1
|
Kim Y, Panda AK, Shevach EM. Treg Control of CD80/CD86 Expression Mediates Immune System Homeostasis. Eur J Immunol 2025; 55:e202551771. [PMID: 40346769 PMCID: PMC12064877 DOI: 10.1002/eji.202551771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/12/2025]
Abstract
Foxp3+ regulatory T cells (Treg) are critical for the maintenance of self-tolerance, and their absence or dysfunction can result in autoimmunity. To determine the critical cell type controlled by Treg and potentially the suppressor mechanism utilized by Treg in the steady state, we utilized mice expressing the diphtheria toxin receptor (DTR) exclusively on Treg cells. Complete depletion of Treg was achieved 24 h after DT treatment, but profound activation of CD4+ and CD8+ T cells as measured by induction of CD44 expression and proliferation required 3-4 days. Increased expression of CD80/CD86 was observed on dendritic cells and more prominently on macrophages after 3 days. Depletion of CD4+ T cells or macrophages resulted in ∼50% inhibition of T-cell activation. The initial steps in T-cell activation were completely independent of IFN-γ or IL-2, while upregulation of CD80/CD86 was partially dependent on IFN-γ. Complete reversal of immune activation post-Treg depletion was only achieved by blockade of CD80/CD86 interactions with CD28. We conclude that the major mechanism used by Treg in the steady state is the regulation of CD80/CD86 expression and dysregulation of this suppressor pathway results in lethal autoimmunity driven by co-stimulatory signals in concert with TCR stimulation, or even by costimulatory signals alone.
Collapse
Affiliation(s)
- Yong‐Hee Kim
- Cellular Immunology SectionLaboratory of Immune System BiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Abir K. Panda
- Cellular Immunology SectionLaboratory of Immune System BiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ethan M. Shevach
- Cellular Immunology SectionLaboratory of Immune System BiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
2
|
Chiang SCC, Yang L, Owsley E, Husami A, Akeno N, Cobb C, Hartog NL, Elizalde A, Seroogy CM, Blanchard-Rohner G, Peng XP, Brager R, Buchbinder D, Cook E, Phillips L, Maricic S, Kalashnikova T, Derfalvi B, Dimitriades VR, Murguía-Favela LE, Gutierrez MJ, Shrikhande A, Steele M, Wilson JL, Wright NAM, Marsh R, Bleesing J, Jordan MB, Marwaha AK. Lipopolysaccharide-responsive and beige-like anchor protein (LRBA) functional deficiency caused by biallelic LRBA missense variants characterized by Evans syndrome or colitis. J Allergy Clin Immunol 2025:S0091-6749(25)00384-7. [PMID: 40220912 DOI: 10.1016/j.jaci.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Biallelic loss-of-function mutations in the lipopolysaccharide-responsive and beige-like anchor (LRBA) gene lead to a severe syndrome of early-onset immune dysregulation called LRBA deficiency. Monoallelic CTLA4 mutations lead to a similar phenotype. In both conditions, cytotoxic T lymphocyte-associated protein 4 (CTLA-4) levels are significantly decreased. In previously reported cases of symptomatic disease associated with LRBA pathogenic variants, patients usually have severely decreased or absent LRBA protein levels. OBJECTIVE We describe 5 patients with biallelic missense variants in the LRBA gene presenting predominantly with Evans syndrome or colitis. METHODS LRBA and CTLA-4 levels were investigated in LRBA missense, "classic" LRBA and in CTLA-4 insufficiency samples. RESULTS Surprisingly, all 5 LRBA missense patients had normal expression of LRBA protein. However, CTLA-4 intracellular expression was reduced to similar levels as those seen in patients with CTLA-4 insufficiency at resting state. Lower levels of surface CTLA-4 are seen on cell activation, indicating that these LRBA variants lead to reduced CTLA-4 cell surface expression. Several of the missense variants are shared between unrelated patients in the cohort, suggesting a mutational hot spot or founder effect for those with shared ancestry. CONCLUSION Novel LRBA deficiency variants result in quantitative or qualitative LRBA defects, leading to reduced intracellular resting levels and induced surface levels of CTLA-4.
Collapse
Affiliation(s)
- Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Li Yang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Erika Owsley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nagako Akeno
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cristina Cobb
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicholas L Hartog
- Allergy and Immunology, Corwell Health, Helen Devos Children's Hospital, College of Human Medicine, Michigan State University, Grand Rapids, Mich
| | | | - Christine M Seroogy
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Geraldine Blanchard-Rohner
- Unit of Immunology, Vaccinology and Rheumatology, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Xiao P Peng
- Division of Genetic Medicine, Department of Pediatrics, Montefiore Medical Center, Bronx, NY
| | - Rae Brager
- Division of Rheumatology, Immunology and Allergy, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, Calif
| | - Eleanor Cook
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lindsay Phillips
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Ontario, Canada
| | - Snezana Maricic
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Ontario, Canada
| | - Tatiana Kalashnikova
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Beata Derfalvi
- Division of Immunology, Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Victoria R Dimitriades
- Division of Pediatric Allergy, Immunology & Rheumatology, UC Davis Health, Sacramento, Calif
| | - Luis E Murguía-Favela
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Anitha Shrikhande
- Department of Medicine and Pediatrics, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| | - MacGregor Steele
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Jo L Wilson
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicola A M Wright
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ashish K Marwaha
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Ontario, Canada.
| |
Collapse
|
3
|
Lentini L, Perriera R, Corrao F, Melfi R, Tutone M, Carollo PS, Fiduccia I, Pace A, Ricci D, Genovese F, Colige A, Delvenne P, Grimbacher B, Moutschen M, Pibiri I. A precision medicine approach to primary immunodeficiency disease: Ataluren strikes nonsense mutations once again. Mol Ther 2025:S1525-0016(25)00220-5. [PMID: 40158206 DOI: 10.1016/j.ymthe.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Primary immunodeficiency diseases (PIDs) are associated with multiple genetic alterations including mutations of the lipopolysaccharide responsive Beige anchor (LRBA) gene. Nonsense mutations in the LRBA gene resulting in premature termination codons cause the loss of LRBA protein expression in PID. We evaluated the impact of a translational readthrough-inducing drug (TRID) ataluren as a nonsense suppression therapy in a PID patient with a homozygous stop codon mutation in exon 30 of LRBA. A precision medicine approach allowed us to pass from "in silico" to "in vitro" to the "bedside": following the in vitro treatment of patient-derived primary fibroblasts with ataluren, we observed a restoration of the LRBA protein expression and localization. In silico predictions suggested LRBA retained function after readthrough. Based on the successful experimental and computational results we treated the patient with ataluren resulting in an improvement of his clinical symptoms and quality of life. Importantly, the clinical symptoms were associated with a recovery of LRBA expression in liver biopsies post-treatment compared with pre-treatment. Our results provide a proof of concept demonstrating that ataluren, can rescue LRBA expression in PID. This work highlights the potential for personalized precision medicine approaches to be exploited for different genetic diseases due to premature termination codons.
Collapse
Affiliation(s)
- Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Riccardo Perriera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Marco Tutone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Pietro S Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ignazio Fiduccia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Davide Ricci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Genovese
- Department of Diagnostic Laboratory, U.O.C. of Pathological Anatomy "G. F. Ingrassia" Hospital, ASP Palermo, Palermo, Italy
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA Institute, University of Liège, Liège, Belgium; Fonds National de la Recherche Scientifique, Liége, Belgium
| | - Philippe Delvenne
- Department of Pathology, Centre Hospitalier Universitaire of Liège, Liège, Belgium; Laboratory of Experimental Pathology, GIGA Institute, University of Liège, Liège, Belgium
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Michel Moutschen
- General Internal Medicine and Clinical Immunology, Centre Hospitalier Universitaire of Liège, Liège, Belgium; Immunobiology, GIGA Institute, University of Liège, Liège, Belgium.
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
4
|
Belot A, Tusseau M, Cognard J, Georgin‐Lavialle S, Boursier G, Hedrich CM. How (Ultra-)Rare Gene Variants Improve Our Understanding of More Common Autoimmune and Inflammatory Diseases. ACR Open Rheumatol 2025; 7:e70003. [PMID: 39964335 PMCID: PMC11834591 DOI: 10.1002/acr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to explore the impact of rare and ultra-rare genetic variants on the understanding and treatment of autoimmune and autoinflammatory diseases with a focus on systemic lupus erythematosus (SLE) and Behçet syndrome. This review summarizes current research on the monogenic causes of SLE and Behçet syndrome, highlighting the various pathways that can be responsible for these unique phenotypes. In monogenic SLE, the identification of complement and DNASE1L3 deficiencies has elucidated mechanisms of apoptotic body accumulation and extracellular nucleic acid sensing. Type I interferonopathies underline the specific role of DNA/RNA sensing and the interferon overexpression in the development of systemic autoimmunity. Other significant genetic defects include Toll-like receptor hypersignaling and JAK/STATopathies, which contribute to the breakdown of immune tolerance. To date, genetic defects directly affecting B and T cell biology only account for a minority of identified causes of monogenic lupus, highlighting the importance of a tight regulation of mechanistic target of rapamycin and RAS (Rat sarcoma GTPase)/MAPK (mitogen-activated protein kinase) signaling in lupus. In Behçet syndrome, rare variants in TNFAIP3, RELA, and NFKB1 genes have been identified, underscoring the importance of NF-κB overactivation. Additional monogenic diseases such as ELF4, WDR1 mutations and trisomy 8 further illustrate the genetic complexity of this condition. Observations from genetic studies in SLE and Behçet syndrome highlight the complexity of systemic inflammatory diseases in which distinct molecular defects caused by single-gene mutations can promote lupus or Behçet syndromes, often unrecognizable from their genetically complex "classical" forms. Insights gained from studying rare genetic variants enhance our understanding of immune function in health and disease, paving the way for targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Belot
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and Autoimmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisLyonFrance
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant and Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisParisFrance
| | - Jade Cognard
- American Memorial Hospital, Centre Hospitalier Universitaire Reims, Reims Champagne‐Ardenne UniversityReimsFrance
| | - Sophie Georgin‐Lavialle
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Sorbonne Université, Hôpital Tenon, DMU 3ID, AP‐HPParisFrance
| | - Guilaine Boursier
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellierFrance
| | - Christian M. Hedrich
- Institute of Life Course and Medical Sciences, University of Liverpool and Alder Hey Children's NHS Foundation TrustLiverpoolUnited Kingdom
| |
Collapse
|
5
|
Pankiv S, Dahl AK, Aas A, Andersen RL, Brech A, Holland P, Singh S, Bindesbøll C, Simonsen A. BEACH domain proteins function as cargo-sorting adaptors in secretory and endocytic pathways. J Cell Biol 2024; 223:e202408173. [PMID: 39514288 PMCID: PMC11554844 DOI: 10.1083/jcb.202408173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
We identify BEACH domain-containing proteins (BDCPs) as novel membrane coat proteins involved in the sorting of transmembrane proteins (TMPs) on the trans-Golgi network and tubular sorting endosomes. The seven typical mammalian BDCPs share a predicted alpha-solenoid-beta propeller structure, suggesting they have a protocoatomer origin and function. We map the subcellular localization of seven BDCPs based on their dynamic colocalization with RAB and ARF small GTPases and identify five typical BDCPs on subdomains of dynamic tubular-vesicular compartments on the intersection of endocytic recycling and post-Golgi secretory pathways. We demonstrate that BDCPs interact directly with the cytosolic tails of selected TMPs and identify a subset of TMPs, whose trafficking to the plasma membrane is affected in cells lacking BDCP. We propose that the competitive binding of BDCPs and clathrin coat adaptors to the cytosolic tails of TMPs, followed by their clustering to distinct subdomains of secretory/recycling tubules function as a mechanism for sorting of TMPs in pleomorphic tubular-vesicular compartments that lack a clathrin coat.
Collapse
Affiliation(s)
- Serhiy Pankiv
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Kathinka Dahl
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Aleksander Aas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rosa Linn Andersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Petter Holland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sakshi Singh
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Szentgyörgyi V, Lueck LM, Overwijn D, Ritz D, Zoeller N, Schmidt A, Hondele M, Spang A, Bakhtiar S. Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis. J Cell Biol 2024; 223:e202401167. [PMID: 39325073 PMCID: PMC11449124 DOI: 10.1083/jcb.202401167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive. We show that LRBA, however, only slightly colocalizes with Rab11. Instead, LRBA is recruited by members of the small GTPase Arf protein family to the TGN and to Rab4+ endosomes, where it controls intracellular traffic. In patient-derived fibroblasts, loss of LRBA led to defects in the endosomal pathway promoting the accumulation of enlarged endolysosomes and lysosome secretion. Thus, LRBA appears to regulate flow through the endosomal system on Rab4+ endosomes. Our data strongly suggest functions of LRBA beyond CTLA-4 trafficking and provide a conceptual framework to develop new therapies for LRBA deficiency.
Collapse
Affiliation(s)
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nadja Zoeller
- Dermatology, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Shahrzad Bakhtiar
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Ceroni F, Cicekdal MB, Holt R, Sorokina E, Chassaing N, Clokie S, Naert T, Talbot LV, Muheisen S, Bax DA, Kesim Y, Kivuva EC, Vincent-Delorme C, Lienkamp SS, Plaisancié J, De Baere E, Calvas P, Vleminckx K, Semina EV, Ragge NK. Deletion upstream of MAB21L2 highlights the importance of evolutionarily conserved non-coding sequences for eye development. Nat Commun 2024; 15:9245. [PMID: 39455595 PMCID: PMC11511899 DOI: 10.1038/s41467-024-53553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Anophthalmia, microphthalmia and coloboma (AMC) comprise a spectrum of developmental eye disorders, accounting for approximately 20% of childhood visual impairment. While non-coding regulatory sequences are increasingly recognised as contributing to disease burden, characterising their impact on gene function and phenotype remains challenging. Furthermore, little is known of the nature and extent of their contribution to AMC phenotypes. We report two families with variants in or near MAB21L2, a gene where genetic variants are known to cause AMC in humans and animal models. The first proband, presenting with microphthalmia and coloboma, has a likely pathogenic missense variant (c.338 G > C; p.[Trp113Ser]), segregating within the family. The second individual, presenting with microphthalmia, carries an ~ 113.5 kb homozygous deletion 19.38 kb upstream of MAB21L2. Modelling of the deletion results in transient small lens and coloboma as well as midbrain anomalies in zebrafish, and microphthalmia and coloboma in Xenopus tropicalis. Using conservation analysis, we identify 15 non-coding conserved elements (CEs) within the deleted region, while ChIP-seq data from mouse embryonic stem cells demonstrates that two of these (CE13 and 14) bind Otx2, a protein with an established role in eye development. Targeted disruption of CE14 in Xenopus tropicalis recapitulates an ocular coloboma phenotype, supporting its role in eye development. Together, our data provides insights into regulatory mechanisms underlying eye development and highlights the importance of non-coding sequences as a source of genetic diagnoses in AMC.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Munevver B Cicekdal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Sorokina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Samuel Clokie
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Lidiya V Talbot
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Sanaa Muheisen
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Yesim Kesim
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma C Kivuva
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Julie Plaisancié
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Calvas
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Elena V Semina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA.
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
8
|
Zabihi MR, Moradi Z, Safari N, Salehi Z, Kavousi K. Revealing disease subtypes and heterogeneity in common variable immunodeficiency through transcriptomic analysis. Sci Rep 2024; 14:23899. [PMID: 39396099 PMCID: PMC11470955 DOI: 10.1038/s41598-024-74728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Common Variable Immunodeficiency (CVID) is a primary immunodeficiency characterized by reduced levels of specific immunoglobulins, resulting in frequent infections, autoimmune disorders, increased cancer risk, and diminished antibody production despite an adequate B cell count. With its clinical manifestations being highly variable, the classification of CVID, including the widely recognized Freiburg classification, is primarily based on clinical symptoms and genetic variations. Our study aims to refine the classification of CVID by analyzing transcriptomics data to identify distinct disease subtypes. We utilized the GSE51405 dataset, examining transcriptomic profiles from 30 CVID patients without complications. Employing a combination of clustering techniques-KMeans, hierarchical agglomerative clustering, spectral clustering, and Gaussian Mixture models-and differential gene expression analysis with R's limma package, we integrated molecular findings with demographic data (age and gender) through correlation analysis and identified common genes among clusters. Three distinct clusters of CVID patients were identified using KMeans, Agglomerative Clustering, and Gaussian Mixture Models, highlighting the disease's heterogeneity. Differential expression analysis unveiled 31 genes with variable expression levels across these clusters. Notably, nine genes (EIF5A, RPL21, ANP32A, DTX3L, NCF2, CDC42EP3, CHP1, FOLR3, and DEFA4) exhibited consistent differential expression across all clusters, independent of demographic factors. The study recommends categorizing patients based on the four genes, NCF2, CHP1, FOLR3, and DEFA4-as they may assist in prognostic prediction. Transcriptomic analysis of common variable immunodeficiency (CVID) patients identified three distinct clusters based on gene expression, independent of age and gender. Nine differentially expressed genes were identified across these clusters, suggesting potential biomarkers for CVID subtype classification. These findings highlight the genetic heterogeneity of CVID and provide novel insights into disease classification and potential personalized treatment approaches.
Collapse
Affiliation(s)
- Mohammad Reza Zabihi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Moradi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Safari
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Shadur B, NasserEddin A, Zaidman I, Schejter YD, Even-Or E, Berkun Y, Meyts I, Hmedat H, Sulaiman A, Tangye SG, Stepensky P. Successful Haematopoietic Stem Cell Transplantation for LRBA Deficiency with Fludarabine, Treosulfan, and Thiotepa-Based Conditioning. J Clin Immunol 2024; 45:3. [PMID: 39264459 PMCID: PMC11393013 DOI: 10.1007/s10875-024-01770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/19/2024] [Indexed: 09/13/2024]
Abstract
LRBA deficiency is an inborn error of immunity defined by autoimmunity, lymphoproliferation, recurrent infections, cytopenia, and inflammatory bowel disease. Despite recent advances in managing this disease with targeted biologic therapy, haematopoietic stem cell transplant (HSCT) remains the only cure. However, great variability exists between protocols used to transplant patients with LRBA deficiency. We describe a cohort of seven patients with LRBA deficiency who underwent HSCT using a myeloablative, reduced toxicity regime of fludarabine, treosulfan, and thiotepa at two transplantation centres from 2016 to 2019. Data were collected both retrospectively and prospectively, measuring time to engraftment, infectious complications, incidence of graft versus host disease, and post-transplantation chimerism. Six of seven patients survived transplantation, and four of six surviving patients achieving treatment-free survival. We thus recommend that HSCT with fludarabine, treosulfan, and thiotepa-based conditioning be considered in patients with LRBA deficiency.
Collapse
Affiliation(s)
- Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel.
- Garvan Institute of Medical Research, Sydney, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.
| | - Adeeb NasserEddin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Yael Dinur Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Ehud Even-Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Yackov Berkun
- Department of General Paediatrics, Hadassah University Medical Centre, Jerusalem, Israel
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Hatem Hmedat
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Ashraf Sulaiman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Medical Centre, Jerusalem, Israel
| |
Collapse
|
10
|
Hamvas A, Chaudhari BP, Nogee LM. Genetic testing for diffuse lung diseases in children. Pediatr Pulmonol 2024; 59:2286-2297. [PMID: 37191361 DOI: 10.1002/ppul.26447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
Newly developing genomic technologies are an increasingly important part of clinical care and thus, it is not only important to understand the technologies and their limitations, but to also interpret the findings in an actionable fashion. Clinical geneticists and genetic counselors are now an integral part of the clinical team and are able to bridge the complexities of this rapidly changing science between the bedside clinicians and patients. This manuscript reviews the terminology, the current technology, some of the known genetic disorders that result in lung disease, and indications for genetic testing with associated caveats. Because this field is evolving quickly, we also provide links to websites that provide continuously updated information important for integrating genomic technology results into clinical decision-making.
Collapse
Affiliation(s)
- Aaron Hamvas
- Department of Pediatrics, Division of Neonatology, Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bimal P Chaudhari
- Divisions of Genetics and Genomic Medicine, Neonatology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lawrence M Nogee
- Department of Pediatrics, Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Ganuza M, Morales-Hernández A, Van Huizen A, Chabot A, Hall T, Caprio C, Finkelstein D, Kilimann MW, McKinney-Freeman S. Neurobeachin regulates hematopoietic progenitor differentiation and survival by modulating Notch activity. Blood Adv 2024; 8:4129-4143. [PMID: 38905595 PMCID: PMC11345395 DOI: 10.1182/bloodadvances.2023012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) can generate all blood cells. This ability is exploited in HSC transplantation (HSCT) to treat hematologic disease. A clear understanding of the molecular mechanisms that regulate HSCT is necessary to continue improving transplant protocols. We identified the Beige and Chediak-Higashi domain-containing protein (BDCP), Neurobeachin (NBEA), as a putative regulator of HSCT. Here, we demonstrated that NBEA and related BDCPs, including LPS Responsive Beige-Like Anchor Protein (LRBA), Neurobeachin Like 1 (NBEAL1) and Lysosomal Trafficking Regulator (LYST), are required during HSCT to efficiently reconstitute the hematopoietic system of lethally irradiated mice. Nbea knockdown in mouse HSCs induced apoptosis and a differentiation block after transplantation. Nbea deficiency in hematopoietic progenitor cells perturbed the expression of genes implicated in vesicle trafficking and led to changes in NOTCH receptor localization. This resulted in perturbation of the NOTCH transcriptional program, which is required for efficient HSC engraftment. In summary, our findings reveal a novel role for NBEA in the control of NOTCH receptor turnover in hematopoietic cells and supports a model in which BDCP-regulated vesicle trafficking is required for efficient HSCT.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Morales-Hernández
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Alanna Van Huizen
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ashley Chabot
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claire Caprio
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
12
|
Pérez-Pérez D, Fuentes-Pananá EM, Flores-Hermenegildo JM, Romero-Ramirez H, Santos-Argumedo L, Kilimann MW, Rodríguez-Alba JC, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor is involved in regulating NF-κB activation in B cells. Front Immunol 2024; 15:1409434. [PMID: 39076990 PMCID: PMC11284061 DOI: 10.3389/fimmu.2024.1409434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the importance of which has been determined in various cell types, including T regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an inborn error in immunity characterized by immunodeficiency and autoimmunity. In addition to defects in T regulatory cells, patients with LRBA deficiency also exhibit B cell defects, such as reduced cell number, low memory B cells, hypogammaglobulinemia, impaired B cell proliferation, and increased autophagy. Although Lrba-/- mice do not exhibit the immunodeficiency observed in humans, responses to B cell receptors (BCR) in B cells have not been explored. Therefore, a murine model is for elucidating the mechanism of Lrba mechanism in B cells. Aim To compare and evaluate spleen-derived B cell responses to BCR crosslinking in C57BL6 Lrba-/- and Lrba+/+ mice. Materials and methods Spleen-derived B cells were obtained from 8 to 12-week-old mice. Subpopulations were determined by immunostaining and flow cytometry. BCR crosslinking was assessed by the F(ab')2 anti-μ chain. Activation, proliferation and viability assays were performed using flow cytometry and protein phosphorylation was evaluated by immunoblotting. The nuclear localization of p65 was determined using confocal microscopy. Nur77 expression was evaluated by Western blot. Results Lrba-/- B cells showed an activated phenotype and a decreased proportion of transitional 1 B cells, and both proliferation and survival were affected after BCR crosslinking in the Lrba-/- mice. The NF-κB pathway exhibited a basal activation status of several components, resulting in increased activation of p50, p65, and IκBα, basal p50 activation was reduced by the Plcγ2 inhibitor U73122. BCR crosslinking in Lrba-/ - B cells resulted in poor p50 phosphorylation and p65 nuclear localization. Increased levels of Nur77 were detected. Discussion These results indicate the importance of Lrba in controlling NF-κB activation driven by BCR. Basal activation of NF-κB could impact cellular processes, such as, activation, differentiation, proliferation, and maintenance of B cells after antigen encounter.
Collapse
Affiliation(s)
- Daniela Pérez-Pérez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiency Laboratory, National Institute of Pediatrics, Mexico City, Mexico
| | | | - José Mizael Flores-Hermenegildo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Hector Romero-Ramirez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juan Carlos Rodríguez-Alba
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
| | | |
Collapse
|
13
|
Flores-Hermenegildo JM, Hernández-Cázares FDJ, Pérez-Pérez D, Romero-Ramírez H, Rodríguez-Alba JC, Licona-Limon P, Kilimann MW, Santos-Argumedo L, López-Herrera G. Lrba participates in the differentiation of IgA+ B lymphocytes through TGFβR signaling. Front Immunol 2024; 15:1386260. [PMID: 38975349 PMCID: PMC11224471 DOI: 10.3389/fimmu.2024.1386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Lrba is a cytoplasmic protein involved in vesicular trafficking. Lrba-deficient (Lrba-/-) mice exhibit substantially higher levels of IgA in both serum and feces than wild-type (WT) mice. Transforming growth factor β1 (TGFβ1) and its receptors (TGFβR I and II) is essential for differentiating IgA+ B cells. Furthermore, increased IgA production suggests a potential connection between Lrba and the TGFβR signaling pathway in IgA production. However, the specific function of Lrba in B cell biology remains unknown. Aim Given the increased IgA levels in Lrba-/- mice, the goal in this work was to explore the lymph organs where the switch to IgA occurs, and if TGFβR function is affected. Methods Non-immunized Lrba-/- mice were compared with Lrba+/+ mice. IgA levels in the serum and feces, as well as during peripheral B cell development, were determined. IgA+ B cells and plasma cells were assessed in the small intestine and secondary lymphoid organs, such as the spleen, mesenteric lymph nodes, and Peyer's patches. The TGFβR signaling pathway was evaluated by determining the expression of TGFβR on B cells. Additionally, SMAD2 phosphorylation was measured under basal conditions and in response to recombinant TGFβ. Finally, confocal microscopy was performed to investigate a possible interaction between Lrba and TGFβR in B cells. Results Lrba-/- mice exhibited significantly higher levels of circulating IgA, IgA+ B, and plasma cells than in peripheral lymphoid organs those in WT mice. TGFβR expression on the membrane of B cells was similar in both Lrba-/- and Lrba+/+ mice. However, intracellular TGFβR expression was reduced in Lrba-/- mice. SMAD2 phosphorylation showed increased levels under basal conditions; stimulation with recombinant TGFβ elicited a poorer response than in that in Lrba+/+ B cells. Finally, we found that Lrba colocalizes with TGFβR in B cells. Conclusion Lrba is essential in controlling TGFβR signaling, subsequently regulating SMAD2 phosphorylation on B cells. This mechanism may explain the increased differentiation of IgA+ B cells and production of IgA-producing plasma cells.
Collapse
Affiliation(s)
- José Mizael Flores-Hermenegildo
- Departamento de Biomedicina, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría (INP), Ciudad de México, Mexico
| | - Felipe de Jesús Hernández-Cázares
- Departamento de Biomedicina, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | - Daniela Pérez-Pérez
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría (INP), Ciudad de México, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | - Juan Carlos Rodríguez-Alba
- Unidad de Neuroinmunología y Neurooncología, Instituto Nacional de Neurología y Neurocirugia (NINN), Ciudad de México, Mexico
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca (UABJO), Ciudad de Oaxaca, Mexico
| | - Paula Licona-Limon
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | - Gabriela López-Herrera
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría (INP), Ciudad de México, Mexico
| |
Collapse
|
14
|
Perez-Perez D, Santos-Argumedo L, Rodriguez-Alba JC, Lopez-Herrera G. Analysis of LRBA pathogenic variants and the association with functional protein domains and clinical presentation. Pediatr Allergy Immunol 2024; 35:e14179. [PMID: 38923448 DOI: 10.1111/pai.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.
Collapse
Affiliation(s)
- D Perez-Perez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| | - L Santos-Argumedo
- Biomedicine Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - J C Rodriguez-Alba
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
| | - G Lopez-Herrera
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
15
|
Roussa E, Juda P, Laue M, Mai-Kolerus O, Meyerhof W, Sjöblom M, Nikolovska K, Seidler U, Kilimann MW. LRBA, a BEACH protein mutated in human immune deficiency, is widely expressed in epithelia, exocrine and endocrine glands, and neurons. Sci Rep 2024; 14:10678. [PMID: 38724551 PMCID: PMC11082223 DOI: 10.1038/s41598-024-60257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.
Collapse
Affiliation(s)
- Eleni Roussa
- Department Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pavel Juda
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Leukocyte Motility Lab, 1st Faculty of Medicine, Charles University of Prague, Vestec, Czech Republic
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Oliver Mai-Kolerus
- Department of Molecular Genetics, German Institute for Human Nutrition, Potsdam-Rehbruecke, Germany
- Einstein Center for Neurosciences, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute for Human Nutrition, Potsdam-Rehbruecke, Germany
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Medical University Hannover, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Medical University Hannover, Hannover, Germany
| | - Manfred W Kilimann
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
16
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
17
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
18
|
Jiang L, Chen S. Case report: A case of novel homozygous LRBA variant induced by chromosomal segmental uniparental disomy - genetic and clinical insights. Front Immunol 2024; 15:1351076. [PMID: 38504982 PMCID: PMC10948553 DOI: 10.3389/fimmu.2024.1351076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Objective The study aims to report a rare case of a novel homozygous variant in the LRBA gene, originating from uniparental disomy of paternal origin. This case contributes new clinical data to the LRBA gene variant database. Methods The study details the case of a 2-year-old child diagnosed in May 2023 at our center with a homozygous LRBA gene variant. Detailed clinical data of the patient were collected, including whole-exome sequencing of peripheral blood mononuclear cells, with parental genetic verification. Results The child presented with recurrent respiratory infections and chronic neutropenia, progressing to pancytopenia. Imaging showed splenomegaly and enlarged lymph nodes in the axillary and abdominal regions. Peripheral blood lymphocyte count revealed reduced B cells and NK cells. Elevated cytokine levels of IFN-α and IFN-r were observed. Whole-exome sequencing revealed a nonsense homozygous variant in the LRBA gene, specifically c.2584C>T (p.Gln862Ter). The father exhibited a heterozygous variant at this locus, while no variant was found in the mother. Sample analysis indicated characteristics of uniparental disomy. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), this variant is preliminarily classified as "Likely pathogenic". Currently, there are no reports in academic literature regarding this specific variant site. Conclusion LRBA gene variants can lead to a rare inborn error of immunity disease. The c.2584C>T (p.Gln862Ter) variant in exon 22 of the LRBA gene is a newly identified pathogenic variant, and the homozygous variant caused by uniparental disomy is exceedingly rare. This case represents the second global report of an LRBA gene function loss due to uniparental disomy abnormalities.
Collapse
Affiliation(s)
| | - Sen Chen
- Hematology Department, Tianjin Children’s Hospital (Children’s Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
19
|
Romberg N, Le Coz C. Common variable immunodeficiency, cross currents, and prevailing winds. Immunol Rev 2024; 322:233-243. [PMID: 38014621 DOI: 10.1111/imr.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Le Coz
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| |
Collapse
|
20
|
Choi Y, Cha J, Choi S. Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES). BMC Bioinformatics 2024; 25:56. [PMID: 38308205 PMCID: PMC10837879 DOI: 10.1186/s12859-024-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Genome-wide association studies have successfully identified genetic variants associated with human disease. Various statistical approaches based on penalized and machine learning methods have recently been proposed for disease prediction. In this study, we evaluated the performance of several such methods for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome and Epidemiology Study (KoGES). RESULTS First, single-nucleotide polymorphisms were selected via single-variant tests using logistic regression with the adjustment of several epidemiological factors. Next, we evaluated the following methods for disease prediction: ridge, least absolute shrinkage and selection operator, elastic net, smoothly clipped absolute deviation, support vector machine, random forest, boosting, bagging, naïve Bayes, and k-nearest neighbor. Finally, we compared their predictive performance based on the area under the curve of the receiver operating characteristic curves, precision, recall, F1-score, Cohen's Kappa, balanced accuracy, error rate, Matthews correlation coefficient, and area under the precision-recall curve. Additionally, three oversampling algorithms are used to deal with imbalance problems. CONCLUSIONS Our results show that penalized methods exhibit better predictive performance for asthma than that achieved via machine learning methods. On the other hand, in the oversampling study, randomforest and boosting methods overall showed better prediction performance than penalized methods.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
| |
Collapse
|
21
|
Magerus A, Rensing-Ehl A, Rao VK, Teachey DT, Rieux-Laucat F, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): A proposed approach to redefining ALPS and other lymphoproliferative immune disorders. J Allergy Clin Immunol 2024; 153:67-76. [PMID: 37977527 PMCID: PMC10841637 DOI: 10.1016/j.jaci.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - David T Teachey
- Division of Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Frederic Rieux-Laucat
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
22
|
Borsa M, Obba S, Richter FC, Zhang H, Riffelmacher T, Carrelha J, Alsaleh G, Jacobsen SEW, Simon AK. Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism. Autophagy 2024; 20:45-57. [PMID: 37614038 PMCID: PMC10761185 DOI: 10.1080/15548627.2023.2247310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A1; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage- (Lin-), LY6A/Sca-1+, KIT/c-Kit/CD117+; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.
Collapse
Affiliation(s)
- Mariana Borsa
- Kennedy Institute of Rheumatology NDORMS, University of Oxford, Oxford, UK
| | - Sandrine Obba
- Kennedy Institute of Rheumatology NDORMS, University of Oxford, Oxford, UK
| | - Felix C. Richter
- Kennedy Institute of Rheumatology NDORMS, University of Oxford, Oxford, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology NDORMS, University of Oxford, Oxford, UK
| | | | - Joana Carrelha
- MRC Molecular Haematology Unit, MRC WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ghada Alsaleh
- Kennedy Institute of Rheumatology NDORMS, University of Oxford, Oxford, UK
| | - Sten Eirik W. Jacobsen
- MRC Molecular Haematology Unit, MRC WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- H7 Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology NDORMS, University of Oxford, Oxford, UK
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
23
|
Franzblau LE, Fuleihan RL, Cunningham-Rundles C, Wysocki CA. CVID-Associated Intestinal Disorders in the USIDNET Registry: An Analysis of Disease Manifestations, Functional Status, Comorbidities, and Treatment. J Clin Immunol 2023; 44:32. [PMID: 38133694 DOI: 10.1007/s10875-023-01604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Common variable immunodeficiency (CVID) has been subdivided into five phenotypes, including one marked by non-infectious enteropathies that lead to significant morbidity and mortality. We examined a large national registry of patients with CVID to better characterize this population and understand how the presence of enteropathy influences nutritional status, patient function, and the risk of additional non-infectious disorders in CVID patients. We also sought to illustrate the range of treatment strategies for CVID-associated enteropathies. We extracted patient data from the United States Immunodeficiency Network (USIDNET) database, which included 1415 patients with CVID, and compared those with and without intestinal disorders. Demographic and genetic profiles, functional status, and treatments targeting intestinal disorders are reported. Intestinal disorders were present in 20% of patients with CVID, including chronic diarrhea, inflammatory bowel disease, malabsorption, and others. Compared to those without enteropathies, this patient subset exhibited significantly lower Karnofsky-Lansky functional scores, greater reliance on nutritional support, higher rates of vitamin deficiencies, and increased prevalence of hematologic disorders, liver disease, pulmonary disease, granulomatous disease, and lymphoma. Genetic data were reported for only 5% of the cohort. No mutations segregated significantly to patients with or without intestinal disease. Corticosteroids were most frequently used for treatment. Patients with CVID-associated intestinal disorders exhibit higher rates of autoimmune and inflammatory comorbidities, lymphoma, malnutrition, and debility. We review recent studies implicating specific pathways underlying this immune dysregulation. Further studies are needed to evaluate the role of targeted immunomodulatory therapies for CVID-associated intestinal disorders.
Collapse
Affiliation(s)
- Lauren E Franzblau
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern, Dallas, TX, USA
| | - Ramsay L Fuleihan
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian A Wysocki
- Departments of Internal Medicine and Pediatrics, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, F4.100B, Dallas, TX, 75390-8859, USA.
| |
Collapse
|
24
|
Tessarin G, Baronio M, Lougaris V. Monogenic forms of common variable immunodeficiency and implications on target therapeutic approaches. Curr Opin Allergy Clin Immunol 2023; 23:461-466. [PMID: 37767915 PMCID: PMC10621638 DOI: 10.1097/aci.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity. The disorder is characterized by variable clinical and immunological manifestations, and, in a small minority of patients, a monogenic cause may be identified. In this review, we focalized on three different monogenic forms of CVID-like disease. RECENT FINDINGS Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare disorder characterized by hyperactivated class I phosphatidylinositol-3 kinase (PI3K) pathway. Affected patients present with respiratory infectious episodes, impaired viral clearance and lymphoproliferation. Recently, a direct PI3K inhibitor has been approved and it showed encouraging results both in controlling clinical and immunological manifestations of the disease. On the other hand, patients with defects in CTLA-4 or LRBA gene present with life-threatening immune dysregulation, autoimmunity and lymphocytic infiltration of multiple organs. Abatacept, a soluble cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein that acts as a costimulation modulator, has been widely implemented for affected patients with good results as bridge treatment. SUMMARY Understanding the biological basis of CVID is important not only for enriching our knowledge of the human immune system, but also for setting the basis for potential targeted treatments in this disorder.
Collapse
Affiliation(s)
- Giulio Tessarin
- Pediatrics Clinic and Institute for Molecular Medicine 'A. Nocivelli', Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | | | | |
Collapse
|
25
|
Rayzan E, Mirbeyk M, Pezeshki PS, Mohammadpour M, Yaghmaie B, Hassani SA, Sharifzadeh M, Tahernia L, Rezaei N. Whole-exome sequencing to identify undiagnosed primary immunodeficiency disorders in children with community-acquired sepsis, admitted in the pediatric intensive care unit. Pediatr Allergy Immunol 2023; 34:e14066. [PMID: 38146112 DOI: 10.1111/pai.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Whole-exome sequencing (WES) provides a powerful diagnostic tool for identifying primary immunodeficiency diseases (PIDs). This study explores the utility of this approach in uncovering previously undiagnosed PIDs in children with community-acquired sepsis (CAS), with a medical history of recurrent infections or a family history of PIDs. METHODS We performed WES on DNA samples extracted from the blood of the 34 enrolled patients, followed by bioinformatic analysis for variant calling, annotation, and prioritization. We also performed a segregation analysis in available family members to confirm the inheritance patterns and assessed the potential impact of the identified variants on protein function. RESULTS From 34 patients enrolled in the study, 29 patients (85%) with previously undiagnosed genetic diseases, including 28 patients with PIDs and one patient with interstitial lung and liver disease, were identified. We identified two patients with severe combined immunodeficiency (SCID), patients with combined immunodeficiency (CID), six patients with combined immunodeficiency with syndromic features (CID-SF), four patients with defects in intrinsic and innate immunity, four patients with congenital defects of phagocyte function (CPDF), and six patients with the disease of immune dysregulation. Autoinflammatory disorders and predominantly antibody deficiency were diagnosed in one patient each. CONCLUSION Our findings demonstrate the potential of WES in identifying undiagnosed PIDs in children with CAS. Implementing WES in the clinical evaluation of CAS patients with a warning sign for PIDs can aid in their timely diagnosis and potentially lead to improved patient care.
Collapse
Affiliation(s)
- Elham Rayzan
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Boston, Massachusetts, USA
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Mohammadpour
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Yaghmaie
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Hassani
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Sharifzadeh
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Tahernia
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Taghizade N, Babayeva R, Kara A, Karakus IS, Catak MC, Bulutoglu A, Haskologlu ZS, Akay Haci I, Tunakan Dalgic C, Karabiber E, Bilgic Eltan S, Yorgun Altunbas M, Sefer AP, Sezer A, Kokcu Karadag SI, Arik E, Karali Z, Ozhan Kont A, Tuzer C, Karaman S, Mersin SS, Kasap N, Celik E, Kocacik Uygun DF, Aydemir S, Kiykim A, Aydogmus C, Ozek Yucel E, Celmeli F, Karatay E, Bozkurtlar E, Demir S, Metin A, Karaca NE, Kutukculer N, Aksu G, Guner SN, Keles S, Reisli I, Kendir Demirkol Y, Arikoglu T, Gulez N, Genel F, Kilic SS, Aytekin C, Keskin O, Yildiran A, Ozcan D, Altintas DU, Ardeniz FO, Dogu EF, Ikinciogullari KA, Karakoc-Aydiner E, Ozen A, Baris S. Therapeutic modalities and clinical outcomes in a large cohort with LRBA deficiency and CTLA4 insufficiency. J Allergy Clin Immunol 2023; 152:1634-1645. [PMID: 37595759 DOI: 10.1016/j.jaci.2023.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND LPS-responsive beige-like anchor (LRBA) deficiency (LRBA-/-) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) insufficiency (CTLA4+/-) are mechanistically overlapped diseases presenting with recurrent infections and autoimmunity. The effectiveness of different treatment regimens remains unknown. OBJECTIVE Our aim was to determine the comparative efficacy and long-term outcome of therapy with immunosuppressants, CTLA4-immunoglobulin (abatacept), and hematopoietic stem cell transplantation (HSCT) in a single-country multicenter cohort of 98 patients with a 5-year median follow-up. METHODS The 98 patients (63 LRBA-/- and 35 CTLA4+/-) were followed and evaluated at baseline and every 6 months for clinical manifestations and response to the respective therapies. RESULTS The LRBA-/- patients exhibited a more severe disease course than did the CTLA4+/- patients, requiring more immunosuppressants, abatacept, and HSCT to control their symptoms. Among the 58 patients who received abatacept as either a primary or rescue therapy, sustained complete control was achieved in 46 (79.3%) without severe side effects. In contrast, most patients who received immunosuppressants as primary therapy (n = 61) showed either partial or no disease control (72.1%), necessitating additional immunosuppressants, abatacept, or transplantation. Patients with partial or no response to abatacept (n = 12) had longer disease activity before abatacept therapy, with higher organ involvement and poorer disease outcomes than those with a complete response. HSCT was performed in 14 LRBA-/- patients; 9 patients (64.2%) showed complete remission, and 3 (21.3%) continued to receive immunosuppressants after transplantation. HSCT and abatacept therapy gave rise to similar probabilities of survival. CONCLUSIONS Abatacept is superior to immunosuppressants in controlling disease manifestations over the long term, especially when started early, and it may provide a safe and effective therapeutic alternative to transplantation.
Collapse
Affiliation(s)
- Nigar Taghizade
- Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | | | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Idil Akay Haci
- Division of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ceyda Tunakan Dalgic
- Department of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Karabiber
- Department of Allergy and Immunology, Marmara University Training and Research Hospital, Ministry of Health, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Sezer
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Elif Arik
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Zuhal Karali
- Division of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aylin Ozhan Kont
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Can Tuzer
- Department of Allergy and Immunology, Batman Training and Research Hospital, Ministry of Health, Batman, Turkey
| | - Sait Karaman
- Pediatric Allergy and Immunology, Manisa City Hospital, University of Health Sciences, Manisa, Turkey
| | - Selver Seda Mersin
- Department of Allergy and Immunology, Dr Ersin Arslan Training and Research Hospital, Ministry of Health, Gaziantep, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Enes Celik
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | - Sezin Aydemir
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cigdem Aydogmus
- Division of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Esra Ozek Yucel
- Division of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatih Celmeli
- Division of Pediatric Allergy and Immunology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Emrah Karatay
- Department of Radiology, Marmara University Education and Research Hospital, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, Faculty of Medicine, Marmara University, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Demir
- Department of Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Metin
- Division of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Neslihan Edeer Karaca
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Yasemin Kendir Demirkol
- Division of Pediatric Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tugba Arikoglu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Nesrin Gulez
- Division of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ferah Genel
- Division of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr Sami Ulus Children Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ozlem Keskin
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Alisan Yildiran
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Derya Ufuk Altintas
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatma Omur Ardeniz
- Department of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esin Figen Dogu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
27
|
Sullivan NP, Maniam N, Maglione PJ. Interstitial lung diseases in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:500-506. [PMID: 37823528 DOI: 10.1097/aci.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.
Collapse
Affiliation(s)
| | - Nivethietha Maniam
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Hultberg J, Blixt E, Göransson R, Adolfsson J, Govender M, Larsson M, Nilsdotter-Augustinsson Å, Ernerudh J, Nyström S. In-depth immune profiling reveals advanced B- and T-cell differentiation to be associated with Th1-driven immune dysregulation in common variable immunodeficiency. Clin Immunol 2023; 257:109816. [PMID: 37918468 DOI: 10.1016/j.clim.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Common variable immunodeficiency (CVID) is an inborn error of immunity characterized by low levels of antibodies. In addition to infections, many patients also suffer from T-helper 1-driven immune dysregulation, which is associated with increased mortality. The aim of this study was to perform in-depth characterization of the T and the B cell compartments in a well-defined cohort of patients affected by CVID and correlate the findings to the level of clinical immune dysregulation. We used mass cytometry, targeted proteomics, flow cytometry and functional assays to delineate the immunological phenotype of 15 CVID-affected patients with different levels of immune dysregulation. Unbiased clustering of T cell mass cytometry data correlated with CVID-related immune dysregulation and plasma protein profiles. Expanded CXCR3+ T-bet-expressing B cells correlated with effector memory CD4+ T cell clusters, and increased plasma levels of CXCR3-ligands. Our findings indicate an interplay between B cells and T cells in CVID-related immune dysregulation and provide a better understanding of the underlying pathological mechanisms.
Collapse
Affiliation(s)
- Jonas Hultberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Emelie Blixt
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Robin Göransson
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Jörgen Adolfsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden.
| |
Collapse
|
29
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Perriera R, Vitale E, Pibiri I, Carollo PS, Ricci D, Corrao F, Fiduccia I, Melfi R, Zizzo MG, Tutone M, Pace A, Lentini L. Readthrough Approach Using NV Translational Readthrough-Inducing Drugs (TRIDs): A Study of the Possible Off-Target Effects on Natural Termination Codons (NTCs) on TP53 and Housekeeping Gene Expression. Int J Mol Sci 2023; 24:15084. [PMID: 37894764 PMCID: PMC10606485 DOI: 10.3390/ijms242015084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Nonsense mutations cause several genetic diseases such as cystic fibrosis, Duchenne muscular dystrophy, β-thalassemia, and Shwachman-Diamond syndrome. These mutations induce the formation of a premature termination codon (PTC) inside the mRNA sequence, resulting in the synthesis of truncated polypeptides. Nonsense suppression therapy mediated by translational readthrough-inducing drugs (TRIDs) is a promising approach to correct these genetic defects. TRIDs generate a ribosome miscoding of the PTC named "translational readthrough" and restore the synthesis of full-length and potentially functional proteins. The new oxadiazole-core TRIDs NV848, NV914, and NV930 (NV) showed translational readthrough activity in nonsense-related in vitro systems. In this work, the possible off-target effect of NV molecules on natural termination codons (NTCs) was investigated. Two different in vitro approaches were used to assess if the NV molecule treatment induces NTC readthrough: (1) a study of the translational-induced p53 molecular weight and functionality; (2) the evaluation of two housekeeping proteins' (Cys-C and β2M) molecular weights. Our results showed that the treatment with NV848, NV914, or NV930 did not induce any translation alterations in both experimental systems. The data suggested that NV molecules have a specific action for the PTCs and an undetectable effect on the NTCs.
Collapse
Affiliation(s)
| | | | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.P.); (E.V.); (P.S.C.); (D.R.); (F.C.); (I.F.); (R.M.); (M.G.Z.); (M.T.); (A.P.)
| | | | | | | | | | | | | | | | | | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.P.); (E.V.); (P.S.C.); (D.R.); (F.C.); (I.F.); (R.M.); (M.G.Z.); (M.T.); (A.P.)
| |
Collapse
|
31
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Aytekin ES, Cagdas D. APECED and the place of AIRE in the puzzle of the immune network associated with autoimmunity. Scand J Immunol 2023; 98:e13299. [PMID: 38441333 DOI: 10.1111/sji.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 03/07/2024]
Abstract
In the last 20 years, discoveries about the autoimmune regulator (AIRE) protein and its critical role in immune tolerance have provided fundamental insights into understanding the molecular basis of autoimmunity. This review provides a comprehensive overview of the effect of AIRE on immunological tolerance and the characteristics of autoimmune diseases in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED), which is caused by biallelic AIRE mutations. A better understanding of the immunological mechanisms of AIRE deficiency may enlighten immune tolerance mechanisms and new diagnostic and treatment strategies for autoimmune diseases. Considering that not all clinical features of APECED are present in a given follow-up period, the diagnosis is not easy in a patient at the first visit. Longer follow-up and a multidisciplinary approach are essential for diagnosis. It is challenging to prevent endocrine and other organ damage compared with other diseases associated with multiple autoimmunities, such as FOXP3, LRBA, and CTLA4 deficiencies. Unfortunately, no curative therapy like haematopoietic stem cell transplantation or specific immunomodulation is present that is successful in the treatment.
Collapse
Affiliation(s)
- Elif Soyak Aytekin
- Pediatric Allergy and Immunology, Department of Pediatrics, SBU Dr. Sami Ulus Children Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Ihsan Dogramaci Children`s Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
34
|
Ohara RA, Murphy KM. Recent progress in type 1 classical dendritic cell cross-presentation - cytosolic, vacuolar, or both? Curr Opin Immunol 2023; 83:102350. [PMID: 37276818 PMCID: PMC12013855 DOI: 10.1016/j.coi.2023.102350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Type 1 classical dendritic cells (cDC1s) have emerged as the major antigen-presenting cell performing cross-presentation (XP) in vivo, but the antigen-processing pathway in this cell remains obscure. Two competing models for in vivo XP of cell-associated antigens by cDC1 include a vacuolar pathway and cytosolic pathway. A vacuolar pathway relies on directing antigens captured in vesicles toward a class I major histocompatibility complex loading compartment independently of cytosolic entry. Alternate proposals invoke phagosomal rupture, either constitutive or triggered by spleen tyrosine kinase (SYK) signaling in response to C-type lectin domain family 9 member A (CLEC9A) engagement, that releases antigens into the cytosol for proteasomal degradation. The Beige and Chediak-Higashi (BEACH) protein WD repeat- and FYVE domain-containing protein 4 (WDFY4) is strictly required for XP of cell-associated antigens in vivo. However, the cellular mechanism for WDFY4 activity remains unknown and its requirement in XP in vivo is currently indifferent regarding the vacuolar versus cytosolic pathways. Here, we review the current status of these models and discuss the need for future investigation.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Mangodt TC, Vanden Driessche K, Norga KK, Moes N, De Bruyne M, Haerynck F, Bordon V, Jansen AC, Jonckheere AI. Central nervous system manifestations of LRBA deficiency: case report of two siblings and literature review. BMC Pediatr 2023; 23:353. [PMID: 37443020 PMCID: PMC10339488 DOI: 10.1186/s12887-023-04182-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency disease (PID) characterized by a regulatory T cell defect resulting in immune dysregulation and autoimmunity. We present two siblings born to consanguineous parents of North African descent with LRBA deficiency and central nervous system (CNS) manifestations. As no concise overview of these manifestations is available in literature, we compared our patient's presentation with a reviewed synthesis of the available literature. CASE PRESENTATIONS The younger brother presented with enteropathy at age 1.5 years, and subsequently developed Evans syndrome and diabetes mellitus. These autoimmune manifestations led to the genetic diagnosis of LRBA deficiency through whole exome sequencing with PID gene panel. At 11 years old, he had two tonic-clonic seizures. Brain MRI showed multiple FLAIR-hyperintense lesions and a T2-hyperintense lesion of the cervical medulla. His sister presented with immune cytopenia at age 9 years, and developed diffuse lymphadenopathy and interstitial lung disease. Genetic testing confirmed the same mutation as her brother. At age 13 years, a brain MRI showed multiple T2-FLAIR-hyperintense lesions. She received an allogeneic hematopoietic stem cell transplantation (allo-HSCT) 3 months later. Follow-up MRI showed regression of these lesions. CONCLUSIONS Neurological disease is documented in up to 25% of patients with LRBA deficiency. Manifestations range from cerebral granulomas to acute disseminating encephalomyelitis, but detailed descriptions of neurological and imaging phenotypes are lacking. LRBA deficiency amongst other PIDs should be part of the differential diagnosis in patients with inflammatory brain lesions. We strongly advocate for a more detailed description of CNS manifestations in patients with LRBA deficiency, when possible with MR imaging. This will aid clinical decision concerning both anti-infectious and anti-inflammatory therapy and in considering the indication for allo-HSCT.
Collapse
Affiliation(s)
- T C Mangodt
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| | - K Vanden Driessche
- Pediatric Infectious Diseases, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - K K Norga
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - N Moes
- Division of Pediatric Gastro-Enterology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - M De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - F Haerynck
- Department of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - V Bordon
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - A C Jansen
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - A I Jonckheere
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
36
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023; 151:1429-1447. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
37
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
38
|
Trujillo-Vargas CM. Editorial: Intracellular trafficking in lymphocytes: the role of inner crowds in determining cell fate. Front Immunol 2023; 14:1212138. [PMID: 37266420 PMCID: PMC10230220 DOI: 10.3389/fimmu.2023.1212138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
|
39
|
Franzblau LE, Fuleihan RL, Cunningham-Rundles C, Wysocki CA. CVID-associated intestinal disorders in the USIDNET registry: An analysis of disease manifestations, functional status, comorbidities, and treatment. RESEARCH SQUARE 2023:rs.3.rs-2838051. [PMID: 37214897 PMCID: PMC10197741 DOI: 10.21203/rs.3.rs-2838051/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Common variable immunodeficiency (CVID) has been subdivided into five phenotypes, including one marked by non-infectious enteropathies that lead to significant morbidity and mortality. We examined a large national registry of patients with CVID to better characterize this population and understand how the presence of enteropathy influences nutritional status, patient function, and the risk of additional non-infectious disorders in CVID patients. We also sought to illustrate the range of treatment strategies for CVID-associated enteropathies. We extracted patient data from the United States Immunodeficiency Network (USIDNET) database, which included 1415 patients with CVID, and compared those with and without intestinal disorders. Demographic and genetic profiles, functional status, and treatments targeting intestinal disorders are reported. Intestinal disorders were present in 20% of patients with CVID, including chronic diarrhea, inflammatory bowel disease, malabsorption, and others. Compared to those without enteropathies, this patient subset exhibited significantly lower Karnofsky-Lansky functional scores, greater reliance on nutritional support, higher rates of vitamin deficiencies, and increased prevalence of hematologic disorders, liver disease, pulmonary disease, granulomatous disease, and lymphoma. Genetic data were reported for only 5% of the cohort. No mutations segregated significantly to patients with or without intestinal disease. Corticosteroids were most frequently used for treatment. Patients with CVID-associated intestinal disorders exhibit higher rates of autoimmune and inflammatory comorbidities, lymphoma, malnutrition, and debility. We review recent studies implicating specific pathways underlying this immune dysregulation. Further studies are needed to evaluate the role of targeted immunomodulatory therapies for CVID-associated intestinal disorders.
Collapse
|
40
|
Dambuza IM, Warris A, Salazar F. Unmasking a fungal fire. PLoS Pathog 2023; 19:e1011355. [PMID: 37200244 PMCID: PMC10194863 DOI: 10.1371/journal.ppat.1011355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy represents a breakthrough cancer treatment by stimulating dysfunctional T cells in the tumour environment to kill cancer cells. Beyond effects on anticancer immunity, ICI therapy may be associated with increased susceptibility to or more rapid resolution of chronic infections, particularly those caused by human fungal pathogens. In this concise review, we summarise recent observations and findings that implicate immune checkpoint blockade in fungal infection outcomes.
Collapse
Affiliation(s)
- Ivy M. Dambuza
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Fabián Salazar
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
41
|
He M, Wong A, Sutton K, Gondim MJB, Samson C. Very-Early Onset Chronic Active Colitis with Heterozygous Variants in LRBA1 and CARD11, a Case of "Immune TOR-Opathies". Fetal Pediatr Pathol 2023; 42:297-306. [PMID: 35748740 DOI: 10.1080/15513815.2022.2088912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND A small subset of cases of inflammatory bowel disease (IBD) occurs as a result of single gene defects, and typically occurs in young or very young pediatric patients, referred to as "monogenic very-early onset IBD (VEO-IBD)". The gene variants leading to monogenic VEO-IBD are often associated with primary immunodeficiency syndromes. CASE REPORT A six year-old girl presented to our gastroenterology clinic with LRBA deficiency with a heterozygous mutation at c.1399 A > G, p Met467Val, histopathologic chronic active colitis without granulomas and clinical chronic colitis. Her gastrointestinal symptoms began at age 5 with bloody diarrhea, abdominal pain and weight loss. Whole exome sequencing revealed a CARD11 heterozygous de novo mutation (c.220 + 1G > A). She was in clinical remission on only abatacept. DISCUSSION We present a case of monogenic VEO-IBD associated with two heterozygous variants in LRBA1 and CARD11, both considered as key players in the newly proposed "immune TOR-opathies".
Collapse
Affiliation(s)
- Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly Sutton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mercia Jeanne Bezerra Gondim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Charles Samson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
42
|
Cannon-Albright LA, Stevens J, Facelli JC, Teerlink CC, Allen-Brady K, Agarwal N. High-Risk Pedigree Study Identifies LRBA (rs62346982) as a Likely Predisposition Variant for Prostate Cancer. Cancers (Basel) 2023; 15:2085. [PMID: 37046747 PMCID: PMC10092952 DOI: 10.3390/cancers15072085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
There is evidence for contribution of inherited factors to prostate cancer, and more specifically to lethal prostate cancer, but few responsible genes/variants have been identified. We examined genetic sequence data for 51 affected cousin pairs who each died from prostate cancer and who were members of high-risk prostate cancer pedigrees in order to identify rare variants shared by the cousins as candidate predisposition variants. Candidate variants were tested for association with prostate cancer risk in UK Biobank data. Candidate variants were also assayed in 1195 additional sampled Utah prostate cancer cases. We used 3D protein structure prediction methods to analyze structural changes and provide insights into mechanisms of pathogenicity. Almost 4000 rare (<0.005) variants were identified as shared in the 51 affected cousin pairs. One candidate variant was also significantly associated with prostate cancer risk among the 840 variants with data in UK Biobank, in the gene LRBA (p = 3.2 × 10-5; OR = 2.09). The rare risk variant in LRBA was observed to segregate in five pedigrees. The overall predicted structures of the mutant protein do not show any significant overall changes upon mutation, but the mutated structure loses a helical structure for the two residues after the mutation. This unique analysis of closely related individuals with lethal prostate cancer, who were members of high-risk prostate cancer pedigrees, has identified a strong set of candidate predisposition variants which should be pursued in independent studies. Validation data for a subset of the candidates identified are presented, with strong evidence for a rare variant in LRBA.
Collapse
Affiliation(s)
- Lisa A. Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Julio C. Facelli
- Department of Biomedical Informatics and Clinical and Translational Science Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Craig C. Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
43
|
Levine AE, Mark D, Smith L, Zheng HB, Suskind DL. Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics 2023; 15:969. [PMID: 36986830 PMCID: PMC10059893 DOI: 10.3390/pharmaceutics15030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is treated with a variety of immunomodulating and immunosuppressive therapies; however, for the majority of cases, these therapies are not targeted for specific disease phenotypes. Monogenic IBD with causative genetic defect is the exception and represents a disease cohort where precision therapeutics can be applied. With the advent of rapid genetic sequencing platforms, these monogenic immunodeficiencies that cause inflammatory bowel disease are increasingly being identified. This subpopulation of IBD called very early onset inflammatory bowel disease (VEO-IBD) is defined by an age of onset of less than six years of age. Twenty percent of VEO-IBDs have an identifiable monogenic defect. The culprit genes are often involved in pro-inflammatory immune pathways, which represent potential avenues for targeted pharmacologic treatments. This review will provide an overview of the current state of disease-specific targeted therapies, as well as empiric treatment for undifferentiated causes of VEO-IBD.
Collapse
Affiliation(s)
- Anne E. Levine
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dominique Mark
- Department of Pharmacy, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Laila Smith
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Hengqi B. Zheng
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David L. Suskind
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Liu A, Liu Q, Leng S, Zhang X, Feng Q, Peng J, Feng G. Identification of novel NFKB1 and ICOS frameshift variants in patients with CVID. Clin Exp Immunol 2023; 211:68-77. [PMID: 36571238 PMCID: PMC9993461 DOI: 10.1093/cei/uxac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a 'late-onset' primary immunodeficiency characterized by variable manifestations and genetic heterogeneity. A monogenic cause of CVID has been reported in 10% of patients. In this study, we identified two novel pathogenic variants implicated in monogenic CVID by whole exome sequencing (WES) analysis: a heterozygous nuclear factor κB subunit 1 (NFKB1) p.G686fs mutation and a homozygous inducible T-cell co-stimulator (ICOS) p.L96Sfs mutation. The predicted crystal models indicated premature truncation of the two mutated proteins. Both variants were demonstrated as loss-of-function mutations and were associated with overlapped manifestations of respiratory fungal infection and splenomegaly. We further performed a detailed assessment of immunologic phenotypes and impaired lymphocyte functions in patients. Moreover, we discovered an association between monoclonal T-large granular lymphocyte proliferation and ICOS-deficient CVID for the first time. These observations lead to a new perspective on the underlying genetic heterogeneity of CVID.
Collapse
Affiliation(s)
- Anli Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gege Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
45
|
Stallard L, Siddiqui I, Muise A. Beyond IBD: the genetics of other early-onset diarrhoeal disorders. Hum Genet 2023; 142:655-667. [PMID: 36788146 PMCID: PMC10182111 DOI: 10.1007/s00439-023-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
Diarrhoeal disorders in childhood extend beyond the inflammatory bowel diseases. Persistent and severe forms of diarrhoea can occur from birth and are associated with significant morbidity and mortality. These disorders can affect not only the gastrointestinal tract but frequently have extraintestinal manifestations, immunodeficiencies and endocrinopathies. Genomic analysis has advanced our understanding of these conditions and has revealed precision-based treatment options such as potentially curative haematopoietic stem cell transplant. Although many new mutations have been discovered, there is frequently no clear genotype-phenotype correlation. The functional effects of gene mutations can be studied in model systems such as patient-derived organoids. This allows us to further characterise these disorders and advance our understanding of the pathophysiology of the intestinal mucosa. In this review, we will provide an up to date overview of genes involved in diarrhoeal disorders of early onset, particularly focussing on the more recently described gene defects associated with protein loosing enteropathy.
Collapse
Affiliation(s)
- Lorraine Stallard
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iram Siddiqui
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada. .,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
46
|
Role of Protein Kinase A Activation in the Immune System with an Emphasis on Lipopolysaccharide-Responsive and Beige-like Anchor Protein in B Cells. Int J Mol Sci 2023; 24:ijms24043098. [PMID: 36834508 PMCID: PMC9962394 DOI: 10.3390/ijms24043098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Cyclic AMP-dependent protein kinase A (PKA) is a ubiquitous enzymatic complex that is involved in a broad spectrum of intracellular receptor signaling. The activity of PKA depends on A-kinase anchoring proteins (AKAPs) that attach to PKAs close to their substrates to control signaling. Although the relevance of PKA-AKAP signaling in the immune system is evident in T cells, its relevance in B and other immune cells remains relatively unclear. In the last decade, lipopolysaccharide-responsive and beige-like anchor protein (LRBA) has emerged as an AKAP that is ubiquitously expressed in B and T cells, specifically after activation. A deficiency of LRBA leads to immune dysregulation and immunodeficiency. The cellular mechanisms regulated by LRBA have not yet been investigated. Therefore, this review summarizes the functions of PKA in immunity and provides the most recent information regarding LRBA deficiency to deepen our understanding of immune regulation and immunological diseases.
Collapse
|
47
|
Carss KJ, Deaton AM, Del Rio-Espinola A, Diogo D, Fielden M, Kulkarni DA, Moggs J, Newham P, Nelson MR, Sistare FD, Ward LD, Yuan J. Using human genetics to improve safety assessment of therapeutics. Nat Rev Drug Discov 2023; 22:145-162. [PMID: 36261593 DOI: 10.1038/s41573-022-00561-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human genetics research has discovered thousands of proteins associated with complex and rare diseases. Genome-wide association studies (GWAS) and studies of Mendelian disease have resulted in an increased understanding of the role of gene function and regulation in human conditions. Although the application of human genetics has been explored primarily as a method to identify potential drug targets and support their relevance to disease in humans, there is increasing interest in using genetic data to identify potential safety liabilities of modulating a given target. Human genetic variants can be used as a model to anticipate the effect of lifelong modulation of therapeutic targets and identify the potential risk for on-target adverse events. This approach is particularly useful for non-clinical safety evaluation of novel therapeutics that lack pharmacologically relevant animal models and can contribute to the intrinsic safety profile of a drug target. This Review illustrates applications of human genetics to safety studies during drug discovery and development, including assessing the potential for on- and off-target associated adverse events, carcinogenicity risk assessment, and guiding translational safety study designs and monitoring strategies. A summary of available human genetic resources and recommended best practices is provided. The challenges and future perspectives of translating human genetic information to identify risks for potential drug effects in preclinical and clinical development are discussed.
Collapse
Affiliation(s)
| | - Aimee M Deaton
- Amgen, Cambridge, MA, USA.,Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Alberto Del Rio-Espinola
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,GentiBio Inc., Cambridge, MA, USA
| | | | - Mark Fielden
- Amgen, Thousand Oaks, MA, USA.,Kate Therapeutics, San Diego, CA, USA
| | | | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Frank D Sistare
- Merck & Co., West Point, PA, USA.,315 Meadowmont Ln, Chapel Hill, NC, USA
| | - Lucas D Ward
- Amgen, Cambridge, MA, USA. .,Alnylam Pharmaceuticals, Cambridge, MA, USA.
| | - Jing Yuan
- Amgen, Cambridge, MA, USA.,Pfizer, Cambridge, MA, USA
| |
Collapse
|
48
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
La Bella S, Rinaldi M, Di Ludovico A, Di Donato G, Di Donato G, Salpietro V, Chiarelli F, Breda L. Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. Int J Mol Sci 2023; 24:ijms24031846. [PMID: 36768167 PMCID: PMC9916312 DOI: 10.3390/ijms24031846] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in the paediatric population. JIA comprises a heterogeneous group of disorders with different onset patterns and clinical presentations with the only element in common being chronic joint inflammation. This review sought to evaluate the most relevant and up-to-date evidence on current knowledge regarding the pathogenesis of JIA subtypes to provide a better understanding of these disorders. Despite significant improvements over the past decade, the aetiology and molecular mechanisms of JIA remain unclear. It has been suggested that the immunopathogenesis is characterised by complex interactions between genetic background and environmental factors that may differ between JIA subtypes. Human leukocyte antigen (HLA) haplotypes and non-HLA genes play a crucial role in the abnormal activation of both innate and adaptive immune cells that cooperate in causing the inflammatory process. This results in the involvement of proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin (IL)-1, IL-6, IL-10, IL-17, IL-21, IL-23, and others. These mediators, interacting with the surrounding tissue, cause cartilage stress and bone damage, including irreversible erosions. The purpose of this review is to provide a comprehensive overview of the genetic background and molecular mechanisms of JIA.
Collapse
Affiliation(s)
- Saverio La Bella
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Marta Rinaldi
- Paediatric Department, Buckinghamshire Healthcare NHS Trust, Aylesbury-Thames Valley Deanery, Aylesbury HP21 8AL, UK
| | - Armando Di Ludovico
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Giulia Di Donato
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Giulio Di Donato
- Paediatric Department, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Francesco Chiarelli
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Luciana Breda
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-357377
| |
Collapse
|
50
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|