aydemir F, Byun H, de Wit E, Oxford KL, Kyle JE, McDermott JE, Deatherage Kaiser BL, Casey CP, Weitz KK, Olson HM, Stratton KG, Heller NC, Upadhye V, Monreal IA, Reyes Zamora JL, Wu L, Goodall DH, Buchholz DW, Barrow JJ, Waters KM, Collins RN, Feldmann H, Adkins JN, Aguilar HC. Multi-platform omics analysis of Nipah virus infection reveals viral glycoprotein modulation of mitochondria. Cell Rep 2025; 44:115411. [PMID: 40106432 DOI: 10.1016/j.celrep.2025.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The recent global pandemic illustrates the importance of understanding the host cellular infection processes of emerging zoonotic viruses. Nipah virus (NiV) is a deadly zoonotic biosafety level 4 encephalitic and respiratory paramyxovirus. Our knowledge of the molecular cell biology of NiV infection is extremely limited. This study identified changes in cellular components during NiV infection of human cells using a multi-platform, high-throughput transcriptomics, proteomics, lipidomics, and metabolomics approach. Remarkably, validation via multi-disciplinary approaches implicated viral glycoproteins in enriching mitochondria-associated proteins despite an overall decrease in protein translation. Our approach also allowed the mapping of significant fluctuations in the metabolism of glucose, lipids, and several amino acids, suggesting periodic changes in glycolysis and a transition to fatty acid oxidation and glutamine anaplerosis to support mitochondrial ATP synthesis. Notably, these analyses provide an atlas of cellular changes during NiV infections, which is helpful in designing therapeutics against the rapidly growing Henipavirus genus and related viral infections.
Collapse
Affiliation(s)
- Gunner P Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Fikret Aydemir
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kristie L Oxford
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E Kyle
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Cameron P Casey
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Heather M Olson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kelly G Stratton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Natalie C Heller
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - J Lizbeth Reyes Zamora
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lei Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - D H Goodall
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joeva J Barrow
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Katrina M Waters
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ruth N Collins
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Jiang W, Jaehnig EJ, Liao Y, Shi Z, Yaron-Barir TM, Johnson JL, Cantley LC, Zhang B. Deciphering the dark cancer phosphoproteome using machine-learned co-regulation of phosphosites. Nat Commun 2025; 16:2766. [PMID: 40113755 PMCID: PMC11926083 DOI: 10.1038/s41467-025-57993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, yet our limited knowledge about the regulation and function of most phosphosites hampers the extraction of meaningful biological insights. To address this challenge, we integrate machine learning with phosphoproteomic data from 1195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network that maps the co-regulation of 26,280 phosphosites. By incorporating network features from CoPheeMap into a second machine learning model, namely CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA uncovers 24,015 associations between 9399 phosphosites and 104 serine/threonine kinases, shedding light on many unannotated phosphosites and understudied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. Through the application of CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and those associated with cancer, we demonstrate their effectiveness in systematically elucidating phosphosites of interest. These analyses unveil dysregulated signaling processes in human cancer and identify understudied kinases as potential therapeutic targets.
Collapse
Affiliation(s)
- Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jared L Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Lewis C Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Buttigieg MM, Vlasschaert C, Bick AG, Vanner RJ, Rauh MJ. Inflammatory reprogramming of the solid tumor microenvironment by infiltrating clonal hematopoiesis is associated with adverse outcomes. Cell Rep Med 2025; 6:101989. [PMID: 40037357 DOI: 10.1016/j.xcrm.2025.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Clonal hematopoiesis (CH)-the expansion of somatically mutated hematopoietic cells-is common in solid cancers. CH is associated with systemic inflammation, but its impact on tumor biology is underexplored. Here, we report the effects of CH on the tumor microenvironment (TME) using 1,550 treatment-naive patient samples from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) cohort. CH is present in 18.3% of patients, with one-third of CH mutations also detectable in tumor-derived DNA from the same individual (CH-Tum), reflecting CH-mutant leukocyte infiltration. Across cancers, the presence of CH-Tum is associated with worse survival outcomes. Molecular analyses reveal an association between CH-Tum and an immune-rich, inflammatory TME that is notably distinct from age-related gene expression changes. These effects are most prominent in glioblastoma, where CH correlates with pronounced macrophage infiltration, inflammation, and an aggressive, mesenchymal phenotype. Our findings demonstrate that CH shapes the TME, with potential applications as a biomarker in precision oncology.
Collapse
Affiliation(s)
- Marco M Buttigieg
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA; Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Vanner
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Michael J Rauh
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Zhu C, Zeltser N, Oh J, Li CH, Boutros PC. Sex Differences in the Cancer Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643396. [PMID: 40166173 PMCID: PMC11957023 DOI: 10.1101/2025.03.14.643396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteins play a central role in cancer biology, as are the most common drug targets and biomarkers. Sex influences the proteome in many diseases, ranging from neurological to cardiovascular. In cancer, sex is associated with incidence, progression and therapeutic response, as well as characteristics of the tumour genome and transcriptome. The extent to which sex differences impact the cancer proteome remains largely unknown. To fill this gap, we quantified sex differences across 1,590 proteomes from eight cancer types, identifying 39 genes with sex-differential proteins abundance in adenocarcinomas of the lung and 15 genes in hepatocellular carcinomas, clear cell cancers of the kidney and adenocarcinomas of the pancreas. A subset of these protein differences could be rationalized by sex-differential copy number aberrations. Pathway analysis showed that sex-differential proteins in lung adenocarcinoma were enriched in MYC and E2F target pathways. These findings highlight the modest impact of sex on the cancer proteome, but the very limited power of existing proteomics cohorts for these analyses.
Collapse
|
8
|
Hyeon DY, Nam D, Shin HJ, Jeong J, Jung E, Cho SY, Shin DH, Ku JL, Baek HJ, Yoo CW, Hong EK, Lim MC, Lee SJ, Bae YK, Kim JK, Bae J, Choi W, Kim SJ, Back S, Kang C, Madar IH, Kim H, Kim S, Kim DK, Kang J, Park GW, Park KS, Shin Y, Kim SS, Jung K, Hwang D, Lee SW, Kim JY. Proteogenomic characterization of molecular and cellular targets for treatment-resistant subtypes in locally advanced cervical cancers. Mol Cancer 2025; 24:77. [PMID: 40087745 PMCID: PMC11908047 DOI: 10.1186/s12943-025-02256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/01/2025] [Indexed: 03/17/2025] Open
Abstract
We report proteogenomic analysis of locally advanced cervical cancer (LACC). Exome-seq data revealed predominant alterations of keratinization-TP53 regulation and O-glycosylation-TP53 regulation axes in squamous and adeno-LACC, respectively, compared to in early-stage cervical cancer. Integrated clustering of mRNA, protein, and phosphorylation data identified six subtypes (Sub1-6) of LACC among which Sub3, 5, and 6 showed the treatment-resistant nature with poor local recurrence-free survival. Elevated immune and extracellular matrix (ECM) activation mediated by activated stroma (PDGFD and CXCL1high fibroblasts) characterized the immune-hot Sub3 enriched with MUC5AChigh epithelial cells (ECs). Increased epithelial-mesenchymal-transition (EMT) and ECM remodeling characterized the immune-cold squamous Sub5 enriched with PGK1 and CXCL10high ECs. We further demonstrated that CIC mutations could trigger EMT activation by upregulating ETV4, and the elevation of the immune checkpoint PVR and neutrophil-like myeloid-derived suppressive cells (FCN1 and FCGR3Bhigh macrophages) could cause suppression of T-cell activation in Sub5. Increased O-linked glycosylation of mucin characterized adeno-LACC Sub6 enriched with MUC5AChigh ECs. These results provide a battery of somatic mutations, cellular pathways, and cellular players that can be used to predict treatment-resistant LACC subtypes and can serve as potential therapeutic targets for these LACC subtypes.
Collapse
Affiliation(s)
- Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Hye-Jin Shin
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Juhee Jeong
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eunsoo Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Young Cho
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Dong Hoon Shin
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Jung Baek
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chong Woo Yoo
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Eun-Kyung Hong
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Myong Cheol Lim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Sang-Jin Lee
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ki Bae
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jong Kwang Kim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jingi Bae
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Wonyoung Choi
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Su-Jin Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Seunghoon Back
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Inamul Hasan Madar
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Hokeun Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Suhwan Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Duk Ki Kim
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jihyung Kang
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Geon Woo Park
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ki Seok Park
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yourae Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Soo Kim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Keehoon Jung
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang-Won Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea.
| | - Joo-Young Kim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea.
| |
Collapse
|
9
|
Lee HJ, Park SW, Lee JH, Chang SY, Oh SM, Mun S, Kang J, Park JE, Choi JK, Kim TI, Kim JY, Kim P. Differential cellular origins of the extracellular matrix of tumor and normal tissues according to colorectal cancer subtypes. Br J Cancer 2025:10.1038/s41416-025-02964-z. [PMID: 40032993 DOI: 10.1038/s41416-025-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Understanding the proteomic-level heterogeneity of the tumor microenvironment (TME) in colorectal cancer (CRC) is crucial due to its well-known heterogeneity. While heterogenous CRC has been extensively characterized at the molecular subtype level, research into the functional heterogeneity of fibroblasts, particularly their relationship with extracellular matrix (ECM) alterations, remains limited. Addressing this gap is essential for a comprehensive understanding of CRC progression and the development of targeted therapies. METHODS 24 tissue samples from 21 CRC patients, along with adjacent normal tissues (NAT), were collected and decellularized using a detergent-based method to enrich the ECM component. Proteomic analysis of ECM-enriched samples was performed using tandem mass tag (TMT) spectrometry, followed by statistical analysis including differential expression protein (DEP) analysis. Single-cell RNA sequencing (scRNA-Seq) data from public datasets were integrated and analyzed to delineate cell states within the TME. Bulk tissue RNA-Seq and bioinformatics analysis, including consensus molecular subtype (CMS) classification and single-cell level deconvolution of TCGA bulk RNA-seq data, were conducted to further explore gene expression patterns and TME composition. RESULTS Differential cellular origin of the NAT and tumorous ECM proteins were identified, revealing 110 ECM proteins enriched in NAT and 28 ECM proteins in tumor tissues. Desmoplastic and WNT5A+ inflammatory fibroblasts were indicated as the sources of tumor-enriched ECM proteins, while ADAMDEC1+ expressing fibroblasts and PI16+ expressing fibroblast were identified as the sources of NAT-enriched ECM proteins. Deconvolution of bulk RNA-seq of CRC tissues discriminated CMS-specific fibroblast state, reflecting the biological traits of each CMS subtype. Specially, seven ECM genes specific to mesenchymal subtype (CMS4), including PI16+ fibroblast-related 4 genes (SFRP2, PRELP, OGN, SRPX) and desmoplastic fibroblast-related 3 genes (THBS2, CTHRC1, BGN), showed a significant association with poorer survival in patient with CRC. CONCLUSION We conducted an extracellular matrix (ECM)-focused profiling of the TME by integrating quantitative proteomics with single-cell RNA sequencing (scRNA-seq) data from CRC patients. We identified the ECM proteins of NAT and tumor tissue, and established a cell-matrisome database. We defined mesenchymal subtype-specific molecules associated with specific fibroblast subtypes showing a significant association with poorer survival in patients with CRC. Our ECM-focused profiling of tumor stroma provides new insights as indicators for biological processes and clinical endpoints.
Collapse
Affiliation(s)
- Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Woo Park
- Korea Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Jun Hyeong Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Shin Young Chang
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Mi Oh
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Junho Kang
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Young Kim
- Korea Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea.
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Hu GS, Zheng ZZ, He YH, Wang DC, Nie RC, Liu W. Integrated Analysis of Proteome and Transcriptome Profiling Reveals Pan-Cancer-Associated Pathways and Molecular Biomarkers. Mol Cell Proteomics 2025; 24:100919. [PMID: 39884577 PMCID: PMC11907456 DOI: 10.1016/j.mcpro.2025.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Understanding dysregulated genes and pathways in cancer is critical for precision oncology. Integrating mass spectrometry-based proteomic data with transcriptomic data presents unique opportunities for systematic analyses of dysregulated genes and pathways in pan-cancer. Here, we compiled a comprehensive set of datasets, encompassing proteomic data from 2404 samples and transcriptomic data from 7752 samples across 13 cancer types. Comparisons between normal or adjacent normal tissues and tumor tissues identified several dysregulated pathways including mRNA splicing, interferon pathway, fatty acid metabolism, and complement coagulation cascade in pan-cancer. Additionally, pan-cancer upregulated and downregulated genes (PCUGs and PCDGs) were also identified. Notably, RRM2 and ADH1B, two genes which belong to PCUGs and PCDGs, respectively, were identified as robust pan-cancer diagnostic biomarkers. TNM stage-based comparisons revealed dysregulated genes and biological pathways involved in cancer progression, among which the dysregulation of complement coagulation cascade and epithelial-mesenchymal transition are frequent in multiple types of cancers. A group of pan-cancer continuously upregulated and downregulated proteins in different tumor stages (PCCUPs and PCCDPs) were identified. We further constructed prognostic risk stratification models for corresponding cancer types based on dysregulated genes, which effectively predict the prognosis for patients with these cancers. Drug prediction based on PCUGs and PCDGs as well as PCCUPs and PCCDPs revealed that small molecule inhibitors targeting CDK, HDAC, MEK, JAK, PI3K, and others might be effective treatments for pan-cancer, thereby supporting drug repurposing. We also developed web tools for cancer diagnosis, pathologic stage assessment, and risk evaluation. Overall, this study highlights the power of combining proteomic and transcriptomic data to identify valuable diagnostic and prognostic markers as well as drug targets and treatments for cancer.
Collapse
Affiliation(s)
- Guo-Sheng Hu
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China; State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zao-Zao Zheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Du-Chuang Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rui-Chao Nie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
11
|
Deng Y, Huang L, Gao S, Sheng Z, Luo Y, Zhang N, Syed SE, Dai R, Li Q, Fu X, Liang S. The SUMOylated RREB1 interacts with KDM1A to induce 5-fluorouracil resistance via upregulating thymidylate synthase and activating DNA damage response pathway in colorectal cancer. MedComm (Beijing) 2025; 6:e70105. [PMID: 39991628 PMCID: PMC11843160 DOI: 10.1002/mco2.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/10/2024] [Accepted: 12/31/2024] [Indexed: 02/25/2025] Open
Abstract
Chemoresistance is one main cause of failure in colorectal cancer (CRC) treatment. The role of transcription factor Ras-responsive element binding protein 1 (RREB1) remains unclarified in CRC chemoresistance. Herein, we reveal that RREB1 functions as an oncogene to promote cell proliferation and 5-fluorouracil (5-FU) chemoresistance in CRC, and SUMOylation is required for RREB1 to exert its oncogenic role in CRC. RREB1 induced cell cycle arrest at the S-phase and a decreased apoptosis rate under 5-FU exposure. Mechanistically, the interaction of RREB1 with lysine demethylase 1A (KDM1A) elevated expression of 5-FU targeting proteins thymidylate synthase (TS) and thymidine kinase (TK1) to maintain the nucleotide pool balance under 5-FU treatment, and enhanced activation of Chk1-mediated DNA damage response (DDR) pathway. The deSUMOylation of RREB1 resulted in a reduced interaction of RREB1 with KDM1A, contributing to a downregulation of TS expression and a less activation of DDR pathway. Moreover, KDM1A knockdown improved the DNA damage and reduced RREB1-mediated resistance to 5-FU. These findings provide new insights into RREB1-mediated chemotherapy responses in CRC and indicate RREB1 is a potential target for overcoming 5-FU resistance.
Collapse
Affiliation(s)
- Ya‐Nan Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| | - Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| | - Shan Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| | - Zenghua Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| | - Yinheng Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| | - Nan Zhang
- Department of Medical OncologyCancer Center West China HospitalSichuan UniversityChengduPR China
| | - Samina Ejaz Syed
- Department of Biochemistry and Biotechnology, Baghdad CampusThe Islamia University of BahawalpurBahawalpurPakistan
| | - Ruiwu Dai
- Department of General SurgeryGeneral Hospital of Western Theater CommandChengduPR China
| | - Qiu Li
- Department of Medical OncologyCancer Center West China HospitalSichuan UniversityChengduPR China
| | - Xianghui Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPR China
| |
Collapse
|
12
|
Dong Q, Tan M, Zhou Y, Zhang Y, Li J. Causal Inference and Annotation of Phosphoproteomics Data in Multiomics Cancer Studies. Mol Cell Proteomics 2025; 24:100905. [PMID: 39793886 PMCID: PMC11889353 DOI: 10.1016/j.mcpro.2025.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Protein phosphorylation plays a crucial role in regulating diverse biological processes. Perturbations in protein phosphorylation are closely associated with downstream pathway dysfunctions, whereas alterations in protein expression could serve as sensitive indicators of pathological status. However, there are currently few methods that can accurately identify the regulatory links between protein phosphorylation and expression, given issues like reverse causation and confounders. Here, we present Phoslink, a causal inference model to infer causal effects between protein phosphorylation and expression, integrating prior evidence and multiomics data. We demonstrated the feasibility and advantages of our method under various simulation scenarios. Phoslink exhibited more robust estimates and lower false discovery rate than commonly used Pearson and Spearman correlations, with better performance than canonical instrumental variable selection methods for Mendelian randomization. Applying this approach, we identified 345 causal links involving 109 phosphosites and 310 proteins in 79 lung adenocarcinoma (LUAD) samples. Based on these links, we constructed a causal regulatory network and identified 26 key regulatory phosphosites as regulators strongly associated with LUAD. Notably, 16 of these regulators were exclusively identified through phosphosite-protein causal regulatory relationships, highlighting the significance of causal inference. We explored potentially druggable phosphoproteins and provided critical clues for drug repurposing in LUAD. We also identified significant mediation between protein phosphorylation and LUAD through protein expression. In summary, our study introduces a new approach for causal inference in phosphoproteomics studies. Phoslink demonstrates its utility in potential drug target identification, thereby accelerating the clinical translation of cancer proteomics and phosphoproteomic data.
Collapse
Affiliation(s)
- Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Yingchun Zhou
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Kawahara R, Kautto L, Bansal N, Dipta P, Chau TH, Liquet-Weiland B, Ahn SB, Thaysen-Andersen M. HEXB Drives Raised Paucimannosylation in Colorectal Cancer and Stratifies Patient Risk. Mol Cell Proteomics 2025; 24:100927. [PMID: 39947398 PMCID: PMC11932691 DOI: 10.1016/j.mcpro.2025.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Noninvasive prognostic markers are needed to improve the survival of colorectal cancer (CRC) patients. Toward this goal, we applied untargeted systems glycobiology approaches to snap-frozen and formalin-fixed paraffin-embedded tumor tissues and peripheral blood mononuclear cells from CRC patients spanning different disease stages and matching controls to faithfully uncover molecular changes associated with CRC. Quantitative glycomics and immunohistochemistry revealed that noncanonical paucimannosidic N-glycans are elevated in CRC tumors relative to normal adjacent tissues. Cell origin-focused glycoproteomics enabled using the well-curated Human Protein Atlas combined with immunohistochemistry of CRC tumor tissues recapitulated these findings and indicated that the paucimannosidic proteins were in part from tumor-infiltrating monocytes (e.g., MPO, AZU1) and of CRC cell origin (e.g., LGALS3BP, PSAP). Biosynthetically explaining these observations, N-acetyl-β-D-hexosaminidase (Hex) subunit β (HEXB) was found to be overexpressed in CRC tissues relative to normal adjacent colorectal tissues and colocalization and enzyme inhibition studies confirmed that HEXB facilitates paucimannosidic protein biosynthesis in CRC cells. Employing a sensitive, quick, and robust enzyme activity assay, we then showed that Hex activity was elevated in plasma and peripheral blood mononuclear cells from patients with advanced CRC relative to controls and those with early-stage disease. Surveying a large donor cohort, the plasma Hex activity was found to be raised in CRC patients relative to normal controls and correlated with the 5-year survival of CRC patients indicating that elevated plasma Hex activity is a potential disease risk marker for patient outcome. Our glycoproteomics-driven findings open avenues for better prognostication and disease risk stratification in CRC.
Collapse
Affiliation(s)
- Rebeca Kawahara
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| | - Liisa Kautto
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Naaz Bansal
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Benoit Liquet-Weiland
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, New South Wales, Australia; Université de Pau et Pays de L'Adour, Laboratoire de Mathématiques et de leurs Applications de PAU, CNRS, E2S-UPPA, Pau, France
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
14
|
He J, Chai X, Zhang Q, Wang Y, Wang Y, Yang X, Wu J, Feng B, Sun J, Rui W, Ze S, Fu Y, Zhao Y, Zhang Y, Zhang Y, Liu M, Liu C, She M, Hu X, Ma X, Yang H, Li D, Zhao S, Li G, Zhang Z, Tian Z, Ma Y, Cao L, Yi B, Li D, Nussinov R, Eng C, Chan TA, Ruppin E, Gutkind JS, Cheng F, Liu M, Lu W. The lactate receptor HCAR1 drives the recruitment of immunosuppressive PMN-MDSCs in colorectal cancer. Nat Immunol 2025; 26:391-403. [PMID: 39905201 DOI: 10.1038/s41590-024-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025]
Abstract
Most patients with colorectal cancer do not achieve durable clinical benefits from immunotherapy, underscoring the existence of alternative immunosuppressive mechanisms. Here we found that activation of the lactate receptor HCAR1 signaling pathway induced the expression of chemokines CCL2 and CCL7 in colorectal tumor cells, leading to the recruitment of immunosuppressive CCR2+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to the tumor microenvironment. Ablation of Hcar1 in mice with colorectal tumors significantly decreased the abundance of tumor-infiltrating CCR2+ PMN-MDSCs, enhanced the activation of CD8+ T cells and, consequently, reduced tumor burden. We detected immunosuppressive CCR2+ PMN-MDSCs in tumor specimens from individuals with colorectal and other cancers. The US Food and Drug Administration-approved drug reserpine suppressed lactate-mediated HCAR1 activation, impaired the recruitment of CCR2+ PMN-MDSCs, boosted CD8+ T cell-dependent antitumor immunity and sensitized immunotherapy-resistant tumors to programmed cell death protein 1 antibody therapy in mice with colorectal tumors. Altogether, we described HCAR1-driven recruitment of CCR2+ PMN-MDSCs as a mechanism of immunosuppression.
Collapse
Affiliation(s)
- Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Wang
- Department of Urology and Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yijie Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jingbo Wu
- Department of Urology and Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bo Feng
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Rui
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyin Ze
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yumiao Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chuang Liu
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Meifu She
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiangfei Hu
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guichao Li
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghui Tian
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lingyan Cao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yi
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Timothy A Chan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California,San Diego, San Diego, CA, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- University Engineering Research Center of Oncolytic & Nanosystem Development, Guangxi, China.
| |
Collapse
|
15
|
Suo Y, Song Y, Wang Y, Liu Q, Rodriguez H, Zhou H. Advancements in proteogenomics for preclinical targeted cancer therapy research. BIOPHYSICS REPORTS 2025; 11:56-76. [PMID: 40070661 PMCID: PMC11891078 DOI: 10.52601/bpr.2024.240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025] Open
Abstract
Advancements in molecular characterization technologies have accelerated targeted cancer therapy research at unprecedented resolution and dimensionality. Integrating comprehensive multi-omic molecular profiling of a tumor, proteogenomics, marks a transformative milestone for preclinical cancer research. In this paper, we initially provided an overview of proteogenomics in cancer research, spanning genomics, transcriptomics, and proteomics. Subsequently, the applications were introduced and examined from different perspectives, including but not limited to genetic alterations, molecular quantifications, single-cell patterns, different post-translational modification levels, subtype signatures, and immune landscape. We also paid attention to the combined multi-omics data analysis and pan-cancer analysis. This paper highlights the crucial role of proteogenomics in preclinical targeted cancer therapy research, including but not limited to elucidating the mechanisms of tumorigenesis, discovering effective therapeutic targets and promising biomarkers, and developing subtype-specific therapies.
Collapse
Affiliation(s)
- Yuying Suo
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanli Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qian Liu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
16
|
Acha-Sagredo A, Andrei P, Clayton K, Taggart E, Antoniotti C, Woodman CA, Afrache H, Fourny C, Armero M, Moinudeen HK, Green M, Bhardwaj N, Mikolajczak A, Rodriguez-Lopez M, Crawford M, Connick E, Lim S, Hobson P, Linares J, Ignatova E, Pelka D, Smyth EC, Diamantis N, Sosnowska D, Carullo M, Ciraci P, Bergamo F, Intini R, Nye E, Barral P, Mishto M, Arnold JN, Lonardi S, Cremolini C, Fontana E, Rodriguez-Justo M, Ciccarelli FD. A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer. Cancer Cell 2025; 43:292-307.e7. [PMID: 39824178 DOI: 10.1016/j.ccell.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/21/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025]
Abstract
Fewer than 50% of metastatic deficient mismatch repair (dMMR) colorectal cancer (CRC) patients respond to immune checkpoint inhibition (ICI). Identifying and expanding this patient population remains a pressing clinical need. Here, we report that an interferon-high immunophenotype locally enriched in cytotoxic lymphocytes and antigen-presenting macrophages is required for response. This immunophenotype is not exclusive to dMMR CRCs but comprises a subset of MMR proficient (pMMR) CRCs. Single-cell spatial analysis and in vitro cell co-cultures indicate that interferon-producing cytotoxic T cells induce overexpression of antigen presentation in adjacent macrophages and tumor cells, including MHC class II invariant chain CD74. dMMR CRCs expressing high levels of CD74 respond to ICI and a subset of CD74 high pMMR CRC patients show better progression free survival when treated with ICI. Therefore, CD74 abundance can identify the constitutive interferon-high immunophenotype determining clinical benefit in CRC, independently of tumor mutational burden or MMR status.
Collapse
Affiliation(s)
- Amelia Acha-Sagredo
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Pietro Andrei
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Kalum Clayton
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Emma Taggart
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chloé A Woodman
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Hassnae Afrache
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Molecular Immunology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Constance Fourny
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Molecular Immunology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Maria Armero
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Hafsa Kaja Moinudeen
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | - Nisha Bhardwaj
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | - Anna Mikolajczak
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Marg Crawford
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Emma Connick
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Lim
- Flow Cytometry Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip Hobson
- Flow Cytometry Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Josep Linares
- Department of Histopathology, University College London Cancer Institute, London, UK
| | | | - Diana Pelka
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | - Elizabeth C Smyth
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Nikolaos Diamantis
- Department of Medical Oncology, Royal Free London NHS Foundation Trust, London WC1E 6BT, UK
| | - Dominika Sosnowska
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Martina Carullo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Ciraci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Rossana Intini
- Oncology Unit 1, Department of Oncology Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Immune Responses to Lipids Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Molecular Immunology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Sara Lonardi
- Oncology Unit 1, Department of Oncology Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Fontana
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | | | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK.
| |
Collapse
|
17
|
Xiao C, Wu H, Long J, You F, Li X. Olink Profiling of Intestinal Tissue Identifies Novel Biomarkers For Colorectal Cancer. J Proteome Res 2025; 24:599-611. [PMID: 39757570 PMCID: PMC11812010 DOI: 10.1021/acs.jproteome.4c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Comprehensive protein profiling in intestinal tissues provides detailed information about the pathogenesis of colorectal cancer (CRC). This study quantified the expression levels of 92 oncology-related proteins in tumors, paired para-carcinoma tissues, and remote normal tissues from a cohort of 52 CRC patients utilizing the Olink technology. The proteomic profile of normal tissues closely resembled that of para-carcinoma tissues while distinctly differing from that of tumors. Among the 68 differentially expressed proteins (DEPs) identified between the tumor and normal tissues, WISP-1, ESM-1, and TFPI-2 showed the most pronounced alterations and exhibited relatively strong correlations. These markers also presented the highest AUC values for distinguishing between tissue types. Bioinformatic analysis of the DEPs revealed that the plasma membrane and the PI3K-AKT signaling pathway were among the most enriched GO terms and KEGG pathways. Furthermore, although TFPI-2 is typically recognized as a tumor suppressor, both Olink and enzyme linked immunosorbent assay (ELISA) analyses have demonstrated that its expression is significantly elevated in tumors compared with paired normal tissues. To the best of our knowledge, this is the first study to profile the proteome of intestinal tissue using the Olink technology. This work offers valuable insights into potential biomarkers and therapeutic targets for CRC, complementing the Olink profiling of circulating proteins.
Collapse
Affiliation(s)
- Chong Xiao
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
- Oncology
Teaching and Research Department, Chengdu
University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China
| | - Hao Wu
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
| | - Jing Long
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
| | - Fengming You
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
- Institute
of Oncology, Chengdu University of Traditional
Chinese Medicine, Chengdu 610075, Sichuan, China
| | - Xueke Li
- TCM
Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu 610075, Sichuan, China
- Oncology
Teaching and Research Department, Chengdu
University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China
| |
Collapse
|
18
|
Luo S, Zhu Y, Guo Z, Zheng C, Fu X, You F, Li X. Exploring biomarkers and molecular mechanisms of Type 2 diabetes mellitus promotes colorectal cancer progression based on transcriptomics. Sci Rep 2025; 15:4086. [PMID: 39901036 PMCID: PMC11791047 DOI: 10.1038/s41598-025-88520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) has been confirmed as an independent risk factor for colorectal cancer (CRC) in many studies. However, the mechanisms behind T2DM's role in the progression of CRC remain unclear. This study aims to explore the potential biomarkers and molecular mechanisms involved in T2DM-promoted CRC progression. The limma package was used to identify differentially expressed genes in tumor tissue from CRC patients with or without T2DM. The key biological processes were screened by gene ontology and gene set enrichment analysis. A diagnostic model for co-morbidities was constructed by logistic regression model with least absolute shrinkage and selection operator (Lasso) regularization method. The diagnostic performance was assessed by supplementing external datasets to draw ROC curves on the diagnostic model. The diagnostic model was further screened for key genes by prognostic analysis. The relationship of key genes with immune cells and other cells was evaluated by immune infiltration algorithm and single-cell transcription analysis. Drug prediction was performed by cMAP and the obtained drugs were molecularly docked with the key genes. The differentially expressed genes of T2DM-promoted CRC progression were mainly enriched to O-linked glycosylation-related processes. The diagnostic model constructed based on Lasso logistic regression had good diagnostic performance (AUC > 0.8). COX11 was the key gene for co-morbidities: in tumor tissues, COX11 expression was significantly higher than that in normal colon tissues. However, COX11 gene expression was significantly lower in patients with comorbidities than in patients without T2DM in tumor tissue. External datasets confirmed from both mRNA and protein expression levels that low COX11 expression was significantly associated with poor CRC prognosis. Immune infiltration analysis suggested that its expression related to the proportion of M2 macrophages. Single-cell transcriptome analysis revealed a close association of COX11 expression with endothelial cells and macrophages. The top4 drugs predicted bound well to COX11. Our study revealed that the pathogenesis of T2DM-promoted CRC progression related to O-linked glycosylation. We constructed a diagnostic model for T2DM-CRC co-morbidity. Meanwhile, we identified COX11 as a potential immune-related molecular marker closely associated with T2DM-promoted CRC progression. These mechanisms and molecular markers may provide new ideas for further studies of T2DM-promoted CRC progression and contribute to drug discovery for the treatment of co-morbidities.
Collapse
Affiliation(s)
- Simin Luo
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yuhong Zhu
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zhanli Guo
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Chuan Zheng
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xi Fu
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Fengming You
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xueke Li
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
19
|
Gorría T, Sierra-Boada M, Rojas M, Figueras C, Marin S, Madurga S, Cascante M, Maurel J. Metabolic Singularities in Microsatellite-Stable Colorectal Cancer: Identifying Key Players in Immunosuppression to Improve the Immunotherapy Response. Cancers (Basel) 2025; 17:498. [PMID: 39941865 PMCID: PMC11815897 DOI: 10.3390/cancers17030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Although immune checkpoint inhibitor (ICI) therapy is currently the standard of care in microsatellite-unstable (MSI) metastatic colorectal cancer (CRC), ICI therapy, alone or in combination with other therapies, is not a treatment approach in microsatellite-stable (MSS) CRC, which is present in 95% of patients. In this review, we focus on metabolic singularities-at the transcriptomic (either bulk or single cell), proteomic, and post-translational modification levels-that induce immunosuppression in cancer and specifically in MSS CRC. First, we evaluate the current efficacy of ICIs in limited and metastatic disease in MSS CRC. Second, we discuss the latest findings on the potential biomarkers for evaluating ICI efficacy in MSS CRC using strict REMARK criteria. Third, we review the current evidence on metabolic patterns in CRC tumors and immune cell metabolism to advance our understanding of metabolic crosstalk and to pave the way for the development of combination strategies to enhance ICI efficacy.
Collapse
Affiliation(s)
- Teresa Gorría
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
- Translational Genomics and Targeted Therapies in Solid Tumors, Agustí Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Marina Sierra-Boada
- Medical Oncology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - Mariam Rojas
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
| | - Carolina Figueras
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08036 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona (IBUB), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sergio Madurga
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08036 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona (IBUB), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
- Translational Genomics and Targeted Therapies in Solid Tumors, Agustí Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
20
|
Wen M, Qiu Y, Wang M, Tang F, Hu W, Zhu Y, Zhao W, Hu W, Chen Z, Duan Y, Geng A, Tan F, Li Y, Pei Q, Pei H, Mao Z, Wu N, Sun L, Tan R. Enhancing low-dose radiotherapy efficacy with PARP inhibitors via FBL-mediated oxidative stress response in colorectal cancer. Oncogene 2025; 44:228-240. [PMID: 39516657 PMCID: PMC11746129 DOI: 10.1038/s41388-024-03207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The effectiveness of radiotherapy in colorectal cancer (CRC) relies on its ability to induce cell death via the generation of reactive oxygen species (ROS). However, genes responsible for mitigating oxidative stress can impede radiotherapy's efficacy. In this study, we elucidate a significant association between the nucleolar protein Fibrillarin (FBL) and the oxidative stress response in CRC tumors. Our findings reveal elevated expression of FBL in colorectal cancer, which positively correlates with oxidative stress levels. Mechanistically, FBL demonstrates direct accumulation at DNA damage sites under the regulation of PARP1. Specifically, the N-terminal GAR domain of FBL is susceptible to PARylation by PARP1, enabling FBL to recognize PARylated proteins. The accumulation of damaged FBL plays a pivotal role in facilitating short-patched base excision repair by recruiting Ligase III and disassociating PCNA and FEN1. Moreover, tumors with heightened FBL expression exhibit reduced DNA damage levels but increased sensitivity to combined low-dose radiotherapy and olaparib treatment. This underscores the potential of leveraging PARP inhibitors to augment radiotherapy sensitivity in CRC cases characterized by elevated FBL expression, offering a promising therapeutic avenue.
Collapse
Affiliation(s)
- Ming Wen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Huan, 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, 410008, China
| | - Yanfang Qiu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Feiyu Tang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Wenfeng Hu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Yongwei Zhu
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenchao Zhao
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Wenzhen Hu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Zhuohang Chen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fengbo Tan
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqiang Li
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qian Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haiping Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lunquan Sun
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Huan, 410008, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, 410008, China.
| | - Rong Tan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Huan, 410008, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, 410008, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Vlachavas EI, Voutetakis K, Kosmidou V, Tsikalakis S, Roditis S, Pateas K, Kim R, Pagel K, Wolf S, Warsow G, Dimitrakopoulou-Strauss A, Zografos GN, Pintzas A, Betge J, Papadodima O, Wiemann S. Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer. Mol Oncol 2025. [PMID: 39876058 DOI: 10.1002/1878-0261.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Spyridon Tsikalakis
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Roditis
- 3rd Surgical Department G.Gennimatas Hospital, Athens, Greece
- Surgical Department, University Hospital of North Midlands, Stoke-on-Trent, UK
| | | | | | | | - Stephan Wolf
- High-Throughput Sequencing Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Germany
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
22
|
Papantonis A, Rogalla S, Dullin C, Alves F, Bohnenberger H. [New methods at the transition from research to routine diagnostics]. PATHOLOGIE (HEIDELBERG, GERMANY) 2025:10.1007/s00292-024-01412-8. [PMID: 39841205 DOI: 10.1007/s00292-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Pathology, traditionally focused on classification and diagnosis, is continuously evolving through new technologies. Advances in proteomics, epigenetics, tissue staining, and 3D imaging expand the possibilities of classical morphology. AIM OF THE STUDY The aim of this study was to investigate how modern technologies can improve diagnostic accuracy and therapy selection and how they can be integrated into pathologic routine diagnostics. MATERIALS AND METHODS Recent studies in proteomics, epigenetics, multiplex tissue staining, and 3D tissue imaging were analyzed to assess their application and the challenges of clinical implementation. RESULTS The analysis shows significant potential for pathologic diagnostics. Proteomics provides a deeper understanding of the molecular architecture of tumors, while epigenetics and 3D genome architecture offer new insights into genetic regulation and tumor heterogeneity. Multiplex tissue staining and 3D tissue imaging improve spatial tissue analysis. DISCUSSION Despite the potential to improve diagnostics, high costs, technical complexity, and lack of standardization hinder integration into clinical practice. Nevertheless, these technologies offer promising approaches for optimizing diagnostics and therapy selection. Research and interdisciplinary collaboration are crucial to successfully integrating these innovations into routine clinical practice.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institut für Pathologie, Fachbereich Thorax- und Molekularpathologie, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Deutschland
| | - Stephan Rogalla
- Abteilung für Gastroenterologie und Hepatologie, Medizinische Fakultät, Stanford University, Stanford, CA, USA
| | - Christian Dullin
- Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
- Translationale Molekulare Bildgebung, Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Deutschland
| | - Frauke Alves
- Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
- Translationale Molekulare Bildgebung, Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Deutschland
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Hanibal Bohnenberger
- Institut für Pathologie, Fachbereich Thorax- und Molekularpathologie, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Deutschland.
| |
Collapse
|
23
|
Li W, Sun J, Sun R, Wei Y, Zheng J, Zhu Y, Guo T. Integral-Omics: Serial Extraction and Profiling of Metabolome, Lipidome, Genome, Transcriptome, Whole Proteome and Phosphoproteome Using Biopsy Tissue. Anal Chem 2025; 97:1190-1198. [PMID: 39772508 DOI: 10.1021/acs.analchem.4c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The integrative multiomics characterization of minute amounts of clinical tissue specimens has become increasingly important. Here, we present an approach called Integral-Omics, which enables sequential extraction of metabolites, lipids, genomic DNA, total RNA, proteins, and phosphopeptides from a single biopsy-level tissue specimen. We benchmarked this method with various samples, applied the workflow to perform multiomics profiling of tissues from six patients with colorectal cancer, and found that tumor tissues exhibited suppressed ferroptosis pathways at multiomics levels. Together, this study presents a methodology that enables sequential extraction and profiling of metabolomics, lipidomics, genomics, transcriptomics, proteomics, and phosphoproteomics using biopsy tissue specimens.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Sun
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Yujuan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
| | - Tiannan Guo
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| |
Collapse
|
24
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Zhang T, Mathews JV, Bumgarner BM, Gursel DB, Moore RJ, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. Nat Commun 2025; 16:547. [PMID: 39805815 PMCID: PMC11730317 DOI: 10.1038/s41467-024-54643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single voxels dissected by LCM to the tube cap and SOP voxel processing in the same collection cap. This method enables reproducible, label-free quantification of approximately 900 and 4600 proteins for single voxels at 20 µm × 20 µm × 10 µm (~1 cell region) and 200 µm × 200 µm × 10 µm (~100 cell region) from fresh frozen human spleen tissue, respectively. It can reveal spatially resolved protein signatures and region-specific signaling pathways. Furthermore, wcSOP-MS is demonstrated to be broadly applicable for OCT-embedded and FFPE human archived tissues as well as for small-scale 2D proteome mapping of tissues at high spatial resolutions. wcSOP-MS may pave the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhangyang Xu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Scholten
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeremy V Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin M Bumgarner
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Demirkan B Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
25
|
Zhang Q, Xu X, Jiang D, Wang Y, Wang H, Zhu J, Tang S, Wang R, Zhao S, Li K, Feng J, Xiang H, Yao Z, Xu N, Fang R, Guo W, Liu Y, Hou Y, Ding C. Integrated proteogenomic characterization of ampullary adenocarcinoma. Cell Discov 2025; 11:2. [PMID: 39762212 PMCID: PMC11704194 DOI: 10.1038/s41421-024-00742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC), among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion. Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3 (DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4+ T-cell infiltration cluster), are associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.
Collapse
Affiliation(s)
- Qiao Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xiaomeng Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Shaoshuai Tang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Li
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Hang Xiang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Rundong Fang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Wenjia Guo
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, Xinjiang, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, Xinjiang, China.
| |
Collapse
|
26
|
Liu Y, Elmas A, Huang KL. Mutation impact on mRNA versus protein expression across human cancers. Gigascience 2025; 14:giae113. [PMID: 39775839 PMCID: PMC11702362 DOI: 10.1093/gigascience/giae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation. Proteogenomic datasets from large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels. RESULTS We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level expressions of 953 cancer cases with paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other mutations from likely "long-tail" driver genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily explained by transcriptomics. Cross-validating with data from massively parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional. CONCLUSION This study reveals that somatic mutations can exhibit distinct impacts on mRNA and protein levels, underscoring the necessity of integrating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights provide a framework for prioritizing mutations for further functional validation and therapeutic targeting.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abdulkadir Elmas
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
28
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
29
|
Shi Z, Lei JT, Elizarraras JM, Zhang B. Mapping the functional network of human cancer through machine learning and pan-cancer proteogenomics. NATURE CANCER 2025; 6:205-222. [PMID: 39663389 DOI: 10.1038/s43018-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Large-scale omics profiling has uncovered a vast array of somatic mutations and cancer-associated proteins, posing substantial challenges for their functional interpretation. Here we present a network-based approach centered on FunMap, a pan-cancer functional network constructed using supervised machine learning on extensive proteomics and RNA sequencing data from 1,194 individuals spanning 11 cancer types. Comprising 10,525 protein-coding genes, FunMap connects functionally associated genes with unprecedented precision, surpassing traditional protein-protein interaction maps. Network analysis identifies functional protein modules, reveals a hierarchical structure linked to cancer hallmarks and clinical phenotypes, provides deeper insights into established cancer drivers and predicts functions for understudied cancer-associated proteins. Additionally, applying graph-neural-network-based deep learning to FunMap uncovers drivers with low mutation frequency. This study establishes FunMap as a powerful and unbiased tool for interpreting somatic mutations and understudied proteins, with broad implications for advancing cancer biology and informing therapeutic strategies.
Collapse
Affiliation(s)
- Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John M Elizarraras
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
30
|
Shi J, Yang Y, Chen F, Zhou L, Wei H, Dong F, Wang X, Shan Y, Chen T. RPL36A activates ERK pathway and promotes colorectal cancer growth. Transl Oncol 2025; 51:102170. [PMID: 39489085 PMCID: PMC11567952 DOI: 10.1016/j.tranon.2024.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Ribosomal protein L36A (RPL36A) was one of the most upregulated proteins in colorectal cancer (CRC), yet its role in colorectal cancer (CRC) remains largely unexplored, with limited studies investigating its expression and biological functions. In this investigation, we confirmed a marked upregulation of RPL36A in CRC tissues, correlating with an adverse prognosis. Silencing RPL36A markedly attenuated CRC cell malignant properties and tumor xenograft growth. Further mechanistic analysis indicated that RPL36A depletion diminished phosphorylated ERK levels, subsequently impacting the expression of c-Myc and ELK1, key downstream effectors in the MAPK/ERK pathway. Notably, the tumor-suppressive effects of RPL36A knockdown could be negated by an ERK activator. Collectively, our findings underscore the oncogenic function of RPL36A in CRC and propose it as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Yebin Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Fangci Chen
- Department of Anorectal Surgery, First People's Hospital of LinPing District, Hangzhou, Hangzhou, Zhejiang, China
| | - Linpo Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Haoran Wei
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Fanhe Dong
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People ' s Hospital, China; Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China
| | - Yuqiang Shan
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China.
| | - Tianwei Chen
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People ' s Hospital, School of Medicine, Westlake University, China.
| |
Collapse
|
31
|
Zhao W, Luo Q, Zhan H, Du Z, Deng T, Duan H. DDX18 influences chemotherapy sensitivity in colorectal cancer by regulating genomic stability. Exp Cell Res 2025; 444:114344. [PMID: 39577603 DOI: 10.1016/j.yexcr.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Chromosomal Instability (CIN) encompasses approximately 65 %-70 % of colorectal cancer (CRC) patients, playing a pivotal role in tumor progression. However, controversies persist regarding the molecular characteristics and treatment strategies associated with these patients. Integrative colorectal cancer proteogenomic analysis identified DDX18 in colorectal cancer. We investigated the molecular mechanisms underlying the regulation of colorectal cancer by the R-loop binding protein DDX18 using colon cancer tissues, cell lines and patient-derived organoids. Our findings revealed that DDX18 expression positively correlates with the expression of genomic instability marker R-loops. Moreover, heightened DDX18 expression delays the completion of DNA damage repair, leading to an increase in double-strand DNA breaks, thereby promoting genomic instability. Notably, the upregulation of DDX18 enhances sensitivity to DNA-damaging. This study elucidated DDX18 beyond participating in fundamental physiological functions, may play a crucial role in the regulation of genomic stability, and also provides a powerful resource for further functional exploration of DDX18 in cancer progression and therapeutic application.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China.
| | - Qingqing Luo
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China
| | - Han Zhan
- 921 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, China
| | - Zhen Du
- Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Tan Deng
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China.
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China.
| |
Collapse
|
32
|
Jun SY, Hong SM, Jang KT. Prognostic Value of Retinoblastoma in Small Intestinal Adenocarcinoma: A Multicenter Retrospective Study. J Korean Med Sci 2024; 39:e335. [PMID: 39742876 DOI: 10.3346/jkms.2024.39.e335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The retinoblastoma (RB) protein which is encoded by RB gene selectively provides a cell type-specific function in malignancies. In colorectal carcinoma, RB has been highly expressed and related cyclin/cyclin-dependent kinase 4/6 inhibitors have shown improved therapeutic effects in some patients. However, little is known about RB in small intestinal adenocarcinoma (SIAC). METHODS Here, we conducted a multi-institutional study of RB expression in 229 surgically resected SIACs to explore the clinicopathologic and prognostic implications and the relationship with microsatellite instability (MSI) status and KRAS mutations. RESULTS High RB expression (RBHigh) was more commonly observed in SIACs (76/229, 33%) than in normal small intestinal mucosa (27/188, 14%; P < 0.001). RBHigh was associated with nodular growth patterns (P = 0.028), the absence of lymphovascular (P = 0.001) and perineural invasion (P = 0.048), and a lower T category (P = 0.042) and indicated better overall survival (P = 0.003). In multivariate analysis, RBHigh (P = 0.049) was an independent prognostic predictor of better prognosis, along with younger patient age (P = 0.049), the absence of retroperitoneal seeding (P = 0.004), lower tumor stage (P < 0.001), and MSI (P = 0.005). The prognostic impact of RB expression was consistently observed regardless of MSI status and specifically persistent in SIACs with lower stages (stages I and II). CONCLUSION RBHigh was related to favorable clinicopathologic SIAC characteristics and indicated better patient prognosis. The prognostic predictability of RB was found in SIACs with lower stages, independent of MSI status. RB expression is a reliable and potent prognostic indicator for SIAC and may aid in selecting chemotherapy for patients.
Collapse
Affiliation(s)
- Sun-Young Jun
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Ma Y, Zhang F, Li J, Li J, Li Y. Diverse perspectives on proteomic posttranslational modifications to address EGFR-TKI resistance in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1436033. [PMID: 39777265 PMCID: PMC11703921 DOI: 10.3389/fcell.2024.1436033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells. However, drug resistance to TKIs is inevitable. EGFR is also a highly glycosylated receptor tyrosine kinase, and a wide range of crosstalk occurs between phosphorylation and glycosylation. Therefore, can the phosphorylation state be altered by glycosylation to improve drug resistance? In this review, we summarize phosphorylation, glycosylation and the crosstalk between these processes as well as the current research status and methods. We also summarize the autophosphorylation and glycosylation sites of the EGFR protein and their crosstalk. By exploring the relationship between EGFR glycosylation and autophosphorylation in targeted TKI therapy, we find that research on EGFR glycosylation is crucial for targeted NSCLC treatment and will become a research direction for identifying potential targets related to regulating TKI drug sensitivity.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanhua Li
- Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
35
|
Park MS, Jeong SD, Shin CH, Cha S, Yu A, Kim EJ, Gorospe M, Cho YB, Won HH, Kim HH. LINC02257 regulates malignant phenotypes of colorectal cancer via interacting with miR-1273g-3p and YB1. Cell Death Dis 2024; 15:895. [PMID: 39695079 DOI: 10.1038/s41419-024-07259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed and the second leading cause of cancer-related deaths. Emerging evidence has indicated that long non-coding RNAs (lncRNAs) are involved in the progression of various types of cancer. In this study, we aimed to identify potential causal lncRNAs in CRC through comprehensive multilevel bioinformatics analyses, coupled with functional validation. Our bioinformatics analyses identified LINC02257 as being highly expressed in CRC, and associated with poor survival and advanced tumor stages among patients with CRC. Genome-wide association analysis revealed significant associations between variants near LINC02257 and CRC, suggesting a causal role for LINC02257 in CRC. Network analysis identified LINC02257 as playing a key role in the epithelial-mesenchymal transition pathway. Single-cell RNA sequencing showed that elevated expression of LINC02257 was associated with a reduced proportion of epithelial cells. In vitro experiments showed that LINC02257 positively regulated the metastatic and proliferative potential of CRC cells. Mechanistically, LINC02257 affected CRC malignancy by functioning as a competitive endogenous RNA of microRNAs and RNA-binding proteins. LINC02257 upregulated SERPINE1 by sequestering tumor suppressive miR-1273g-3p, thereby increasing metastatic and proliferative abilities of CRC cells. Additionally, LINC02257 directly interacted with YB1 and induced its phosphorylation, thereby facilitating YB1 nuclear translocation. The transcriptional activation of YB1 target genes was associated with the oncogenic functions of LINC02257. Taken together, our results demonstrate LINC02257 as a promising therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Mi-So Park
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Seong Dong Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Soojin Cha
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Ahran Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Eun Ju Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yong Beom Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Gyeonggi-do, 16419, Republic of Korea.
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
36
|
Yue F, Ku AT, Stevens PD, Michalski MN, Jiang W, Tu J, Shi Z, Dou Y, Wang Y, Feng XH, Hostetter G, Wu X, Huang S, Shroyer NF, Zhang B, Williams BO, Liu Q, Lin X, Li Y. Loss of ZNRF3/RNF43 Unleashes EGFR in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574969. [PMID: 38260423 PMCID: PMC10802575 DOI: 10.1101/2024.01.10.574969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the protein most negatively correlated with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptors, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.
Collapse
Affiliation(s)
- Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Payton D. Stevens
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
- Biological Sciences Department, Miami University, Oxford, Ohio, 45056, USA
| | - Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jianghua Tu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Galen Hostetter
- Van Andel Institute, Core Technologies and Services, Grand Rapids, Michigan 49503, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shixia Huang
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Education, Innovation & Technology, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Noah F. Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
- Van Andel Institute, Core Technologies and Services, Grand Rapids, Michigan 49503, USA
| | - Qingyun Liu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Xia Lin
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Ren Y, Yue Y, Li X, Weng S, Xu H, Liu L, Cheng Q, Luo P, Zhang T, Liu Z, Han X. Proteogenomics offers a novel avenue in neoantigen identification for cancer immunotherapy. Int Immunopharmacol 2024; 142:113147. [PMID: 39270345 DOI: 10.1016/j.intimp.2024.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Cancer neoantigens are tumor-specific non-synonymous mutant peptides that activate the immune system to produce an anti-tumor response. Personalized cancer vaccines based on neoantigens are currently one of the most promising therapeutic approaches for cancer treatment. By utilizing the unique mutations within each patient's tumor, these vaccines aim to elicit a strong and specific immune response against cancer cells. However, the identification of neoantigens remains challenging due to the low accuracy of current prediction tools and the high false-positive rate of candidate neoantigens. Since the concept of "proteogenomics" emerged in 2004, it has evolved rapidly with the increased sequencing depth of next-generation sequencing technologies and the maturation of mass spectrometry-based proteomics technologies to become a more comprehensive approach to neoantigen identification, allowing the discovery of high-confidence candidate neoantigens. In this review, we summarize the reason why cancer neoantigens have become attractive targets for immunotherapy, the mechanism of cancer vaccines and the advances in cancer immunotherapy. Considerations relevant to the application emerging of proteogenomics technologies for neoantigen identification and challenges in this field are described.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
38
|
Xu G, Yu J, Lyu J, Zhan M, Xu J, Huang M, Zhao R, Li Y, Zhu J, Feng J, Tan S, Ran P, Su Z, Liu X, Zhao J, Zhang H, Xu C, Chang J, Hou Y, Ding C. Proteogenomic Landscape of Breast Ductal Carcinoma Reveals Tumor Progression Characteristics and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401041. [PMID: 39418072 PMCID: PMC11633542 DOI: 10.1002/advs.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Multi-omics studies of breast ductal carcinoma (BRDC) have advanced the understanding of the disease's biology and accelerated targeted therapies. However, the temporal order of a series of biological events in the progression of BRDC is still poorly understood. A comprehensive proteogenomic analysis of 224 samples from 168 patients with malignant and benign breast diseases is carried out. Proteogenomic analysis reveals the characteristics of linear multi-step progression of BRDC, such as tumor protein P53 (TP53) mutation-associated estrogen receptor 1 (ESR1) overexpression is involved in the transition from ductal hyperplasia (DH) to ductal carcinoma in situ (DCIS). 6q21 amplification-associated nuclear receptor subfamily 3 group C member 1 (NR3C1) overexpression helps DCIS_Pure (pure DCIS, no histologic evidence of invasion) cells avoid immune destruction. The T-cell lymphoma invasion and metastasis 1, androgen receptor, and aldo-keto reductase family 1 member C1 (TIAM1-AR-AKR1C1) axis promotes cell invasion and migration in DCIS_adjIDC (DCIS regions of invasive cancers). In addition, AKR1C1 is identified as a potential therapeutic target and demonstrated the inhibitory effect of aspirin and dydrogesterone as its inhibitors on tumor cells. The integrative multi-omics analysis helps to understand the progression of BRDC and provides an opportunity to treat BRDC in different stages.
Collapse
Affiliation(s)
- Ganfei Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Juan Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jiacheng Lyu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Mengna Zhan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jie Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Minjing Huang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular MedicineMOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Yan Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jiajun Zhu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jinwen Feng
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Subei Tan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Peng Ran
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Zhenghua Su
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Xinhua Liu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular MedicineMOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Hongwei Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Chen Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jun Chang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Yingyong Hou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
- Departments of Cancer Research InstituteAffiliated Cancer Hospital of Xinjiang Medical UniversityXinjiang Key Laboratory of Translational Biomedical EngineeringUrumqi830000P. R. China
| |
Collapse
|
39
|
Zhao M, Jiang Y, Kong X, Liu Y, Gao P, Li M, Zhu H, Deng G, Feng Z, Cao Y, Ma L. The Analysis of Plasma Proteomics for Luminal A Breast Cancer. Cancer Med 2024; 13:e70470. [PMID: 39641443 PMCID: PMC11622152 DOI: 10.1002/cam4.70470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/29/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Breast cancer is the prevailing malignancy among women, exhibiting a discernible escalation in incidence within our nation; hormone receptor-positive (HR+) human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common subtype. In this study, we aimed to search for a non-invasive, specific, blood-based biomarker for the early detection of luminal A breast cancer through proteomic studies. METHODS To explore new potential plasma biomarkers, we applied data-independent acquisition (DIA), a technique combining liquid chromatography and tandem mass spectrometry, to quantify breast cancer-associated plasma protein abundance from a small number of plasma samples in 10 patients with luminal A breast cancer, 10 patients with benign breast tumors, and 10 healthy controls. RESULTS The proteomes of 30 participants in all cohorts were analyzed using the DIA method, and a total of 517 proteins and 3584 peptides were quantified. We found that there were significant differences in plasma protein expression profiles between breast cancer patients and non-breast cancer patients, and breast cancer was mainly related to lipid metabolism pathways. Finally, the optimal protein combinations for the diagnosis of breast cancer were PON3, IGLV3-10, and IGHV3-73 through multi-model analysis, which had a high prediction accuracy for breast cancer (AUC = 0.92), and the model could also distinguish breast cancer from HC (AUC = 0.92) and breast cancer from benign breast tumor (AUC = 0.91). CONCLUSIONS The study revealed proteomic signatures of patients with luminal A breast cancer, identified multiple differential proteins, and identified three plasma proteins as potential diagnostic biomarkers for breast cancer. It provides a reference for the screening of biomarkers for breast cancer.
Collapse
Affiliation(s)
- Meimei Zhao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - YongWei Jiang
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Xiaomu Kong
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Yi Liu
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Peng Gao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Mo Li
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Haoyan Zhu
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Guoxiong Deng
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Ziyi Feng
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Yongtong Cao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Liang Ma
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
40
|
Zhou Z, Zhang R, Zhou A, Lv J, Chen S, Zou H, Zhang G, Lin T, Wang Z, Zhang Y, Weng S, Han X, Liu Z. Proteomics appending a complementary dimension to precision oncotherapy. Comput Struct Biotechnol J 2024; 23:1725-1739. [PMID: 38689716 PMCID: PMC11058087 DOI: 10.1016/j.csbj.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Recent advances in high-throughput proteomic profiling technologies have facilitated the precise quantification of numerous proteins across multiple specimens concurrently. Researchers have the opportunity to comprehensively analyze the molecular signatures in plentiful medical specimens or disease pattern cell lines. Along with advances in data analysis and integration, proteomics data could be efficiently consolidated and employed to recognize precise elementary molecular mechanisms and decode individual biomarkers, guiding the precision treatment of tumors. Herein, we review a broad array of proteomics technologies and the progress and methods for the integration of proteomics data and further discuss how to better merge proteomics in precision medicine and clinical settings.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
41
|
Dong Q, Shen D, Ye J, Chen J, Li J. PhosCancer: A comprehensive database for investigating protein phosphorylation in human cancer. iScience 2024; 27:111060. [PMID: 39493875 PMCID: PMC11530918 DOI: 10.1016/j.isci.2024.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/03/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Protein phosphorylation is a crucial post-translational modification implicated in cancer pathogenesis, offering potential diagnostic and therapeutic targets. Here, we developed PhosCancer, a user-friendly database for extracting biologically and clinically relevant insights from phosphoproteomics data. Leveraging data from the CNHPP and CPTAC, PhosCancer encompasses 174,587 phosphosites from 14 datasets spanning 12 cancer types. Through extensive statistical analyses and integration of annotations from external resources, PhosCancer serves as a convenient one-stop platform facilitating the exploration of phosphorylation profiles across different cancer types. Not only does PhosCancer encompass basic information, 3D structure, functional domains, and upstream kinases, but also provides quantitative associations with nine clinical features, and the relevance with hallmarks in both cancer-specific and pan-cancer views. PhosCancer is a valuable resource for cancer researchers and clinicians, promoting the identification of clinically actionable biomarkers and further facilitating the clinical applications of phosphoproteomic data.
Collapse
Affiliation(s)
- Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danqing Shen
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiachen Ye
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxin Chen
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Pizurica M, Zheng Y, Carrillo-Perez F, Noor H, Yao W, Wohlfart C, Vladimirova A, Marchal K, Gevaert O. Digital profiling of gene expression from histology images with linearized attention. Nat Commun 2024; 15:9886. [PMID: 39543087 PMCID: PMC11564640 DOI: 10.1038/s41467-024-54182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer is a heterogeneous disease requiring costly genetic profiling for better understanding and management. Recent advances in deep learning have enabled cost-effective predictions of genetic alterations from whole slide images (WSIs). While transformers have driven significant progress in non-medical domains, their application to WSIs lags behind due to high model complexity and limited dataset sizes. Here, we introduce SEQUOIA, a linearized transformer model that predicts cancer transcriptomic profiles from WSIs. SEQUOIA is developed using 7584 tumor samples across 16 cancer types, with its generalization capacity validated on two independent cohorts comprising 1368 tumors. Accurately predicted genes are associated with key cancer processes, including inflammatory response, cell cycles and metabolism. Further, we demonstrate the value of SEQUOIA in stratifying the risk of breast cancer recurrence and in resolving spatial gene expression at loco-regional levels. SEQUOIA hence deciphers clinically relevant information from WSIs, opening avenues for personalized cancer management.
Collapse
Affiliation(s)
- Marija Pizurica
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, 94305, USA
- Internet Technology and Data Science Lab (IDLab), Ghent University, Ghent, 9052, Belgium
| | - Yuanning Zheng
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, 94305, USA
| | - Francisco Carrillo-Perez
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, 94305, USA
| | - Humaira Noor
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, 94305, USA
| | - Wei Yao
- Roche Information Solutions, Roche Diagnostics Corporation, Santa Clara, CA, 95050, USA
| | | | - Antoaneta Vladimirova
- Roche Information Solutions, Roche Diagnostics Corporation, Santa Clara, CA, 95050, USA
| | - Kathleen Marchal
- Internet Technology and Data Science Lab (IDLab), Ghent University, Ghent, 9052, Belgium
| | - Olivier Gevaert
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, 94305, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
43
|
Su RY, Xu CH, Guo HJ, Meng LJ, Zhuo JY, Xu N, Li HG, He CY, Zhang XY, Lian ZX, Wang S, Cao C, Zhou R, Lu D, Zheng SS, Wei XY, Xu X. Oncogenic cholesterol rewires lipid metabolism in hepatocellular carcinoma via the CSNK2A1-IGF2R Ser2484 axis. J Adv Res 2024:S2090-1232(24)00540-X. [PMID: 39547439 DOI: 10.1016/j.jare.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Alcohol consumption and hepatitis B virus (HBV) infection are common risk factors for hepatocellular carcinoma (HCC). However, few studies have focused on elucidating the mechanisms of HCC with combined alcohol and HBV etiology. OBJECTIVES We aimed to investigate the molecular features of alcohol and HBV on HCC and to seek out potential therapeutic strategies. METHODS Two independent cohorts of HCC patients (n = 539 and n = 140) were included to investigate HCC with synergetic alcohol and HBV (AB-HCC) background. Patient-derived cell lines, organoids, and xenografts were used to validate the metabolic fragile. High-throughput drug screening (1181 FDA-approved anticancer drugs) was leveraged to explore the potential therapeutic agents. RESULTS Here, we delineated AB-HCC as a distinctive metabolic subtype, hallmarked by oncogenic cholesterol, through the integration of clinical cohorts, proteomics, phosphoproteomics, and spatial transcriptome. Mechanistically, our findings revealed that cholesterol directly binds to CSNK2A1 (Casein Kinase 2 Alpha 1), augmenting its kinase activity and leading to phosphorylation of IGF2R (Insulin-Like Growth Factor 2 Receptor) at Ser2484. This cascade rewires lipid-driven mitochondrial oxidative phosphorylation, spawns reactive oxygen species measured by malondialdehyde assay, and perpetuates a positive feedback loop for cholesterol biosynthesis, ultimately culminating in tumorigenesis. Initial transcriptional activation of CSNK2A1 is driven by upregulation of RAD21 in AB-HCC. Our cholesterol profiling exposes AB-HCC's compensatory mechanism of AB-HCC, which capitalizes on both uptake and biosynthesis of cholesterol to confer survival edge. Moreover, high-throughput drug screening coupled with in vivo validation has uncovered the susceptibilities of AB-HCC, which can be effectively addressed by a combination of dietary cholesterol restriction and oral administration of Fostamatinib. The CSNK2A1-mediated cholesterol biosynthesis pathway has been implicated in various cancers characterized by cholesterol metabolism. CONCLUSION These findings not only pinpoint the oncogenic metabolite cholesterol as a hidden culprit in AB-HCC subtype, but also enlighten a novel combination strategy to rejuvenate tumor metabolism.
Collapse
Affiliation(s)
- Ren-Yi Su
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chen-Hao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hai-Jun Guo
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Li-Jun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Nan Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hui-Gang Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chi-Yu He
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xuan-Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zheng-Xin Lian
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Chenhao Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China.
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, China.
| | - Xu-Yong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
44
|
Wang Z, Wojciechowicz M, Rosen J, Elmas A, Song WM, Liu Y, Huang KL. Master regulators governing protein abundance across ten human cancer types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.619147. [PMID: 39605415 PMCID: PMC11601414 DOI: 10.1101/2024.11.11.619147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein abundance correlates only moderately with mRNA levels, and are modulated post-transcriptionally by a network of regulators including ribosomes, RNA-binding proteins (RBPs), and the proteasome. Here, we identified Master Protein abundance Regulators (MaPRs) across ten cancer types by devising a new computational pipeline that jointly analyzed transcriptomes and proteomes from 1,305 tumor samples. We identified 232 to 1,394 MaPRs per cancer type, mediating up to 79% of post-transcriptional regulatory networks. MaPRs exhibit high network connectivity, strong genetic dependency in cancer cells, and significant enrichment for RBPs. Combining tumor up-regulation, druggability, and target network analyses identified cancer-specific vulnerabilities. MaPRs predict tumor proteomic subtypes more accurately than other proteins. Finally, significant portions of RBP MaPR-target relationships were validated by experimental evidence from eCLIP binding and knockdown assays. Our findings uncover central MaPRs that govern post-transcriptional networks, highlighting diverse processes underlying human proteome regulation and identifying key regulators in cancer biology.
Collapse
Affiliation(s)
- Zishan Wang
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Megan Wojciechowicz
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jordan Rosen
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Abdulkadir Elmas
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
45
|
Zhang C, Li W, Deng M, Jiang Y, Cui X, Chen P. SIG: Graph-Based Cancer Subtype Stratification With Gene Mutation Structural Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1752-1764. [PMID: 38875076 DOI: 10.1109/tcbb.2024.3414498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Somatic tumors have a high-dimensional, sparse, and small sample size nature, making cancer subtype stratification based on somatic genomic data a challenge. Current methods for improving cancer clustering performance focus on dimension reduction, integrating multi-omics data, or generating realistic samples, yet ignore the associations between mutated genes within the patient-gene matrix. We refer to these associations as gene mutation structural information, which implicitly includes cancer subtype information and can enhance subtype clustering. We introduce a novel method for cancer subtype clustering called SIG(Structural Information within Graph). As cancer is driven by a combination of genes, we establish associations between mutated genes within the same patient sample, pair by pair, and use a graph to represent them. An association between two mutated genes corresponds to an edge in the graph. We then merge these associations among all mutated genes to obtain a structural information graph, which enriches the gene network and improves its relevance to cancer clustering. We integrate the somatic tumor genome with the enriched gene network and propagate it to cluster patients with mutations in similar network regions. Our method achieves superior clustering performance compared to SOTA methods, as demonstrated by clustering experiments on ovarian and LUAD datasets.
Collapse
|
46
|
Zuniga NR, Frost DC, Kuhn K, Shin M, Whitehouse RL, Wei TY, He Y, Dawson SL, Pike I, Bomgarden RD, Gygi SP, Paulo JA. Achieving a 35-Plex Tandem Mass Tag Reagent Set through Deuterium Incorporation. J Proteome Res 2024; 23:5153-5165. [PMID: 39380184 DOI: 10.1021/acs.jproteome.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mass spectrometry-based sample multiplexing with isobaric tags permits the development of high-throughput and precise quantitative biological assays with proteome-wide coverage and minimal missing values. Here, we nearly doubled the multiplexing capability of the TMTpro reagent set to a 35-plex through the incorporation of one deuterium isotope into the reporter group. Substituting deuterium frequently results in suboptimal peak coelution, which can compromise the accuracy of reporter ion-based quantification. To counteract the deuterium effect on quantitation, we implemented a strategy that necessitated the segregation of nondeuterium and deuterium-containing channels into distinct subplexes during normalization procedures, with reassembly through a common bridge channel. This multiplexing strategy of "design independent sub-plexes but acquire together" (DISAT) was used to compare protein expression differences between human cell lines and in a cysteine-profiling (i.e., chemoproteomics) experiment to identify compounds binding to cysteine-113 of Pin1.
Collapse
Affiliation(s)
- Nathan R Zuniga
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Dustin C Frost
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | | | - Myungsun Shin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rebecca L Whitehouse
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ting-Yu Wei
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yuchen He
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ian Pike
- Proteome Sciences, London KT15 2HJ, U.K
| | - Ryan D Bomgarden
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
47
|
Creighton CJ. Clinical proteomics towards multiomics in cancer. MASS SPECTROMETRY REVIEWS 2024; 43:1255-1269. [PMID: 36495097 DOI: 10.1002/mas.21827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent technological advancements in mass spectrometry (MS)-based proteomics technologies have accelerated its application to study greater and greater numbers of human tumor specimens. Over the last several years, the Clinical Proteomic Tumor Analysis Consortium, the International Cancer Proteogenome Consortium, and others have generated MS-based proteomic profiling data combined with corresponding multiomics data on thousands of human tumors to date. Proteomic data sets in the public domain can be re-examined by other researchers with different questions in mind from what the original studies explored. In this review, we examine the increasing role of proteomics in studying cancer, along with the potential for previous studies and their associated data sets to contribute to improving the diagnosis and treatment of cancer in the clinical setting. We also explore publicly available proteomics and multi-omics data from cancer cell line models to show how such data may aid in identifying therapeutic strategies for cancer subsets.
Collapse
Affiliation(s)
- Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
Desai H, Andrews KH, Bergersen KV, Ofori S, Yu F, Shikwana F, Arbing MA, Boatner LM, Villanueva M, Ung N, Reed EF, Nesvizhskii AI, Backus KM. Chemoproteogenomic stratification of the missense variant cysteinome. Nat Commun 2024; 15:9284. [PMID: 39468056 PMCID: PMC11519605 DOI: 10.1038/s41467-024-53520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is widespread gain-of-cysteine mutations. These acquired cysteines can be both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain unidentified via chemoproteomics; identification is a critical step to enable functional analysis, including assessment of potential druggability and susceptibility to oxidation. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine genetic variation. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized two-stage false discovery rate (FDR) error controlled proteomic search, which is further enhanced with a user-friendly FragPipe interface. Chemoproteogenomics analysis reveals that cysteine acquisition is a ubiquitous feature of both healthy and cancer genomes that is further elevated in the context of decreased DNA repair. Reference cysteines proximal to missense variants are also found to be pervasive, supporting heretofore untapped opportunities for variant-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and is compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Katrina H Andrews
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kristina V Bergersen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Mark A Arbing
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H. A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations. Nat Biotechnol 2024:10.1038/s41587-024-02428-4. [PMID: 39448882 DOI: 10.1038/s41587-024-02428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
To assist the translation of genetic findings to disease pathobiology and therapeutics discovery, we present an ensemble deep learning framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that predicts protein-binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms to generate comprehensive structurally informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods and experimentally validate its predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces and explore their impact on disease prognosis and drug responses. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from analysis of approximately 11,000 whole exomes across 33 cancer types and show significant associations of oncoPPIs with patient survival and drug responses. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
Collapse
Grants
- R01GM124559 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM125639 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM130885 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- RM1GM139738 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01DK115398 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U01HG007691 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01HL155107 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL155096 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL166137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54HL119145 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AHA957729 American Heart Association (American Heart Association, Inc.)
- 24MERIT1185447 American Heart Association (American Heart Association, Inc.)
- R01AG084250 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R56AG074001 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U01AG073323 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG066707 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG076448 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG082118 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1AG082211 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R21AG083003 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1NS133812 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shobhita Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
- Biophysics Program, Cornell University, Ithaca, NY, USA
| | - Mateo Torres
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Charis Eng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
50
|
Zhang R, Hu M, Liu Y, Li W, Xu Z, He S, Lu Y, Gong Y, Wang X, Hai S, Li S, Qi S, Li Y, Shu Y, Du D, Zhang H, Xu H, Zhou Z, Lei P, Chen HN, Dai L. Integrative Omics Uncovers Low Tumorous Magnesium Content as A Driver Factor of Colorectal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae053. [PMID: 39052867 PMCID: PMC11514849 DOI: 10.1093/gpbjnl/qzae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Magnesium (Mg) deficiency is associated with increased risk and malignancy in colorectal cancer (CRC), yet the underlying mechanisms remain elusive. Here, we used genomic, proteomic, and phosphoproteomic data to elucidate the impact of Mg deficiency on CRC. Genomic analysis identified 160 genes with higher mutation frequencies in Low-Mg tumors, including key driver genes such as KMT2C and ERBB3. Unexpectedly, initiation driver genes of CRC, such as TP53 and APC, displayed higher mutation frequencies in High-Mg tumors. Additionally, proteomic and phosphoproteomic data indicated that low Mg content in tumors may activate epithelial-mesenchymal transition (EMT) by modulating inflammation or remodeling the phosphoproteome of cancer cells. Notably, we observed a negative correlation between the phosphorylation of DBN1 at S142 (DBN1S142p) and Mg content. A mutation in S142 to D (DBN1S142D) mimicking DBN1S142p up-regulated MMP2 and enhanced cell migration, while treatment with MgCl2 reduced DBN1S142p, thereby reversing this phenotype. Mechanistically, Mg2+ attenuated the DBN1-ACTN4 interaction by decreasing DBN1S142p, which in turn enhanced the binding of ACTN4 to F-actin and promoted F-actin polymerization, ultimately reducing MMP2 expression. These findings shed new light on the crucial role of Mg deficiency in CRC progression and suggest that Mg supplementation may be a promising preventive and therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanmeng Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Shu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zongguang Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|