1
|
Bayram H, Konyalilar N, Elci MA, Rajabi H, Aksoy GT, Mortazavi D, Kayalar Ö, Dikensoy Ö, Taborda-Barata L, Viegi G. Issue 4 - Impact of air pollution on COVID-19 mortality and morbidity: An epidemiological and mechanistic review. Pulmonology 2025; 31:2416829. [PMID: 38755091 DOI: 10.1016/j.pulmoe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Air pollution is a major global environment and health concern. Recent studies have suggested an association between air pollution and COVID-19 mortality and morbidity. In this context, a close association between increased levels of air pollutants such as particulate matter ≤2.5 to 10 µM, ozone and nitrogen dioxide and SARS-CoV-2 infection, hospital admissions and mortality due to COVID 19 has been reported. Air pollutants can make individuals more susceptible to SARS-CoV-2 infection by inducing the expression of proteins such as angiotensin converting enzyme (ACE)2 and transmembrane protease, serine 2 (TMPRSS2) that are required for viral entry into the host cell, while causing impairment in the host defence system by damaging the epithelial barrier, muco-ciliary clearance, inhibiting the antiviral response and causing immune dysregulation. The aim of this review is to report the epidemiological evidence on impact of air pollutants on COVID 19 in an up-to-date manner, as well as to provide insights on in vivo and in vitro mechanisms.
Collapse
Affiliation(s)
- Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | | | - Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - G Tuşe Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Özgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Öner Dikensoy
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Luis Taborda-Barata
- UBIAir - Clinical and Experimental Lung Centre UBIMedical, University of Beira Interior, Covilhã, Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | |
Collapse
|
2
|
Hachimi A, El-Mansoury B, Merzouki M. Incidence, pathophysiology, risk factors, histopathology, and outcomes of COVID-19-induced acute kidney injury: A narrative review. Microb Pathog 2025; 202:107360. [PMID: 39894232 DOI: 10.1016/j.micpath.2025.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to a significant burden on global healthcare systems. COVID-19-induced acute kidney injury (AKI) is among one of the complications, that has emerged as a critical and frequent condition in COVID-19 patients. This AKI among COVID-19 patients is associated with poor outcomes, and high mortality rates, especially in those with severe AKI or requiring renal replacement therapy. COVID-19-induced AKI represents a significant complication with complex pathophysiology and multifactorial risk factors. Indeed, several pathophysiological mechanisms, including direct viral invasion of renal cells, systemic inflammation, endothelial and thrombotic abnormalities as well as nephrotoxic drugs and rhabdomyolysis are believed to underlie this condition. Moreover, histopathological and immunohistopathological findings commonly observed in postmortem studies include acute tubular necrosis, glomerular injury, and the presence of viral particles within renal tissue and urine. Identified risk factors for developing AKI vary among studies, depending on regions, underlying conditions, and the severity of the disease. Moreover, histopathological and immunohistopathological findings commonly observed in postmortem studies include show acute tubular necrosis, glomerular injury, and viral particles within renal tissue and urine. While, identified risk factors for developing AKI vary among studies, according to regions, underlying conditions, and the gravity of the disease. This narrative review aims to synthesize current knowledge on the incidence, pathophysiology, risk factors, histopathology, and outcomes of AKI induced by COVID-19.
Collapse
Affiliation(s)
- Abdelhamid Hachimi
- Medical ICU, Mohammed VI(th) University Hospital of Marrakech, Marrakech, Morocco; Morpho-Science Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Life Sciences Department, Bioengineering Laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Bilal El-Mansoury
- Nutritional Physiopathologies, Neuroscience and Toxicology Team, Laboratory of Anthropogenic, Biotechnology and Health, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Mohamed Merzouki
- Life Sciences Department, Bioengineering Laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
3
|
Rafi FR, Heya NR, Hafiz MS, Jim JR, Kabir MM, Mridha MF. A systematic review of single-cell RNA sequencing applications and innovations. Comput Biol Chem 2025; 115:108362. [PMID: 39919386 DOI: 10.1016/j.compbiolchem.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.
Collapse
Affiliation(s)
- Fahamidur Rahaman Rafi
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Nafeya Rahman Heya
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Md Sadman Hafiz
- Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jamin Rahman Jim
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| | - Md Mohsin Kabir
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh.
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| |
Collapse
|
4
|
Simioni C, Sanz JM, Gafà R, Cenacchi G, Occhionorelli S, Passaro A, Neri LM. Increase of VEGF and Fibronectin expression and ultrastructural alterations of intercellular junctions in a swab negative patient after SARS-COV-2 infection. Virol J 2025; 22:82. [PMID: 40114185 PMCID: PMC11927238 DOI: 10.1186/s12985-025-02701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND SARS-CoV-2 infection has been responsible of COrona VIrus Disease (COVID-19) pandemia and can cause a variety of symptoms including gastrointestinal disorders, abdominal pain and liver injury. The host receptor for SARS-CoV-2, ACE2, is expressed in gut and SARS-CoV-2 infection could induce vascular damage and immune system dysregulation, creating an inflammatory and hypercoagulable state, as widely described at the lung level. CASE PRESENTATION This work presents the case of a middle-aged Caucasian man admitted to the Hospital Emergency Department from the University Hospital of Ferrara (Italy), complaining of pain in the upper and middle region of the abdomen. The patient tested negative to the nose-oropharyngeal swab for SARS-CoV-2 four weeks after recovering from viral infection. The patient required resection of a segment of ileum and an ulcer of the bowel wall was recognized and sampled. Previous published results had confirmed the presence of the SARS-CoV-2 nucleocapsid protein, an increased human leukocyte antigen (HLA-G) and an altered morphology of microvilli in the ulcerated ileum of the patient when compared to the non-ulcerated ileum. The present study sought to deepen the consequences of SARS-CoV-2 infection. To this end, we evaluated the expression and co-expression of Vascular Endothelial Growth Factor (VEGF) and Fibronectin by immunohistochemical techniques. VEGF immunohistochemical expression was higher in the ulcer than in the control ileum sample and the non-ulcerated ileum areas and co-expressed with the SPIKE protein. Fibronectin staining was lower in control sample than in non-ulcerated and ulcerated ileum. Electron microscopy analysis showed alterations of the integrity of the intestinal barrier in the ulcerated area when compared to the non-ulcerated ileum or to the control sample. CONCLUSIONS Although the patient was tested negative to nose-oropharyngeal swab for SARS-CoV-2, the SPIKE protein was detected in his terminal ileum, especially in the ulcerated areas. The presence of the viral protein was also associated with an increase of VEGF and Fibronectin. In addition to vascular changes, the SARS-CoV-2 infection altered the junctional apparatus among epithelial cells, making the tissue even more fragile and thus susceptible to the entry of pathogens and the development of further infections.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy
| | - Juana Maria Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy
- Integrated Activity Department of Onco-Hematology, University Hospital of Ferrara Arcispedale, Sant'Anna - Via Aldo Moro 8, Ferrara, I-44124, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Savino Occhionorelli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy
- Emergency Surgery Department, University Hospital of Ferrara Arcispedale Sant'Anna, Via Aldo Moro 8, Ferrara, I-44124, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy.
| | - Luca Maria Neri
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy.
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, I-44121, Italy.
| |
Collapse
|
5
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
6
|
van Santvoort M, Lapuente-Santana Ó, Zopoglou M, Zackl C, Finotello F, van der Hoorn P, Eduati F. Mathematically mapping the network of cells in the tumor microenvironment. CELL REPORTS METHODS 2025; 5:100985. [PMID: 39954673 PMCID: PMC11955271 DOI: 10.1016/j.crmeth.2025.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/04/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Cell-cell interaction (CCI) networks are key to understanding disease progression and treatment response. However, existing methods for inferring these networks often aggregate data across patients or focus on cell-type level interactions, providing a generalized overview but overlooking patient heterogeneity and local network structures. To address this, we introduce "random cell-cell interaction generator" (RaCInG), a model based on random graphs to derive personalized networks leveraging prior knowledge on ligand-receptor interactions and bulk RNA sequencing data. We applied RaCInG to 8,683 cancer patients to extract 643 network features related to the tumor microenvironment and unveiled associations with immune response and subtypes, enabling prediction and explanation of immunotherapy responses. RaCInG demonstrated robustness and showed consistencies with state-of-the-art methods. Our findings highlight RaCInG's potential to elucidate patient-specific network dynamics, offering insights into cancer biology and treatment responses. RaCInG is poised to advance our understanding of complex CCI s in cancer and other biomedical domains.
Collapse
Affiliation(s)
- Mike van Santvoort
- Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands
| | - Óscar Lapuente-Santana
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Maria Zopoglou
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Constantin Zackl
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Pim van der Hoorn
- Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands.
| | - Federica Eduati
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven 5600MB, the Netherlands.
| |
Collapse
|
7
|
Iqbal NT, Khan H, Khalid A, Mahmood SF, Nasir N, Khanum I, de Siqueira I, Van Voorhis W. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis. Mol Med 2025; 31:22. [PMID: 39849406 PMCID: PMC11756069 DOI: 10.1186/s10020-024-00986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID. Long COVID appears to be accompanied by an auto-immune multi-faceted syndrome where the virus or viral antigen persistence causes continuous stimulation of the immune response, resulting in multi-organ immune dysregulation. MAIN TEXT This review is focused on understanding the risk factors of Long COVID with a special emphasis on the dysregulation of the gut-brain axis. Two proposed mechanisms are discussed here. The first mechanism is related to the dysfunction of angiotensin-converting enzyme 2 receptor due to Severe Acute Respiratory Syndrome Corona Virus 2 infection, leading to impaired mTOR pathway activation, reduced AMP secretion, and causing dysbiotic changes in the gut. Secondly, gut-brain axis dysregulation accompanied by decreased production of short-chain fatty acids, impaired enteroendocrine cell function, and increased leakiness of the gut, which favors translocation of pathogens or lipopolysaccharide in circulation causing the release of pro-inflammatory cytokines. The altered Hypothalamic-Pituitary-Adrenal axis is accompanied by the reduced level of neurotransmitter, and decreased stimulation of the vagus nerve, which may cause neuroinflammation and dysregulation of serum cortisol levels. The dysbiotic microbiome in Long COVID patients is characterized by a decrease in beneficial short chain fatty acid-producing bacteria (Faecalibacterium, Ruminococcus, Dorea, and Bifidobacterium) and an increase in opportunistic bacteria (Corynebacterium, Streptococcus, Enterococcus). This dysbiosis is transient and may be impacted by interventions including probiotics, and dietary supplements. CONCLUSIONS Further studies are required to understand the geographic variation, racial and ethnic differences in phenotypes of Long COVID, the influence of viral strains on existing and emerging phenotypes, to explore long-term effects of gut dysbiosis, and gut-brain axis dysregulation, as well as the potential role of diet and probiotics in alleviating those symptoms.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P. O Box 3500, Karachi, 74800, Pakistan.
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan.
| | - Hana Khan
- Undergraduate Medical Education (UGME), Year II, Aga Khan University, Karachi, Pakistan
| | - Aqsa Khalid
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nosheen Nasir
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, USA
| |
Collapse
|
8
|
Changela S, Ashraf S, Lu JY, Duong KE, Henry S, Wang SH, Duong TQ. New-onset gastrointestinal disorders in COVID-19 patients 3.5 years post-infection in the inner-city population in the Bronx. Sci Rep 2024; 14:31850. [PMID: 39738536 PMCID: PMC11685902 DOI: 10.1038/s41598-024-83232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
This study examined the incidence, characteristics, and risk factors of new gastrointestinal disorders (GID) associated with SARS-CoV-2 infection up to 3.5 years post-infection. This retrospective study included 35,102 COVID-19 patients and 682,594 contemporary non-COVID-19 patients without past medical history of GID (controls) from the Montefiore Health System in the Bronx (3/1/2020 to 7/31/2023). Comparisons were made with unmatched and propensity-matched (1:2) controls. The primary outcome was new GID which included peptic ulcer, inflammatory bowel disease, irritable bowel syndrome, diverticulosis, diverticulitis, and biliary disease. Multivariate Cox proportional hazards model analysis was performed with adjustment for covariates. There were 2,228 (6.34%) COVID-19 positive patients who developed new GID compared to 38,928 (5.70%) controls. COVID-19 patients had an elevated risk of developing new GID (adjusted HR = 1.18 (95% CI 1.12-1.25) compared to propensity-matched controls, after adjusting for confounders that included smoking, obesity, diabetes, hypertension. These findings underscore the need for additional research and follow-up of at-risk individuals for developing GID post infection.
Collapse
Affiliation(s)
- Sagar Changela
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Samad Ashraf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Justin Y Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kevin E Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Stephen H Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
9
|
Yu S, Song C. Clinical characteristics of coronavirus disease 2019 patients with hepatitis B virus super-infection. Rev Inst Med Trop Sao Paulo 2024; 66:e74. [PMID: 39699512 DOI: 10.1590/s1678-9946202466074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
COVID-19 and hepatitis B disease are significant global pandemics, both of which can lead to liver damage. This study aims to report the clinical course of liver function and disease prognosis of COVID-19 patients with hepatitis B virus (HBV) super-infections. A total of 249 outpatients with COVID-19 were enrolled in this study from December 1, 2023 to February 28, 2024. Clinical characteristics, laboratory data, chest CT findings, and patients' treatment and outcomes were collected and analyzed retrospectively. Of the 249 outpatients, 37 (14.9%) were super-infected with HBV, whereas 212 (85.1%) showed no such outcome. This study found no significant differences between the two groups regarding age, gender, symptoms, complications, or chest CT findings. However, COVID-19 patients super-infected with HBV showed lower white blood cell, neutrophil, and platelet counts (p < 0.05). Additionally, total bilirubin levels were significantly higher in the SARS-CoV-2/HBV super-infected group compared to the COVID-19-only group (p = 0.022). After the first week of similar treatment, both groups showed almost identical outcomes, including hospitalization, severity, and mortality rates. Thus, SARS-CoV-2/HBV super-infection slightly affected liver function but did not worsen COVID-19 outcomes. Routine HBV monitoring and liver function tests are recommended to manage COVID-19 patients with HBV super-infections. This study found no clear indications of the need to change the therapeutic prescription for COVID-19 in cases of HBV super-infections.
Collapse
Affiliation(s)
- Shan Yu
- Shanghai Jiao Tong University School of Medicine, Ren Ji Hospital, Department of Infectious Diseases, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shuguang Hospital, Shanghai, China
| | - Cunzheng Song
- Shanghai Jiao Tong University School of Medicine, Ren Ji Hospital, Department of Infectious Diseases, Shanghai, China
| |
Collapse
|
10
|
Nyarko JA, Dogbe PM, Ativi LAE, Wutsika J, Agyenim EB, Awere-Duodu A, Botaeng AT, Ntim NAA. Pathological Sequelae of SARS-CoV-2: A Review for Clinicians. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:431-445. [PMID: 39703609 PMCID: PMC11650917 DOI: 10.59249/dqjh2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, driven by the novel coronavirus and its variants, has caused over 518 million infections and 6.25 million deaths globally, leading to a significant health crisis. Beyond its primary respiratory impact, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been implicated in various extra-pulmonary complications. Research studies reveal that the virus affects multiple organs, including the kidneys, liver, pancreas, and central nervous system (CNS), largely due to the widespread expression of Angiotensin Converting Enzyme-2 (ACE-2) receptors. Clinical evidence shows that the virus can induce diabetes by disrupting pancreatic and liver functions as well as cause acute kidney injury. Additionally, neurological complications, including cognitive impairments and neuroinflammation, have been observed in a significant number of COVID-19 patients. This review discusses the mechanisms linking SARS-CoV-2 to acute kidney injury, Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM), emphasizing its effects on pancreatic beta cells, insulin resistance, and the regulation of gluconeogenesis. We also explore how SARS-CoV-2 induces neurological complications, detailing the intricate pathways of neuro-invasion and the potential to trigger conditions such as Alzheimer's disease (AD). By elucidating the metabolic and neurological manifestations of COVID-19 and the underlying pathogenic mechanisms, this review underscores the imperative for continued research and the development of effective therapeutic interventions to mitigate the long-term and short-term impacts of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joseph Asuam Nyarko
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| | - Patience Mawuena Dogbe
- Department of Environmental Science, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
| | | | - Jennifer Wutsika
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| | | | - Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana
Medical School, Accra, Ghana
| | - Anthony Twumasi Botaeng
- Department of Environmental Science, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
| | - Nana Afia Asante Ntim
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| |
Collapse
|
11
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Khalil M, Abdallah H, Calasso M, Khalil N, Daher A, Missaoui J, Diab F, Zeaiter L, Vergani L, Di Ciaula A, Portincasa P. Herbal Medicine in Three Different Mediterranean Living Areas During the COVID-19 Pandemic: The Role of Polyphenolic-Rich Thyme-like Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3340. [PMID: 39683135 DOI: 10.3390/plants13233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Despite herbal medicine being popular across the Mediterranean basin, there is no evidence in favor of COVID-19 infection. This study investigates the utilization and effects of medicinal plants in Italy, Lebanon, and Tunisia during COVID-19 and its effects on post-COVID-19 pandemics. We used a tailored, web-based "Google Form" questionnaire with the random sampling method. We gathered 812 complete responses (Italy: 116, Lebanon: 557, and Tunisia: 139), revealing diverse demographics and symptom experiences. Fatigue prevailed across all groups (89.0-94.2%), while psychological impacts ranged from 20.1% to 30.9%, with higher rates in Lebanon. Post-COVID-19 symptoms affected 22.4% (Italy), 48.8% (Lebanon), and 31.7% (Tunisia). General use of herbs was consistent (41.4-50.4%), with 23.3% (Italy), 50.2% (Lebanon), and 65.5% (Tunisia) employing herbs for COVID-19 therapy. Notably, in Lebanon, Za'atar, a thyme-like plant, correlated with reduced symptoms, suggesting potential protective effects that are likely due to its polyphenol richness. This study underscores the persistent reliance on traditional medicinal plants remedies in the Mediterranean area, with regional variations. Further exploration of herbal compounds for COVID-19-like symptoms is warranted.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Hala Abdallah
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Nour Khalil
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon
| | - Ahmad Daher
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon
| | - Jihen Missaoui
- Research Laboratory of BIORESSOURCES-Integrative Biology & Valorisation BIOLIVAL (LR14 ES06) at ISBM, Monastir 5000, Tunisia
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Lama Zeaiter
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
13
|
Yoshida N, Thomas JR, Appios A, Brember MP, Aye IL, Edgar JR, Firth AE, Chung BY, McGovern N, Stewart H. Human placental cells are resistant to SARS-CoV-2 infection and replication. Wellcome Open Res 2024; 9:209. [PMID: 39640372 PMCID: PMC11617822 DOI: 10.12688/wellcomeopenres.20514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Infection during pregnancy with SARS-CoV-2 can have a serious impact on both maternal and foetal health. Clinical studies have shown that SARS-CoV-2 transmission from the mother to the foetus typically does not occur. However, there is evidence that SARS-CoV-2 can infect the placenta in utero. Here we sought to quantify the permissiveness of placental cells to SARS-CoV-2 infection and to determine if they support viral release. Methods By using publicly available single-cell RNA sequencing (scRNAseq) data sets and confocal microscopy we compared ACE2 transcript and protein expression across human first trimester and term placental cells. We also used in vitro infection assays to quantify the infection rates of a range of placenta-derived cells. Finally, we quantified the viral egress from these cells. Results ACE2 transcripts are found in a range of placental cell types across gestation, including trophoblast. However, ACE2 protein expression does not significantly change across placental cell types from first trimester to term. We find that 0.5±0.15 % of term trophoblast cells can be infected with SARS-CoV-2 while primary placental fibroblasts and macrophages, and JEG-3, JAR and HUVEC cell lines are resistant to infection. Furthermore, primary trophoblast cells poorly support viral release while JEG-3 cells allow relatively high levels of viral release. Conclusions The low level of viral release by primary placental cells provides insight into how the virus is impaired from crossing the placenta to the foetus.
Collapse
Affiliation(s)
- Nagisa Yoshida
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Jake R. Thomas
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Anna Appios
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Matthew P. Brember
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Irving L.M.H. Aye
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, England, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Betty Y.W. Chung
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
14
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
15
|
Mekuanint A, Ambachew S, Worede A, Asrie F, Sinishaw MA, Gelaw Y, Dagnew M, Gelaw A, Negash M, Kassa E, Bizuneh S, Wudineh D, Dimah B, Abebe W, Chane E, Fetene G. Assessment of abnormal liver function tests and associated factors among COVID-19-infected patients in Addis Ababa, Ethiopia, 2022: a facility-based comparative cross-sectional study. BMJ Open 2024; 14:e076647. [PMID: 39260868 PMCID: PMC11409313 DOI: 10.1136/bmjopen-2023-076647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Liver function test (LFT) abnormalities are higher in patients with severe COVID-19. Most of the studies on this theme were conducted in foreign nations, and the association with LFT abnormalities was not sufficiently addressed in the study areas. Therefore, the current study aimed to investigate the effects of COVID-19 infection on liver function of patients. SETTING A facility-based comparative cross-sectional study was carried out from 10 April to 15 June 2022, among COVID-19 infected individuals admitted in Eka Kotebe General Hospital and Saint Petrous Specialized Hospitals, Addis Ababa, 2022. PARTICIPANTS A total of 284 confirmed COVID-19-positive and COVID-19-negative controls matched by gender and age were included in the present study. RESULTS Among SARS-COV-2 positive groups, 63 (44.4%) had one or more LFT abnormalities. The most common elevated level of the LFTs among patients with COVID-19 were gamma-glutamyl transferase (GGT) 50 (35.2%), while the most common lowered level was albumin 58 (40.8%). The mean values of aspartate aminotransferase (AST) (35.4±26.9 vs 22.9±12.6, p<0.001) were significantly different between patients with COVID-19 and the COVID-19-free groups. Being COVID-19-positive was significantly associated with an elevated level of AST (AOR=3.0, 95% CI 1.2 to 7.4) and GGT (AOR=4.55, 95% CI 2.02 to 10.3). Being male was significantly associated with an elevated level of total bilirubin (BILT, AOR=2.41, 95% CI 1.2 to 4.9) and direct bilirubin (BILD, AOR=3.7, 95% CI 1.72 to 8.2), and also severe stage of COVID-19 was associated with hypoalbuminaemia (AOR=3.3, 95% CI 1.4 to 7.9). SARS-COV-2 infection was independently associated with LFT abnormality. CONCLUSION Patients with COVID-19 had decreased albumin levels, and elevated AST, GGT, BILT and BILD levels.
Collapse
Affiliation(s)
- Amare Mekuanint
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Sintayehu Ambachew
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Abebaw Worede
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fikir Asrie
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulusew Alemneh Sinishaw
- Department of Clinical Chemistry, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yemataw Gelaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulat Dagnew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markos Negash
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eyuel Kassa
- University of Gondar Comprehensive Specialized Hospital Laboratory, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Segenet Bizuneh
- Department of Internal Medicine, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Dessalew Wudineh
- Department of Medical Laboratory Sciences, Institute of Health Sciences, Mizan Tepi University, Mizan Tepi, Ethiopia
| | - Belayneh Dimah
- Department of Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Wagaw Abebe
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Elias Chane
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getnet Fetene
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
16
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Gioacchino E, Vandelannoote K, Ruberto AA, Popovici J, Cantaert T. Unraveling the intricacies of host-pathogen interaction through single-cell genomics. Microbes Infect 2024; 26:105313. [PMID: 38369008 DOI: 10.1016/j.micinf.2024.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Single-cell genomics provide researchers with tools to assess host-pathogen interactions at a resolution previously inaccessible. Transcriptome analysis, epigenome analysis, and immune profiling techniques allow for a better comprehension of the heterogeneity underlying both the host response and infectious agents. Here, we highlight technological advancements and data analysis workflows that increase our understanding of host-pathogen interactions at the single-cell level. We review various studies that have used these tools to better understand host-pathogen dynamics in a variety of infectious disease contexts, including viral, bacterial, and parasitic diseases. We conclude by discussing how single-cell genomics can advance our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Emanuele Gioacchino
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Koen Vandelannoote
- Bacterial Phylogenomics Group, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Anthony A Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia; Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia.
| |
Collapse
|
18
|
Kim H, Kang Y, Kim S, Park D, Heo SY, Yoo JS, Choi I, N MPA, Ahn JW, Yang JS, Bak N, Kim KK, Lee JY, Choi YK. The host protease KLK5 primes and activates spike proteins to promote human betacoronavirus replication and lung inflammation. Sci Signal 2024; 17:eadn3785. [PMID: 39163389 DOI: 10.1126/scisignal.adn3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Coronaviruses rely on host proteases to activate the viral spike protein, which facilitates fusion with the host cell membrane and the release of viral genomic RNAs into the host cell cytoplasm. The distribution of specific host proteases in the host determines the host, tissue, and cellular tropism of these viruses. Here, we identified the kallikrein (KLK) family member KLK5 as a major host protease secreted by human airway cells and exploited by multiple human betacoronaviruses. KLK5 cleaved both the priming (S1/S2) and activation (S2') sites of spike proteins from various human betacoronaviruses in vitro. In contrast, KLK12 and KLK13 displayed preferences for either the S2' or S1/S2 site, respectively. Whereas KLK12 and KLK13 worked in concert to activate SARS-CoV-2 and MERS-CoV spike proteins, KLK5 by itself efficiently activated spike proteins from several human betacoronaviruses, including SARS-CoV-2. Infection of differentiated human bronchial epithelial cells (HBECs) with human betacoronaviruses induced an increase in KLK5 that promoted virus replication. Furthermore, ursolic acid and other related plant-derived triterpenoids that inhibit KLK5 effectively suppressed the replication of SARS-CoV, MERS-CoV, and SARS-CoV-2 in HBECs and mitigated lung inflammation in mice infected with MERS-CoV or SARS-CoV-2. We propose that KLK5 is a pancoronavirus host factor and a promising therapeutic target for current and future coronavirus-induced diseases.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yeonglim Kang
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Semi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dongbin Park
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seo-Young Heo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Isaac Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Monford Paul Abishek N
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae-Woo Ahn
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Nayeon Bak
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
20
|
Maimunah U, Kholili U, Vidyani A, Sugihartono T, Tanaya WM, Wessels FI, Alshawsh MA, Miftahussurur M. Association between COVID-19 severity with liver abnormalities: A retrospective study in a referral hospital in Indonesia. NARRA J 2024; 4:e816. [PMID: 39280282 PMCID: PMC11391993 DOI: 10.52225/narra.v4i2.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 09/18/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by an acute respiratory infection with multisystem involvement and the association of its severity to liver function abnormalities is not well characterized. The aim of this study was to assess the association between the severity of COVID-19 patients and liver function abnormalities. This retrospective study included adult patients with confirmed COVID-19, which were classified as non-severe or severe according to World Health Organization guidelines. Liver function test results were compared between the severity groups. A total of 339 patients were included of which 150 (44.25%) were severe cases. The male-to-female ratio was 0.9:1 and 3:2 in the non-severe and severe groups, respectively (p=0.031). Aspartate aminotransferase (AST), alanine transaminase (ALT), and total bilirubin levels and acute liver injury (ALI) incidence were significantly higher in the severe group compared to non-severe group (p<0.001, p<0.001, p=0.025, p=0.014, respectively). In contrast, albumin levels were significantly lower (p=0.001). Multivariate analysis showed that ALI was significantly associated with human immunodeficiency virus (HIV) infection (odds ratio (OR): 5.275; 95% confidence interval (CI): 1.165-23.890, p=0.031), hemoglobin level (OR: 1.214; 95%CI: 1.083-1.361, p=0.001), and hypoalbuminemia (OR: 2.627; 95%CI: 1.283-5.379, p=0.008). Pre-existing liver diseases were present in 6.5% of patients. No significant differences were observed between the groups based on COVID-19 severity and ALI presence. Liver function test abnormalities, including ALI, are more prevalent in patients with severe COVID-19 infection. HIV infection, high hemoglobin levels, and hypoalbuminemia may be potential risk factors for ALI.
Collapse
Affiliation(s)
- Ummi Maimunah
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroenterohepatology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ulfa Kholili
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroenterohepatology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Amie Vidyani
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroenterohepatology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Titong Sugihartono
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroenterohepatology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Willa M Tanaya
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Firda I Wessels
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Miftahussurur
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroenterohepatology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
21
|
Lau JYS, O'Hara S, Lombardo P, Goodyear M. Assessment of the liver with two-dimensional shear wave elastography following COVID-19 infection: A pilot study. Australas J Ultrasound Med 2024; 27:167-173. [PMID: 39328255 PMCID: PMC11423436 DOI: 10.1002/ajum.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Introduction/Purpose The coronavirus disease (COVID-19) is a widely spread viral infectious disease, which can impact multiple organs, including the liver. Elevated liver enzymes have been reported in COVID-19 patients; however, potential changes in liver stiffness following the viral infection remain uncertain. The main aim of this pilot study was to determine if there is a significant difference in liver stiffness between individuals who have never been infected with COVID-19 and those who had been infected with COVID-19 <6 months, experiencing only mild symptoms. The secondary aim was to compare the liver stiffness between participants infected with COVID-19 depending on the elapsed time since infection. Methods Two-dimensional shear wave elastography (2D-SWE) was performed prospectively on 68 participants. Thirty-four participants had been infected with COVID-19 (all for <6 months) (COVID-19 group), and another 34 had never been infected with COVID-19 (control group). The mean 2D-SWE measurements of both the COVID-19 group and the control group were compared using an independent t-test. The mean 2D-SWE measurements of the COVID-19 subgroups A (<2 months), B (2 to <4 months) and C (4 to <6 months) were compared using a one-way ANOVA test (P < 0.05). Results The (mean ± standard deviation) liver stiffness (kPa) of the COVID-19 group (5.26 ± 1.63 kPa) was significantly higher than the control group (4.30 ± 0.96 kPa) (P = 0.005). There was no significant difference in liver stiffness among subgroups A (5.20 ± 1.79 kPa), B (4.70 ± 1.53 kPa) and C (5.96 ± 1.48 kPa) (P = 0.143) respectively. Discussion The mean liver stiffness of 4.30 ± 0.96k Pa in the control group showed a high probability of being normal as per guidelines. Conversely, the mean liver stiffness of 5.26 ± 1.63 kPa in the COVID-19 group exhibited a statistically significant increase compared to the control group. However, compensated advanced chronic liver disease was ruled out without other known clinical signs, as per guidelines. Conclusion A statistically significant increase in liver stiffness value was observed in the post-COVID-19 infection group compared to the group who had never been infected. This highlights the potential for short-term impact on liver stiffness associated with COVID-19 infection. However, it is unclear if these changes in liver stiffness are associated with liver injury. Further study is warranted to investigate the effects of COVID-19 infection and its long-term impact on the liver.
Collapse
Affiliation(s)
- Joyce Yea See Lau
- SKG RadiologyLevel 3, 1 Hood StreetSubiaco6008Western AustraliaAustralia
- Department of Medical Imaging and Radiation SciencesMonash UniversityWellington RdClayton3800VictoriaAustralia
| | - Sandra O'Hara
- SKG RadiologyLevel 3, 1 Hood StreetSubiaco6008Western AustraliaAustralia
| | - Paul Lombardo
- Department of Medical Imaging and Radiation SciencesMonash UniversityWellington RdClayton3800VictoriaAustralia
| | - Melinda Goodyear
- School of Rural HealthMonash UniversityWellington RdClayton3800VictoriaAustralia
| |
Collapse
|
22
|
Cao Z, Gao J, Wu J, Zheng Y. The Impact of COVID-19 Infection on Abdominal Aortic Aneurysms: Mechanisms and Clinical Implications. Cardiovasc Ther 2024; 2024:7288798. [PMID: 39742024 PMCID: PMC11300061 DOI: 10.1155/2024/7288798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 01/03/2025] Open
Abstract
Background: The COVID-19 virus not only has significant pathogenicity but also influences the progression of many diseases, altering patient prognosis. Cardiovascular diseases, particularly aortic aneurysms, are among the most life-threatening conditions. Main Idea: COVID-19 infection is reported to accelerate the progression of abdominal aortic aneurysms (AAAs) and increase the risk of rupture; however, a comprehensive understanding of the underlying mechanisms remains elusive. This article primarily reviews the relevant foundational research, focusing on disruptions in the renin-angiotensin-aldosterone system (RAAS), immune system activation, and coagulation disorders. Furthermore, we summarize related clinical research, including the epidemiology of aortic aneurysms during the pandemic and specific case studies. Conclusion: COVID-19 infection can influence the onset and progression of aortic aneurysms by affecting the RAAS, triggering inflammation and immune dysregulation in the arterial wall, and inducing a hypercoagulation state. It is crucial to comprehensively understand the impact of pandemic viral infections on aortic diseases at the foundational and clinical levels, thereby identifying potential preventative or therapeutic approaches and preparing for potential future outbreaks.
Collapse
Affiliation(s)
- Zenghan Cao
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianhang Gao
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Institute of Clinical MedicineNational Infrastructure for Translational MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex Severe and Rare DiseasePeking Union Medical College Hospital, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
23
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
24
|
Murdocca M, Romeo I, Citro G, Latini A, Centofanti F, Bugatti A, Caccuri F, Caruso A, Ortuso F, Alcaro S, Sangiuolo F, Novelli G. A Dynamic and Effective Peptide-Based Strategy for Promptly Addressing Emerging SARS-CoV-2 Variants of Concern. Pharmaceuticals (Basel) 2024; 17:891. [PMID: 39065742 PMCID: PMC11279616 DOI: 10.3390/ph17070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Genomic surveillance based on sequencing the entire genetic code of SARS-CoV-2 involves monitoring and studying genetic changes and variations in disease-causing organisms such as viruses and bacteria. By tracing the virus, it is possible to prevent epidemic spread in the community, ensuring a 'precision public health' strategy. A peptide-based design was applied to provide an efficacious strategy that is able to counteract any emerging viral variant of concern dynamically and promptly to affect the outcomes of a pandemic at an early stage while waiting for the production of the anti-variant-specific vaccine, which require longer times. The inhibition of the interaction between the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and one of the cellular receptors (DPP4) that its receptors routinely bind to infect human cells is an intriguing therapeutic approach to prevent the virus from entering human cells. Among the other modalities developed for this purpose, peptides surely offer unique advantages, including ease of synthesis, serum stability, low immunogenicity and toxicity, and small production and distribution chain costs. Here, we obtained a potent new inhibitor based on the rearrangement of a previously identified peptide that has been rationally designed on a cell dipeptidyl peptidase 4 (DPP4) sequence, a ubiquitous membrane protein known to bind the RBD-SPIKE domain of the virus. This novel peptide (named DPP4-derived), conceived as an endogenous "drug", is capable of targeting the latest tested variants with a high affinity, reducing the VSV* DG-Fluc pseudovirus Omicron's infection capacity by up to 14%, as revealed by in vitro testing in human Calu-3 cells. Surface plasmon resonance (SPR) confirmed the binding affinity of the new DPP4-derived peptide with Omicron variant RBD.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Gennaro Citro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Andrea Latini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
- IRCCS Neuromed Mediterranean Neurological Institute, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
25
|
Ahmed G, Abdelgadir Y, Abdelghani A, Simpson P, Barbeau J, Basel D, Barrios CS, Smith BA, Schilter KF, Udani R, Reddi HV, Willoughby RE. Reduction in ACE2 expression in peripheral blood mononuclear cells during COVID-19 - implications for post COVID-19 conditions. BMC Infect Dis 2024; 24:663. [PMID: 38956476 PMCID: PMC11221185 DOI: 10.1186/s12879-024-09321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Pippa Simpson
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jody Barbeau
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Donald Basel
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Rupa Udani
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Honey V Reddi
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rodney E Willoughby
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
- Pediatric Infectious Diseases, C450, Medical College of Wisconsin, PO Box 1997, Milwaukee, WI 53201-1997, USA.
| |
Collapse
|
26
|
Machkovech HM, Hahn AM, Garonzik Wang J, Grubaugh ND, Halfmann PJ, Johnson MC, Lemieux JE, O'Connor DH, Piantadosi A, Wei W, Friedrich TC. Persistent SARS-CoV-2 infection: significance and implications. THE LANCET. INFECTIOUS DISEASES 2024; 24:e453-e462. [PMID: 38340735 DOI: 10.1016/s1473-3099(23)00815-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
SARS-CoV-2 causes persistent infections in a subset of individuals, which is a major clinical and public health problem that should be prioritised for further investigation for several reasons. First, persistent SARS-CoV-2 infection often goes unrecognised, and therefore might affect a substantial number of people, particularly immunocompromised individuals. Second, the formation of tissue reservoirs (including in non-respiratory tissues) might underlie the pathophysiology of the persistent SARS-CoV-2 infection and require new strategies for diagnosis and treatment. Finally, persistent SARS-CoV-2 replication, particularly in the setting of suboptimal immune responses, is a possible source of new, divergent virus variants that escape pre-existing immunity on the individual and population levels. Defining optimal diagnostic and treatment strategies for patients with persistent virus replication and monitoring viral evolution are therefore urgent medical and public health priorities.
Collapse
Affiliation(s)
- Heather M Machkovech
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | | | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Jacob E Lemieux
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanting Wei
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions. Int J Mol Sci 2024; 25:7209. [PMID: 39000315 PMCID: PMC11241800 DOI: 10.3390/ijms25137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.
Collapse
Affiliation(s)
- Juan-Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
28
|
Rodriguez-Espada A, Salgado-de la Mora M, Rodriguez-Paniagua BM, Limon-de la Rosa N, Martinez-Gutierrez MI, Pastrana-Brandes S, Navarro-Alvarez N. Histopathological impact of SARS-CoV-2 on the liver: Cellular damage and long-term complications. World J Gastroenterol 2024; 30:2866-2880. [PMID: 38947288 PMCID: PMC11212712 DOI: 10.3748/wjg.v30.i22.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome, multiple organ failure, and death. Despite extensive studies on the pathogenicity of SARS-CoV-2, its impact on the hepatobiliary system remains unclear. While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels, the exact source of this damage is not fully understood. Proposed mechanisms for injury include direct cytotoxicity, collateral damage from inflammation, drug-induced liver injury, and ischemia/hypoxia. However, evidence often relies on blood tests with liver enzyme abnormalities. In this comprehensive review, we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients, drawing from liver biopsies, complete autopsies, and in vitro liver analyses. We present evidence of the direct impact of SARS-CoV-2 on the liver, substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes, including mitochondrial swelling, endoplasmic reticulum dilatation, and hepatocyte apoptosis. Additionally, we describe the diverse liver pathology observed during COVID-19 infection, encompassing necrosis, steatosis, cholestasis, and lobular inflammation. We also discuss the emergence of long-term complications, notably COVID-19-related secondary sclerosing cholangitis. Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
Collapse
Affiliation(s)
- Alfonso Rodriguez-Espada
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Moises Salgado-de la Mora
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | | | - Nathaly Limon-de la Rosa
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
| | | | - Santiago Pastrana-Brandes
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Nalu Navarro-Alvarez
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| |
Collapse
|
29
|
Jasiczek J, Doroszko A, Trocha T, Trocha M. Role of the RAAS in mediating the pathophysiology of COVID-19. Pharmacol Rep 2024; 76:475-486. [PMID: 38652364 PMCID: PMC11126499 DOI: 10.1007/s43440-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) holds a position of paramount importance as enzymatic and endocrine homeostatic regulator concerning the water-electrolyte and acid-base balance. Nevertheless, its intricacy is influenced by the presence of various complementary angiotensins and their specific receptors, thereby modifying the primary RAAS actions. Angiotensin-converting enzyme 2 (ACE2) acts as a surface receptor for SARS-CoV-2, establishing an essential connection between RAAS and COVID-19 infection. Despite the recurring exploration of the RAAS impact on the trajectory of COVID-19 along with the successful resolution of many inquiries, its complete role in the genesis of delayed consequences encompassing long COVID and cardiovascular thrombotic outcomes during the post-COVID phase as well as post-vaccination, remains not fully comprehended. Particularly noteworthy is the involvement of the RAAS in the molecular mechanisms underpinning procoagulant processes throughout COVID-19. These processes significantly contribute to the pathogenesis of organ complications as well as determine clinical outcomes and are discussed in this manuscript.
Collapse
Affiliation(s)
- Jakub Jasiczek
- Department of Cardiology, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a, Wrocław, 51-124, Poland
| | - Adrian Doroszko
- Department of Cardiology, 4th Military Hospital, Faculty of Medicine, Wroclaw University of Science and Technology, Weigla 5, Wrocław, 50-981, Poland
| | - Tymoteusz Trocha
- Faculty of Medicine, Wroclaw Medical University, Borowska 213, Wrocław, 50-556, Poland.
| | - Małgorzata Trocha
- Clinical Department of Diabetology and Internal Disease, Wroclaw Medical University, Borowska 213, Wrocław, 50-556, Poland
| |
Collapse
|
30
|
Pszczołowska M, Walczak K, Misków W, Antosz K, Batko J, Karska J, Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer's disease. GeroScience 2024; 46:2885-2899. [PMID: 38393535 PMCID: PMC11009207 DOI: 10.1007/s11357-024-01096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The long COVID (coronavirus disease), a multisystemic condition following severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the widespread problems. Some of its symptoms affect the nervous system and resemble symptoms of Alzheimer's disease (AD)-a neurodegenerative condition caused by the accumulation of amyloid beta and hyperphosphorylation of tau proteins. Multiple studies have found dependence between these two conditions. Patients with Alzheimer's disease have a greater risk of SARS-CoV-2 infection due to increased levels of angiotensin-converting enzyme 2 (ACE2), and the infection itself promotes amyloid beta generation which enhances the risk of AD. Also, the molecular pathways are alike-misregulations in folate-mediated one-carbon metabolism, a deficit of Cq10, and disease-associated microglia. Medical imaging in both of these diseases shows a decrease in the volume of gray matter, global brain size reduction, and hypometabolism in the parahippocampal gyrus, thalamus, and cingulate cortex. In some studies, a similar approach to applied medication can be seen, including the use of amino adamantanes and phenolic compounds of rosemary. The significance of these connections and their possible application in medical practice still needs further study but there is a possibility that they will help to better understand long COVID.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Misków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Antosz
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Joanna Batko
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Julia Karska
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
31
|
Micucci M, Gioacchini S, Baggieri M, Fioravanti R, Bucci P, Giuseppetti R, Saleem SS, Maulud SQ, Abdullah FO, Ismael BQ, Ahmed JQ, D'Ugo E, Marchi A, Okeke UJ, Magurano F. Review from host and guest approach to new frontiers nutraceuticals in the era of COVID-19. FUTURE FOODS 2024; 9:100303. [DOI: 10.1016/j.fufo.2024.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
32
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Rocha de Souza L, Ramos Amorim MM, Souza AS, Carvalho Pinto de Melo B, Tiné Cantilino C, de Oliveira Saunders MA, Jucá de Petribú M, Soares Lúcio L, Rodrigues Marinho J, de Oliveira Correia MEV, Katz L. Association between maternal and perinatal outcomes and histological changes in the placenta of patients with Covid-19: A cohort study. Medicine (Baltimore) 2024; 103:e38171. [PMID: 38788031 PMCID: PMC11124646 DOI: 10.1097/md.0000000000038171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Although studies evaluated placental involvement in Covid-19 patients, few have assessed its association with clinical repercussions. The study aimed to determine the association between the clinical status and maternal and perinatal outcomes of patients with Covid-19 at delivery and changes in placental histology. It is so far the largest cohort evaluating placentas of patients infected by the SARS-CoV-2. A secondary analysis was conducted of a database from which a cohort of 226 patients, who tested real-time polymerase chain reaction-positive for Covid-19 at delivery and whose placentas were collected and submitted to pathology, was selected for inclusion. One or more types of histological changes were detected in 44.7% of the 226 placentas evaluated. The most common abnormalities were maternal vascular malperfusion (38%), evidence of inflammation/infection (9.3%), fetal vascular malperfusion (0.8%), fibrinoid changes and intervillous thrombi (0.4%). Oxygen use (P = .01) and need for admission to an intensive care unit (ICU) (P = .04) were less common in patients with placental findings, and hospital stay was shorter in these patients (P = .04). There were more fetal deaths among patients with evidence of inflammation/infection (P = .02). Fetal death, albeit uncommon, is associated with findings of inflammation/infection. Oxygen use and need for admission to an ICU were less common among patients with placental findings, probably due to the pregnancy being interrupted early. None of the other findings was associated with maternal clinical status or with adverse perinatal outcome.
Collapse
Affiliation(s)
- Luiza Rocha de Souza
- Master’s Program of Comprehensive Health at IMIP, Recife, Brazil
- High Risk Pregnancy Unit at IMIP, Recife, Brazil
| | | | - Alex Sandro Souza
- Professor of the Postgraduate Program at IMIP, Recife, Brazil
- Department of Fetal Medicine at IMIP, Recife, Brazil
| | - Brena Carvalho Pinto de Melo
- High Risk Pregnancy Unit at IMIP, Recife, Brazil
- Simulation Center at Faculdade Pernambucana de Saúde (Csim), Recife, Brazil
| | | | | | | | | | | | | | - Leila Katz
- Professor of the Postgraduate Program at IMIP, Recife, Brazil
- Obstetric Intensive Care Unit at IMIP, Recife, Brazil
| |
Collapse
|
34
|
Zhu Y, Cao X, Ying R, Liu K, Chai Y, Luo M, Huang Q, Gao P, Zhang C. Mapping the vast landscape of multisystem complications of COVID-19: Bibliometric analysis. Heliyon 2024; 10:e30760. [PMID: 38765136 PMCID: PMC11098853 DOI: 10.1016/j.heliyon.2024.e30760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Background With the rapid global spread of COVID-19, it has become evident that the virus can lead to multisystem complications, leading to a significant increase in related publications. Bibliometrics serves as a valuable tool for identifying highly cited literature and research hotspots within specific areas. Objective The aim of this study is to identify current research hotspots and future trends in COVID-19 complications. Methods The dataset was obtained from the Web of Science Core Collection, covering COVID-19 complications from December 8, 2019, to October 31, 2022. Various aspects, including publication general information, authors, journals, co-cited authors, co-cited references, research hotspots, and future trends, were subjected to analysis. Visual analysis was conducted using VOSviewer, The Online Analysis Platform of Literature Metrology, and Charticulator. Results There were 4597 articles in the study. The top three countries with the most published articles are the USA (n = 1350, 29.4 %), China (n = 765, 16.6 %), and Italy (n = 623, 13.6 %). USA and China have the closest collaborative relationship. The institute with the largest number of publications is Huazhong University of Science and Technology, followed by Harvard Medical School. Nevertheless, half of the top 10 institutes belong to the USA. "Rezaei, Nima" published 13 articles and ranked first, followed by "Yaghi, Shadi" with 12 articles and "Frontera, Jennifer" with 12 articles. The journal with the largest number of publications is "Journal of Clinical Medicine". The top 3 co-cited authors are "Zhou, Fei", "Guan, Wei-Jie", "Huang, Chaolin". The top 3 co-cited references addressed COVID-19's clinical features in China and noticed that COVID-19 patients had a wide range of complications. We also list four research hotspots. Conclusions This study conducted a bibliometric visual analysis of the literature on COVID-19 complications and summarized the current research hotspots. This study may provide valuable insights into the complications of COVID-19.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Paužuolis M, Fatykhova D, Zühlke B, Schwecke T, Neyazi M, Samperio-Ventayol P, Aguilar C, Schlegel N, Dökel S, Ralser M, Hocke A, Krempl C, Bartfeld S. SARS-CoV-2 tropism to intestinal but not gastric epithelial cells is defined by limited ACE2 expression. Stem Cell Reports 2024; 19:629-638. [PMID: 38670110 PMCID: PMC11103887 DOI: 10.1016/j.stemcr.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primarily affects the lung but can also cause gastrointestinal (GI) symptoms. In vitro experiments confirmed that SARS-CoV-2 robustly infects intestinal epithelium. However, data on infection of adult gastric epithelium are sparse and a side-by-side comparison of the infection in the major segments of the GI tract is lacking. We provide this direct comparison in organoid-derived monolayers and demonstrate that SARS-CoV-2 robustly infects intestinal epithelium, while gastric epithelium is resistant to infection. RNA sequencing and proteome analysis pointed to angiotensin-converting enzyme 2 (ACE2) as a critical factor, and, indeed, ectopic expression of ACE2 increased susceptibility of gastric organoid-derived monolayers to SARS-CoV-2. ACE2 expression pattern in GI biopsies of patients mirrors SARS-CoV-2 infection levels in monolayers. Thus, local ACE2 expression limits SARS-CoV-2 expression in the GI tract to the intestine, suggesting that the intestine, but not the stomach, is likely to be important in viral replication and possibly transmission.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Boris Zühlke
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Schwecke
- Core Facility for High-Throughput Mass Spectrometry, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Pilar Samperio-Ventayol
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Carmen Aguilar
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Simon Dökel
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany; The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andreas Hocke
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Krempl
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany; Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Kumawat P, Agarwal LK, Sharma K. An Overview of SARS-CoV-2 Potential Targets, Inhibitors, and Computational Insights to Enrich the Promising Treatment Strategies. Curr Microbiol 2024; 81:169. [PMID: 38733424 DOI: 10.1007/s00284-024-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 05/13/2024]
Abstract
The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pooja Kumawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
37
|
Padua-Zamora AP, Rey KLR, Tan-Lim CSC, Gregorio GEV. Gastrointestinal and Hepatic Manifestations of COVID-19 in Children: A Systematic Review and Meta-analysis. ACTA MEDICA PHILIPPINA 2024; 58:54-72. [PMID: 38882920 PMCID: PMC11168955 DOI: 10.47895/amp.v58i7.7054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Children with COVID-19 may present with gastrointestinal (GI) symptoms and liver dysfunction. Objective To determine the type and prevalence of gastrointestinal (GI) and hepatic manifestations of COVID-19 in children and its association with severity of illness. Methods A systematic literature search was done from inception until January 4, 2021 using PubMed, Cochrane Library, Google Scholar and prepublication repositories with no language restrictions. Studies that reported the demographic and clinical features of children with COVID-19 and provided data on their GI and hepatic signs and symptoms were included. Prevalence of GI and hepatic manifestations were pooled using Stata14. Results We included 58 studies with total of 4497 participants. Overall, one-third of children with COVID-19 presented with at least one GI symptom (33.8%; 95% confidence interval (CI) 23.0, 45.4; I2 97.5%; 42 studies, 3327 participants) with abdominal pain, nausea or vomiting, and diarrhea each occurring in approximately 20%. Children with severe COVID-19 were more likely to present with GI symptoms (odds ratio 2.59; 95% CI 1.35, 4.99; I2 24%; 4 studies, 773 participants). The pooled prevalence of elevated transaminases was 11% for both AST (11.3%, 95% CI 4.9, 19.3; I2 74.7%; 11 studies, 447 participants) and ALT (11.2%, 95% CI 7.1, 16.0; I2 40.8%; 15 studies, 513 participants). Hepatic findings such as jaundice (2-17%), hepatomegaly (2%) or behavioral changes (2%) from hepatic encephalopathy were variably reported by a few studies.The degree of heterogeneity was not improved on exclusion of studies with poor quality, but markedly improved on subgroup analysis according to geographical region and presence of MIS-C. Studies from China showed that children with COVID-19 had significantly lower pooled prevalence for any of the GI symptoms with low degree of heterogeneity, particularly for diarrhea, nausea/vomiting, and abdominal pain, all of which had I2 of 0%. Those with multisystem inflammatory syndrome in children (MIS-C) had significantly more common GI symptoms and increased transaminases than those without. Conclusion One-third of children with COVID-19 exhibit at least one GI symptom and more likely present in those with severe disease. Elevated transaminases were present in 10%. Prevalence of GI and hepatic manifestations were higher among children with MIS-C.
Collapse
Affiliation(s)
- April P Padua-Zamora
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Philippine General Hospital, University of the Philippines Manila
| | - Katrina Loren R Rey
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Philippine General Hospital, University of the Philippines Manila
| | - Carol Stephanie C Tan-Lim
- Division of Allergy and Immunology, Department of Pediatrics, Philippine General Hospital, University of the Philippines Manila
| | - Germana Emerita V Gregorio
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Philippine General Hospital, University of the Philippines Manila
| |
Collapse
|
38
|
Singh L, Kumar A, Rai M, Basnet B, Rai N, Khanal P, Lai KS, Cheng WH, Asaad AM, Ansari S. Spectrum of COVID-19 induced liver injury: A review report. World J Hepatol 2024; 16:517-536. [PMID: 38689748 PMCID: PMC11056898 DOI: 10.4254/wjh.v16.i4.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 04/24/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.
Collapse
Affiliation(s)
- Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Anil Kumar
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Maya Rai
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Bibek Basnet
- Health Sciences, Asian College of Advance Studies, Purbanchal University, Satdobato 24122, Lalitpur, Nepal
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Pukar Khanal
- Department of Pharmacology & Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shamshul Ansari
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| |
Collapse
|
39
|
Heindl MR, Rupp AL, Schwerdtner M, Bestle D, Harbig A, De Rocher A, Schmacke LC, Staker B, Steinmetzer T, Stein DA, Moulton HM, Böttcher-Friebertshäuser E. ACE2 acts as a novel regulator of TMPRSS2-catalyzed proteolytic activation of influenza A virus in airway cells. J Virol 2024; 98:e0010224. [PMID: 38470058 PMCID: PMC11019950 DOI: 10.1128/jvi.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.
Collapse
Affiliation(s)
| | - Anna-Lena Rupp
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Anne Harbig
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Amy De Rocher
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Luna C. Schmacke
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
40
|
Cadore NA, Lord VO, Recamonde-Mendoza M, Kowalski TW, Vianna FSL. Meta-analysis of Transcriptomic Data from Lung Autopsy and Cellular Models of SARS-CoV-2 Infection. Biochem Genet 2024; 62:892-914. [PMID: 37486510 DOI: 10.1007/s10528-023-10453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Collapse
Affiliation(s)
- Nathan Araujo Cadore
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vinicius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
41
|
Wang Y, Guo L, Cui D, Zhang H, Zhang Q, Ren L, Wang G, Zhang X, Huang T, Chen L, Huang L, Wang X, Zhong J, Wang Y, Li H, Wang J, Cao B. Immune Responses in Discharged COVID-19 Patients With and Without Long COVID Symptoms. Open Forum Infect Dis 2024; 11:ofae137. [PMID: 38577029 PMCID: PMC10993057 DOI: 10.1093/ofid/ofae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 04/06/2024] Open
Abstract
The immune mechanisms of long coronavirus disease 2019 (COVID) are not yet fully understood. We aimed to investigate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory immune responses in discharged COVID-19 patients with and without long COVID symptoms. In this cross-sectional study, we included 1041 hospitalized COVID-19 patients with the original virus strain in Wuhan (China) 12 months after initial infection. We simultaneously conducted a questionnaire survey and collected peripheral blood samples from the participants. Based on the presence or absence of long COVID symptoms during the follow-up period, we divided the patients into 2 groups: a long COVID group comprising 480 individuals and a convalescent group comprising 561 individuals. Both groups underwent virus-specific immunological analyses, including enzyme-linked immunosorbent assay, interferon-γ-enzyme-linked immune absorbent spot, and intracellular cytokine staining. At 12 months after infection, 98.5% (1026/1041) of the patients were found to be seropositive and 93.3% (70/75) had detectable SARS-CoV-2-specific memory T cells. The long COVID group had significantly higher levels of receptor binding domain (RBD)-immunoglobulin G (IgG) levels, presented as OD450 values, than the convalescent controls (0.40 ± 0.22 vs 0.37 ± 0.20; P = .022). The magnitude of SARS-CoV-2-specific T-cell responses did not differ significantly between groups, nor did the secretion function of the memory T cells. We did not observe a significant correlation between SARS-CoV-2-IgG and magnitude of memory T cells. This study revealed that long COVID patients had significantly higher levels of RBD-IgG antibodies when compared with convalescent controls. Nevertheless, we did not observe coordinated SARS-CoV-2-specific cellular immunity. As there may be multiple potential causes of long COVID, it is imperative to avoid adopting a "one-size-fits-all" approach to future treatment modalities.
Collapse
Affiliation(s)
- Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Cui
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, The 2nd Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Qiao Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Geng Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, WestChina Hospital, Sichuan University, Chengdu, China
| | - Xueyang Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Tingxuan Huang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, WestChina Hospital, Sichuan University, Chengdu, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
42
|
Jung F, Connes P. Morphology and Function of Red Blood Cells in COVID-19 Patients: Current Overview 2023. Life (Basel) 2024; 14:460. [PMID: 38672731 PMCID: PMC11051426 DOI: 10.3390/life14040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In severe cases, SARS-CoV-2 infection leads to severe respiratory failure. Although angiotensin-converting enzyme 2 (ACE2) receptors are not expressed in red blood cells, SARS-CoV-2 can interact with red blood cells (RBCs) via several receptors or auxiliary membrane proteins. Recent data show that viral infection causes significant damage to the RBCs, altering their morphology, deformability, and aggregability. Loss of RBC deformability and/or increased aggregability favors the development of thrombotic processes in the microcirculation, as has been described to occur in COVID-19 patients. In addition, many patients also develop systemic endotheliitis associated with generalized coagulopathy. This manifests itself clinically as obstructive microthrombi in the area of the medium and smallest vessels, which can affect all internal organs. It is thought that such changes in the RBCs may contribute to the microangiopathy/microthrombosis associated with COVID-19 and may result in impaired capillary blood flow and tissue oxygenation.
Collapse
Affiliation(s)
- Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Philippe Connes
- Laboratory LIBM EA7424, Team “Vascular Biology and Red Blood Cell”, University of Lyon I, 69500 Lyon, France;
| |
Collapse
|
43
|
Huang Y, Zhou H, Wang Y, Xiao L, Qin W, Li L. A comprehensive investigation on the receptor BSG expression reveals the potential risk of healthy individuals and cancer patients to 2019-nCoV infection. Aging (Albany NY) 2024; 16:5412-5434. [PMID: 38484369 PMCID: PMC11006473 DOI: 10.18632/aging.205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a newly emerging coronavirus. BSG (basigin) is involved in the tumorigenesis of multiple tumors and recently emerged as a novel viral entry receptor for SARS-CoV-2. However, its expression profile in normal individuals and cancer patients are still unclear. METHODS We performed a comprehensive analysis of the expression and distribution of BSG in normal tissues, tumor tissues, and cell lines via bioinformatics analysis and experimental verification. In addition, we investigated the expression of BSG and its isoforms in multiple malignancies and adjacent normal tissues, and explored the prognostic values across pan-cancers. Finally, we conducted function analysis for co-expressed genes with BSG. RESULTS We found BSG was highly conserved in different species, and was ubiquitously expressed in almost all normal tissues and significantly increased in some types of cancer tissues. Moreover, BSG at mRNA expression level was higher than ACE2 in normal lung tissues, and lung cancer tissues. High expression of BSG indicated shorter overall survival (OS) in multiple tumors. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that BSG is mostly enriched in genes for mitochondria electron transport, oxidoreduction-driven active transmembrane transporter activity, mitochondrial inner membrane, oxidative phosphorylation, and genes involving COVID-19. CONCLUSIONS Our present work emphasized the value of targeting BSG in the treatment of COVID-19 and cancer, and also provided several novel insights for understanding the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Nie J, Yang H, Liu X, Deng W, Fu B. Identification and validation of shared gene signature of kidney renal clear cell carcinoma and COVID-19. PeerJ 2024; 12:e16927. [PMID: 38464749 PMCID: PMC10921934 DOI: 10.7717/peerj.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background COVID-19 is a severe infectious disease caused by the SARS-CoV-2 virus, and previous studies have shown that patients with kidney renal clear cell carcinoma (KIRC) are more susceptible to SARS-CoV-2 infection than the general population. Nevertheless, their co-pathogenesis remains incompletely elucidated. Methods We obtained shared genes between these two diseases based on public datasets, constructed a prognostic risk model consisting of hub genes, and validated the accuracy of the model using internal and external validation sets. We further analyzed the immune landscape of the prognostic risk model, investigated the biological functions of the hub genes, and detected their expression in renal cell carcinoma cells using qPCR. Finally, we searched the candidate drugs associated with hub gene-related targets from DSigDB and CellMiner databases. Results We obtained 156 shared genes between KIRC and COVID-19 and constructed a prognostic risk model consisting of four hub genes. Both shared genes and hub genes were highly enriched in immune-related functions and pathways. Hub genes were significantly overexpressed in COVID-19 and KIRC. ROC curves, nomograms, etc., showed the reliability and robustness of the risk model, which was validated in both internal and external datasets. Moreover, patients in the high-risk group showed a higher proportion of immune cells, higher expression of immune checkpoint genes, and more active immune-related functions. Finally, we identified promising drugs for COVID-19 and KIRC, such as etoposide, fulvestrant, and topotecan. Conclusion This study identified and validated four shared genes for KIRC and COVID-19. These genes are associated with immune functions and may serve as potential prognostic biomarkers for KIRC. The shared pathways and genes may provide new insights for further mechanistic research and treatment of comorbidities.
Collapse
Affiliation(s)
- Jianqiang Nie
- First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailang Yang
- First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
45
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
46
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Basic-Jukic N, Juric I, Katalinic L, Furic-Cunko V, Sesa V, Mrzljak A. Acute pancreatitis as a complication of acute COVID-19 in kidney transplant recipients. World J Clin Cases 2024; 12:1104-1110. [PMID: 38464928 PMCID: PMC10921313 DOI: 10.12998/wjcc.v12.i6.1104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Acute pancreatitis is a rare extrapulmonary manifestation of coronavirus disease 2019 (COVID-19) but its full correlation with COVID-19 infection remains unknown. AIM To identify acute pancreatitis' occurrence, clinical presentation and outcomes in a cohort of kidney transplant recipients with acute COVID-19. METHODS A retrospective observational single-centre cohort study from a transplant centre in Croatia for all adult renal transplant recipients with a functioning kidney allograft between March 2020 and August 2022 to record cases of acute pancreatitis during acute COVID-19. Data were obtained from hospital electronic medical records. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was proven by a positive SARS-CoV-2 real-time reverse transcriptase-polymerase chain reaction on the nasopharyngeal swab. RESULTS Four hundred and eight out of 1432 (28.49%) patients who received a renal allograft developed COVID-19 disease. The analyzed cohort included 321 patients (57% males). One hundred and fifty patients (46.7%) received at least one dose of the anti-SARS-CoV-2 vaccine before the infection. One hundred twenty-five (39.1%) patients required hospitalization, 141 (44.1%) developed pneumonia and four patients (1.3%) required mechanical ventilation. Treatment included immunosuppression modification in 233 patients (77.1%) and remdesivir in 53 patients (16.6%), besides the other supportive measures. In the study cohort, only one transplant recipient (0.3%) developed acute pancreatitis during acute COVID-19, presenting with abdominal pain and significantly elevated pancreatic enzymes. She survived without complications with a stable kidney allograft function. CONCLUSION Although rare, acute pancreatitis may complicate the course of acute COVID-19 in kidney transplant recipients. The mechanism of injury to the pancreas and its correlation with the severity of the COVID-19 infection in kidney transplant recipients warrants further research.
Collapse
Affiliation(s)
- Nikolina Basic-Jukic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- Department of Medicine, School of Medicine, Zagreb 10000, Croatia
| | - Ivana Juric
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Lea Katalinic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Vesna Furic-Cunko
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Vibor Sesa
- Department of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Anna Mrzljak
- Department of Medicine, School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
48
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
49
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
50
|
Sun J, Ruiz Daniels R, Balic A, Andresen AMS, Bjørgen H, Dobie R, Henderson NC, Koppang EO, Martin SAM, Fosse JH, Taylor RS, Macqueen DJ. Cell atlas of the Atlantic salmon spleen reveals immune cell heterogeneity and cell-specific responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109358. [PMID: 38176627 DOI: 10.1016/j.fsi.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| |
Collapse
|