1
|
Karabinos A, Hrebenar P, Hyblova M, Tomkova E, Plank L, Krizan P, Repko P, Soltysova B. A severe ABCC6 -induced generalized arterial calcification of infancy overshadowed by the EGFR -associated neonatal inflammatory skin and bowel disease 2 in a Roma girl. J Dermatol 2025; 52:929-933. [PMID: 40040597 DOI: 10.1111/1346-8138.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
Neonatal inflammatory skin and bowel disease 2 is an epidermal growth factor receptor (EGFR)-associated autosomal recessive early-infantile disease with inflammatory skin, alopecia, progeroid features, electrolyte imbalance, recurrent infections, and premature death. Pseudoxanthoma elasticum (PXE) is another autosomal recessive skin disorder with some ocular and cardiovascular alterations, caused by variations in the ATP binding cassette subfamily c member 6 (ABCC6) gene. However, ABCC6-deficiency is, rarely, also presented as as an early/late-infantile autosomal recessive generalized arterial calcification of infancy. In this case report we present the known homozygous EGFR p.G428D and the compound heterozygous ABCC6 p.R518* and p.R1221H variations in a 7-month-old Roma girl from a consanguineous family, who developed a combined EGFR/ABCC6-associated phenotype and died at 10 months of age. This case report and data in literature led us to conclude, that (1) EGFR-associated disease, with a serious early-infantile skin manifestation and occasional cardiovascular defects, may clinically overshadow other similar diseases such as generalized arterial calcification of infancy, if the single-gene/variant sequencing is used for diagnostics. (2) This probability increases if the person under investigation comes from a consanguineous family, and (3) the presented biallelic EGFR variation may be a co-factor of PXE severity. However, more analyses are required to make this conclusion definitive.
Collapse
Affiliation(s)
- Anton Karabinos
- Laboratory of Clinical Genetics, Medirex, Inc., Kosice, Slovak Republic
| | - Pavol Hrebenar
- Department of Pediatrics, Hospital in Poprad, Poprad, Slovak Republic
| | | | - Erika Tomkova
- Laboratory of Clinical Genetics, Medirex, Inc., Bratislava, Slovak Republic
| | - Lukas Plank
- Department of Pathology, Comenius University Jessenius Medical Faculty and University Hospital in Martin, Martin, Slovak Republic
| | - Peter Krizan
- Laboratory of Clinical Genetics, Medirex, Inc., Bratislava, Slovak Republic
| | - Peter Repko
- Department of Pediatrics, Hospital in Poprad, Poprad, Slovak Republic
| | - Beata Soltysova
- Department of Pediatrics, Hospital in Poprad, Poprad, Slovak Republic
| |
Collapse
|
2
|
Lu S, Sun N, Li Y, Wu Z, Zhang J. The impact of monoallelic inactivation mutations in the ENPP1 gene on pediatric skeletal development: a case report and literature review. Front Endocrinol (Lausanne) 2025; 16:1430681. [PMID: 40270714 PMCID: PMC12015756 DOI: 10.3389/fendo.2025.1430681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Background Recently, in our clinical work, we discovered a case of abnormal bone metabolism in children resulting from an inactivated mutation of the ENPP1 gene. Through this discovery, we highlighted the impact of the ENPP1 gene on the skeletal growth and development of children, and provided new ideas for the clinical diagnosis of bone diseases in children. Case summary A 17-year-old boy presented with abnormal gait and hip pain. The anteroposterior (AP) pelvis X-ray revealed bilateral abnormalities in the femoral metaphysis, acetabulum, and ilium bones, as well as slippage of the left femoral head epiphysis. After genetic testing was carried out, it was found that the patient had a monoallelic inactivation mutations in the ENPP1 gene, which is the pathogenic gene of Autosomal-Recessive Hypophosphatemic Rickets 2 (ARHR2). Genetic testing identified that the patient had an inactivating mutation in the ENPP1 gene, which is associated with Autosomal-Recessive Hypophosphatemic Rickets 2 (ARHR2). Since symptoms were present at the time of diagnosis, the current treatment plan includes symptomatic treatments, such as calcium supplementation and femoral epiphyseal fixation. Conclusion We discovered that the inactivating mutation of the ENPP1 gene has an influence on bone metabolism, particularly calcium and phosphorus metabolism, which can lead to severe adverse effects on the growth and development of pediatric patients. Through this case and a review of the literature, we aim to enable clinical physicians to establish a holistic perspective during pediatric consultations.
Collapse
Affiliation(s)
| | | | | | | | - Jingdong Zhang
- Department of Pediatric Orthopedic, The Second Affiliated Hospital and Yuying
Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Imam I, Rautureau GJP, Violot S, Mulard ED, Magne D, Ballut L. Structural and Functional Integration of Tissue-Nonspecific Alkaline Phosphatase Within the Alkaline Phosphatase Superfamily: Evolutionary Insights and Functional Implications. Metabolites 2024; 14:659. [PMID: 39728440 PMCID: PMC11677397 DOI: 10.3390/metabo14120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions. For instance, TNAP hydrolyzes inorganic pyrophosphate (PPi) to allow skeletal and dental mineralization. Additionally, TNAP hydrolyzes pyridoxal phosphate to allow cellular pyridoxal uptake, and stimulate vitamin B6-dependent reactions. Furthermore, TNAP has been identified as a key enzyme in non-shivering adaptive thermogenesis, by dephosphorylating phosphocreatine in the mitochondrial creatine futile cycle. This latter recent discovery and others suggest that the list of substrates and functions of TNAP may be much longer than previously thought. In the present review, we sought to examine TNAP within the alkaline phosphatase (AP) superfamily, comparing its sequence, structure, and evolutionary trajectory. The AP superfamily, characterized by a conserved central folding motif of a mixed beta-sheet flanked by alpha-helices, includes six subfamilies: AP, arylsulfatases (ARS), ectonucleotide pyrophosphatases/phosphodiesterases (ENPP), phosphoglycerate mutases (PGM), phosphonoacetate hydrolases, and phosphopentomutases. Interestingly, TNAP and several ENPP family members appear to participate in the same metabolic pathways and functions. For instance, extra-skeletal mineralization in vertebrates is inhibited by ENPP1-mediated ATP hydrolysis into the mineralization inhibitor PPi, which is hydrolyzed by TNAP expressed in the skeleton. Better understanding how TNAP and other AP family members differ structurally will be very useful to clarify their complementary functions. Structurally, TNAP shares the conserved catalytic core with other AP superfamily members but has unique features affecting substrate specificity and activity. The review also aims to highlight the importance of oligomerization in enzyme stability and function, and the role of conserved metal ion coordination, particularly magnesium, in APs. By exploring the structural and functional diversity within the AP superfamily, and discussing to which extent its members exert redundant, complementary, or specific functions, this review illuminates the evolutionary pressures shaping these enzymes and their broad physiological roles, offering insights into TNAP's multifunctionality and its implications for health and disease.
Collapse
Affiliation(s)
- Iliass Imam
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France; (I.I.); (S.V.)
| | - Gilles Jean Philippe Rautureau
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France; (G.J.P.R.); (E.D.M.)
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France; (I.I.); (S.V.)
| | - Eva Drevet Mulard
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France; (G.J.P.R.); (E.D.M.)
| | - David Magne
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France; (G.J.P.R.); (E.D.M.)
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France; (I.I.); (S.V.)
| |
Collapse
|
5
|
Imai Y, Kusano K, Aiba T, Ako J, Asano Y, Harada-Shiba M, Kataoka M, Kosho T, Kubo T, Matsumura T, Minamino T, Minatoya K, Morita H, Nishigaki M, Nomura S, Ogino H, Ohno S, Takamura M, Tanaka T, Tsujita K, Uchida T, Yamagishi H, Ebana Y, Fujita K, Ida K, Inoue S, Ito K, Kuramoto Y, Maeda J, Matsunaga K, Neki R, Sugiura K, Tada H, Tsuji A, Yamada T, Yamaguchi T, Yamamoto E, Kimura A, Kuwahara K, Maemura K, Minamino T, Morisaki H, Tokunaga K. JCS/JCC/JSPCCS 2024 Guideline on Genetic Testing and Counseling in Cardiovascular Disease. Circ J 2024; 88:2022-2099. [PMID: 39343605 DOI: 10.1253/circj.cj-23-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Yasushi Imai
- Division of Clinical Pharmacology and Division of Cardiovascular Medicine, Jichi Medical University
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yoshihiro Asano
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | | | - Masaharu Kataoka
- The Second Department of Internal Medicine, University of Occupational and Environmental Health
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masakazu Nishigaki
- Department of Genetic Counseling, International University of Health and Welfare
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
| | | | - Seiko Ohno
- Medical Genome Center, National Cerebral and Cardiovascular Center
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tetsuro Uchida
- Department of Surgery II (Division of Cardiovascular, Thoracic and Pediatric Surgery), Yamagata University Faculty of Medicine
| | | | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University Hospital
| | - Kanna Fujita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kazufumi Ida
- Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Reiko Neki
- Division of Counseling for Medical Genetics, Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | | | | | - Akinori Kimura
- Institutional Research Office, Tokyo Medical and Dental University
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine
| |
Collapse
|
6
|
Noor Ul Ayan H, Nitschke Y, Mughal AR, Thiele H, Malik NA, Hussain I, Haider SMI, Rutsch F, Erdmann J, Tariq M, Aherrahrou Z, Ahmad I. Homozygous splice-site variant in ENPP1 underlies generalized arterial calcification of infancy. BMC Pediatr 2024; 24:733. [PMID: 39538190 PMCID: PMC11558987 DOI: 10.1186/s12887-024-05123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) plays a critical role by converting extracellular ATP to AMP, generating extracellular PPi, a potential inhibitor of calcification. Pathogenic variants in the ENPP1 cause generalized arterial calcification of infancy (GACI [OMIM 208000]). GACI, is an ultra-rare disease characterized by early-onset calcification of large and medium-sized arteries, leading to severe cardiovascular complications such as heart failure, pulmonary stenosis (PS), hypertension, and more. In this study, we report a novel homozygous splice-site pathogenic variant in ENPP1 (NM_006208, c.2230 + 5G > A; p.Asp701Asnfs*2) residing in C-terminal nuclease-like domain (NLD) of ENPP1 protein in a Pakistani family diagnosed with severe valvular PS and mild right ventricular hypertrophy (RVH). cDNA assays confirmed the skipping of exon 21, and the splice product underwent nonsense-mediated decay. Functional studies on fibroblasts from the patient demonstrated increased calcification and decreased enzymatic activity of ENPP1, recapitulating the hallmarks of GACI. By combining genetic analysis with the in vitro study, we substantiate that ENPP1:c.2230 + 5G > A variant is pathogenic, underscoring its role in the development of GACI.
Collapse
Affiliation(s)
- Hafiza Noor Ul Ayan
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, 48149, Germany
| | | | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, 50931, Germany
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Ijaz Hussain
- Peshawar Institute of Cardiology, Peshawar, 25000, Pakistan
| | - Syed Muhammad Ijlal Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, 48149, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany.
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
7
|
Jacobs IJ, Obiri-Yeboah D, Stabach PR, Braddock DT, Li Q. Novel treatment for PXE: Recombinant ENPP1 enzyme therapy. Mol Ther 2024; 32:3815-3820. [PMID: 39342427 PMCID: PMC11573614 DOI: 10.1016/j.ymthe.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic multisystem ectopic calcification disorder caused by inactivating mutations in the ABCC6 gene encoding ABCC6, a hepatic efflux transporter. ABCC6-mediated ATP secretion by the liver is the main source of a potent endogenous calcification inhibitor, plasma inorganic pyrophosphate (PPi); the deficiency of plasma PPi underpins PXE. Recent studies demonstrated that INZ-701, a recombinant human ENPP1 that generates PPi and is now in clinical trials, restored plasma PPi levels and prevented ectopic calcification in the muzzle skin of Abcc6-/-mice. This study examined the pharmacokinetics, pharmacodynamics, and potency of a new ENPP1-Fc isoform, BL-1118, in Abcc6-/- mice. When Abcc6-/- mice received a single subcutaneous injection of BL-1118 at 0.25, 0.5, or 1 mg/kg, they had dose-dependent elevations in plasma ENPP1 enzyme activity and PPi levels, with an enzyme half-life of approximately 100 h. When Abcc6-/- mice were injected weekly from 5 to 15 weeks of age, BL-1118 dose-dependently increased steady-state plasma ENPP1 activity and PPi levels and significantly reduced ectopic calcification in the muzzle skin and kidneys. These results suggest that BL-1118 is a promising second generation enzyme therapy for PXE, the first generation of which is currently in clinical testing.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dora Obiri-Yeboah
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Wang D, Li Q, Xie C. The role and mechanism of protein post‑translational modification in vascular calcification (Review). Exp Ther Med 2024; 28:419. [PMID: 39301258 PMCID: PMC11411399 DOI: 10.3892/etm.2024.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Vascular calcification is closely associated with morbidity and mortality in patients with chronic kidney disease, atherosclerosis and diabetes. In the past few decades, vascular calcification has been studied extensively and the findings have shown that the mechanism of vascular calcification is not merely a consequence of a high-phosphorus and high-calcium environment but also an active process characterized by abnormal calcium phosphate deposition on blood vessel walls that involves various molecular mechanisms. Recent advances in bioinformatics approaches have led to increasing recognition that aberrant post-translational modifications (PTMs) play important roles in vascular calcification. This review presents the latest progress in clarifying the roles of PTMs, such as ubiquitination, acetylation, carbamylation and glycosylation, as well as signaling pathways, such as the Wnt/β-catenin pathway, in vascular calcification.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Qin Li
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Caidie Xie
- Department of Nephrology, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210037, P.R. China
| |
Collapse
|
9
|
Chen L, Ye X, Li Y, Ran X. Systematic identification of therapeutic targets for coronary artery calcification: an integrated transcriptomic and proteomic Mendelian randomization. Front Cardiovasc Med 2024; 11:1419440. [PMID: 39526184 PMCID: PMC11543530 DOI: 10.3389/fcvm.2024.1419440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) is associated with an increased risk of mortality and cardiovascular events. However, none therapeutic drugs have been proven effective for CAC treatment. The objective of this study was to identify potential therapeutic targets for CAC through the utilization of Mendelian randomization (MR) and colocalization analysis. METHODS The expression quantitative trait loci (eQTLs) of 16,943 genes from the eQTLGen consortium and protein quantitative trait loci (pQTLs) of 4,412 proteins from a plasma proteome were utilized as genetic instruments. Genetic associations with CAC were derived from a GWAS meta-analysis of 26,909 individuals. The MR and colocalization analysis were utilized to identify potential target genes. RESULTS A total of 671 genes were found to be significantly associated with the risk of CAC based on transcriptomic MR analysis at a false discovery rate <0.05, while proteomic MR analysis identified 15 genes with significant associations with CAC at the same threshold. With robust evidence from colocalization analysis, we observed positive associations between CWF19L2, JARID2, and MANBA and the risk of CAC, while KLB exhibited an inverse association. In summary, our study identified 23 potential therapeutic targets for CAC. Further downstream analysis revealed IGFBP3, ABCC6, ULK3, DOT1L, KLB and AMH as promising candidates for repurposing in the treatment of CAC. CONCLUSION The integrated MR analysis of transcriptomic and proteomic data identified multiple potential drug targets for the treatment of CAC. ULK3, DOT1L, and AMH were recognized as novel targets for drug repurposing for CAC and deserve further investigation.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqi Ye
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingwu Ran
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Buianova A, Yukina M, Cheranev V, Suchalko O, Shmitko A, Samitova A, Nuralieva N, Kulagina E, Savvateeva E, Troshina E, Rebrikov D, Gryadunov D, Korostin D. Trio-based exome sequencing and high-resolution HLA typing in families of patients with autoimmune adrenal insufficiency and autoimmune polyglandular syndrome. PLoS One 2024; 19:e0312335. [PMID: 39423205 PMCID: PMC11488712 DOI: 10.1371/journal.pone.0312335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Autoimmune adrenal insufficiency (AAI) is a rare disease. This research evaluates three patients with AAI, including autoimmune polyglandular syndrome (APS) type 2. Two patients had APS or AAI during childhood, and one had a history of endocrine autoimmune disease, indicating a possible hereditary basis of the condition. Trio-based exome sequencing and high-resolution HLA typing were employed to analyze patients and their parents. Benign or likely benign variants of the AIRE gene were identified in all participants of the study. These variants, coupled with clinical data and the results of antibody studies to type I interferons, helped to exclude APS-1. Patients with APS-2, in contrast to patient with AAI, inherited distinct variants of unknown significance in the CLEC16A gene, which is associated with autoimmune diseases, including AAI. Various risk alleles in other genes associated with autoimmunity were identified in all patients. HLA typing of class II loci revealed alleles related to APS. Nevertheless, the frequencies of the haplotypes identified are substantial in the healthy Russian population. Immunological tests can detect antibody carriers and assess the risk of autoimmune disease development. In the future, to identify genetic predictors of autoimmune endocrinopathies, it is recommended to analyze the whole genome of patients and their relatives, examining clinically relevant variants in non-coding regions.
Collapse
Affiliation(s)
- Anastasiia Buianova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marina Yukina
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - Valery Cheranev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Oleg Suchalko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Anna Shmitko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alina Samitova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nurana Nuralieva
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - Elena Kulagina
- Engelhardt Institute of Molecular Biology (EIMB), Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Russian Academy of Sciences, Moscow, Russia
| | - Elena Savvateeva
- Engelhardt Institute of Molecular Biology (EIMB), Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Troshina
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - Denis Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Gryadunov
- Engelhardt Institute of Molecular Biology (EIMB), Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
11
|
Haddad EN, Kumar P, Shearn-Nance G, Kharal GA, Dhawan A. Clinical Approach to Genetic Cerebral Arteriopathy in the Adult Patient With Ischemic Stroke. Neurol Genet 2024; 10:e200182. [PMID: 39176127 PMCID: PMC11341007 DOI: 10.1212/nxg.0000000000200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 08/24/2024]
Abstract
Genetic arteriopathies leading to stroke in adults constitute a diverse group of cerebrovascular disorders with distinct etiologies, pathophysiologic mechanisms, and clinical presentations. As imaging modalities better delineate subtle changes in cerebral vasculature and access to genetic testing increases, the detection rate for these conditions is expected to rise, particularly among young adults with idiopathic cerebral arteriopathy and stroke. Adults with stroke in the setting of a genetic cerebral arteriopathy often present with few traditional stroke risk factors and, in certain cases, have characteristic clinical features, cerebrovascular imaging findings, and often concurrent systemic vasculopathy, such as aortopathy, which are important to recognize. Given that there are over 50 recognized genetic cerebral arteriopathies that can cause ischemic and hemorrhagic stroke in young adults, it can be a significant diagnostic challenge for the practicing neurologist when faced with a genetic cerebral arteriopathy, because clinical algorithms for a systematic approach to genetic cerebral arteriopathies are lacking. In this review, we present a phenotype-driven, clinically oriented algorithm to guide the diagnostic workup when suspecting a genetic cerebral arteriopathy in an adult patient while highlighting the genetic basis of each disease, molecular mechanisms, clinical manifestations, diagnostic approaches, and emerging therapeutic strategies. Moreover, given the lack of widely available gene panels for diagnostic germline testing for genetic cerebral arteriopathies, we propose key genes to be tested and focused on in each clinical scenario, to better decipher the underlying diagnosis in these rare conditions.
Collapse
Affiliation(s)
- Eliot N Haddad
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - Pranav Kumar
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - Galen Shearn-Nance
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - G Abbas Kharal
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - Andrew Dhawan
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| |
Collapse
|
12
|
Tanaka M, Kobayashi A, Kuwabara H, Nirei J, Ozawa J, Sawano K, Shibata N, Nagasaki K, Saitoh A. Preterm Infant with Generalized Arterial Calcification of Infancy Who Survived Due to Early Diagnosis and Appropriate Treatment with Bisphosphonates: A Case Report. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1176. [PMID: 39457141 PMCID: PMC11505654 DOI: 10.3390/children11101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Generalized arterial calcification of infancy (GACI) is a rare disease characterized by arterial calcification. GACI is caused by a mutation in the ENPP1 or ABCC6 genes. GACI causes severe hypertension and heart failure, and approximately 50% of patients die within the first 6 months. In particular, preterm infants with GACI often die due to immature cardiac function. Bisphosphonates are effective in treating GACI; however, no standardized treatment regimen is available. We experienced a case of a preterm infant with GACI born at 30 weeks gestation. Ultrasonography showed high-intensity lesions in the arteries, and computed tomography revealed calcification of the arteries throughout the body, leading to the diagnosis of GACI. We administered intravenous pamidronate, and her cardiac contraction improved. The initial scheduled interval between drug administrations was 2 months. However, the cardiac contraction worsened 1 month after the pamidronate administration. Therefore, we decreased the dosing interval and administered a second course of pamidronate, which improved her cardiac function. We then switched to oral etidronate. To improve the morbidity and mortality rates of preterm infants with GACI, it is important to obtain an early diagnosis of GACI by investigating high-intensity lesions in the arteries and performing early administration of an appropriate type of bisphosphonate.
Collapse
Affiliation(s)
- Masato Tanaka
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Akira Kobayashi
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Haruhiro Kuwabara
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Jun Nirei
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Junichi Ozawa
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Kentaro Sawano
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Nao Shibata
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Keisuke Nagasaki
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan; (A.K.); (H.K.); (J.N.); (J.O.); (K.S.); (N.S.); (K.N.); (A.S.)
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| |
Collapse
|
13
|
Dangreau L, Hosen MJ, De Zaeytijd J, Leroy BP, Coucke PJ, Vanakker OM. Gonadal Mosaicism as a Rare Inheritance Pattern in Recessive Genodermatoses: Report of Two Cases with Pseudoxanthoma Elasticum and Literature Review. Curr Issues Mol Biol 2024; 46:9998-10007. [PMID: 39329949 PMCID: PMC11430005 DOI: 10.3390/cimb46090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Germline mosaicism in autosomal recessive disorders is considered a rare disease mechanism with important consequences for diagnosis and patient counseling. In this report, we present two families with PXE in which paternal germline mosaicism for an ABCC6 whole-gene deletion was observed. The first family further illustrates the clinical challenges in PXE, with a typical PXE retinopathy in an apparently heterozygous carrier parent. A systematic review of the literature on gonadal mosaicism in autosomal recessive genodermatoses revealed 16 additional patients. As in most reported families, segregation analysis data are not mentioned, and this may still be an underrepresentation. Though rare, the possibility of germline mosaicism emphasizes the need for variant verification in parents and sibs of a newly diagnosed proband, as it has significant implications for genetic counseling and management.
Collapse
Affiliation(s)
- Lisa Dangreau
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (L.D.); (P.J.C.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Mohammad J. Hosen
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium; (J.D.Z.)
| | - Bart P. Leroy
- Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium; (J.D.Z.)
- Division of Ophthalmology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul J. Coucke
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (L.D.); (P.J.C.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (L.D.); (P.J.C.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Ansh AJ, Stabach PR, Ciccone C, Cao W, De La Cruz EM, Sabbagh Y, Carpenter TO, Ferreira CR, Braddock DT. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024; 186:117136. [PMID: 38806089 PMCID: PMC11227391 DOI: 10.1016/j.bone.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.
Collapse
Affiliation(s)
- Anenya Jai Ansh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carla Ciccone
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St., Suite 400, Boston, MA 02201, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Lafage-Proust MH, Magne D. Biology of bone mineralization and ectopic calcifications: the same actors for different plays. Arch Pediatr 2024; 31:4S3-4S12. [PMID: 39343471 DOI: 10.1016/s0929-693x(24)00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bone has several crucial functions. It is essential for locomotion and allows our body to stand erect against gravity. A mismatch between the mechanical stresses applied to it and its mechanical resistance leads to fractures. Bone also has numerous endocrine functions. It acts as a reservoir for minerals such as calcium and phosphorus, making it the target of calciotropic hormones that mobilize these minerals, particularly calcium, according to the body's needs. Additionally, bone secretes hormones, notably fibroblast growth factor 23 (FGF23), which regulates urinary excretion of phosphate and the bioavailability of active vitamin D. Bone mineralization is the process that facilitates the organized deposition of minerals in the bone matrix, providing rigidity and appropriate mechanical resistance. This process is compromised in genetically related bone mineralization disorders, such as those causing hypophosphatemia or hypophosphatasia. Conversely, calcification can be pathological, affecting soft tissues like the blood vessels, as seen in generalized arterial calcification of infancy (GACI) or arterial calcification due to CD73 deficiency (ACDC). The aim of this article is to first present the composition and structure of the mineralized bone matrix, to review the current understanding of the molecular mechanisms of mineralization, and finally to discuss the conditions associated with ectopic calcification and the underlying mechanisms.
Collapse
Affiliation(s)
| | - David Magne
- University of Lyon I; ICBMS, UMR CNRS 5246, F-69622, LYON, France.
| |
Collapse
|
16
|
Edouard T, Linglart A. Autosomal recessive hypophosphatemic rickets type 2 due to ENPP1 deficiency (ARHR2). Arch Pediatr 2024; 31:4S27-4S32. [PMID: 39343470 DOI: 10.1016/s0929-693x(24)00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2; MIM #613312) is a very rare disorder caused by biallelic loss-of-function mutations in the ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) gene. ENPP1 deficiency encompasses a spectrum of phenotypes that includes, in addition to ARHR2, generalized arterial calcification of infancy (GACI), ossification of the posterior longitudinal ligament (OPLL), and pseudoxanthoma elasticum. ARHR2 can be found in GACI survivors, but it may also be the first manifestation of ENPP1 deficiency. Although the precise mechanisms are not fully elucidated, patients with GACI and ARHR2 have elevated serum FGF23 levels, leading to renal phosphate wasting and hypophosphatemia. As a result, the clinical and radiological phenotype of ARHR2 patients is very similar to that of patients affected with other forms of hypophosphatemic rickets, such as X-linked hypophosphatemia. Patients show signs of rickets (abnormal mineralization of growth plates in children) and osteomalacia (abnormal bone mineralization in children and adults) of varying severity. Clinical manifestations specific to ENPP1 loss-of-function mutations and common to GACI, such as ectopic calcifications (valvular, arterial, or periarticular), deafness, OPLL, and PXE, may also be found. Genetic confirmation of the disease is important so as to ensure that patients receive the appropriate treatment or have the opportunity to participate in clinical trials to evaluate the safety and efficacy of novel and promising recombinant enzyme therapies.
Collapse
Affiliation(s)
- Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, ERN BOND, Children's Hospital, Toulouse University Hospital; RESTORE, INSERM U1301, Paul Sabatier University; Toulouse, France.
| | - Agnès Linglart
- AP-HP, Paris Saclay University, INSERM; Centre de Référence des Maladies Rares du Calcium et du Phosphore, Service d'Endocrinologie et diabète de l'enfant, Filières Santé Maladies Rares OSCAR, ERN endoRARE et BOND, Hôpital Bicêtre Paris-Saclay; U1185 physiologie et physiopathologie endocrinienne; Le Kremlin Bicêtre, France
| |
Collapse
|
17
|
Baujat G, Besançon A. Generalized Arterial Calcification of Infancy (GACI). Arch Pediatr 2024; 31:4S21-4S26. [PMID: 39343469 DOI: 10.1016/s0929-693x(24)00153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Generalized arterial calcification of infancy (GACI) is an ultra-rare autosomal recessive disorder associated with pathogenic variants in ENPP1, the major gene involved in this condition, and in ABCC6, which is involved in a small fraction of affected individuals. Loss-of-function pathogenic variants of ENPP1 and ABCC6 lead to perturbations in the PPi/Pi ratio, thereby promoting hydroxyapatite mineralization in peripheral tissues. GACI is initially characterized by an abnormal ectopic mineralization process in arteries and soft tissue. Nearly half of the patients die within the first 6 months of life from cardiovascular complications, hence the poor prognosis associated with an early diagnosis. In recent years, progress has been made in our understanding of the long-term natural history of GACI, the intricate symptoms due to vascular calcifications, the overmineralization of soft tissues, of hypophosphatemia designated as ARHR2, and of the consequences such as undermineralization of the skeleton, but also of the features possibly seen in pseudoxanthoma elasticum (PXE). Indeed, GACI, PXE, and ARHR2 share common pathophysiological pathways and clinical features beyond the vascular calcifications. Treatment options for severe forms of GACI are mostly based on symptomatic management, including the option of starting bisphosphonates early after birth, such as etidronate and pamidronate, analogues of PPi. Follow-up within an expert and coordinated multidisciplinary team includes treatment of arterial hypertension, calcitriol and phosphorus adjustments, hearing aids, and early detection of possible angioid streaks. It is hoped that ongoing basic and clinical research will lead to the development of effective therapies that specifically target the abnormal PPi regulation and the other mechanisms involved in this disorder.
Collapse
Affiliation(s)
- Geneviève Baujat
- Department of Genomic Medicine for Rare Diseases, French Reference Center for Constitutional Bone Diseases, Necker-Enfants malades Hospital, Paris, France.
| | - Alix Besançon
- Pediatric Endocrinology, Diabetology, Gynecology Department, Necker-Enfants malades University Hospital, AP-HP Centre, Paris 75015, France
| |
Collapse
|
18
|
Zohora FT, Arora S, Swiss A, Vyavahare N. Reversal of heavy arterial calcification in a rat model of chronic kidney disease using targeted ethylene diamine tetraacetic acid-loaded albumin nanoparticles. Cardiovasc Diagn Ther 2024; 14:489-508. [PMID: 39263487 PMCID: PMC11384463 DOI: 10.21037/cdt-24-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Background Elastin degradation and severe calcification in the medial layer of the vessel wall, known as medial arterial calcification (MAC), is typical in the aging population and patients with metabolic disorders, such as diabetes and chronic kidney disease (CKD). We have previously reported that ethylene diamine tetraacetic acid (EDTA) delivery to the site of calcification can be achieved by tagging nanoparticles with an elastin antibody that recognizes explicitly damaged elastin, and such systemic therapy can remove focal calcium deposits from the calcified arteries in CKD rodent model. The current study aims to test whether heavy calcification seen throughout arterial tree and kidneys in CKD can be reversed with nanoparticle therapy. Methods Thirty healthy male Sprague-Dawley rats weighing approximately 300 g, were placed on an adenine diet for 21 non-consecutive days to induce kidney failure, followed by daily vitamin D3 (VitD3) injections for 4 sequential days to cause severe calcification throughout the cardiovascular system and kidneys. DiR-dye loaded and elastin antibody conjugated albumin nanoparticles were used to confirm the targeting of nanoparticles to the calcification area. The rats were divided into two groups for targeted removal of calcification starting at day 7 of the last doses of VitD3. The experimental group received biweekly IV injections of anti-elastin antibody conjugated EDTA loaded human serum albumin nanoparticles (EDTA-HSA-El-Ab NPs), while the sham controls received blank nanoparticles (Blank-HSA-El-Ab NPs) (5 injections in total). Micro-computed tomography (microCT) was used to analyze the extent of calcification. Reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry studies were performed for osteogenic markers, including bone morphogenic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), and tissue non-specific alkaline phosphatase (TNAP). For comparison, aortic ring organ cultures from healthy rats were treated with high phosphate to induce calcification in vitro, and then they were treated with EDTA. Human calcified femoral arteries were also treated ex vivo with EDTA-HSA-EL-Ab NPs to test if nanoparticles remove heavy calcification. Results EDTA-loaded nanoparticles that specifically target degraded elastin reversed existing heavy mineral deposits in arteries, as per elemental calcium analysis (124.161±34.410 µg Ca per mg of the dry aorta in Blank-HSA-El-Ab NPs vs. 100.520±19.131 µg in EDTA-HSA-El-Ab NPs group, P=0.04) and microCT (object volume, 129.001±37.785 vs. 29.815±24.169 mm3, P=0.0005). The reversal of aortic calcification was accompanied by a significant reduction of bone-associated mRNA expression of BMP2 and RUNX2 (P=0.01). Immunohistochemistry studies corroborated RT-PCR results, showing a reduction of BMP2 and RUNX2 stains in the vessel wall. The rat aortic ring culture study also showed similar results, where osteogenic genes (BMP2, RUNX2) and proteins (BMP2, RUNX2, TNAP) were suppressed upon reversal of calcification with EDTA (P=0.001). We also show ex vivo reversal of human femoral artery calcification by microCT (calcium intensity: untreated, 57.721±28.551 vs. day 6 of treatment, 5.441±3.615, P=0.01) by EDTA nanoparticle therapy. Conclusions This is the first study showing the removal of calcium from heavily calcified arteries by using intravenous targeted EDTA therapy. Such therapy also reversed vascular smooth muscle cell osteoblastic transition and apoptosis in the arterial tissue, thereby potentially creating an environment for suitable tissue repair.
Collapse
Affiliation(s)
| | - Shivani Arora
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | - Naren Vyavahare
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
19
|
Laghi A, Mandel VD, Zubba I, Franceschini C, Demofonte I, Chello C, Miraglia E, Ardigò M, Giustini S. Comprehensive analysis of pseudoxanthoma elasticum: epidemiological, genetic, and clinical findings from the leading Italian center. Ital J Dermatol Venerol 2024; 159:430-435. [PMID: 39069841 DOI: 10.23736/s2784-8671.24.07949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a rare genetic autosomal recessive metabolic disease characterized by progressive mineralization and fragmentation of elastic fibers from soft connective tissues. The objective of our study was to analyze the epidemiological, genetic, cutaneous, and extracutaneous clinical data from the largest Italian monocentric cohort of PXE patients. METHODS We included all patients diagnosed with PXE and referred to Neurocutaneous Rare Diseases at Umberto I Polyclinic Hospital (Rome, Italy) between January 1983 and February 2024. A retrospective analysis of their data was performed. RESULTS We enrolled 86 patients (77.9% women), revealing compound heterozygosity in 19.8% of cases and homozygosity in 5.8%. Missense (34.9%), non-sense (5.8%), splice-site (5.8%), deletion (4.7%), and frameshift (2.3%) mutations were disclosed. Cutaneous alterations were noted in the neck (69.7%), axilla (33.7%), inguinal (17.5%), and cubital folds (11.7%). The most common ocular findings were angioid streaks (64.0%) and choroidal neovascularization (18.6%), with blindness reported in 5.8% of cases. Thicker intima-media was observed around the mid-fifties in the supra-aortic trunks (40.7%), lower limb arteries (32.6%), and renal arteries (4.7%). Regurgitation was more common in atrioventricular valves (48.8%) than in semilunar ones (10.5% and 9.3%). Dyslipidemia (19.8%), hypertension (18.8%), and fatty liver disease (12.8%) were prevalent, with calcifications found in the kidneys (25.6%), liver (15.1%), spleen (11.6%), and testicles (8.1% of males). Autoimmune diseases and depression were observed in 11.6% and 4.7% of cases, respectively. CONCLUSIONS Enhanced understanding of PXE can improve patients' quality of life and facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Laghi
- Unit of Dermatology and STDs, Department of Medicine, Celio Military Hospital, Rome, Italy -
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy -
| | - Victor D Mandel
- Unit of Porphyria and Rare Diseases, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Ilaria Zubba
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Chiara Franceschini
- Unit of Porphyria and Rare Diseases, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Ilaria Demofonte
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Camilla Chello
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Emanuele Miraglia
- Department of Dermatology, San Sebastiano Hospital, Frascati, Rome, Italy
| | - Marco Ardigò
- Unit of Porphyria and Rare Diseases, IRCCS San Gallicano Dermatological Institute, Rome, Italy
- Unit of Dermatology, IRCCS Humanitas Clinic, Rozzano, Milan, Italy
| | - Sandra Giustini
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| |
Collapse
|
20
|
Varghese NA, Gopal BR, Maheswaran A, Raju V, Vijayaraghavan A. Generalized Arterial Calcification of Infancy Mimicking Coarctation of Aorta in a Neonate. Radiol Cardiothorac Imaging 2024; 6:e230403. [PMID: 38900025 PMCID: PMC11211934 DOI: 10.1148/ryct.230403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Generalized arterial calcification of infancy (GACI) is a rare genetic condition with varied clinical presentation. Consequently, diagnosis is frequently delayed or missed. GACI has a poor prognosis, with more than half of patients dying before the age of 6 months. Early diagnosis and treatment with bisphosphonates have been shown to improve survival in these patients. This is a case report of a newborn with respiratory distress who was initially diagnosed with coarctation of the aorta at echocardiography. Further imaging with CT revealed the aortic narrowing to be associated with GACI. Keywords: Genetic Defects, Congenital, Vascular, Calcification/Calculi, Aorta, Pulmonary Arteries, CT Angiography, Echocardiography, Pediatrics © RSNA, 2024.
Collapse
Affiliation(s)
- Neha A. Varghese
- From the Departments of Radiology (N.A.V., B.R.G., A.M.),
Cardiothoracic Surgery (V.R.), and Pediatrics (A.V.), G Kuppuswamy Naidu
Memorial Hospital, Netaji Road, P N Palayam, Coimbatore, Tamil Nadu 641037,
India
| | - Boobathi R. Gopal
- From the Departments of Radiology (N.A.V., B.R.G., A.M.),
Cardiothoracic Surgery (V.R.), and Pediatrics (A.V.), G Kuppuswamy Naidu
Memorial Hospital, Netaji Road, P N Palayam, Coimbatore, Tamil Nadu 641037,
India
| | - Anupama Maheswaran
- From the Departments of Radiology (N.A.V., B.R.G., A.M.),
Cardiothoracic Surgery (V.R.), and Pediatrics (A.V.), G Kuppuswamy Naidu
Memorial Hospital, Netaji Road, P N Palayam, Coimbatore, Tamil Nadu 641037,
India
| | - Vijayakumar Raju
- From the Departments of Radiology (N.A.V., B.R.G., A.M.),
Cardiothoracic Surgery (V.R.), and Pediatrics (A.V.), G Kuppuswamy Naidu
Memorial Hospital, Netaji Road, P N Palayam, Coimbatore, Tamil Nadu 641037,
India
| | - Aparna Vijayaraghavan
- From the Departments of Radiology (N.A.V., B.R.G., A.M.),
Cardiothoracic Surgery (V.R.), and Pediatrics (A.V.), G Kuppuswamy Naidu
Memorial Hospital, Netaji Road, P N Palayam, Coimbatore, Tamil Nadu 641037,
India
| |
Collapse
|
21
|
Liu T, Wang W, Liu Z, Pei G, Wang C, Jiang Y, Pang C. A previously healthy 3-year-old female with hypertension, proteinuria, and hypercalciuria. Pediatr Nephrol 2024; 39:1301-1313. [PMID: 38165475 PMCID: PMC10899356 DOI: 10.1007/s00467-023-06230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
A 3-year-old female patient with no significant medical history presented to her pediatrician with foamy urine. Initial testing revealed moderate proteinuria on qualitative testing, although she was incidentally noted to have severe hypertension (240/200 mmHg). Physical examination of the carotid and femoral areas revealed significant systolic vascular murmurs. Labs showed elevated serum creatinine, hypokalemia, metabolic alkalosis, elevated renin and aldosterone and hypercalciuria. Echocardiography identified ventricular hypertrophy. Computed tomography (CT) of the abdomen and magnetic resonance angiography of the head showed multiple tortuous or interrupted arteries and multiple calcifications in the renal sinus area. B-mode ultrasonography suggested thickening of the carotid and femoral artery walls, with numerous spotted calcifications. Genetic testing revealed that ABCC6 had a complex heterozygous mutation (exon 24: c.3340C > T and intron 30: c.4404-1G > A). Our panel of experts reviewed the evaluation of this patient with hypertension, proteinuria, hypercalciuria, and vascular abnormalities as well as the diagnosis and appropriate management of a rare disease.
Collapse
Affiliation(s)
- Tao Liu
- Department of Nephrology, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Wenhong Wang
- Department of Nephrology, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Zhufeng Liu
- Department of Nephrology, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Guanghua Pei
- Ultrasonography Lab, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunxiang Wang
- Department of Imaging, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Ying Jiang
- Department of Nephrology, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Chuyue Pang
- Department of Nephrology, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| |
Collapse
|
22
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
23
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
24
|
Ferreira CR, Carpenter TO, Braddock DT. ENPP1 in Blood and Bone: Skeletal and Soft Tissue Diseases Induced by ENPP1 Deficiency. ANNUAL REVIEW OF PATHOLOGY 2024; 19:507-540. [PMID: 37871131 PMCID: PMC11062289 DOI: 10.1146/annurev-pathmechdis-051222-121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas O Carpenter
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
25
|
Auwerx C, Jõeloo M, Sadler MC, Tesio N, Ojavee S, Clark CJ, Mägi R, Reymond A, Kutalik Z. Rare copy-number variants as modulators of common disease susceptibility. Genome Med 2024; 16:5. [PMID: 38185688 PMCID: PMC10773105 DOI: 10.1186/s13073-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Copy-number variations (CNVs) have been associated with rare and debilitating genomic disorders (GDs) but their impact on health later in life in the general population remains poorly described. METHODS Assessing four modes of CNV action, we performed genome-wide association scans (GWASs) between the copy-number of CNV-proxy probes and 60 curated ICD-10 based clinical diagnoses in 331,522 unrelated white British UK Biobank (UKBB) participants with replication in the Estonian Biobank. RESULTS We identified 73 signals involving 40 diseases, all of which indicating that CNVs increased disease risk and caused earlier onset. We estimated that 16% of these associations are indirect, acting by increasing body mass index (BMI). Signals mapped to 45 unique, non-overlapping regions, nine of which being linked to known GDs. Number and identity of genes affected by CNVs modulated their pathogenicity, with many associations being supported by colocalization with both common and rare single-nucleotide variant association signals. Dissection of association signals provided insights into the epidemiology of known gene-disease pairs (e.g., deletions in BRCA1 and LDLR increased risk for ovarian cancer and ischemic heart disease, respectively), clarified dosage mechanisms of action (e.g., both increased and decreased dosage of 17q12 impacted renal health), and identified putative causal genes (e.g., ABCC6 for kidney stones). Characterization of the pleiotropic pathological consequences of recurrent CNVs at 15q13, 16p13.11, 16p12.2, and 22q11.2 in adulthood indicated variable expressivity of these regions and the involvement of multiple genes. Finally, we show that while the total burden of rare CNVs-and especially deletions-strongly associated with disease risk, it only accounted for ~ 0.02% of the UKBB disease burden. These associations are mainly driven by CNVs at known GD CNV regions, whose pleiotropic effect on common diseases was broader than anticipated by our CNV-GWAS. CONCLUSIONS Our results shed light on the prominent role of rare CNVs in determining common disease susceptibility within the general population and provide actionable insights for anticipating later-onset comorbidities in carriers of recurrent CNVs.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| | - Maarja Jõeloo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marie C Sadler
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland
| | - Nicolò Tesio
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Sven Ojavee
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Charlie J Clark
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| |
Collapse
|
26
|
Tsui JC, Aleman TS, Tapino PJ, Kim BJ. Detailed Phenotype Supports Pathogenicity of Hypomorphic Variant in ABCC6-Associated Pattern Dystrophy. Case Rep Ophthalmol 2024; 15:497-506. [PMID: 39015234 PMCID: PMC11250126 DOI: 10.1159/000538045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/25/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction We report a case of pseudoxanthoma elasticum (PXE) with an atypical phenotype likely related to a hypomorphic variant in ABCC6. Case Presentation A 66-year-old Caucasian female with a history of a maculopathy interpreted as either age-related macular degeneration or a pattern dystrophy underwent a detailed ophthalmic evaluation. Visual acuities were 20/25, OD, and 20/20, OS. Spectral domain optical coherence and fluorescein angiography demonstrated outer retinal disruptions and breaks in retinal pigment epithelium (RPE)/Bruch's membrane bilaterally, consistent with angioid streaks. A large area of hypo- and hyperautofluorescence extending from the central retina into the peripapillary retina was documented with short-wavelength excitation autofluorescence. The area of hypoautofluorescence, which was much larger on near-infrared excitation, spared the temporal retina. Two-color dark-adapted perimetries documented severe rod sensitivity losses and less severe cone sensitivity abnormalities co-localizing with the RPE abnormalities. No obvious skin findings were observed, and initial dermatologic biopsy was negative. Gene screening identified a pathogenic ABCC6 gene variant c.1552C>T and a previously reported variant of uncertain significance c.1171A>G. A second dermatologic biopsy demonstrated positive findings consistent with PXE. Conclusion Although this patient had minimal skin findings, this patient had characteristic structural and functional abnormalities of a pattern dystrophy with angioid streaks and histologic evidence of PXE, suggesting compound heterozygous variants involving the hypomorphic ABCC6 c.1171A>G variant. These findings support the pathogenic role of both variants.
Collapse
Affiliation(s)
- Jonathan C. Tsui
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Ophthalmology, Veterans Affairs New Jersey Healthcare System, East Orange, NJ, USA
| | - Tomas S. Aleman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA, USA
- Division of Ophthalmology, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Paul J. Tapino
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin J. Kim
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Yao R, Yang F, Zhang Q, Yu T, Yu Y, Chang G, Wang X. Clinical and Molecular Characterization of a Patient with Generalized Arterial Calcification of Infancy Caused by Rare ABCC6 Mutation. J Pers Med 2023; 14:54. [PMID: 38248755 PMCID: PMC10817667 DOI: 10.3390/jpm14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Generalized arterial calcification of infancy (GACI) is a rare autosomal-recessive disease characterized by extensive arterial calcification in infancy, with clinical manifestations such as arterial stenoses and heart failure. The ENPP1 inactivation mutation has been identified as a potential defect in most of the cases of GACI, while mutations in ABCC6 are demonstrated in patients who are genotyped as pseudoxanthoma elasticum and only limited cases of GACI are reported. Whole-exome sequencing was applied for the detection of pathogenic variants. Copy-number variants of pathogenic genes were also evaluated through a bioinformatic process and were further validated by real-time quantitative PCR. In this report, we described the clinical information and treatment of a patient with extensive arterial calcification. We have identified the underlying cause as biallelic mutations in ABCC6 (NM_00117: exon30, c.4223_4227dupAGCTC p.(Leu1410Serfs*56)) and a unique exonic deletion that spans from the first to the fourth exons of ABCC6 (chr16:16313388-16330869)). This discovery was made by utilizing a combined genetic testing approach. With the review of previously reported GACI patients with ABCC6 mutation, our work contributed to enriching the mutation spectrum of GACI and providing further information on this rare form of inherited disorder.
Collapse
Affiliation(s)
- Ruen Yao
- Department of Medical Genetics and Antenatal Diagnostic Center, Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (R.Y.)
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Yang
- Clinical Research Ward, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (F.Y.)
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Yu
- Department of Medical Genetics and Antenatal Diagnostic Center, Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (R.Y.)
| | - Guoying Chang
- Clinical Research Ward, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (F.Y.)
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiumin Wang
- Clinical Research Ward, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (F.Y.)
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
28
|
Armstrong V, Backes CH, Rivera BK, Reo RM, Chaudhari BP, Wethall A, Truxal KV. An Infant with Thickened and Hyperechoic Main Pulmonary Artery. Neoreviews 2023; 24:e814-e818. [PMID: 38036445 DOI: 10.1542/neo.24-12-e814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Veronica Armstrong
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Ohio Perinatal Research Network (OPRN), The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Carl H Backes
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Ohio Perinatal Research Network (OPRN), The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH
| | - Brian K Rivera
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Ohio Perinatal Research Network (OPRN), The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | | | - Bimal P Chaudhari
- Ohio Perinatal Research Network (OPRN), The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Ashley Wethall
- Ohio Perinatal Research Network (OPRN), The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH
| | - Kristen V Truxal
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
29
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Arbustini E, Bozzani A, Prati F. Medial Artery Calcification: Is it a Disease, a Marker, or a Prognostic Predictor? JACC. ADVANCES 2023; 2:100652. [PMID: 38938703 PMCID: PMC11198088 DOI: 10.1016/j.jacadv.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Eloisa Arbustini
- Scientific Department, Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Bozzani
- Vascular and Endovascular Surgery Unit, Department of Surgical Science, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Prati
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
- Foundation “Centro Per La Lotta Contro L'Infarto” (CLI), Rome, Italy
| |
Collapse
|
31
|
Jacobs IJ, Li Q. Novel Treatments for PXE: Targeting the Systemic and Local Drivers of Ectopic Calcification. Int J Mol Sci 2023; 24:15041. [PMID: 37894722 PMCID: PMC10606721 DOI: 10.3390/ijms242015041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of plasma PPi, the activated DDR/PARP signaling in calcified tissues provides an additional possible mechanism of ectopic calcification in PXE. This study examined the effects of etidronate (ETD), a stable PPi analog, and its combination with minocycline (Mino), a potent inhibitor of DDR/PARP, on ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 4 weeks of age, before the development of ectopic calcification, were treated with ETD, Mino, or both for 18 weeks. Micro-computed tomography, histopathologic examination, and quantification of the calcium content in Abcc6-/- mice treated with both ETD and Mino revealed further reduced calcification than either treatment alone. The effects were associated with reduced serum alkaline phosphatase activity without changes in plasma PPi concentrations. These results suggest that ETD and Mino combination therapy might provide an effective therapeutic approach for PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Biomedical Sciences MS Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
32
|
Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, Hasbani NR, de Vries PS, Bowden DW, Chopade S, Deelen J, Benavente ED, Guo X, Hofer E, Hwang SJ, Lutz SM, Lyytikäinen LP, Slenders L, Smith AV, Stanislawski MA, van Setten J, Wong Q, Yanek LR, Becker DM, Beekman M, Budoff MJ, Feitosa MF, Finan C, Hilliard AT, Kardia SLR, Kovacic JC, Kral BG, Langefeld CD, Launer LJ, Malik S, Hoesein FAAM, Mokry M, Schmidt R, Smith JA, Taylor KD, Terry JG, van der Grond J, van Meurs J, Vliegenthart R, Xu J, Young KA, Zilhão NR, Zweiker R, Assimes TL, Becker LC, Bos D, Carr JJ, Cupples LA, de Kleijn DPV, de Winther M, den Ruijter HM, Fornage M, Freedman BI, Gudnason V, Hingorani AD, Hokanson JE, Ikram MA, Išgum I, Jacobs DR, Kähönen M, Lange LA, Lehtimäki T, Pasterkamp G, Raitakari OT, Schmidt H, Slagboom PE, Uitterlinden AG, Vernooij MW, Bis JC, Franceschini N, Psaty BM, Post WS, Rotter JI, Björkegren JLM, O'Donnell CJ, Bielak LF, Peyser PA, Malhotra R, van der Laan SW, Miller CL. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 2023; 55:1651-1664. [PMID: 37770635 PMCID: PMC10601987 DOI: 10.1038/s41588-023-01518-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Maxime M Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna J Barnes
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Haojie Lu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - Joris Deelen
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Sharon M Lutz
- Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marian Beekman
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthew J Budoff
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO, USA
| | | | - Robert Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Jeffrey Carr
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischemic syndromes, Amsterdam Infection and Immunity: Inflammatory diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Public Health, University of Iceland, Reykjavik, Iceland
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - John E Hokanson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - P Eline Slagboom
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Weigelt MA, Franklin MJ, Mathur D, Billings SD, Ronen S. Pseudoxanthoma-elasticum-like changes on the soft palate. J Cutan Pathol 2023. [PMID: 37150825 DOI: 10.1111/cup.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal recessive genetic disorder characterized by aberrant fragmentation and calcification of elastic fibers, leading to characteristic cutaneous, ophthalmic, and cardiovascular manifestations. PXE demonstrates significant phenotypic variability; involvement of the oral mucosa may be the only clue to the diagnosis. Reports on mucous membrane involvement in PXE are scarce. Here, we present a case of PXE-like changes in the oral cavity. A 70-year-old male patient presented with a painless leukoplakic lesion on the soft palate. Biopsy revealed numerous degenerated fibers in the lamina propria. Verhoeff-van Gieson and von Kossa staining confirmed their identity as calcified elastic fibers. A histopathological diagnosis of PXE-like changes was made; the patient was referred to ophthalmology where angioid streaks were visualized fundoscopically. PXE-like changes in the absence of the characteristic genetic mutation have also been reported with or without systemic manifestations. Furthermore, PXE-like changes have been reported in up to 10% of oral biopsy specimens undertaken without clinical suspicion for PXE. Therefore, the significance of such changes in isolation is unclear. Clinicians and pathologists should be aware of the potential oral manifestations of PXE to facilitate prompt diagnosis and subspecialist referral.
Collapse
Affiliation(s)
| | - Matthew J Franklin
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Deepan Mathur
- Department of Pathology, Sharon Regional Medical Center, Sharon, Pennsylvania, USA
| | - Steven D Billings
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Shira Ronen
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Mandalapu A, Stevens KJ. Imaging findings of arterial calcification due to deficiency of CD73: A case study. J Radiol Case Rep 2023; 17:1-7. [PMID: 38828028 PMCID: PMC11075852 DOI: 10.3941/jrcr.v17i12.5175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
A 52-year-old male developed right knee pain after hiking in Guatemala. On his return he underwent a knee MRI for an indication of medial knee pain, which demonstrated a medial meniscal tear. However, the MRI demonstrated marked tortuosity and dense calcification of the popliteal artery, confirmed on subsequent radiographs. Review of previous CT studies of the abdomen and lower extremities showed severe ectasia and arterial calcification in the femoral and popliteal arteries bilaterally, but no calcifications in the aorta and common iliac arteries. Dual energy CT studies of the extremities demonstrated extensive periarticular soft tissue calcification throughout the wrists, hands, ankle and feet without evidence of uric acid. Review of the electronic medical records revealed a diagnosis of Arterial Calcification due to Deficiency of CD73 (ACDC), a rare genetic disorder presenting with debilitating pain in the wrists and hands, claudication of the calves, thighs and buttocks, progressing to chronic ischemia of the feet which may be limb-threatening. The patient was enrolled in an NIH trial of bisphosphonates and dual-antiplatelet therapy with stabilization of symptoms. This case discusses the imaging findings of this rare condition, differential diagnosis to consider, and current management.
Collapse
Affiliation(s)
- Aniruddh Mandalapu
- Department of Radiology, University of Rochester School of Medicine, Rochester, USA
| | - Kathryn J Stevens
- Department of Radiology, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
35
|
Khursigara G, Huertas P, Wenkert D, O'Brien K, Sabbagh Y. Effects of food, fasting, and exercise on plasma pyrophosphate levels and ENPP1 activity in healthy adults. Bone 2023; 171:116750. [PMID: 37003563 DOI: 10.1016/j.bone.2023.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Inorganic pyrophosphate (PPi) is highly regulated as it plays a critical role in the regulation of physiological mineralization. Dysregulation of plasma PPi is associated with skeletal hypomineralization and pathogenic mineralization in soft connective tissue, arteries, and heart valves. There is no standard approach to measuring PPi, making it difficult to establish PPi as a biomarker of mineralization disorders. This study aims to determine the impact of time of day, meals, or exercise on plasma PPi homeostasis using a highly sensitive PPi assay. METHODS In this single-center trial, a clinical laboratory improvement amendment (CLIA) validated modified sulfurylase-based adenosine 5-triphosphate (ATP) assay was used to measure PPi levels throughout the day in 10 healthy adults under 3 conditions; normal diet (non-fasting), fasting, and normal diet with exercise. Serum ectonucleotide pyrophosphatase/phosphodiesterase 1 activity (ENPP1; an enzyme that produces PPi) was also measured to determine whether these conditions influence PPi levels through ENPP1 activity. RESULTS There is a circadian increase in mean PPi levels under fasting and non-fasting conditions between 8 am and 6 pm, followed by a rapid return to baseline overnight. A circadian increase in ENPP1 activity was also measured under fasting but was lost under non-fasting conditions. Meals increased the individual variability of PPi levels when compared to the same individual fasting. PPi levels and ENPP1 activity exhibited a short-term increase after intense exercise. We found PPi ranges from 1465 nM to 2969 nM (mean 2164 nM) after fasting overnight. Within this range, there was lower intra-subject variability in PPi, suggesting that each individual has a uniquely regulated normal PPi range. CONCLUSION Plasma levels of PPi can be reliably measured after an overnight fast and show promise as a biomarker of mineralization disorders.
Collapse
Affiliation(s)
- Gus Khursigara
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America.
| | - Pedro Huertas
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Deborah Wenkert
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Kevin O'Brien
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| |
Collapse
|
36
|
Review of Basic Research about Ossification of the Spinal Ligaments Focusing on Animal Models. J Clin Med 2023; 12:jcm12051958. [PMID: 36902744 PMCID: PMC10003841 DOI: 10.3390/jcm12051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a heterotopic ossification that may cause spinal cord compression. With the recent development of computed tomography (CT) imaging, it is known that patients with OPLL often have complications related to ossification of other spinal ligaments, and OPLL is now considered part of ossification of the spinal ligaments (OSL). OSL is known to be a multifactorial disease with associated genetic and environmental factors, but its pathophysiology has not been clearly elucidated. To elucidate the pathophysiology of OSL and develop novel therapeutic strategies, clinically relevant and validated animal models are needed. In this review, we focus on animal models that have been reported to date and discuss their pathophysiology and clinical relevance. The purpose of this review is to summarize the usefulness and problems of existing animal models and to help further the development of basic research on OSL.
Collapse
|
37
|
Inorganic Pyrophosphate Plasma Levels Are Decreased in Pseudoxanthoma Elasticum Patients and Heterozygous Carriers but Do Not Correlate with the Genotype or Phenotype. J Clin Med 2023; 12:jcm12051893. [PMID: 36902680 PMCID: PMC10003929 DOI: 10.3390/jcm12051893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
Collapse
|
38
|
Bessueille L, Kawtharany L, Quillard T, Goettsch C, Briolay A, Taraconat N, Balayssac S, Gilard V, Mebarek S, Peyruchaud O, Duboeuf F, Bouillot C, Pinkerton A, Mechtouff L, Buchet R, Hamade E, Zibara K, Fonta C, Canet-Soulas E, Millan JL, Magne D. Inhibition of alkaline phosphatase impairs dyslipidemia and protects mice from atherosclerosis. Transl Res 2023; 251:2-13. [PMID: 35724933 DOI: 10.1016/j.trsl.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.
Collapse
Affiliation(s)
- Laurence Bessueille
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Lynn Kawtharany
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Thibaut Quillard
- CNRS, INSERM, l'institut du thorax, Nantes Université, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen University, Aachen Germany
| | - Anne Briolay
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Nirina Taraconat
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Saida Mebarek
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | | | | | | | | | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France; CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - René Buchet
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de Toulouse, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | | | - David Magne
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France.
| |
Collapse
|
39
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|
40
|
Lu P, Chen J, Chen M, Wang L, Xiang D, Yin J, Yang S. Case report: A rare homozygous variation in the ENPP1 gene, presenting with generalized arterial calcification of infancy in a Chinese infant. Front Cardiovasc Med 2023; 10:1105381. [PMID: 36937905 PMCID: PMC10020691 DOI: 10.3389/fcvm.2023.1105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Generalized arterial calcification of infancy (GACI) is a rare genetic disease characterized by arterial calcifications or stenoses and hypertension. GACI is caused by mutations in the ENPP1 or ABCC6 genes, and it often causes intrauterine or early infancy death. Here, we report a case of rare GACI caused by a homozygous variation in ENPP1, in a Chinese infant initially presenting with hypertension. The proband was an 8-month-old boy with in utero tricuspid valve calcification, presenting with hypertension at birth. Enhanced computed tomography revealed extensive arterial calcification. Genetic testing identified a homozygous variation in ENPP1 (c.783C > G p.Y261X), which led to the diagnosis of GACI. This mutation has been reported in only three Chinese patients, which all initially presented with hypophosphatemic rickets rather than GACI. This case enriches the clinical and genetic spectrum of ENPP1 mutations and reminds us that GACI should be considered in an infant presenting with hypertension and extensive arterial calcification, and that genetic testing should be performed.
Collapse
|
41
|
Fãgãrãşan A, Gozar L, Ghiragosian SER, Murariu M, Pop M, Crauciuc A, Miclea D, Şuteu CC. Severe early-onset manifestations of generalized arterial calcification of infancy (mimicking severe coarctation of the aorta) with ABCC6 gene variant - Case report and literature review. Front Cardiovasc Med 2022; 9:1032519. [PMID: 36606277 PMCID: PMC9807665 DOI: 10.3389/fcvm.2022.1032519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Generalized arterial calcification of infancy (GACI) is a rare cause of infantile heart failure and systemic hypertension with a poor prognosis, characterized by extensive calcification and proliferation of the intimal layer of large and medium sized arteries. Case report We present the first case report of successful surgical treatment of severe aortic arch obstruction by calcified plaques mimicking severe coarctation of the aorta and the outcome (of bisphosphonate therapy) in a newborn with GACI. Furthermore, we report the identification of a variant in ATP Binding Cassette Subfamily C, Member 6 (ABCC6) gene, possibly associated with severe early-onset manifestations of GACI. Conclusion This case report highlights the importance of considering GACI in an infant with heart failure, systemic hypertension, and evidence of increased echogenicity of the arterial vessels. We noted the favorable outcome in improving the aortic calcification in our patient after surgical treatment and bisphosphonates therapy. Early diagnosis and treatment improve the long-term prognosis. A better understanding of this rare genetic disease could lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Amalia Fãgãrãşan
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania,Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Liliana Gozar
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania,Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania,*Correspondence: Liliana Gozar,
| | - Simina-Elena Rusu Ghiragosian
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania,Simina-Elena Rusu Ghiragosian,
| | - Mircea Murariu
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| | - Marian Pop
- ME1 Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania,Department of Radiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, Târgu Mureş, Romania
| | - Andrei Crauciuc
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| | - Diana Miclea
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Corina Şuteu
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| |
Collapse
|
42
|
Mercurio SA, Chunn LM, Khursigara G, Nester C, Wray K, Botschen U, Kiel MJ, Rutsch F, Ferreira CR. ENPP1 deficiency: A clinical update on the relevance of individual variants using a locus-specific patient database. Hum Mutat 2022; 43:1673-1705. [PMID: 36150100 DOI: 10.1002/humu.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Loss-of-function variants in the ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) cause ENPP1 Deficiency, a rare disorder characterized by pathological calcification, neointimal proliferation, and impaired bone mineralization. The consequence of ENPP1 Deficiency is a broad range of age dependent symptoms and morbidities including cardiovascular complications and 50% mortality in infants, autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in children, and joint pain, osteomalacia and enthesopathies in adults. Recent research continues to add to the growing clinical presentation profile as well as expanding the role of ENPP1 itself. Here we review the current knowledge on the spectrum of clinical and genetic findings of ENPP1 Deficiency reported in patients diagnosed with GACI or ARHR2 phenotypes using a comprehensive database of known ENPP1 variants with associated clinical data. A total of 108 genotypes were identified from 154 patients. Of the 109 ENPP1 variants reviewed, 72.5% were demonstrably disease-causing, a threefold increase in pathogenic/likely pathogenic variants over other databases. There is substantial heterogeneity in disease severity, even among patients with the same variant. The approach to creating a continuously curated database of ENPP1 variants accessible to clinicians is necessary to increase the diagnostic yield of clinical genetic testing and accelerate diagnosis of ENPP1 Deficiency.
Collapse
Affiliation(s)
- Stephanie A Mercurio
- Department of Data Science, Curation Division, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Lauren M Chunn
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Gus Khursigara
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Catherine Nester
- Department of Physician and Patient Strategies, Inozyme Pharma, Boston, Massachusetts, USA
| | - Kathleen Wray
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Ulrike Botschen
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Mark J Kiel
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Frank Rutsch
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Szeri F, Miko A, Navasiolava N, Kaposi A, Verschuere S, Molnar B, Li Q, Terry SF, Boraldi F, Uitto J, van de Wetering K, Martin L, Quaglino D, Vanakker OM, Tory K, Aranyi T. The pathogenic c.1171A>G (p.Arg391Gly) and c.2359G>A (p.Val787Ile) ABCC6 variants display incomplete penetrance causing pseudoxanthoma elasticum in a subset of individuals. Hum Mutat 2022; 43:1872-1881. [PMID: 36317459 PMCID: PMC9772137 DOI: 10.1002/humu.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Agnes Miko
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nastassia Navasiolava
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Ambrus Kaposi
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Beatrix Molnar
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy,Interuniversity Consortium for Biotechnologies (CIB), Italy
| | | | - Kalman Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Molecular Biology, Semmelweis University, Budapest, Hungary.,Corresponding author:
| |
Collapse
|
44
|
Pu L, Dai X, Liu H, Li L, Zhao F, Chen J. Prenatal diagnosis of generalized arterial calcification of infancy in the second trimester. Prenat Diagn 2022; 42:1538-1544. [PMID: 36184779 DOI: 10.1002/pd.6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Generalized arterial calcification of infancy (GACI) is a rare autosomal recessive disorder characterized by subintimal fibrous proliferation and deposition of calcium salts in the internal elastic lamina, leading to extensive arterial calcification and stenosis of large and medium-sized arteries. Prenatal diagnosis is usually made in the third trimester by detection of aortic and pulmonary calcification with associated nonimmune hydrops; earlier prenatal diagnosis is rare. This study was performed to examine the prenatal ultrasound and genetic features of fetuses with GACI. METHODS We retrospectively reviewed the ultrasound findings, their progression in utero, and the clinical features in three fetuses with GACI ascertained using ultrasound in the second trimester. GACI was subsequently confirmed through pathological examination and/or molecular genetic testing. RESULTS All three fetuses had hyperechogenic valves or annuli as the first detectable manifestation in the second trimester, followed by relatively rapid progression to arterial wall calcification. Three novel mutations of the ENPP1 gene associated with GACI were found in two of the cases (c.26dupG, c.1454A > G, and c.263C > G). CONCLUSIONS GACI should be suspected when hyperechogenic cardiac valves, annuli, or arterial walls are noted after ruling out other causes of arterial calcification. Genetic testing is important for prenatal and future preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Lihong Pu
- Department of Ultrasonic Medicine, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaohui Dai
- Department of Ultrasonic Medicine, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Department of Pediatric Pulmonology and Immunology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Lei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Department of Pathology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fumin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Department of Radiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiao Chen
- Department of Ultrasonic Medicine, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Kauffenstein G, Chappard D, Leftheriotis G, Martin L. ABCC6 deficiency and bone loss: A double benefit of etidronate for patient presenting with pseudoxanthoma elasticum? Exp Dermatol 2022; 31:1635-1637. [PMID: 35771123 PMCID: PMC9796561 DOI: 10.1111/exd.14636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/26/2022] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | - Ludovic Martin
- PXE National Reference Center (MAGEC Nord)Angers University HospitalAngersFrance,MITOVASC – UMR CNRS 6015 INSERM 1083Angers UniversityAngersFrance
| |
Collapse
|
46
|
Ralph D, Levine MA, Richard G, Morrow M, Flynn E, Uitto J, Li Q. Mutation update: Variants of the ENPP1 gene in pathologic calcification, hypophosphatemic rickets, and cutaneous hypopigmentation with punctate keratoderma. Hum Mutat 2022; 43:1183-1200. [PMID: 35475527 PMCID: PMC9357117 DOI: 10.1002/humu.24391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
47
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
48
|
O’Brien C, Khursigara G, Huertas P, Leiro B, Molloy L, Nester C. Lifelong impact of ENPP1 Deficiency and the early onset form of ABCC6 Deficiency from patient or caregiver perspective. PLoS One 2022; 17:e0270632. [PMID: 35895733 PMCID: PMC9328542 DOI: 10.1371/journal.pone.0270632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) and ATP-binding cassette subfamily C member 6 (ABCC6) proteins play a prominent role in inhibiting ectopic calcification and arterial stenosis. Patients with ENPP1 Deficiency or infant onset ABCC6 Deficiency often present with pathological calcification, narrowed blood vessels, multiorgan dysfunction and high infant mortality. The heterogenous presentation and progression is well documented. Our objective was to characterize how these morbidities lead to burden of illness and poor quality of life across ages from the patient/caregiver perspective. Patients/caregivers were interviewed via phone using Institutional Review Board–approved questionnaires. Patient-reported outcomes were collected via validated instruments. Thirty-one caregivers and 7 patients participated: infant onset ABCC6 Deficiency, n = 6 (infants/children); ENPP1 Deficiency, n = 32 (13 infants, 12 children, 7 adults). ENPP1 and ABCC6-deficient children aged <8 years and aged 8–18 years reported poor school functioning (0.69 vs 0.72 effect size, respectively) and poor physical health (0.88 vs 1, respectively). In the total ENPP1 cohort, 72% (23/32) reported bone/joint pain and/or mobility/fatigue issues. Three of seven ENPP1-deficient adults reported moderate to severe pain (>4), as measured by the Brief Pain Inventory (BPI), that interfered with daily activities despite pain medication. Top reported burdens for caregivers of infants with ABCC6/ENPP1 Deficiencies included heart-related issues and hospitalizations. Treatment/medications, and hearing loss were the highest burdens reported by caregivers/families of the pediatric ENPP1 Deficiency cohort, whereas adults reported bone/joint pain and mobility impairment as the greatest burdens. Individuals with ENPP1 Deficiency or infant onset ABCC6 Deficiency experience lifelong morbidity causing substantial physical and emotional burden to patients/caregivers.
Collapse
Affiliation(s)
| | - Gus Khursigara
- Inozyme Pharma Inc, Boston, Massachusetts, United States of America
| | - Pedro Huertas
- Mirror Neuron Partners LLC and Harvard–MIT Program in Health Sciences and Technology, Boston, Massachusetts, United States of America
| | - Beth Leiro
- Inozyme Pharma Inc, Boston, Massachusetts, United States of America
| | - Liz Molloy
- GACI Global, Argyle, Texas, United States of America
| | - Catherine Nester
- Inozyme Pharma Inc, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Theng EH, Brewer CC, Oheim R, Zalewski CK, King KA, Delsmann MM, Rolvien T, Gafni RI, Braddock DT, Jeffrey Kim H, Ferreira CR. Characterization of hearing-impairment in Generalized Arterial Calcification of Infancy (GACI). Orphanet J Rare Dis 2022; 17:273. [PMID: 35854274 PMCID: PMC9295326 DOI: 10.1186/s13023-022-02410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND IMPORTANCE Hearing loss (HL) has been sporadically described, but not well characterized, in Generalized Arterial Calcification of Infancy (GACI), a rare disease in which pathological calcification typically presents in infancy. OBJECTIVES This study aims to describe the clinical audiologic and otologic features and potential etiology of hearing impairment in GACI and gain pathophysiological insight from a murine model of GACI. DESIGN Cross-sectional cohort study of individuals with GACI. Murine ossicle micromorphology of the ENPP1asj/asj mutant compared to wild-type. SETTING Clinical research hospital; basic science laboratory. PARTICIPANTS Nineteen individuals with GACI who met clinical, biochemical, and genetic criteria for diagnosis. MAIN OUTCOMES AND MEASURES Clinical, biochemical, and radiologic features associated with hearing status. RESULTS Pure-tone thresholds could be established in 15 (n = 30 ears) of the 19 patients who underwent audiological assessments. The prevalence of HL was 50% (15/30) of ears, with conductive HL in 80% and sensorineural HL in 20%. In terms of patients with HL (n = 8), seven patients had bilateral HL and one patient had unilateral HL. Degree of HL was mild to moderate for 87% of the 15 ears with hearing loss. Of those patients with sufficient pure-tone and middle ear function data, 80% (8/10) had audiometric configurations suggestive of ossicular chain dysfunction (OCD). Recurrent episodes of otitis media (ROM) requiring pressure-equalizing tube placement were common. In patients who underwent cranial CT, 54.5% (6/11) had auricular calcification. Quantitative backscattered electron imaging (qBEI) of murine ossicles supports an OCD component of auditory dysfunction in GACI, suggesting loss of ossicular osteocytes without initiation of bone remodeling. CONCLUSIONS AND RELEVANCE Hearing loss is common in GACI; it is most often conductive, and mild to moderate in severity. The etiology of HL is likely multifactorial, involving dysfunction of the ossicular chain and/or recurrent otitis media. Clinically, this study highlights the importance of early audiologic and otologic evaluation in persons with GACI. Novel findings of high rates of OCD and ROM may inform management, and in cases of unclear HL etiology, dedicated temporal bone imaging should be considered.
Collapse
Affiliation(s)
- Elizabeth H Theng
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Carmen C Brewer
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Oheim
- Martin Seitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher K Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Maximillian M Delsmann
- Martin Seitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Martin Seitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel I Gafni
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - H Jeffrey Kim
- Office of Clinical Director, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
- Department of Otolaryngology-Head & Neck Surgery, District of Columbia, Georgetown University Hospital, Washington, USA.
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Dr, Building 49, Room 4A38, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Kato H, Ansh AJ, Lester ER, Kinoshita Y, Hidaka N, Hoshino Y, Koga M, Taniguchi Y, Uchida T, Yamaguchi H, Niida Y, Nakazato M, Nangaku M, Makita N, Takamura T, Saito T, Braddock DT, Ito N. Identification of ENPP1 Haploinsufficiency in Patients With Diffuse Idiopathic Skeletal Hyperostosis and Early-Onset Osteoporosis. J Bone Miner Res 2022; 37:1125-1135. [PMID: 35340077 PMCID: PMC9177665 DOI: 10.1002/jbmr.4550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
Homozygous ENPP1 mutations are associated with autosomal recessive hypophosphatemic rickets type 2 (ARHR2), severe ossification of the spinal ligaments, and generalized arterial calcification of infancy type 1. There are a limited number of reports on phenotypes associated with heterozygous ENPP1 mutations. Here, we report a series of three probands and their families with heterozygous and compound heterozygous ENPP1 mutations. The first case (case 1) was a 47-year-old male, diagnosed with early-onset osteoporosis and low-normal serum phosphate levels, which invoked suspicion for hypophosphatemic rickets. The second and third cases were 77- and 54-year-old females who both presented with severe spinal ligament ossification and the presumptive diagnosis of diffuse idiopathic skeletal hyperostosis (DISH). Upon workup, fibroblast growth factor 23 (FGF23) was noted to be relatively high in case 2 and serum phosphorous was low-normal in case 3, and the diagnoses of X-linked hypophosphatemic rickets (XLH) and ARHR2 were considered. Genetic testing for genes related to congenital hypophosphatemic rickets was therefore performed, revealing heterozygous ENPP1 variants in cases 1 and 2 (case 1, c.536A>G, p.Asn179Ser; case 2, c.1352A>G, p.Tyr451Cys) and compound heterozygous ENPP1 variants in case 3 constituting the same variants present in cases 1 and 2 (c.536A>G, p.Asn179Ser and c.1352A>G, p.Tyr451Cys). Several in silico tools predicted the two variants to be pathogeneic, a finding confirmed by in vitro biochemical analysis demonstrating that the p.Asn179Ser and p.Tyr451Cys ENPP1 variants possessed a catalytic velocity of 45% and 30% compared with that of wild-type ENPP1, respectively. Both variants were therefore categorized as pathogenic loss-of-function mutations. Our findings suggest that ENPP1 mutational status should be evaluated in patients presenting with the diagnosis of idiopathic DISH, ossification of the posterior longitudinal ligament (OPLL), and early-onset osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Anenya J. Ansh
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitomo Hoshino
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Taisuke Uchida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Yamaguchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Taku Saito
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|