1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Luo Y, Yuan Y, Liu D, Peng H, Shen L, Chen Y. Targeting novel immune checkpoints in the B7-H family: advancing cancer immunotherapy from bench to bedside. Trends Cancer 2025:S2405-8033(25)00055-X. [PMID: 40113530 DOI: 10.1016/j.trecan.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The B7-H family of immune checkpoint molecules is a crucial component of the immune regulatory network for tumors, offering new opportunities to modulate the tumor microenvironment (TME). The B7-H family - which includes B7-H2 (inducible T cell costimulatory ligand, ICOSL), B7-H3, B7-H4, B7-H5 (V-domain immunoglobulin suppressor of T cell activation, VISTA), B7-H6, and B7-H7 (HHLA2) - is known for its diverse roles in regulating innate and adaptive immunity. These molecules can exhibit co-stimulatory or co-inhibitory effects on T cells, influencing processes such as T cell activation, differentiation, and effector functions, and they are involved in the recruitment and polarization of various immune cells. This review explores the structural characteristics, receptor-ligand interactions, and signaling pathways associated with each B7-H family member. We also discuss the family's impact on tumor immunity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiming Luo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Early Drug Development Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing 102200, China.
| |
Collapse
|
3
|
Chen H, Deng C, Gao J, Wang J, Fu F, Wang Y, Wang Q, Zhang M, Zhang S, Fan F, Liu K, Yang B, He Q, Zheng Q, Shen X, Wang J, Hu T, Zhu C, Yang F, He Y, Hu H, Wang J, Li Y, Zhang Y, Cao Z. Integrative spatial analysis reveals tumor heterogeneity and immune colony niche related to clinical outcomes in small cell lung cancer. Cancer Cell 2025; 43:519-536.e5. [PMID: 39983726 DOI: 10.1016/j.ccell.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Recent advances have shed light on the molecular heterogeneity of small cell lung cancer (SCLC), yet the spatial organizations and cellular interactions in tumor immune microenvironment remain to be elucidated. Here, we employ co-detection by indexing (CODEX) and multi-omics profiling to delineate the spatial landscape for 165 SCLC patients, generating 267 high-dimensional images encompassing over 9.3 million cells. Integrating CODEX and genomic data reveals a multi-positive tumor cell neighborhood within ASCL1+ (SCLC-A) subtype, characterized by high SLFN11 expression and associated with poor prognosis. We further develop a cell colony detection algorithm (ColonyMap) and reveal a spatially assembled immune niche consisting of antitumoral macrophages, CD8+ T cells and natural killer T cells (MT2) which highly correlates with superior survival and predicts improving immunotherapy response in an independent cohort. This study serves as a valuable resource to study SCLC spatial heterogeneity and offers insights into potential patient stratification and personalized treatments.
Collapse
Affiliation(s)
- Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chaoqiang Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jian Gao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun Wang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yue Wang
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Qiming Wang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Mou Zhang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Shiyue Zhang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Fanfan Fan
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Liu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Yang
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiming He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiang Zheng
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xuxia Shen
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jin Wang
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen 361000, China
| | - Tao Hu
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen 361000, China
| | - Changbin Zhu
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen 361000, China
| | - Fei Yang
- Janssen China Research & Development, Shanghai 200233, China
| | - Yonghong He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jialei Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
5
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University 75123 Uppsala, Sweden.
| |
Collapse
|
6
|
Xia L, Wu Y, Ren Y, Wang Z, Zhou N, Zhou W, Zhou L, Jia L, He C, Meng X, Zhu H, Yang Z. A whole-body imaging technique for tumor-specific diagnostics and screening of B7H3-targeted therapies. J Clin Invest 2025; 135:e186388. [PMID: 39847434 PMCID: PMC11910224 DOI: 10.1172/jci186388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
BACKGROUNDB7H3, also known as CD276, is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7H3-expressing lesions.METHODSWe enhanced and optimized the structure of an affibody (ABY) that targets B7H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.RESULTS[68Ga]Ga-B7H3-BCH exhibited high affinity (equilibrium dissociation constant [KD] = 4.5 nM), and it was taken up in large amounts by B7H3-transfected cells (A549CD276 and H1975CD276 cells); these phenomena were inhibited by unlabeled precursors. Moreover, PET imaging of multiple xenograft models revealed extensive [68Ga]Ga-B7H3-BCH uptake by tumors. In a clinical study including 20 patients with malignant tumors, the [68Ga]Ga-B7H3-BCH signal aggregated in both primary and metastatic lesions, surpassing fluorine-18 fluorodeoxyglucose (18F-FDG) in overall diagnostic efficacy for tumors (85.0% vs. 81.7%), including differentiated hepatocellular and metastatic gastric cancers. A strong correlation between B7H3 expression and [68Ga]Ga-B7H3-BCH uptake in tumors was observed, and B7H3 expression was detected with 84.38% sensitivity and 100% specificity when a maximum standardized uptake value (SUVmax) of 3.85 was set as the cutoff value. Additionally, B7H3-specific PET imaging is expected to predict B7H3 expression levels in tumor cells, intratumoral stroma, and peritumoral tissues.CONCLUSIONIn summary, [68Ga]Ga-B7H3-BCH has potential for the noninvasive identification of B7H3 expression in systemic lesions in patients with malignant tumors. This agent has prospects for improving pretreatment evaluation, predicting therapeutic responses, and monitoring resistance to therapy in patients with malignancies.TRIAL REGISTRATIONClinicalTrials.gov NCT06454955.FUNDINGThis research was financially supported by the Natural Science Foundation of Beijing Municipality (no. 7242266), the National Natural Science Foundation of China (no. 82202201), and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (no. YESS20220230).
Collapse
Affiliation(s)
- Lei Xia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Yan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanan Ren
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Hepato-Pancreato-Biliary Surgery, Sarcoma Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Nina Zhou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Wenyuan Zhou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ling Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chengxue He
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Xiangxi Meng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Hua Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Zhi Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| |
Collapse
|
7
|
Yu Z, Dong C, Yang Y, Zheng Z, Ge X. USP21 stabilizes immune checkpoint of CD276 and serves as an immunological and tumor prognostic biomarker. Biochem Biophys Res Commun 2024; 745:151221. [PMID: 39736236 DOI: 10.1016/j.bbrc.2024.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Ubiquitin-specific protease 21 (USP21) belongs to the ubiquitin-specific protease family and is a member of the deubiquitinating enzyme (DUB) family. Previous research has shown that USP21 promotes cancer initiation and progression. However, there have been few pan-cancer analysis on USP21. We analyzed the expression levels of USP21 mRNA and protein in various human tumor tissues using several public databases such as The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Human Protein Atlas (HPA). Kaplan-Meier survival analyses were utilized to test the effect of USP21 on overall survival (OS) and progression-free interval (PFS) of these tumor patients. Our study demonstrated that USP21 was differentially expressed between normal and malignant tissues, conferring a notable value in evaluation of prognosis and diagnosis. In addition, enrichment and correlation analyses linking USP21 with immune features such as immune-cell-infiltration rate and immune-checkpoint-gene expression indicated that USP21 is an applicable immunotherapeutic marker for liver cancer. To further elucidate the role of USP21, we downregulated its expression in hepatocellular carcinoma cells and identified a remarkable decrease in expression of the immune checkpoint CD276, which contributes to the immune escape of tumor cells by suppressing the immune system. Together, our results indicated a promising potential of USP21 for future tumor prevention.
Collapse
Affiliation(s)
- Zhu Yu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chengyuan Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yanrong Yang
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Zening Zheng
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Zheng Y, Lu Z, Zhu F, Zhao G, Shao Y, Lu B, Ding J, Wang G, Fang L, Zheng J, Chai D. Therapeutic vaccine targeting dual immune checkpoints induces potent multifunctional CD8 + T cell anti-tumor immunity. Int Immunopharmacol 2024; 142:113004. [PMID: 39217885 DOI: 10.1016/j.intimp.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Vaccines targeting immune checkpoints represent a promising immunotherapeutic approach for solid tumors. However, the therapeutic efficacy of dual targeting immune checkpoints is still unclear in renal carcinoma. METHODS An adenovirus (Ad) vaccine targeting B7H1 and B7H3 was developed and evaluated for its therapeutic efficacy in subcutaneous, lung metastasis or orthotopic renal carcinoma mouse and humanized models using flow cytometry, Enzyme-linked immunosorbent spot (ELISPOT), cytotoxic T lymphocyte (CTL) killing, cell deletion, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) assays. RESULTS The Ad-B7H1/B7H3 immunization effectively inhibited tumor growth and increased the induction and percentages of CD8+ T cells in subcutaneous tumor models. The vaccine enhanced the induction and maturation of CD11c+ or CD8+CD11c+ cells, promoting tumor-specific CD8+ T cell immune responses. This was evidenced by increased proliferation of CD8+ T cells and enhanced CTL killing activity. Deletion of CD8+ T cells in vivo abolished the anti-tumor effect of the Ad-B7H1/B7H3 vaccine, highlighting the pivotal role of functional CD8+ T cell immune responses. Moreover, significant therapeutic efficacy of the Ad-B7H1/B7H3 vaccine was observed in lung metastasis, orthotopic, and humanized tumor models through multifunctional CD8+ T cell immune responses. CONCLUSIONS The Ad vaccine targeting dual immune checkpoints B7H1 and B7H3 exerts a potent therapeutic effect for renal carcinoma and holds promise for solid tumor treatment.
Collapse
Affiliation(s)
- Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Ahmad O, Ahmad T, Pfister SM. IDH mutation, glioma immunogenicity, and therapeutic challenge of primary mismatch repair deficient IDH-mutant astrocytoma PMMRDIA: a systematic review. Mol Oncol 2024; 18:2822-2841. [PMID: 38339779 PMCID: PMC11619801 DOI: 10.1002/1878-0261.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In 2021, Suwala et al. described Primary Mismatch Repair Deficient IDH-mutant Astrocytoma (PMMRDIA) as a distinct group of gliomas. In unsupervised clustering, PMMRDIA forms distinct cluster, separate from other IDH-mutant gliomas, including IDH-mutant gliomas with secondary mismatch repair (MMR) deficiency. In the published cohort, three patients received treatment with an immune checkpoint blocker (ICB), yet none exhibited a response, which aligns with existing knowledge about the decreased immunogenicity of IDH-mutant gliomas in comparison to IDH-wildtype. In the case of PMMRDIA, the inherent resistance to the standard-of-care temozolomide caused by MMR deficiency is an additional challenge. It is known that a gain-of-function mutation of IDH1/2 genes produces the oncometabolite R-2-hydroxyglutarate (R-2-HG), which increases DNA and histone methylation contributing to the characteristic glioma-associated CpG island methylator phenotype (G-CIMP). While other factors could be involved in remodeling the tumor microenvironment (TME) of IDH-mutant gliomas, this systematic review emphasizes the role of R-2-HG and the subsequent G-CIMP in immune suppression. This highlights a potential actionable pathway to enhance the response of ICB, which might be relevant for addressing the unmet therapeutic challenge of PMMRDIA.
Collapse
Affiliation(s)
- Olfat Ahmad
- Division of Pediatric NeurooncologyHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
- University of OxfordOxfordUK
- King Hussein Cancer Center (KHCC)AmmanJordan
| | - Tahani Ahmad
- Department of Pediatric NeuroradiologyIWK Health CenterHalifaxCanada
- Dalhousie UniversityHalifaxCanada
| | - Stefan M. Pfister
- Division of Pediatric NeurooncologyHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
10
|
Zhu H, Zhang W, Guo Q, Fan R, Luo G, Liu Y. Engineered oncolytic virus expressing B7H3-targeting BiTE enhances antitumor T-cell immune response. J Immunother Cancer 2024; 12:e009901. [PMID: 39615894 PMCID: PMC11624812 DOI: 10.1136/jitc-2024-009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Bispecific T-cell engagers (BiTEs) are recombinant bispecific proteins designed to stimulate polyclonal T-cell immunity. In recent years, B7H3, a pan-cancer antigen, has been considered a promising target for future immunotherapy. However, the B7H3-targeting BiTE faces the challenge of systemic toxicity. Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics and serve as an appropriate platform for locoregional delivery of therapeutic genes. In this study, we designed an oncolytic adenovirus (OAd) encoding BiTE targeting human B7H3. We hypothesized that OVs encoding B7H3 BiTE deliver this molecule persistently to the tumor site while mediating polyclonal T-cell activation and redirecting it to tumor cells. METHODS B7H3-targeting BiTE was constructed by linking a single-chain variable fragment (scFv) that recognizes human B7H3 to an scFv that recognizes human CD3. B7H3 BiTE was inserted into OAd to construct OAd-B7H3-BiTE. The function of the OV-delivered B7H3 BiTE was detected via co-culturing B7H3+ target cells and peripheral blood mononuclear cells. A humanized immune system mouse model was used to evaluate the therapeutic effects in vivo. RESULTS B7H3 is highly expressed in a high proportion of human malignancies. OV-delivered BiTEs bind to T cells and target cells. We observed a series of phenomena reflecting T-cell activation induced by OAd-B7H3-BiTE, including cell clustering, cell size, activation markers, cytokine secretion, and proliferation. Furthermore, T-cell activation was mirrored by the corresponding cytotoxicity against B7H3+ tumor cells. In vivo, B7H3 BiTE was persistently expressed in tumors and enhanced the antitumor T-cell immune response. CONCLUSIONS Using an OV for the local expression of B7H3 BiTE maximizes the local concentration of BiTE while reducing systemic exposure. OV also provides a relatively "hot" T-cell immune environment for the function of BiTE. Because of its capacity to activate polyclonal T cells, BiTE has the potential to redirect virus-specific T cells to tumors. Our study provides new opportunities for the exploitation of B7H3-BiTE-armed OVs as therapeutic agents for the treatment of B7H3-positive malignancies.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Wanrong Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Ruoyue Fan
- Bionce Biotechnology, Ltd, Nanjing, China
| | - Guangzuo Luo
- Bionce Biotechnology, Ltd, Nanjing, China
- Institute of Health Science, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Liu L, Yao Z, Liu Y, Li Y, Ding Y, Hu J, Liu Z, Shi P, Chen K, Liu Z, Zhang W, Hou Y. A Pan-Cancer Analysis of the Oncogenic Role of CD276 in Human Tumors. Genes (Basel) 2024; 15:1527. [PMID: 39766794 PMCID: PMC11675885 DOI: 10.3390/genes15121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: B7 homolog 3 protein (B7-H3, also known as CD276) is a member of the B7 family that has been found to be associated with the growth and progression of a variety of tumors, but no pan-cancer evaluations of CD276 have been performed so far. In this study, we aimed to perform a pan-cancer analysis of the oncogenic role of CD276 in human tumors; Methods: We used a series of databases to perform a pan-cancer analysis of CD276, including the expression level of CD276 in pan-cancer and its relationship to tumor progression, patient survival duration, the immune cell infiltration within the tumor, and the potential signaling pathways and molecular mechanisms associated with CD276; Results: We found that CD276 was a potential biomarker for the prognosis of most cancers. The high expression of CD276 was associated with tumor progression, leading to poor survival. Notably, the up-regulation of CD276 expression in tumors increased the tumor infiltration of cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs) and decreased the CD8+ T cells; Conclusions: Our study demonstrates that CD276 might promote tumor progression via the promotion of an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiting Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenghao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengjie Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhao Zhang
- Rehabilitation Medicine Center, The Affiliated Hospital of Hubei Provincial Government, Wuhan 430071, China;
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Babič D, Jovčevska I, Zottel A. B7-H3 in glioblastoma and beyond: significance and therapeutic strategies. Front Immunol 2024; 15:1495283. [PMID: 39664380 PMCID: PMC11632391 DOI: 10.3389/fimmu.2024.1495283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cancer has emerged as the second most prevalent disease and the leading cause of death, claiming the lives of 10 million individuals each year. The predominant varieties of cancer encompass breast, lung, colon, rectal, and prostate cancers. Among the more aggressive malignancies is glioblastoma, categorized as WHO stage 4 brain cancer. Following diagnosis, the typical life expectancy ranges from 12 to 15 months, as current established treatments like surgical intervention, radiotherapy, and chemotherapy using temozolomide exhibit limited effectiveness. Beyond conventional approaches, the exploration of immunotherapy for glioblastoma treatment is underway. A methodology involves CAR-T cells, monoclonal antibodies, ADCC and nanobodies sourced from camelids. Immunotherapy's recent focal point is the cellular ligand B7-H3, notably abundant in tumor cells while either scarce or absent in normal ones. Its expression elevates with cancer progression and serves as a promising prognostic marker. In this article, we delve into the essence of B7-H3, elucidating its function and involvement in signaling pathways. We delineate the receptors it binds to and its significance in glioblastoma and other cancer types. Lastly, we examine its role in immunotherapy and the utilization of nanobodies in this domain.
Collapse
|
13
|
Meeus F, Funeh CN, Awad RM, Zeven K, Autaers D, De Becker A, Van Riet I, Goyvaerts C, Tuyaerts S, Neyns B, Devoogdt N, De Vlaeminck Y, Breckpot K. Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J Immunother Cancer 2024; 12:e009110. [PMID: 39562005 PMCID: PMC11575280 DOI: 10.1136/jitc-2024-009110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common lethal primary brain tumor, urging evaluation of new treatment options. Chimeric antigen receptor (CAR)-T cells targeting B7 homolog 3 (B7-H3) are promising because of the overexpression of B7-H3 on glioblastoma cells but not on healthy brain tissue. Nanobody-based (nano)CARs are gaining increasing attention as promising alternatives to classical single-chain variable fragment-based (scFv)CARs, because of their single-domain nature and low immunogenicity. Still, B7-H3 nanoCAR-T cells have not been extensively studied in glioblastoma. METHODS B7-H3 nanoCAR- and scFvCAR-T cells were developed and evaluated in human glioblastoma models. NanoCAR-T cells targeting an irrelevant antigen served as control. T cell activation, cytokine secretion and killing capacity were evaluated in vitro using ELISA, live cell imaging and flow cytometry. Antigen-specific killing was assessed by generating B7-H3 knock-out cells using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-genome editing. The tumor tracing capacity of the B7-H3 nanobody was first evaluated in vivo using nuclear imaging. Then, the therapeutic potential of the nanoCAR-T cells was evaluated in a xenograft glioblastoma model. RESULTS We showed that B7-H3 nanoCAR-T cells were most efficient in lysing B7-H3pos glioblastoma cells in vitro. Lack of glioblastoma killing by control nanoCAR-T cells and lack of B7-H3neg glioblastoma killing by B7-H3 nanoCAR-T cells showed antigen-specificity. We showed in vivo tumor targeting capacity of the B7-H3 nanobody-used for the nanoCAR design-in nuclear imaging experiments. Evaluation of the nanoCAR-T cells in vivo showed tumor control in mice treated with B7-H3 nanoCAR-T cells in contrast to progressive disease in mice treated with control nanoCAR-T cells. However, we observed limiting toxicity in mice treated with B7-H3 nanoCAR-T cells and showed that the B7-H3 nanoCAR-T cells are activated even by low levels of mouse B7-H3 expression. CONCLUSIONS B7-H3 nanoCAR-T cells showed promise for glioblastoma therapy following in vitro characterization, but limiting in vivo toxicity was observed. Off-tumor recognition of healthy mouse tissue by the cross-reactive B7-H3 nanoCAR-T cells was identified as a potential cause for this toxicity, warranting caution when using highly sensitive nanoCAR-T cells, recognizing the low-level expression of B7-H3 on healthy tissue.
Collapse
Affiliation(s)
- Fien Meeus
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyprine Neba Funeh
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Autaers
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Cellular Therapy Laboratory, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Cellular Therapy Laboratory, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Hematology and Immunology Research Team (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Zhou Z“Z, Si Y, Zhang J, Chen K, George A, Kim S, Zhou L, Liu X“M. A Dual-Payload Antibody-Drug Conjugate Targeting CD276/B7-H3 Elicits Cytotoxicity and Immune Activation in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3848-3863. [PMID: 39186778 PMCID: PMC11565169 DOI: 10.1158/0008-5472.can-23-4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous disease that often relapses following treatment with standard radiotherapies and cytotoxic chemotherapies. Combination therapies have potential for treating refractory metastatic TNBC. In this study, we aimed to develop an antibody-drug conjugate with dual payloads (DualADC) as a chemoimmunotherapy for TNBC. The overexpression of an immune checkpoint transmembrane CD276 (also known as B7-H3) was associated with angiogenesis, metastasis, and immune tolerance in more than 60% of patients with TNBC. Development of a mAb capable of targeting the extracellular domain of surface CD276 enabled delivery of payloads to tumors, and a platform was established for concurrent conjugation of a traditional cytotoxic payload and an immunoregulating Toll-like receptor 7/8 agonist to the CD276 mAb. The DualADC effectively killed multiple TNBC subtypes, significantly enhanced immune functions in the tumor microenvironment, and reduced tumor burden by up to 90% to 100% in animal studies. Single-cell RNA sequencing, multiplex cytokine analysis, and histology elucidated the impact of treatment on tumor cells and the immune landscape. This study suggests that the developed DualADC could represent a promising targeted chemoimmunotherapy for TNBC. Significance: An anti-CD276 monoclonal antibody conjugated with both a cytotoxic drug and an immune boosting reagent effectively targets triple-negative breast cancer by inducing tumor cell death and stimulating immune cell infiltration.
Collapse
Affiliation(s)
- Zhuoxin “Zora” Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ashley George
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Harris AL, Kerr DJ, Pezzella F, Ribatti D. Accessing the vasculature in cancer: revising an old hallmark. Trends Cancer 2024; 10:1038-1051. [PMID: 39358088 DOI: 10.1016/j.trecan.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
The classic cancer hallmark, inducing angiogenesis, was born out of the long-held notion that tumours could grow only if new vessels were formed. The attempts, based on this premise, to therapeutically restrain angiogenesis in hopes of controlling tumour growth have been less effective than expected. This is partly because primary and metastatic tumours can grow without angiogenesis. The discovery of nonangiogenic cancers and the mechanisms they use to exploit normal vessels, called 'vessel co-option,' has opened a new field in cancer biology. Consequently, the cancer hallmark, 'inducing angiogenesis,' has been modified to 'inducing or accessing vasculature.'
Collapse
Affiliation(s)
| | - David J Kerr
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, Oxford, UK
| | - Francesco Pezzella
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, Oxford, UK.
| | - Domenico Ribatti
- Dipartimento di Biomedicina Traslazionale e Neuroscienze, Università degli Studi di Bari, Bari, Italy
| |
Collapse
|
17
|
Li H, Luo Q, Zheng Y, Ding C, Yang J, Chen L, Liu X, Guo T, Fan J, Han X, Shi H. A nomogram for predicting invasiveness of lung adenocarcinoma manifesting as ground-glass nodules based on follow-up CT imaging. Transl Lung Cancer Res 2024; 13:2617-2635. [PMID: 39507036 PMCID: PMC11535823 DOI: 10.21037/tlcr-24-492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/14/2024] [Indexed: 11/08/2024]
Abstract
Background Different pathological stages of lung adenocarcinoma require different surgical strategies and have varying prognoses. Predicting their invasiveness is clinically important. This study aims to develop a nomogram to predict the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules (GGNs) based on follow-up computed tomography (CT) imaging. Methods We retrospectively collected data of 623 GGNs from 601 patients who underwent two follow-up chest CT scans and were confirmed as lung adenocarcinoma by postoperative pathology between June 2017 and August 2023. These patients were randomly divided into training and testing sets in a 7:3 ratio. Eighty-seven GGNs from 86 patients who underwent surgery between September 2023 and April 2024 were prospectively collected as a validation set. The volume, mean density, solid component volume (SV), percentage of solid component (PSC), and mass of GGNs were evaluated using the InferRead CT Lung software. Patients were classified into Group A (atypical adenomatous hyperplasia, adenocarcinoma in situ, and minimally invasive adenocarcinoma) and Group B (invasive adenocarcinoma). Three predictive models were established: model 1 utilized clinical characteristics and morphological features on pre-surgical CT, model 2 incorporated clinical characteristics, morphological features and quantitative parameters on pre-surgical CT, and model 3 utilized all selected features on baseline and pre-surgical CT. Results Model 3 achieved a satisfying area under the curves values of 0.911, 0.893, and 0.932 in the training, testing, and validation sets, respectively, demonstrating superior predictive performance than model1 (0.855, 0.858, and 0.816) and model2 (0.895, 0.891, and 0.903). A nomogram was constructed based on model 3. Calibration curves showed a good fit, and decision curve analysis showed that the nomogram was clinically useful. Conclusions The nomogram based on morphological features and quantitative parameters from follow-up CT images showed good discrimination and calibration abilities in predicting the invasiveness of lung adenocarcinoma manifesting as GGNs.
Collapse
Affiliation(s)
- Hanting Li
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qinyue Luo
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Zheng
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | | | - Jinrong Yang
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Leqing Chen
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoqing Liu
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tingting Guo
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jun Fan
- Department of Pathology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Han
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
18
|
Hagelstein I, Wessling L, Rochwarger A, Zekri L, Klimovich B, Tegeler CM, Jung G, Schürch CM, Salih HR, Lutz MS. Targeting CD276 for T cell-based immunotherapy of breast cancer. J Transl Med 2024; 22:902. [PMID: 39367484 PMCID: PMC11452943 DOI: 10.1186/s12967-024-05689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Christian M Schürch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Dong Y, Zhang Z, Luan S, Zheng M, Wang Z, Chen Y, Chen X, Tong A, Yang H. Novel bispecific antibody-drug conjugate targeting PD-L1 and B7-H3 enhances antitumor efficacy and promotes immune-mediated antitumor responses. J Immunother Cancer 2024; 12:e009710. [PMID: 39357981 PMCID: PMC11448212 DOI: 10.1136/jitc-2024-009710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) offer a promising approach, combining monoclonal antibodies with chemotherapeutic drugs to target cancer cells effectively while minimizing toxicity. METHODS This study examined the therapeutic efficacy and potential mechanisms of a bispecific ADC (BsADC) in laryngeal squamous cell carcinoma. This BsADC selectively targets the immune checkpoints programmed cell death ligand-1 (PD-L1) and B7-H3, and the precise delivery of the small-molecule toxin monomethyl auristatin E. RESULTS Our findings demonstrated that the BsADC outperformed its bispecific antibody and PD-L1 or B7-H3 ADC counterparts, particularly in terms of in vitro/in vivo tumor cytotoxicity, demonstrating remarkable immune cytotoxicity. Additionally, we observed potent activation of tumor-specific immunity and significant induction of markers of immunogenic cell death (ICD) and potential endoplasmic reticulum stress. CONCLUSION In conclusion, this novel BsADC, through immune checkpoint inhibition and promotion of ICD, amplified durable tumor immune cytotoxicity, providing novel insights and potential avenues for future cancer treatments and overcoming resistance.
Collapse
Affiliation(s)
- Yijun Dong
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Baugh AG, Gonzalez E, Narumi VH, Kreger J, Liu Y, Rafie C, Castanon S, Jang J, Kagohara LT, Anastasiadou DP, Leatherman J, Armstrong T, Chan I, Karagiannis GS, Jaffee EM, MacLean A, Torres ETR. A new Neu-a syngeneic model of spontaneously metastatic HER2-positive breast cancer. Clin Exp Metastasis 2024; 41:733-746. [PMID: 38717519 PMCID: PMC11499368 DOI: 10.1007/s10585-024-10289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/21/2024] [Indexed: 07/15/2024]
Abstract
Metastatic disease results from the dissemination of tumor cells beyond their organ of origin to grow in distant organs and is the primary cause of death in patients with advanced breast cancer. Preclinical murine models in which primary tumors spontaneously metastasize are valuable tools for studying metastatic progression and novel cancer treatment combinations. Here, we characterize a novel syngeneic murine breast tumor cell line that provides a model of spontaneously metastatic neu-expressing breast cancer with quicker onset of widespread metastases after orthotopic mammary implantation in immune-competent NeuN mice. The NT2.5-lung metastasis (-LM) cell line was derived from serial passaging of tumor cells that were macro-dissected from spontaneous lung metastases after orthotopic mammary implantation of parental NT2.5 cells. Within one week of NT2.5-LM implantation, metastases are observed in the lungs. Within four weeks, metastases are also observed in the bones, spleen, colon, and liver. We demonstrate that NT2.5-LM metastases are positive for NeuN-the murine equivalent of human epidermal growth factor 2 (HER2). We further demonstrate altered expression of markers of epithelial-to-mesenchymal transition (EMT), suggestive of their enhanced metastatic potential. Genomic analyses support these findings and reveal enrichment in EMT-regulating pathways. In addition, the metastases are rapidly growing, proliferative, and responsive to HER2-directed therapy. The new NT2.5-LM model provides certain advantages over the parental NT2/NT2.5 model, given its more rapid and spontaneous development of metastases. Besides investigating mechanisms of metastatic progression, this new model may be used for the rationalized development of novel therapeutic interventions and assessment of therapeutic responses.
Collapse
Affiliation(s)
- Aaron G Baugh
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA
| | - Edgar Gonzalez
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA
| | - Valerie H Narumi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Yingtong Liu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Christine Rafie
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sofi Castanon
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA
| | - Julie Jang
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA
| | - Luciane T Kagohara
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Dimitra P Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - James Leatherman
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Todd Armstrong
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Isaac Chan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth M Jaffee
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Adam MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Zhao G, Li P, Suo Y, Li C, Yang S, Zhang Z, Wu Z, Shen C, Hu H. An integrated pan-cancer assessment of prognosis, immune infiltration, and immunotherapy response for B7 family using multi-omics data. Life Sci 2024; 353:122919. [PMID: 39034028 DOI: 10.1016/j.lfs.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS B7 molecules (B7s) are crucial synergistic signals for effective immune surveillance against tumor cells. While previous studies have explored the association between the B7 family and cancer, most have been limited to specific genes or cancer subtypes. MAIN METHODS Our study utilized multi-omics data to investigate potential correlations between B7s expression (B7s exp.) and prognosis, clinicopathological features, somatic mutations (SMs), copy number variations (CNVs), immune characteristics, tumor microenvironment (TME), microsatellite instability, tumor mutation burden, immune checkpoint gene (ICG), and drug responsiveness in TCGA tumors. Furthermore, the connection between B7s exp. and immunotherapy (IT) performance assessed in various validated datasets. Following this, immune infiltration analysis (IIA) was conducted based on B7s exp., CNVs, or SMs in bladder cancer (BLCA), complemented by real-time PCR (RT-PCR) and protein confirmation of B7-H3. KEY FINDINGS Across most cancer types, B7s exp. was related to prognosis, clinicopathological characteristics, mutations, CNVs, ICG, TMB, TME. The examination of sensitivity to anticancer drugs unveiled correlations between B7 molecules and different drug sensitivities. Specific B7s exp. patterns were linked to the clinical effectiveness of IT. Using GSEA, several enriched immune-related functions and pathways were identified. Particularly in BLCA, IIA revealed significant connections between B7 CNVs, mutation status, and various immune cell infiltrates. RT-PCR confirmed elevated B7-H3 gene levels in BLCA tumor tissues. SIGNIFICANCE This study confirmed the significance of B7s exp. and genomic changes in predicting outcomes and treatment across different cancer types. Moreover, they indicate a critical function of B7s in BLCA and their potential as IT biomarkers.
Collapse
Affiliation(s)
- Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chenyun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
22
|
Zhou Q, Xu J, Chen X, Ouyang J, Mao C, Zhang Z. CD276 as a promising diagnostic and prognostic biomarker for bladder cancer through bioinformatics and clinical research. Front Oncol 2024; 14:1445526. [PMID: 39319055 PMCID: PMC11419956 DOI: 10.3389/fonc.2024.1445526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Objective To assess CD276 expression and explore its relationship with the clinicopathological characteristics and prognosis of patients with bladder cancer. Methods In total, RNA-sequencing data and clinical profiles of 436 bladder cancer cases from The Cancer Genome Atlas (TCGA) were assessed using the University of California Santa Cruz Xena (UCSC) platform. We compared the CD276 levels in cancerous and adjacent normal tissues and used the R software for statistical association with the clinical stage, grade, and survival (the overall survival, disease-specific survival, and progression-free survival). A single-gene GSEA analysis on TCGA-BLCA data was performed to explore potential pathways through which CD276 might influence bladder cancer. Additionally, CD276 expression was analyzed by comparing data from 9 cancerous tissues and 3 adjacent normal tissues in the GEO dataset GSE7476. Furthermore, we analyzed 133 cancerous bladder and adjacent tissue samples from the Soochow University Hospital, collected between January 1, 2016, and September 30, 2022, to assess the CD276 protein expression using immunohistochemistry. We examined the relationship between tumor CD276 levels and clinical outcomes and prognosis of bladder cancer. Results Bioinformatic analysis revealed elevated CD276 expression in tumors compared to that in adjacent tissues (p<0.05), correlating with poor survival. GSEA revealed that CD276 was significantly involved in extracellular matrix-related pathways. Immunohistochemistry confirmed CD276 overexpression in tumor tissues, with higher levels linked to advanced pathological grades and worse prognosis. Conclusion CD276 is markedly upregulated in bladder cancer and associated with severe pathological features, advanced disease, potential for metastasis, and diminished survival rates. It may promote bladder cancer development and progression by influencing extracellular matrix-related-related pathways, making it a viable diagnostic and prognostic biomarker for bladder cancer.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhao Xu
- Department of Pathology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Xuelei Chen
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyu Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Ma Z, Chen G, Li H, Yang S, Xu Y, Pan B, Lai W, Chen G, Liao W, Zhang X. B7-H3 promotes nasopharyngeal carcinoma progression by regulating CD8+ T cell exhaustion. Immun Inflamm Dis 2024; 12:e70005. [PMID: 39267471 PMCID: PMC11393430 DOI: 10.1002/iid3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/26/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND B7-H3 protein is an important regulator of the adaptive immune response in human tumorigenesis. 4-1BB is a co-stimulatory receptor expressed on activated CD8+ T cells, and regulates T cell immunity. Here, we investigated the role of B7-H3 in the growth and invasion of nasopharyngeal carcinoma (NPC) and the effect of its interaction with 4-1BB on tumor immunity. METHODS Short hairpin (sh) RNA was designed to knock down B7-H3 expression in NPC cells. NPC cells with stable knockdown of B7-H3 were established and injected into nude mice. The effects of B7-H3 on cell proliferation, apoptosis, and epithelial-to-mesenchymal transition (EMT) were detected by the CCK8 assay, flow cytometry, TUNEL assay, and western blot analysis. The migration and invasion abilities were determined using the Transwell assay and scratch assay. Co-immunoprecipitation (Co-IP) assays were performed to study the interaction between B7-H3 and 4-1BB. Anti-4-1BB antibody was used in a co-culture system and xenograft mice to study the effect of 4-1BB on NPC development. RESULTS NPC cells transfected with sh-B7-H3 showed a higher rate of apoptosis, slower growth rate, impaired migration, and less EMT in vitro. Xenograft mice with stable knockout of B7-H3 had lower tumor burdens, and the stripped tumors had lower rates of cell proliferation, higher rates of apoptosis, and less EMT in vivo. Additionally, decreased B7-H3 expression was positively correlated with interferon-γ, tumor necrosis factor-α, and 4-1BB+CD8+ tumor-infiltrating lymphocytes. Co-IP studies showed that B7-H3 interacts with 4-1BB. Also, the inhibitory effects of sh-B7-H3 on NPC tumor growth, invasion, and tumor immunity could be alleviated by the anti-4-1BB antibody both in vivo and in vitro. CONCLUSION Our findings suggest that B7-H3 may accelerate tumor growth, tumor cell invasion, and EMT, and interact with 4-1BB to produce CD8+ T cell exhaustion that inhibits tumor immunity. B7-H3 might serve as a novel target for treating NPC.
Collapse
Affiliation(s)
- Zhaoen Ma
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gui Chen
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hao Li
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Saixuan Yang
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yali Xu
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Bolin Pan
- Guangzhou Medical UniversityGuangzhouChina
| | - Wuping Lai
- Guangzhou Medical UniversityGuangzhouChina
| | - Guangui Chen
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenjing Liao
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xiaowen Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
24
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
25
|
Perovic D, Dusanovic Pjevic M, Perovic V, Grk M, Rasic M, Milickovic M, Mijovic T, Rasic P. B7 homolog 3 in pancreatic cancer. World J Gastroenterol 2024; 30:3654-3667. [PMID: 39193002 PMCID: PMC11346158 DOI: 10.3748/wjg.v30.i31.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Despite advances in cancer treatment, pancreatic cancer (PC) remains a disease with high mortality rates and poor survival outcomes. The B7 homolog 3 (B7-H3) checkpoint molecule is overexpressed among many malignant tumors, including PC, with low or absent expression in healthy tissues. By modulating various immunological and nonimmunological molecular mechanisms, B7-H3 may influence the progression of PC. However, the impact of B7-H3 on the survival of patients with PC remains a subject of debate. Still, most available scientific data recognize this molecule as a suppressive factor to antitumor immunity in PC. Furthermore, it has been demonstrated that B7-H3 stimulates the migration, invasion, and metastasis of PC cells, and enhances resistance to chemotherapy. In preclinical models of PC, B7-H3-targeting monoclonal antibodies have exerted profound antitumor effects by increasing natural killer cell-mediated antibody-dependent cellular cytotoxicity and delivering radioisotopes and cytotoxic drugs to the tumor site. Finally, PC treatment with B7-H3-targeting antibody-drug conjugates and chimeric antigen receptor T cells is being tested in clinical studies. This review provides a comprehensive analysis of all PC-related studies in the context of B7-H3 and points to deficiencies in the current data that should be overcome by future research.
Collapse
Affiliation(s)
- Dijana Perovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| | - Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| |
Collapse
|
26
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
27
|
Liu WF, Jiang QY, Qi ZR, Zhang F, Tang WQ, Wang HQ, Dong L. CD276 Promotes an Inhibitory Tumor Microenvironment in Hepatocellular Carcinoma and is Associated with Poor Prognosis. J Hepatocell Carcinoma 2024; 11:1357-1373. [PMID: 39011124 PMCID: PMC11247130 DOI: 10.2147/jhc.s469529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Background CD276 is an emerging immune checkpoint molecule that has been implicated in various cancers. However, its specific role in hepatocellular carcinoma (HCC) remains unclear. This study examined the impact of CD276 on patient prognosis and the tumor microenvironment (TME). Methods The Cancer Genome Atlas (TCGA) database was utilized to evaluate CD276 expression in HCC and the association between CD276 and immune indicators was also analyzed. The signaling pathways correlated with CD276 expression were identified by gene set enrichment analysis (GSEA). Different algorithms were used to assess immune cell infiltration. The effect of CD276 knockdown on HCC cell phenotypes and its relationship with macrophage polarization was examined using the cell counting kit 8 (CCK-8) assay and co-culture system. Results CD276 was upregulated in HCC and associated with unfavorable clinical outcomes. Hgh CD276 expression was associated with enrichment of the G2/M checkpoint, E2F targets, and mitotic spindles. CD276 expression was correlated with the infiltration of immune cells, including high level of tumor-associated macrophages and low levels of CD8+ T cells. Knockdown of CD276 decreased HCC cell proliferation and increased apoptosis. CD276 silencing in HCC cells and co-culture with THP-1-derived macrophages had a regulatory effect on macrophage polarization and macrophage-mediated cell proliferation and migration. Conclusion CD276 expression in HCC is associated with unfavorable clinical outcomes and may contribute to the development of an immunosuppressive microenvironment. Specifically, CD276 was associated with alterations in immune cell infiltration, immune marker expression, and macrophage polarization during HCC progression, suggesting its potential as a prognostic indicator and promising target for immunotherapeutic intervention in HCC.
Collapse
Affiliation(s)
- Wen-Feng Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qiu-Yu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhuo-Ran Qi
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wen-Qing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao-Qi Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Zhong Y, Tian Y, Wang Y, Bai J, Long Q, Yan L, Gong Z, Gao W, Tang Q. Small Extracellular Vesicle piR-hsa-30937 Derived from Pancreatic Neuroendocrine Neoplasms Upregulates CD276 in Macrophages to Promote Immune Evasion. Cancer Immunol Res 2024; 12:840-853. [PMID: 38572963 PMCID: PMC11217728 DOI: 10.1158/2326-6066.cir-23-0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The role of PIWI-interacting RNAs (piRNA) in small extracellular vesicles (sEV) derived from pancreatic neuroendocrine neoplasms (PNEN) in the tumor microenvironment (TME) remains unexplored. We used multiplex IHC to analyze the expression of CD68, CD276 (B7H3), and CD3 on PNEN. CD276+ tumor-associated macrophages (TAM) were more abundant in tumor tissues than nontumor tissues and negatively correlated with T-cell infiltration. Serum sEV piRNA sequencing was performed to identify piRNAs enriched in patients with PNEN. We then investigated the function and mechanism of sEV piR-hsa-30937 in the cross-talk between tumor cells and macrophages in the PNEN TME. PNEN-derived sEV piR-hsa-30937 targeted PTEN to activate the AKT pathway and drive CD276 expression. CD276+ macrophages inhibited T-cell proliferation and IFNγ production. piR-hsa-30937 knockdown and anti-CD276 treatment suppressed progression and metastasis in a preclinical model of PNEN by enhancing T-cell immunity. Thus, our data show that PNEN-derived sEV piR-hsa-30937 promotes CD276 expression in macrophages through the PTEN/AKT pathway and that CD276+ TAMs suppress T-cell antitumor immunity. sEV piR-hsa-30937 and CD276 are potential therapeutic targets for immunotherapy of PNEN.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Yan Wang
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, P.R. China.
| | - Jian’an Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Qin Long
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| | - Zhihui Gong
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, P.R. China.
| | - Wei Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China.
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
29
|
Hu C, Wang S, Wang J, Ruan X, Wu L, Zhang Z, Wang X, Zhang J, Liu Y, Li Y, Zhao X. B7-H3 enhances colorectal cancer progression by regulating HB-EGF via HIF-1α. J Gastrointest Oncol 2024; 15:1035-1049. [PMID: 38989423 PMCID: PMC11231846 DOI: 10.21037/jgo-24-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background B7-H3 (or CD276) represents an important costimulatory molecule expressed in many malignant solid tumors, including colorectal cancer (CRC). The receptor of B7-H3 is not known, and the intracellular function of B7-H3 remains obscure. Herein, we report that B7-H3 upregulated the epidermal growth factor heparin-binding epidermal growth factor (HB-EGF), likely by regulating hypoxia-inducible factor 1α (HIF-1α) and thereby promoting the progression of CRC. Methods Lentiviral transfection was performed on CRC cells to establish stable low-B7-H3 expression cells. A mechanistic analysis with an Agilent human gene expression profiling chip was conducted on them. Clinical data and specimens were collected to detect the connection between B7-H3 and HB-EGF in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the messenger RNA (mRNA) level of B7-H3, HB-EGF, and HIF-1α. Chromatin immunoprecipitation (ChIP) quantitative real-time PCR was conducted. The protein level of HIF-1α and the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) pathway were detected by western blot. HIF-1α was recovered by lentiviral transfection, and the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis ability were detected. Results B7-H3 promoted tumor progression through HB-EGF and the PI3K-AKT pathway. As B7-H3 was downregulated, HB-EGF levels were significantly reduced simultaneously, a growth trend that was shown by both CRC cell lines and cancer tissues. In addition, B7-H3 and HB-EGF had significant associations with tumor-node-metastasis (TNM) stage and lymph node metastasis in 50 CRC patients. The binding ability of HIF-1α to the HB-EGF promoter region was significantly decreased in the shB7-H3 RKO group. Western blot revealed that PI3K, AKT, and mammalian target of rapamycin (mTOR) protein amounts and p-AKT and p-mTOR phosphorylation were also downregulated in shB7-H3 RKO cells, suggesting that B7-H3 may regulate HIF-1α via PI3K-AKT signaling. After recovery of the HIF-1α level by lentiviral transfection, the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis in CRC cells recovered as well. Conclusions B7-H3 may transmit intracellular signals through PI3K-AKT-mTOR-HIF-1α signaling, upregulating HB-EGF. As the final transcription factor of the pathway, HIF-1α regulates the transcription of the HB-EGF gene, thereby promoting HB-EGF expression, which eventually mediates cell proliferation, invasion, and angiogenesis and promotes the progression of CRC.
Collapse
Affiliation(s)
- Chenrui Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, The Fifth People's Hospital of Jinan, Jinan, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjia Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, China
| | - Xiaokang Ruan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linwei Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, China
| | - Xuefeng Wang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianglei Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonghao Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Wu S, Hu C, Hui K, Jiang X. Non-immune functions of B7-H3: bridging tumor cells and the tumor vasculature. Front Oncol 2024; 14:1408051. [PMID: 38952550 PMCID: PMC11215132 DOI: 10.3389/fonc.2024.1408051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
B7-H3 (CD276), an immune checkpoint molecule, is overexpressed in various types of cancer and their tumor vasculature, demonstrating significant associations with adverse clinical outcomes. In addition to its well-known immune functions, B7-H3 exhibits dual co-stimulatory/co-inhibitory roles in normal physiology and the tumor microenvironment. The non-immune functions of B7-H3 in tumor cells and the tumor vasculature, including promoting tumor cell anti-apoptosis, proliferation, invasion, migration, drug resistance, radioresistance, as well as affecting cellular metabolism and angiogenesis, have increasingly gained attention from researchers. Particularly, the co-expression of B7-H3 in both tumor cells and tumor endothelial cells highlights the higher potential and clinical utility of therapeutic strategies targeting B7-H3. This review aims to summarize the recent advances in understanding the non-immune functions of B7-H3 in tumors and provide insights into therapeutic approaches targeting B7-H3, focusing on its co-expression in tumor cells and endothelial cells. The aim is to establish a theoretical foundation and practical reference for the development and optimization of B7-H3-targeted therapies.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
31
|
Yeo SP, Kua L, Tan JW, Lim JK, Wong FHS, Santos MD, Poh CM, Goh AXH, Koh XY, Zhou X, Rajarethinam R, Chen Q, Her Z, Horak ID, Low L, Tan KW. B7-H3-Targeting Chimeric Antigen Receptors Epstein-Barr Virus-specific T Cells Provides a Tumor Agnostic Off-The-Shelf Therapy Against B7-H3-positive Solid Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:1410-1429. [PMID: 38717140 PMCID: PMC11149603 DOI: 10.1158/2767-9764.crc-23-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Encouraged by the observations of significant B7-H3 protein overexpression in many human solid tumors compared to healthy tissues, we directed our focus towards targeting B7-H3 using chimeric antigen receptor (CAR) T cells. We utilized a nanobody as the B7-H3-targeting domain in our CAR construct to circumvent the stability issues associated with single-chain variable fragment-based domains. In efforts to expand patient access to CAR T-cell therapy, we engineered our nanobody-based CAR into human Epstein-Barr virus-specific T cells (EBVST), offering a readily available off-the-shelf treatment. B7H3.CAR-armored EBVSTs demonstrated potent in vitro and in vivo activities against multiple B7-H3-positive human tumor cell lines and patient-derived xenograft models. Murine T cells expressing a murine equivalent of our B7H3.CAR exhibited no life-threatening toxicities in immunocompetent mice bearing syngeneic tumors. Further in vitro evaluation revealed that while human T, B, and natural killer cells were unaffected by B7H3.CAR EBVSTs, monocytes were targeted because of upregulation of B7-H3. Such targeting of myeloid cells, which are key mediators of cytokine release syndrome (CRS), contributed to a low incidence of CRS in humanized mice after B7H3.CAR EBVST treatment. Notably, we showed that B7H3.CAR EBVSTs can target B7-H3-expressing myeloid-derived suppressor cells (MDSC), thereby mitigating MDSC-driven immune suppression. In summary, our data demonstrate that our nanobody-based B7H3.CAR EBVSTs are effective as an off-the-shelf therapy for B7-H3-positive solid tumors. These cells also offer an avenue to modulate the immunosuppressive tumor microenvironment, highlighting their promising clinical potential in targeting solid tumors. SIGNIFICANCE Clinical application of EBVSTs armored with B7-H3-targeting CARs offer an attractive solution to translate off-the-shelf CAR T cells as therapy for solid tumors.
Collapse
Affiliation(s)
| | - Lindsay Kua
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| | - Jin Wei Tan
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| | | | - Fiona HS Wong
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| | | | | | - Angeline XH Goh
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| | | | | | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ivan D. Horak
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| | - Lionel Low
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| | - Kar Wai Tan
- Tessa Therapeutics Ltd, Singapore
- Tikva Allocell Pte Ltd, Singapore
| |
Collapse
|
32
|
Epperly R, Gottschalk S, DeRenzo C. CAR T cells redirected to B7-H3 for pediatric solid tumors: Current status and future perspectives. EJC PAEDIATRIC ONCOLOGY 2024; 3:100160. [PMID: 38957786 PMCID: PMC11218663 DOI: 10.1016/j.ejcped.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Despite intensive therapies, pediatric patients with relapsed or refractory solid tumors have poor outcomes and need novel treatments. Immune therapies offer an alternative to conventional treatment options but require the identification of differentially expressed antigens to direct antitumor activity to sites of disease. B7-H3 (CD276) is an immune regulatory protein that is expressed in a range of malignancies and has limited expression in normal tissues. B7-H3 is highly expressed in pediatric solid tumors including osteosarcoma, rhabdomyosarcoma, Ewing sarcoma, Wilms tumor, neuroblastoma, and many rare tumors. In this article we review B7-H3-targeted chimeric antigen receptor (B7-H3-CAR) T cell therapies for pediatric solid tumors, reporting preclinical development strategies and outlining the landscape of active pediatric clinical trials. We identify challenges to the success of CAR T cell therapy for solid tumors including localizing to and penetrating solid tumor sites, evading the hostile tumor microenvironment, supporting T cell expansion and persistence, and avoiding intrinsic tumor resistance. We highlight strategies to overcome these challenges and enhance the effect of B7-H3-CAR T cells, including advanced CAR T cell design and incorporation of combination therapies.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
33
|
Rosenkrans ZT, Erbe AK, Clemons NB, Feils AS, Medina-Guevara Y, Jeffery JJ, Barnhart TE, Engle JW, Sondel PM, Hernandez R. Targeting both GD2 and B7-H3 using bispecific antibody improves tumor selectivity for GD2-positive tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595624. [PMID: 38853889 PMCID: PMC11160562 DOI: 10.1101/2024.05.23.595624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objectives Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated. Methods Differential expression of human B7-H3 (hB7-H3) was transduced into GD2+ B78 murine melanoma cells and confirmed by flow cytometry. We assessed the avidity and selectivity of our GD2-B7-H3 targeting bispecific antibodies (INV34-6, INV33-2, and INV36-6) towards GD2+/hB7-H3- B78 cells relative to GD2+/hB7-H3+ B78 cells using flow cytometry and competition binding assays, comparing results an anti-GD2 antibody (dinutuximab, DINU). The bispecific antibodies, DINU, and a non-targeted bispecific control (bsAb CTRL) were conjugated with deferoxamine for radiolabeling with Zr-89 (t1/2 = 78.4 h). Using positron emission tomography (PET) studies, we evaluated the in vivo avidity and selectivity of the GD2-B7-H3 targeting bispecific compared to bsAb CTRL and DINU using GD2+/hB7-H3+ and GD2+/hB7-H3- B78 tumor models. Results Flow cytometry and competition binding assays showed that INV34-6 bound with high avidity to GD2+/hB7-H3+ B78 cells with high avidity but not GD2+/hB7-H3+ B78 cells. In comparison, no selectivity between cell types was observed for DINU. PET in mice bearing the GD2+/hB7-H3- and GD2+/hB7-H3+ B78 murine tumor showed similar biodistribution in normal tissues for [89Zr]Zr-Df-INV34-6, [89Zr]Zr-Df-bsAb CTRL, and [89Zr]Zr-Df-DINU. Importantly, [89Zr]Zr-Df-INV34-6 tumor uptake was selective to GD2+/hB7-H3+ B78 over GD2+/hB7-H3- B78 tumors, and substantially higher to GD2+/hB7-H3+ B78 than the non-targeted [89Zr]Zr-Df-bsAb CTRL control. [89Zr]Zr-Df-DINU displayed similar uptake in both GD2+ tumor models, with uptake comparable to [89Zr]Zr-Df-INV34-6 in the GD2+/hB7-H3+ B78 model. Conclusion The GD2-B7-H3 targeting bispecific antibodies successfully improved selectivity to cells expressing both antigens. This approach should address the severe toxicities associated with GD2-targeting therapies by reducing off-tumor GD2 binding in nerves. Continued improvements in bispecific antibody technologies will continue to transform the therapeutic biologics landscape.
Collapse
Affiliation(s)
- Zachary T. Rosenkrans
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amy K. Erbe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nathan B. Clemons
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Yadira Medina-Guevara
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Justin J. Jeffery
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Todd E. Barnhart
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonathan W. Engle
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul M. Sondel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Reinier Hernandez
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
34
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
35
|
Xiong G, Chen Z, Liu Q, Peng F, Zhang C, Cheng M, Ling R, Chen S, Liang Y, Chen D, Zhou Q. CD276 regulates the immune escape of esophageal squamous cell carcinoma through CXCL1-CXCR2 induced NETs. J Immunother Cancer 2024; 12:e008662. [PMID: 38724465 PMCID: PMC11086492 DOI: 10.1136/jitc-2023-008662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.
Collapse
Affiliation(s)
- Gan Xiong
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Zhi Chen
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qianwen Liu
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Radiation Oncology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Caihua Zhang
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Maosheng Cheng
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Shuang Chen
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yu Liang
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Demeng Chen
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Holzmayer SJ, Liebel K, Hagelstein I, Salih HR, Märklin M. The bispecific B7H3xCD3 antibody CC-3 induces T cell immunity against bone and soft tissue sarcomas. Front Immunol 2024; 15:1391954. [PMID: 38765008 PMCID: PMC11099233 DOI: 10.3389/fimmu.2024.1391954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.
Collapse
Affiliation(s)
- Samuel J. Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kai Liebel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Zhang Z, Yang N, Lu H, Chen Y, Xu L, Wang Z, Lu Q, Zhong K, Zhu Z, Wang G, Li H, Zheng M, Zhang W, Yang H, Peng X, Zhou L, Tong A. Improved antitumor effects elicited by an oncolytic HSV-1 expressing a novel B7H3nb/CD3 BsAb. Cancer Lett 2024; 588:216760. [PMID: 38428724 DOI: 10.1016/j.canlet.2024.216760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Oncolytic viruses have emerged as a promising modality for cancer treatment due to their unique abilities to directly destroy tumor cells and modulate the tumor microenvironment. Bispecific T-cell engagers (BsAbs) have been developed to activate and redirect cytotoxic T lymphocytes, enhancing the antitumor response. To take advantage of the specific infection capacity and carrying ability of exogenous genes, we generated a recombinant herpes simplex virus type 1 (HSV-1), HSV-1dko-B7H3nb/CD3 or HSV-1dko-B7H3nb/mCD3, carrying a B7H3nb/CD3 or B7H3nb/mCD3 BsAb that replicates and expresses BsAb in tumor cells in vitro and in vivo. The new generation of oncolytic viruses has been genetically modified using CRISPR/Cas9 technology and the cre-loxp system to increase the efficiency of HSV genome editing. Additionally, we used two fully immunocompetent models (GL261 and MC38) to assess the antitumor effect of HSV-1dko-B7H3nb/mCD3. Compared with the HSV-1dko control virus, HSV-1dko-B7H3nb/mCD3 induced enhanced anti-tumor immune responses and T-cell infiltration in both GL261 and MC38 models, resulting in improved treatment efficacy in the latter. Furthermore, flow cytometry analysis of the tumor microenvironment confirmed an increase in NK cells and effector CD8+ T cells, and a decrease in immunosuppressive cells, including FOXP3+ regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and CD206+ macrophages (M2). Overall, our study identified a novel camel B7H3 nanobody and described the genetic modification of the HSV-1 genome using CRISPR/Cas9 technology and the cre-loxp system. Our findings indicate that expressing B7H3nb/CD3 BsAb could improve the antitumor effects of HSV-1 based oncolytic virus.
Collapse
Affiliation(s)
- Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Long Xu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Zhixiong Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Guoqing Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, West China Medical School, Chengdu, Sichuan, 610041, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiwei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingchen Peng
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Neurosurgery, Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia, 753000, China; Department of Neurosurgery, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
39
|
Li J, Zhou B, Wang S, Ouyang J, Jiang X, Wang C, Zhou T, Zheng KW, Wang J, Wang J. Development of a Human B7-H3-Specific Antibody with Activity against Colorectal Cancer Cells through a Synthetic Nanobody Library. Bioengineering (Basel) 2024; 11:381. [PMID: 38671802 PMCID: PMC11047927 DOI: 10.3390/bioengineering11040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Nanobodies have emerged as promising tools in biomedicine due to their single-chain structure and inherent stability. They generally have convex paratopes, which potentially prefer different epitope sites in an antigen compared to traditional antibodies. In this study, a synthetic phage display nanobody library was constructed and used to identify nanobodies targeting a tumor-associated antigen, the human B7-H3 protein. Combining next-generation sequencing and single-clone validation, two nanobodies were identified to specifically bind B7-H3 with medium nanomolar affinities. Further characterization revealed that these two clones targeted a different epitope compared to known B7-H3-specific antibodies, which have been explored in clinical trials. Furthermore, one of the clones, dubbed as A6, exhibited potent antibody-dependent cell-mediated cytotoxicity (ADCC) against a colorectal cancer cell line with an EC50 of 0.67 nM, upon conversion to an Fc-enhanced IgG format. These findings underscore a cost-effective strategy that bypasses the lengthy immunization process, offering potential rapid access to nanobodies targeting unexplored antigenic sites.
Collapse
Affiliation(s)
- Jingxian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Bingjie Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Shiting Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Jiayi Ouyang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Xinyi Jiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd., Shenzhen 518107, China;
| | - Teng Zhou
- School of Cyberspace Security, Hainan University, Haikou 570228, China;
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| |
Collapse
|
40
|
Cattaneo G, Ventin M, Arya S, Kontos F, Michelakos T, Sekigami Y, Cai L, Villani V, Sabbatino F, Chen F, Sadagopan A, Deshpande V, Moore PA, Ting DT, Bardeesy N, Wang X, Ferrone S, Ferrone CR. Interplay between B7-H3 and HLA class I in the clinical course of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 587:216713. [PMID: 38364961 PMCID: PMC11146152 DOI: 10.1016/j.canlet.2024.216713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Human leukocyte antigen (HLA) class I defects are associated with cancer progression. However, their prognostic significance is controversial and may be modulated by immune checkpoints. Here, we investigated whether the checkpoint B7-H3 modulates the relationship between HLA class I and pancreatic ductal adenocarcinoma (PDAC) prognosis. PDAC tumors were analyzed for the expression of B7-H3, HLA class I, HLA class II molecules, and for the presence of tumor-infiltrating immune cells. We observed defective HLA class I and HLA class II expressions in 75% and 59% of PDAC samples, respectively. HLA class I and B7-H3 expression were positively related at mRNA and protein level, potentially because of shared regulation by RELA, a sub-unit of NF-kB. High B7-H3 expression and low CD8+ T cell density were indicators of poor survival, while HLA class I was not. Defective HLA class I expression was associated with unfavorable survival only in patients with low B7-H3 expression. Favorable survival was observed only when HLA class I expression was high and B7-H3 expression low. Our results provide the rationale for targeting B7-H3 in patients with PDAC tumors displaying high HLA class I levels.
Collapse
Affiliation(s)
- Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States. https://twitter.com/GCattaneoPhD
| | - Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yurie Sekigami
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lei Cai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vincenzo Villani
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Francesco Sabbatino
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - David T Ting
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nabeel Bardeesy
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
41
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
42
|
Lee HW, O'Reilly C, Beckett AN, Currier DG, Chen T, DeRenzo C. A high-content screen of FDA approved drugs to enhance CAR T cell function: ingenol-3-angelate improves B7-H3-CAR T cell activity by upregulating B7-H3 on the target cell surface via PKCα activation. J Exp Clin Cancer Res 2024; 43:97. [PMID: 38561833 PMCID: PMC10985962 DOI: 10.1186/s13046-024-03022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.
Collapse
Affiliation(s)
- Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Carla O'Reilly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alex N Beckett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Duane G Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
43
|
Cheng M, Chen S, Li K, Wang G, Xiong G, Ling R, Zhang C, Zhang Z, Han H, Chen Z, Wang X, Liang Y, Tian G, Zhou R, Zhu Y, Ma J, Liu J, Lin S, Xu H, Chen D, Li Y, Peng L. CD276-dependent efferocytosis by tumor-associated macrophages promotes immune evasion in bladder cancer. Nat Commun 2024; 15:2818. [PMID: 38561369 PMCID: PMC10985117 DOI: 10.1038/s41467-024-46735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.
Collapse
Affiliation(s)
- Maosheng Cheng
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518057, China
| | - Caihua Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihui Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Han
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Liang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Zhu
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahong Liu
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China
| | - Shuibin Lin
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Demeng Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yang Li
- Department of Genetics, School of Life Sciences, Anhui Medical University, Hefei, 230031, China.
| | - Liang Peng
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
44
|
Shen B, Mei J, Xu R, Cai Y, Wan M, Zhou J, Ding J, Zhu Y. B7-H3 is associated with the armored-cold phenotype and predicts poor immune checkpoint blockade response in melanoma. Pathol Res Pract 2024; 256:155267. [PMID: 38520953 DOI: 10.1016/j.prp.2024.155267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Melanoma is the most suitable tumor type for immunotherapy, but not all melanoma patients could respond to immunotherapy. B7 homolog 3 (B7-H3) belongs to the B7 family and is overexpressed in a number of malignant tumors, but the expression pattern of B7-H3 in melanoma has not been well summarized. The expression of B7-H3 was investigated in melanoma and its correlations with features of the tumor microenvironment (TME) by using various public databases, including the Cancer Genome Atlas (TCGA), the GEPIA, and the Human Protein Atlas databases. In addition, the in-house melanoma tissue microarray was applied to validate the results from public databases. Based on the public and in-house cohorts, we found that B7-H3 was overexpressed in melanoma tumor tissues and high B7-H3 expression was related to poor clinical outcome. Moreover, B7-H3 was negatively correlated with levels of tumor-infiltrating lymphocytes (TILs) and positively correlated with collagen infiltration. With clinical translational value, the predictive value of B7-H3 for conventional immunotherapy was detected using the Kaplan-Meier plotter tool, and the results showed that melanoma patients with high B7-H3 expression were insensitive to anti-PD-1 and anti-CTLA-4 immunotherapy. In conclusion, we first investigate the expression of B7-H3 in melanoma and its correlations with the TME features, and indicate B7-H3 as a promising therapeutic target in melanoma patients that are insensitive to conventional immunotherapy.
Collapse
Affiliation(s)
- Bozhi Shen
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Yun Cai
- Department of Laboratory Medicine, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| | - Mengyun Wan
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ji Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
45
|
Sun H, Gao F, Liu Y, Shao J. Survival and clinicopathological significance of B7-H3 in bladder cancer: a systematic review and meta-analysis. BMC Urol 2024; 24:57. [PMID: 38468228 DOI: 10.1186/s12894-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND B7-H3 has been implicated in clinical pathological features and prognosis across various cancer types, suggesting its potential as a cancer biomarker. Nevertheless, consensus remains elusive regarding its clinical-pathological and prognostic significance in bladder cancer. To address this gap, we conducted a systematic review and meta-analysis. METHODS We systematically searched PubMed, Embase, Web of Science, Cochrane, and CNKI databases from their inception up to October 6, 2022. We evaluated the literature's quality using the Newcastle-Ottawa Scale. We performed meta-analysis using Review Manager 5.3 and STATA 12.0, synthesizing data and calculating odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence intervals (CIs). RESULTS After applying eligibility criteria and conducting assessments, we included data from 8 studies, encompassing 1622 bladder cancer patients. Bladder tumor tissues exhibited significantly elevated B7-H3 protein expression compared to normal bladder tissues. Elevated B7-H3 expression was notably associated with patient age, tumor infiltration, and recurrence in bladder cancer. However, no significant correlations were observed with other clinical characteristics. Our pooled HR analysis indicated no significant association between B7-H3 expression and overall survival in bladder cancer patients. CONCLUSION Our meta-analysis unveils the complex role of B7-H3 in bladder cancer progression. It appears to be directly involved in tumor infiltration and recurrence but cannot definitively serve as a prognostic biomarker for bladder cancer. To validate these findings, further well-designed studies, encompassing larger sample sizes and diverse racial backgrounds, are warranted. PROSPERO REGISTRATION No. CRD42022364688.
Collapse
Affiliation(s)
- Haohao Sun
- Department of Urology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214002, China
- Department of Urology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Fei Gao
- Department of Urology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Liu
- Department of General Surgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Jianfeng Shao
- Department of Urology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214002, China.
| |
Collapse
|
46
|
Coy S, Lee JS, Chan SJ, Woo T, Jones J, Alexandrescu S, Wen PY, Sorger PK, Ligon KL, Santagata S. Systematic characterization of antibody-drug conjugate targets in central nervous system tumors. Neuro Oncol 2024; 26:458-472. [PMID: 37870091 PMCID: PMC10912007 DOI: 10.1093/neuonc/noad205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) enhance the specificity of cytotoxic drugs by directing them to cells expressing target antigens. Multiple ADCs are FDA-approved for solid and hematologic malignancies, including those expressing HER2, TROP2, and NECTIN4. Recently, an ADC targeting HER2 (Trastuzumab-Deruxtecan) increased survival and reduced growth of brain metastases in treatment-refractory metastatic breast cancer, even in tumors with low HER2 expression. Thus, low-level expression of ADC targets may be sufficient for treatment responsiveness. However, ADC target expression is poorly characterized in many central nervous system (CNS) tumors. METHODS We analyzed publicly available RNA-sequencing and proteomic data from the children's brain tumor network (N = 188 tumors) and gene-expression-omnibus RNA-expression datasets (N = 356) to evaluate expression of 14 potential ADC targets that are FDA-approved or under investigation in solid cancers. We also used immunohistochemistry to measure the levels of HER2, HER3, NECTIN4, TROP2, CLDN6, CLDN18.2, and CD276/B7-H3 protein in glioblastoma, oligodendroglioma, meningioma, ependymoma, pilocytic astrocytoma, medulloblastoma, atypical teratoid/rhabdoid tumor (AT/RT), adamantinomatous craniopharyngioma (ACP), papillary craniopharyngioma (PCP), and primary CNS lymphoma (N = 575). RESULTS Pan-CNS analysis showed subtype-specific expression of ADC target proteins. Most tumors expressed HER3, B7-H3, and NECTIN4. Ependymomas strongly expressed HER2, while meningiomas showed weak-moderate HER2 expression. ACP and PCP strongly expressed B7-H3, with TROP2 expression in whorled ACP epithelium. AT/RT strongly expressed CLDN6. Glioblastoma showed little subtype-specific marker expression, suggesting a need for further target development. CONCLUSIONS CNS tumors exhibit subtype-specific expression of ADC targets including several FDA-approved for other indications. Clinical trials of ADCs in CNS tumors may therefore be warranted.
Collapse
Affiliation(s)
- Shannon Coy
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, USA
| | - Jong Suk Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, Massachusetts, USA
| | - Sabrina J Chan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Terri Woo
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jacquelyn Jones
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, Massachusetts, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Jung S, Schlenk RF, Hackenbruch C, Roldan Pinzon SSL, Bitzer M, Pflügler M, Walz JS, Jung G, Heitmann JS, Salih HR. Protocol of a first-in-human clinical trial to evaluate the safety, tolerability, and preliminary efficacy of the bispecific CD276xCD3 antibody CC-3 in patients with colorectal cancer (CoRe_CC-3). Front Oncol 2024; 14:1351901. [PMID: 38410109 PMCID: PMC10896605 DOI: 10.3389/fonc.2024.1351901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common cancer worldwide in men and women. In the metastasized stage, treatment options and prognosis are limited. To address the high medical need of this patient population, we generated a CD276xCD3 bispecific antibody termed CC-3. CD276 is expressed on CRC cells and on tumor vessels, thereby allowing for a "dual" anticancer effect. Methods and analysis This first-in-human clinical study is planned as a prospective multicenter trial, enrolling patients with metastatic CRC after three lines of therapy. During the dose-escalation part, initially, an accelerated titration design with single-patient cohorts is employed. Here, each patient will receive a fixed dose level (starting with 50 µg for the first patient); however, between patients, dose level may be increased by up to 100%, depending on the decision of a safety review committee. Upon occurrence of any adverse events (AEs) grade ≥2, dose-limiting toxicity (DLT), or reaching a dose level of ≥800 µg, the escalation will switch to a standard 3 + 3 dose design. After maximum tolerated dose (MTD) has been determined, defined as no more than one of the six patients experiencing DLT, an additional 14 patients receive CC-3 at the MTD level in the dose-expansion phase. Primary endpoints are incidence and severity of AEs, as well as the best objective response to the treatment according to response evaluation criteria in solid tumors (RECIST) 1.1. Secondary endpoints include overall safety, efficacy, survival, quality of life, and pharmacokinetic investigations. Ethics and dissemination The CD276xCD3 study was approved by the Ethics Committee of the Medical Faculty of the Heinrich Heine University Düsseldorf and the Paul-Ehrlich-Institut (P00702). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers: ClinicalTrials.cov Registry (NCT05999396) and EU ClinicalTrials Registry (EU trial number 2022-503084-15-00).
Collapse
Affiliation(s)
- Susanne Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
| | - Richard F Schlenk
- NCT Trial Center, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
| | - Sandra S L Roldan Pinzon
- NCT Trial Center, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Bitzer
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology and Geriatrics, University Hospital Tübingen, Tübingen, Germany
| | - Martin Pflügler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Chen LC, Yang PC, Chen CY, Chiang SF, Chen TW, Chen WTL, Ke TW, Liang JA, Shiau A, Chao KSC, Huang KCY. Dual Inhibition of B7-H3 and EGFR Overcomes Acquired Chemoresistance in Colon Adenocarcinoma. J Cancer 2024; 15:1750-1761. [PMID: 38370387 PMCID: PMC10869969 DOI: 10.7150/jca.91089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Despite advances in therapeutic strategies for colorectal cancer (CRC), CRC has a high disease incidence with significant morbidity and mortality worldwide. Notably, immunotherapy has shown limited efficacy in treating metastatic CRC, underscoring the need for alternative immunotherapeutic targets for the management of metastatic colorectal cancer (mCRC). In the present study, we evaluated the levels of the immune checkpoint proteins PD-L1, PD-L2 and B7-H3 in a large cohort retrospective study. We found that tumor B7-H3 (52.7%) was highly expressed in primary tumors compared to that in PD-L1 (33.6%) or PD-L2 (34.0%). Elevated B7-H3 expression was associated with advanced stage and the risk of distant metastasis and correlated with poor disease-free survival (DFS), suggesting that tumor B7-H3 was an independent prognostic factor associated with worse DFS in colon adenocarcinoma patients (COAD), especially high-risk COAD patients who received adjuvant chemotherapy. Furthermore, we found that B7-H3 significantly promoted cell proliferation and tumor growth in CRC. B7-H3 may stabilize EGFR to activate its downstream pathway for cancer cell proliferation and resistance to oxaliplatin (OXP). Dual targeting of B7-H3 and EGFR markedly rescued the susceptibility to chemotherapy in colorectal cancer cells in vitro and in vivo. Overall, these results showed that B7-H3 exhibited a high prevalence in COAD patients and was significantly associated with worse prognosis in COAD patients. Dual targeting of B7-H3 and EGFR signaling might be a potential therapeutic strategy for high-risk COAD patients.
Collapse
Affiliation(s)
- Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, Taichung 41354, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu 302, Taiwan
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Surgery, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - An‑Cheng Shiau
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
| | - K. S. Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
49
|
Baugh AG, Gonzalez E, Narumi VH, Kreger J, Liu Y, Rafie C, Castanon S, Jang J, Kagohara LT, Anastasiadou DP, Leatherman J, Armstrong TD, Chan I, Karagiannis GS, Jaffee EM, MacLean A, Roussos Torres ET. Mimicking the breast metastatic microenvironment: characterization of a novel syngeneic model of HER2 + breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577282. [PMID: 38352476 PMCID: PMC10862766 DOI: 10.1101/2024.01.25.577282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Preclinical murine models in which primary tumors spontaneously metastasize to distant organs are valuable tools to study metastatic progression and novel cancer treatment combinations. Here, we characterize a novel syngeneic murine breast tumor cell line, NT2.5-lung metastasis (-LM), that provides a model of spontaneously metastatic neu-expressing breast cancer with quicker onset of widespread metastases after orthotopic mammary implantation in immune-competent NeuN mice. Within one week of orthotopic implantation of NT2.5-LM in NeuN mice, distant metastases can be observed in the lungs. Within four weeks, metastases are also observed in the bones, spleen, colon, and liver. Metastases are rapidly growing, proliferative, and responsive to HER2-directed therapy. We demonstrate altered expression of markers of epithelial-to-mesenchymal transition (EMT) and enrichment in EMT-regulating pathways, suggestive of their enhanced metastatic potential. The new NT2.5-LM model provides more rapid and spontaneous development of widespread metastases. Besides investigating mechanisms of metastatic progression, this new model may be used for the rationalized development of novel therapeutic interventions and assessment of therapeutic responses targeting distant visceral metastases.
Collapse
Affiliation(s)
- Aaron G. Baugh
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edgar Gonzalez
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie H. Narumi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Yingtong Liu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Christine Rafie
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sofi Castanon
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie Jang
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luciane T. Kagohara
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Dimitra P. Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment & Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - James Leatherman
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Todd D. Armstrong
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Isaac Chan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - George S. Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment & Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth M. Jaffee
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Adam MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T. Roussos Torres
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Lutz MS, Wang K, Jung G, Salih H, Hagelstein I. An Fc-modified monoclonal antibody as novel treatment option for pancreatic cancer. Front Immunol 2024; 15:1343929. [PMID: 38322253 PMCID: PMC10845339 DOI: 10.3389/fimmu.2024.1343929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Kevin Wang
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department of Immunology, Eberhard Karls Universität Tübingen, Tuebingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|