1
|
Kwan ASH, Uwishema O, Mshaymesh S, Choudhary K, Salem FK, Sengar AS, Patel RP, Kazan Z, Wellington J. Advances in the diagnosis of colorectal cancer: the application of molecular biomarkers and imaging techniques: a literature review. Ann Med Surg (Lond) 2025; 87:192-203. [PMID: 40109625 PMCID: PMC11918703 DOI: 10.1097/ms9.0000000000002830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 03/22/2025] Open
Abstract
Background Following neoplasms of the lung and breast, colorectal cancer (CRC) is the third most frequent malignancy globally. Screening for CRC at the age of 50 years is strongly encouraged for prompt earlier diagnosis owing to prognoses being greatly correlated with time of detection and cancer staging. Aim This review aimed to elucidate the most recent advancements in the detection of CRC, with an emphasis on the latest innovations in diagnostic molecular biomarkers in conjunction with radiological imaging alongside stool-based tests for CRC screening. Methods A comprehensive review of the literature was performed, focusing on specific terms in different electronic databases, including that of PubMed/MEDLINE. Keywords pertaining to "colorectal cancer," "diagnosis," "screening," "imaging," and "biomarkers," among others, were employed in the search strategy. Articles screened and evaluated were deemed relevant to the study aim and were presented in the medium of the English language. Results There have been several innovations in the diagnostics and identification of CRC. These generally comprise molecular biomarkers, currently being studied for suitability in disease detection. Examples of these include genetic, epigenetic, and protein biomarkers. Concurrently, recent developments in CRC diagnostics highlight the advancements made in radiological imaging that offer precise insights on tumor biology in addition to morphological information. Combining these with statistical methodologies will increase the sensitivity and specificity of CRC diagnostics. However, putting these strategies into reality is hampered by several issues. Conclusion Progress in diagnostic technology alongside the identification of a few prognostic predictive molecular biomarkers suggested great promise for prompt detection and management of CRC. This clearly necessitates further efforts to learn more in this specific sector.
Collapse
Affiliation(s)
- Alicia Su Huey Kwan
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine for Older People, Southampton General Hospital, Southampton, United Kingdom
| | - Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Sarah Mshaymesh
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Natural Sciences, Faculty of Sciences, Haigazian University, Beirut, Lebanon
| | - Karan Choudhary
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, Department of General Medicine, MGM Medical College, Aurangabad, India
| | - Fatma K Salem
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Biochemistry Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Aman Singh Sengar
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, Department of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Raj Pravin Patel
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of General Surgery, Manohar Waman Desai General Hospital, Mumbai, India
| | - Zeinab Kazan
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Jack Wellington
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Foundation Trust, Leeds, United Kingdom
| |
Collapse
|
2
|
Cheng Y, Zhou Y, Chen Y, Xie W, Meng J, Shen D, He X, Chen H. Rapid detection of the SARS-CoV-2 omicron variants based on high-resolution melting curve analysis. Sci Rep 2024; 14:28227. [PMID: 39548282 PMCID: PMC11568129 DOI: 10.1038/s41598-024-79254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
With the continuous spread of the SARS-CoV-2 globally, viral mutations have accumulated. As a result, SARS-CoV-2 became more contagious, and has a higher risk of immune escape and reinfection. To identify variants and have an awareness of the prevalence of these variants, this study selected four segments containing mutations on the S gene of the SARS-CoV-2. Then a rapid and convenient variants detection method was established using high-resolution melting(HRM) analysis combined with nested polymerase chain reaction(PCR). The total detection process takes about 5 h. Through comprehensive analysis of the results from the four reaction systems, the identification of seven important Omicron variants(BA.2, BA.2.75, BA.5.2, BF.7, BQ.1, XBB.1 and XBB.2) can be achieved, with significant differentiation in the melting curves of each variant group. The method established in this study was used to genotype positive specimens in COVID-19 nucleic acid testing, the overall concordance rate compared to whole genome sequencing results was 88.9%, and the positive concordance rate of each sublineage was greater than 80% and the negative concordance rate was greater than 94.4%. The detection of clinical specimens has demonstrated that the HRM analysis established in this study is an effective, rapid and convenient variant identification method, which can be used for monitoring SARS-CoV-2 variants and has important value in addressing public health issues caused by the ongoing mutations of the SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Cheng
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yuzhen Zhou
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yuezhu Chen
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Wenjun Xie
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Jiantong Meng
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Danyun Shen
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Xun He
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Heng Chen
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
4
|
Órdenes P, Carril Pardo C, Elizondo-Vega R, Oyarce K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. BIOLOGY 2023; 13:15. [PMID: 38248446 PMCID: PMC10813333 DOI: 10.3390/biology13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers worldwide, with a high incidence and mortality rate when diagnosed late. Currently, the methods used in healthcare to diagnose CRC are the fecal occult blood test, flexible sigmoidoscopy, and colonoscopy. However, the lack of sensitivity and specificity and low population adherence are driving the need to implement other technologies that can identify biomarkers that not only help with early CRC detection but allow for the selection of more personalized treatment options. In this regard, the implementation of omics technologies, which can screen large pools of biological molecules, coupled with molecular validation, stands out as a promising tool for the discovery of new biomarkers from biopsied tissues or body fluids. This review delves into the current state of the art in the identification of novel CRC biomarkers that can distinguish cancerous tissue, specifically from fecal samples, as this could be the least invasive approach.
Collapse
Affiliation(s)
- Patricio Órdenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| |
Collapse
|
5
|
Arai K, Qi H, Inoue-Murayama M. Age estimation of captive Asian elephants (Elephas maximus) based on DNA methylation: An exploratory analysis using methylation-sensitive high-resolution melting (MS-HRM). PLoS One 2023; 18:e0294994. [PMID: 38079426 PMCID: PMC10712859 DOI: 10.1371/journal.pone.0294994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Age is an important parameter for bettering the understanding of biodemographic trends-development, survival, reproduction and environmental effects-critical for conservation. However, current age estimation methods are challenging to apply to many species, and no standardised technique has been adopted yet. This study examined the potential use of methylation-sensitive high-resolution melting (MS-HRM), a labour-, time-, and cost-effective method to estimate chronological age from DNA methylation in Asian elephants (Elephas maximus). The objective of this study was to investigate the accuracy and validation of MS-HRM use for age determination in long-lived species, such as Asian elephants. The average lifespan of Asian elephants is between 50-70 years but some have been known to survive for more than 80 years. DNA was extracted from 53 blood samples of captive Asian elephants across 11 zoos in Japan, with known ages ranging from a few months to 65 years. Methylation rates of two candidate age-related epigenetic genes, RALYL and TET2, were significantly correlated with chronological age. Finally, we established a linear, unisex age estimation model with a mean absolute error (MAE) of 7.36 years. This exploratory study suggests an avenue to further explore MS-HRM as an alternative method to estimate the chronological age of Asian elephants.
Collapse
Affiliation(s)
- Kana Arai
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Huiyuan Qi
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
6
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
7
|
Yu S, Cao S, He S, Zhang K. Locus-Specific Detection of DNA Methylation: The Advance, Challenge, and Perspective of CRISPR-Cas Assisted Biosensors. SMALL METHODS 2023; 7:e2201624. [PMID: 36609885 DOI: 10.1002/smtd.202201624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is one of the epigenetic characteristics that result in heritable and revisable phenotype changes but without sequence changes in DNA. Aberrant methylation occurring at a specific locus was reported to be associated with cancers, insulin resistance, obesity, Alzheimer's disease, Parkinson's disease, etc. Therefore, locus-specific DNA methylation can serve as a valuable biomarker for disease diagnosis and therapy. Recently, Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are applied to develop biosensors for DNA, ribonucleic acid, proteins, and small molecules detection. Because of their highly specific binding ability and signal amplification capacity, CRISPR-Cas assisted biosensor also serve as a potential tool for locus-specific detection of DNA methylation. In this perspective, based on the detection principle, a detailed classification and comprehensive discussion of recent works about the latest advances in locus-specific detection of DNA methylation using CRISPR-Cas systems are provided. Furthermore, current challenges and future perspectives of CRISPR-based locus-specific detection of DNA methylation are outlined.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Sitian He
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| |
Collapse
|
8
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
10
|
Qi H, Kinoshita K, Mori T, Matsumoto K, Matsui Y, Inoue-Murayama M. Age estimation using methylation-sensitive high-resolution melting (MS-HRM) in both healthy felines and those with chronic kidney disease. Sci Rep 2021; 11:19963. [PMID: 34620957 PMCID: PMC8497492 DOI: 10.1038/s41598-021-99424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Age is an important ecological tool in wildlife conservation. However, it is difficult to estimate in most animals, including felines-most of whom are endangered. Here, we developed the first DNA methylation-based age-estimation technique-as an alternative to current age-estimation methods-for two feline species that share a relatively long genetic distance with each other: domestic cat (Felis catus; 79 blood samples) and an endangered Panthera, the snow leopard (Panthera uncia; 11 blood samples). We measured the methylation rates of two gene regions using methylation-sensitive high-resolution melting (MS-HRM). Domestic cat age was estimated with a mean absolute deviation (MAD) of 3.83 years. Health conditions influenced accuracy of the model. Specifically, the models built on cats with chronic kidney disease (CKD) had lower accuracy than those built on healthy cats. The snow leopard-specific model (i.e. the model that resets the model settings for snow leopards) had a better accuracy (MAD = 2.10 years) than that obtained on using the domestic cat model directly. This implies that our markers could be utilised across species, although changing the model settings when targeting different species could lead to better estimation accuracy. The snow leopard-specific model also successfully distinguished between sexually immature and mature individuals.
Collapse
Affiliation(s)
- Huiyuan Qi
- Wildlife Research Center, Kyoto University, Kyoto, 606-8203, Japan
| | - Kodzue Kinoshita
- Wildlife Research Center, Kyoto University, Kyoto, 606-8203, Japan
| | - Takashi Mori
- Kyoto Medical Center, Daktari Animal Hospital, Kyoto, 615-8234, Japan
| | - Kaori Matsumoto
- Kyoto Medical Center, Daktari Animal Hospital, Kyoto, 615-8234, Japan
- Miyazaki Prefectural Miyakonojo Livestock Hygiene Service Center, Miyazaki, 889-4505, Japan
| | | | | |
Collapse
|
11
|
Gachabayov M, Lebovics E, Rojas A, Felsenreich DM, Latifi R, Bergamaschi R. Performance evaluation of stool DNA methylation tests in colorectal cancer screening: a systematic review and meta-analysis. Colorectal Dis 2021; 23:1030-1042. [PMID: 33410272 DOI: 10.1111/codi.15521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
AIM There is not sufficient evidence about whether stool DNA methylation tests allow prioritizing patients to colonoscopy. Due to the COVID-19 pandemic, there will be a wait-list for rescheduling colonoscopies once the mitigation is lifted. The aim of this meta-analysis was to evaluate the accuracy of stool DNA methylation tests in detecting colorectal cancer. METHODS The PubMed, Cochrane Library and MEDLINE via Ovid were searched. Studies reporting the accuracy (Sackett phase 2 or 3) of stool DNA methylation tests to detect sporadic colorectal cancer were included. The DerSimonian-Laird method with random-effects model was utilized for meta-analysis. RESULTS Forty-six studies totaling 16 149 patients were included in the meta-analysis. The pooled sensitivity and specificity of all single genes and combinations was 62.7% (57.7%, 67.4%) and 91% (89.5%, 92.2%), respectively. Combinations of genes provided higher sensitivity compared to single genes (80.8% [75.1%, 85.4%] vs. 57.8% [52.3%, 63.1%]) with no significant decrease in specificity (87.8% [84.1%, 90.7%] vs. 92.1% [90.4%, 93.5%]). The most accurate single gene was found to be SDC2 with a sensitivity of 83.1% (72.6%, 90.2%) and a specificity of 91.2% (88.6%, 93.2%). CONCLUSIONS Stool DNA methylation tests have high specificity (92%) with relatively lower sensitivity (81%). Combining genes increases sensitivity compared to single gene tests. The single most accurate gene is SDC2, which should be considered for further research.
Collapse
Affiliation(s)
- Mahir Gachabayov
- Section of Colorectal Surgery, Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Edward Lebovics
- Section of Gastroenterology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Aram Rojas
- Section of Colorectal Surgery, Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Daniel M Felsenreich
- Section of Colorectal Surgery, Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Rifat Latifi
- Section of Colorectal Surgery, Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Roberto Bergamaschi
- Section of Colorectal Surgery, Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
12
|
Laugsand EA, Brenne SS, Skorpen F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: a systematic review of paired samples. Int J Colorectal Dis 2021; 36:239-251. [PMID: 33030559 PMCID: PMC7801356 DOI: 10.1007/s00384-020-03757-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Methylated cell-free DNA in liquid biopsies are promising non-invasive biomarkers for colorectal cancer (CRC). Optimal markers would have high sensitivity and specificity for early detection of CRC and could be detected in more than one type of material from the patient. We systematically reviewed the literature on DNA methylation markers of colorectal cancer, detected in more than one type of material, regarding their potential as contributors to a panel for screening and follow-up of CRC. METHODS The databases MEDLINE, Web of Science, and Embase were systematically searched. Data extraction and review was performed by two authors independently. Agreement between methylation status in tissue and other materials (blood/stool/urine) was analyzed using the McNemar test and Cohen's kappa. RESULTS From the 51 included studies, we identified seven single markers with sensitivity ≥ 75% and specificity ≥ 90% for CRC. We also identified one promising plasma panel and two stool panels. The correspondence of methylation status was evaluated as very good for four markers, but only marginal for most of the other markers investigated (12 of 21). CONCLUSION The included studies reported only some of the variables and markers of interest and included few patients. Hence, a meta-analysis was not possible at this point. Larger, prospective studies must be designed to study the discordant detection of markers in tissue and liquid biopsies. When reporting their findings, such studies should use a standardized format.
Collapse
Affiliation(s)
- Eivor Alette Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway.
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Siv Sellæg Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| |
Collapse
|
13
|
Majchrzak‐Celińska A, Dybska E, Barciszewska A. DNA methylation analysis with methylation-sensitive high-resolution melting (MS-HRM) reveals gene panel for glioma characteristics. CNS Neurosci Ther 2020; 26:1303-1314. [PMID: 32783304 PMCID: PMC7702229 DOI: 10.1111/cns.13443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Local DNA hypermethylation is a potential source of cancer biomarkers. While the evaluation of single gene methylation has limited value, their selected panel may provide better information. AIMS This study aimed to analyze the promoter methylation level in a 7-gene panel in brain tumors and verifies the usefulness of methylation-sensitive high-resolution melting (MS-HRM) for this purpose. METHODS Forty-six glioma samples and one non-neoplastic brain sample were analyzed by MS-HRM in terms of SFRP1, SFRP2, RUNX3, CBLN4, INA, MGMT, and RASSF1A promoter methylation. The results were correlated with patients' clinicopathological features. RESULTS DNA methylation level of all analyzed genes was significantly higher in brain tumor samples as compared to non-neoplastic brain and commercial, unmethylated DNA control. RASSF1A was the most frequently methylated gene, with statistically significant differences depending on the tumor WHO grade. Higher MGMT methylation levels were observed in females, whereas the levels of SFRP1 and INA promoter methylation significantly increased with patients' age. A positive correlation of promoter methylation levels was observed between pairs of genes, for example, CBLN4 and INA or MGMT and RASSF1A. CONCLUSIONS Our 7-gene panel of promoter methylation can be helpful in brain tumor diagnosis or characterization, and MS-HRM is a suitable method for its analysis.
Collapse
Affiliation(s)
| | - Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic DiseasesPoznan University of Medical SciencesPoznańPoland
| | - Anna‐Maria Barciszewska
- Intraoperative Imaging UnitChair and Department of Neurosurgery and NeurotraumatologyPoznan University of Medical SciencesPoznańPoland
- Department of Neurosurgery and NeurotraumatologyHeliodor Swiecicki Clinical HospitalPoznańPoland
| |
Collapse
|
14
|
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12:124-148. [PMID: 32104546 PMCID: PMC7031146 DOI: 10.4251/wjgo.v12.i2.124] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global problem affecting millions of people worldwide. This disease is unique because of its slow progress that makes it preventable and often curable. CRC symptoms usually emerge only at advanced stages of the disease, consequently its early detection can be achieved only through active population screening, which markedly reduces mortality due to this cancer. CRC screening tests that employ non-invasively detectable biomarkers are currently being actively developed and, in most cases, samples of either stool or blood are used. However, alternative biological substances that can be collected non-invasively (colorectal mucus, urine, saliva, exhaled air) have now emerged as new sources of diagnostic biomarkers. The main categories of currently explored CRC biomarkers are: (1) Proteins (comprising widely used haemoglobin); (2) DNA (including mutations and methylation markers); (3) RNA (in particular microRNAs); (4) Low molecular weight metabolites (comprising volatile organic compounds) detectable by metabolomic techniques; and (5) Shifts in gut microbiome composition. Numerous tests for early CRC detection employing such non-invasive biomarkers have been proposed and clinically studied. While some of these studies generated promising early results, very few of the proposed tests have been transformed into clinically validated diagnostic/screening techniques. Such DNA-based tests as Food and Drug Administration-approved multitarget stool test (marketed as Cologuard®) or blood test for methylated septin 9 (marketed as Epi proColon® 2.0 CE) show good diagnostic performance but remain too expensive and technically complex to become effective CRC screening tools. It can be concluded that, despite its deficiencies, the protein (haemoglobin) detection-based faecal immunochemical test (FIT) today presents the most cost-effective option for non-invasive CRC screening. The combination of non-invasive FIT and confirmatory invasive colonoscopy is the current strategy of choice for CRC screening. However, continuing intense research in the area promises the emergence of new superior non-invasive CRC screening tests that will allow the development of improved disease prevention strategies.
Collapse
|
15
|
Pinzon-Reyes E, Alvarez WA, Rondon-Villarreal P, Hernandez HG. Softepigen: Primers Design Web-Based Tool for MS-HRM Technique. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:354-357. [PMID: 30176603 DOI: 10.1109/tcbb.2018.2867600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymerase Chain Reaction (PCR) based techniques for DNA methylation techniques includes the MS-HRM technique. Methylation Sensitive High-Resolution Melting (MS-HRM) primer-design requires a set of necessary recommendations for such DNA methylation assessment. However, there were not any available software that allows an automatic design of this kind primers. We present Softepigen, the first complete MS-HRM primer design software. Softepigen allows to search for primers in a genomic region following Wojdacz's recommendations and targets primer binding regions with high linguistic complexity sequences that increase the specificity of the converted sequence of the human genome. We performed in-silico PCR analysis through BiSearch ePCR tool to validate the specificity of the of the primers designed using Softepigen. Softepigen for MS-HRM performance in our genomic regions of interest show satisfactory specificity measurements, and we implemented it for freely available use in the web-based interface at www.soft-epigen.com.
Collapse
|
16
|
Zhan YX, Luo GH. DNA methylation detection methods used in colorectal cancer. World J Clin Cases 2019; 7:2916-2929. [PMID: 31624740 PMCID: PMC6795732 DOI: 10.12998/wjcc.v7.i19.2916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) remains a major contributor to the number of cancer-related deaths that occur annually worldwide. With the development of molecular biology methods, an increasing number of molecular biomarkers have been identified and investigated. CRC is believed to result from an accumulation of epigenetic changes, and detecting aberrant DNA methylation patterns is useful for both the early diagnosis and prognosis of CRC. Numerous studies are focusing on the development of DNA methylation detection methods or DNA methylation panels. Thus, this review will discuss the commonly used techniques and technologies to evaluate DNA methylation, their merits and deficiencies as well as the prospects for new methods.
Collapse
Affiliation(s)
- Yu-Xia Zhan
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
17
|
Liu R, Su X, Long Y, Zhou D, Zhang X, Ye Z, Ma J, Tang T, Wang F, He C. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:45-57. [PMID: 31097151 DOI: 10.1016/j.mrrev.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) arises from accumulated genetic and epigenetic alterations, which provide the possibility to identify tumor-specific biomarkers by analyzing fecal DNA. Methylation status in human genes from tumor tissue is highlighted as promising biomarker in the early detection of CRC. A number of studies have documented altered methylation levels in DNA extracted from stool samples, but generated heterogeneous results. We performed a systematic review and quantitative assessment of existing studies to compare levels of DNA methylation in most frequently studied genes and their diagnostic value in CRC and its precursor, colorectal adenoma, with their counterparts in healthy subjects. Robust searches of the literature were performed in our study with explicit strategies and definite inclusion/exclusion criteria. Pooled data revealed that methylation levels of SFRP2, SFRP1, TFPI2, BMP3, NDRG4, SPG20, and BMP3 plus NDRG4 genes exceeded a sensitivity of 70% and a specificity of 80% for CRC detection. The DOR of the seven candidate biomarkers ranged from 19.80 to 334.33, indicating a good diagnostic power in discriminating cancer from normal tissues. The AUC range was from 0.88 to 0.95, indicating a good or very good discriminatory performance. When test results for BMP3 and NDRG4 were combined, the DOR of CRC detection was 98.36, which was higher than that for BMP3 and NDRG4 separately. As for adenoma detection, the DOR of methylated NDRG4 is higher than that for CRC (CRC vs. adenoma: 54.86 vs. 57.22). Both the sensitivity and specificity of NDRG4 for adenoma detection exceeded 70%. These findings demonstrate the eligibility and feasibility of DNA methylation as a minimally invasive biomarker in feces in the diagnosis of CRC and adenoma. The use of DNA from human stools has the potential to be readily applicable to detect aberrant DNA methylation levels among many subjects for CRC early screening.
Collapse
Affiliation(s)
- Rongbin Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Head and Neck, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Yakang Long
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dalei Zhou
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao Zhang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zulu Ye
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Caiyun He
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
18
|
Mojtabanezhad Shariatpanahi A, Yassi M, Nouraie M, Sahebkar A, Varshoee Tabrizi F, Kerachian MA. The importance of stool DNA methylation in colorectal cancer diagnosis: A meta-analysis. PLoS One 2018; 13:e0200735. [PMID: 30024936 PMCID: PMC6053185 DOI: 10.1371/journal.pone.0200735] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
A large number of tumor-related methylated genes have been suggested to be of diagnostic and prognostic values for CRC when analyzed in patients' stool samples; however, reported sensitivities and specificities have been inconsistent and widely varied. This meta-analysis was conducted to assess the detection accuracy of stool DNA methylation assay in CRC, early stages of CRC (advanced adenoma, non-advanced adenomas) and hyperplastic polyps, separately. We searched MEDLINE, Web of Science, Scopus and Google Scholar databases until May 1, 2016. From 469 publications obtained in the initial literature search, 38 studies were included in the final analysis involving 4867 individuals. The true positive, false positive, true negative and false negative of a stool-based DNA methylation biomarker using all single-gene tests considering a certain gene; regardless of a specific gene were pooled and studied in different categories. The sensitivity of different genes in detecting different stages of CRC ranged from 0% to 100% and the specificities ranged from 73% to 100%. Our results elucidated that SFRP1 and SFRP2 methylation possessed promising accuracy for detection of not only CRC (DOR: 31.67; 95%CI, 12.31-81.49 and DOR: 35.36; 95%CI, 18.71-66.84, respectively) but also the early stages of cancer, adenoma (DOR: 19.72; 95%CI, 6.68-58.25 and DOR: 13.20; 95%CI, 6.01-28.00, respectively). Besides, NDRG4 could be also considered as a significant diagnostic marker gene in CRC (DOR: 24.37; 95%CI, 10.11-58.73) and VIM in adenoma (DOR: 15.21; 95%CI, 2.72-85.10). In conclusion, stool DNA hypermethylation assay based on the candidate genes SFRP1, SFRP2, NDRG4 and VIM could offer potential diagnostic value for CRC based on the findings of this meta-analysis.
Collapse
Affiliation(s)
| | - Maryam Yassi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Amin Kerachian
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: ,
| |
Collapse
|
19
|
Abstract
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
Collapse
Affiliation(s)
- Dianna Hussmann
- Institute of Biomedicine, Aarhus University, Bartholins Allé 6, Aarhus C, 8000, Denmark
| | - Lise Lotte Hansen
- Institute of Biomedicine, Aarhus University, Bartholins Allé 6, Aarhus C, 8000, Denmark.
| |
Collapse
|
20
|
de Groot JS, Moelans CB, Elias SG, Jo Fackler M, van Domselaar R, Suijkerbuijk KPM, Witkamp AJ, Sukumar S, van Diest PJ, van der Wall E. DNA promoter hypermethylation in nipple fluid: a potential tool for early breast cancer detection. Oncotarget 2017; 7:24778-91. [PMID: 27028854 PMCID: PMC5029741 DOI: 10.18632/oncotarget.8352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
Introduction Nipple fluid aspiration provides direct non-invasive sampling of fluid from the mammary ductal system, where the majority of breast cancers originate. DNA promoter hypermethylation (“methylation”) occurs early and at high frequency in breast carcinogenesis, bearing the potential as a biomarker for cancer detection at its earliest stages. We assessed methylation in nipple fluid from breasts of healthy women, of women with sporadic breast cancer and of their contralateral breasts. Our goal was to investigate whether nipple fluid can be used as a reliable methylation biomarker source. Methods Methylation levels of 13 genes were analysed by quantitative multiplex-methylation specific PCR (QM-MSP) in nipple fluid samples from breasts of healthy women, and from the affected and contralateral breasts of breast cancer patients. Results Methylation analysis of the low-volume nipple fluid samples was feasible. Despite the generally low methylation levels, cancerous and healthy breasts nipple fluid could be discriminated with an area under the receiver operating characteristic curve (AUC) of 0.64 (p<0.01) based on a multivariate model including AKR1B1, ALX1, RASSF1A and TM6SF1. Within-patient differences between cancerous and contralateral nipple fluid samples were less prominent. Conclusions Cancerous nipple fluid contains increased levels of methylation of tumor suppressor genes that potentially could serve as a biomarker for early breast cancer detection.
Collapse
Affiliation(s)
- Jolien S de Groot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jo Fackler
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Robert van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Arjen J Witkamp
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Mousavi Ardehaie R, Hashemzadeh S, Behrouz Sharif S, Ghojazadeh M, Teimoori-Toolabi L, Sakhinia E. Aberrant methylated EDNRB can act as a potential diagnostic biomarker in sporadic colorectal cancer while KISS1 is controversial. Bioengineered 2017; 8:555-564. [PMID: 28140749 DOI: 10.1080/21655979.2017.1283458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancers are among the most serious threats of human health worldwide. Survival and mortality rates of colorectal cancer (CRC) strongly depend on the early diagnosis. The aberrant methylation pattern of genes as a diagnostic biomarker can serve as a practical option for timely detection and contribute subsequently to the enhancement of survival rate in CRC patients, since methylation changes are not only frequent but also can occur in initial tumorogenesis stages. It has been indicated that EDNRB and KISS1 genes are hypermethylated through progression and development of CRC. In current study, after extraction of genomic DNA from 45 paired tumor and adjacent non-cancerous tissue samples and treatment with bisulfite conversion, the methylation status of EDNRB and KISS1 CpG rich regions were assessed quantitatively using MS-HRM assay to determine practicability of these aberrant methylations for diagnosis of sporadic CRC and its discrimination from corresponding normal tissues. The results showed that the methylation distribution differences, comparing tumor tissues with their adjacent non-cancerous tissues, were statistically significant in all selected locations within EDNRB gene promoter (P < 0.001); they had also some correlations with tumor stage and grade. Nonetheless, methylation distribution in KISS1 gene CpG rich region revealed no statistically significant differences between CRC and adjacent non-cancerous tissues (P = 0.060). Overall, it can be concluded that aberrant methylated EDNRB can be a promising potential diagnostic biomarker for CRC, while KISS1 is controversial and needs to be more investigated.
Collapse
Affiliation(s)
- Reza Mousavi Ardehaie
- a Department of Biochemistry and Clinical Laboratory , Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran.,e Molecular Medicine Department , Pasteur Institute of Iran , Tehran , Iran
| | - Shahriar Hashemzadeh
- b Department of General & Vascular Surgery , Tabriz University of Medical Sciences , Tabriz , Iran.,c Tuberculosis and lung research center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahin Behrouz Sharif
- a Department of Biochemistry and Clinical Laboratory , Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran.,e Molecular Medicine Department , Pasteur Institute of Iran , Tehran , Iran
| | - Morteza Ghojazadeh
- d Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Ebrahim Sakhinia
- a Department of Biochemistry and Clinical Laboratory , Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
22
|
Abstract
Colorectal carcinoma (CRC) is a common cause of morbidity and mortality worldwide. Two pathogenic pathways are involved in the development of adenoma to CRC. The first pathway involvesAPC/β-catenin characterized by chromosomal instability resulting in the accumulation of mutations. The second pathway is characterized by lesions inDNA mismatch repair genes. Aberrant DNA methylation in selected gene promoters has emerged as a new epigenetic pathway in CRC development. CRC screening is the most efficient strategy to reduce death. Specific DNA methylation events occur in multistep carcinogenesis. Epigenetic gene silencing is a causative factor of CRC development. DNA methylations have been extensively examined in stool from CRC and precursor lesions. Many methylated genes have been described in CRC and adenoma, although no definite DNA methylation biomarkers panel has been established. Multiple DNA methylation biomarkers, including secreted frizzled-related protein 2, secreted frizzled-related protein 1, tissue factor pathway inhibitor 2, vimentin, and methylguanine DNA methyltransferase, have been further investigated, and observations have revealed that DNA methylation biomarkers exhibit with high sensitivity and specificity. These markers may also be used to diagnose CRC and adenoma in early stages. Real time polymerase chain reaction (qPCR) is sensitive, scalable, specific, reliable, time saving, and cost effective. Stool exfoliated markers provide advantages, including sensitivity and specificity. A stool qPCR methylation test may also be an enhanced tool for CRC and adenoma screening.
Collapse
Affiliation(s)
- Ji-Jun Chen
- Research & Development, Allonger LLC, Columbia 21045, MD, USA.,Mei Chen Biotechnology Co. Ltd., Qingdao 266012, China
| | - Ai-Qin Wang
- The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qing-Qi Chen
- The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
23
|
Li L, Xu C, Long J, Shen D, Zhou W, Zhou Q, Yang J, Jiang M. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines. Oncotarget 2016; 6:23930-43. [PMID: 26329329 PMCID: PMC4695162 DOI: 10.18632/oncotarget.4525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 01/01/2023] Open
Abstract
In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers.
Collapse
Affiliation(s)
- Liming Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Cui Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Danbei Shen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wuqing Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiyan Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Mingjun Jiang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
24
|
Jia M, Gao X, Zhang Y, Hoffmeister M, Brenner H. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review. Clin Epigenetics 2016; 8:25. [PMID: 26941852 PMCID: PMC4776403 DOI: 10.1186/s13148-016-0191-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/26/2022] Open
Abstract
Contradictory results were reported for the prognostic role of CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Differences in the definitions of CIMP were the most common explanation for these discrepancies. The aim of this systematic review was to give an overview of the published studies on CRC prognosis according to the different definitions of CIMP. A systematic literature search was performed in MEDLINE and ISI Web of Science for articles published until 3 April 2015. Data extraction included information about the study population, the definition of CIMP, and investigated outcomes. Thirty-six studies were included in this systematic review. Among them, 30 studies reported the association of CIMP and CRC prognosis and 11 studies reported the association of CIMP with survival after CRC therapy. Overall, 16 different definitions of CIMP were identified. The majority of studies reported a poorer prognosis for patients with CIMP-positive (CIMP+)/CIMP-high (CIMP-H) CRC than with CIMP-negative (CIMP-)/CIMP-low (CIMP-L) CRC. Inconsistent results or varying effect strengths could not be explained by different CIMP definitions used. No consistent variation in response to specific therapies according to CIMP status was found. Comparative analyses of different CIMP panels in the same large study populations are needed to further clarify the role of CIMP definitions and to find out how methylation information can best be used to predict CRC prognosis and response to specific CRC therapies.
Collapse
Affiliation(s)
- Min Jia
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xu Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany ; German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
25
|
Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb) 2015; 25:161-76. [PMID: 26110029 PMCID: PMC4470106 DOI: 10.11613/bm.2015.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets.
Collapse
Affiliation(s)
- Alja Videtic Paska
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
A rapid and accurate closed-tube Methylation-Sensitive High Resolution Melting Analysis assay for the semi-quantitative determination of SOX17 promoter methylation in clinical samples. Clin Chim Acta 2015; 444:303-9. [DOI: 10.1016/j.cca.2015.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
|