1
|
Carrascal-Hernández DC, Martínez-Cano JP, Rodríguez Macías JD, Grande-Tovar CD. Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials. Int J Mol Sci 2025; 26:4242. [PMID: 40362478 PMCID: PMC12072198 DOI: 10.3390/ijms26094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Bone defects caused by various traumas and diseases such as osteoporosis, which affects bone density, and osteosarcoma, which affects the integrity of bone structure, are now well known. Given this situation, several innovative research projects have been reported to improve orthopedic methods and technologies that positively contribute to the regeneration of affected bone tissue, representing a significant advance in regenerative medicine. This review article comprehensively analyzes the transition from existing methods and technologies for implants and bone tissue regeneration to innovative biomaterials. These biomaterials have been of great interest in the last decade due to their physicochemical characteristics, which allow them to overcome the most common limitations of traditional grafting methods, such as the availability of biomaterials and the risk of rejection after their application in regenerative medicine. This could be achieved through an exhaustive study of the applications and properties of various materials with potential applications in regenerative medicine, such as using magnetic nanoparticles and hydrogels sensitive to external stimuli, including pH and temperature. In this regard, this review article describes the most relevant compounds used in bone tissue regeneration, promoting the integration of these biomaterials with the affected area's bone structure, thereby allowing for regeneration and preventing amputation. Additionally, the types of interactions between biomaterials and mesenchymal stem cells and their effects on bone tissue are discussed, which is critical for developing biomaterials with optimal regenerative properties. Furthermore, the mechanisms of action of the various biomaterials that enhance osteoconduction and osteoinduction, ensuring the success of orthopedic therapies, are analyzed. This enables the treatment of bone defects tailored to each patient's condition, thereby avoiding limb amputation. Consequently, a promising future for regenerative medicine is emerging, with various therapies that could revolutionize the management of bone defects, offering more efficient and safer solutions.
Collapse
Affiliation(s)
| | - Juan Pablo Martínez-Cano
- Ortopedia y Traumatología, Epidemiología Clínica, Fundación Valle del Lili, Universidad ICESI, Cali 760031, Colombia;
| | | | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| |
Collapse
|
2
|
Yang Q, Wang S, Chen A, Zhao M, Zhang X, Sheng L, Zhang C, Wu Z. A poly(ether-ketone-ketone) composite scaffold simulating the immune-osteogenic cascade for in situ bone regeneration. J Mater Chem B 2025; 13:4641-4656. [PMID: 40130332 DOI: 10.1039/d5tb00070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The process of bone repair is intrinsically associated with the immune response. Following scaffold implantation, the pro-inflammatory response initiates the immune-osteogenic cascade. Efficient recruitment and timely conversion of macrophages to an anti-inflammatory phenotype are critical for promoting subsequent bone regeneration. Poly(ether-ketone-ketone) (PEKK) is an attractive orthopaedic material, but exhibits biological inertness. In this study, an immunomodulatory PEKK/bioglass composite scaffold was fabricated by fused deposition modeling and a soft cryogel containing monocyte chemotactic protein-1 (MCP-1) was infilled into the macropores of the scaffold (PBCM). The rapid release of MCP-1 from PBCM initially mobilized endogenous macrophages, which subsequently recruited rat mesenchymal stem cells (rMSCs). Continuous release of bioactive ions not only facilitated the polarization of macrophages towards the M2 phenotype, thereby establishing a favorable anti-inflammatory microenvironment conducive to bone formation, but also stimulated the osteogenic differentiation of rMSCs. Moreover, cytokines secreted by macrophages further promoted osteogenesis. In vivo experiments demonstrated excellent bone regeneration following PBCM implantation. Taken together, this study aimed to develop a novel immunomodulatory PEKK composite scaffold that can simulate the immune-osteogenic cascade for timely recruitment of endogenous cells, efficient immunomodulation of macrophages and superior osteogenic abilities, potentially serving as potent implants for tissue engineering applications.
Collapse
Affiliation(s)
- Qianwen Yang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, Shenzhen, Guangdong, 518107, China.
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, Guangdong, 518057, China
| | - Anbei Chen
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, Shenzhen, Guangdong, 518107, China.
| | - Mengen Zhao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, Shenzhen, Guangdong, 518107, China.
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, Guangdong, 518057, China
| | - Xin Zhang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, Shenzhen, Guangdong, 518107, China.
| | - Liyuan Sheng
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China.
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, Shenzhen, Guangdong, 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Zhang Y, Zhao XY, Liu MT, Zhou ZC, Cheng HB, Jiang XH, Zheng YR, Chen Z. Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:169-181. [PMID: 40069034 DOI: 10.1016/j.joim.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/03/2025] [Indexed: 04/13/2025]
Abstract
OBJECTIVE Treating peripheral nerve injury (PNI) presents a clinical challenge due to limited axon regeneration. Strychni Semen, a traditional Chinese medicine, is clinically used for numbness and hemiplegia. However, its role in promoting functional recovery after PNI and the related mechanisms have not yet been systematically studied. METHODS A mouse model of sciatic nerve crush (SNC) injury was established and the mice received drug treatment via intragastric gavage, followed by behavioral assessments (adhesive removal test, hot-plate test and Von Frey test). Transcriptomic analyses were performed to examine gene expression in the dorsal root ganglia (DRGs) from the third to the sixth lumbar vertebrae, so as to identify the significantly differentially expressed genes. Immunofluorescence staining was used to assess the expression levels of superior cervical ganglia neural-specific 10 protein (SCG10). The ultra-trace protein detection technique was used to evaluate changes in gene expression levels. RESULTS Strychni Semen and its active compounds (brucine and strychnine) improved functional recovery in mice following SNC injury. Transcriptomic data indicated that Strychni Semen and its active compounds initiated transcriptional reprogramming that impacted cellular morphology and extracellular matrix remodeling in DRGs after SNC, suggesting potential roles in promoting axon regeneration. Imaging data further confirmed that Strychni Semen and its active compounds facilitated axon regrowth in SNC-injured mice. By integrating protein-protein interaction predictions, ultra-trace protein detection, and molecular docking analysis, we identified myeloperoxidase as a potentially critical factor in the axon regenerative effects conferred by Strychni Semen and its active compounds. CONCLUSION Strychni Semen and its active compounds enhance sensory function by promoting axonal regeneration after PNI. These findings establish a foundation for the future applications of Strychni Semen and highlight novel therapeutic strategies and drug targets for axon regeneration. Please cite this article as: Zhang Y, Zhao XY, Liu MT, Zhou ZC, Cheng HB, Jiang XH, Zheng YR, Chen Z. Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia. J Integr Med. 2025; 23(2): 169-181.
Collapse
Affiliation(s)
- Yan Zhang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xin-Yue Zhao
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Department of Internal Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Meng-Ting Liu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zhu-Chen Zhou
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Hui-Bin Cheng
- Department of Internal Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Xu-Hong Jiang
- Department of Internal Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Yan-Rong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| |
Collapse
|
4
|
Zhu Y, Zhang X, Chang G, Deng S, Chan HF. Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312964. [PMID: 39014919 PMCID: PMC11733714 DOI: 10.1002/adma.202312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Indexed: 07/18/2024]
Abstract
Bioactive glass (BG) is a class of biocompatible, biodegradable, multifunctional inorganic glass materials, which is successfully used for orthopedic and dental applications, with several products already approved for clinical use. Apart from exhibiting osteogenic properties, BG is also known to be angiogenic and antibacterial. Recently, BG's role in immunomodulation has been gradually revealed. While the therapeutic effect of BG is mostly reported in the context of bone and skin-related regeneration, its application in regenerating other tissues/organs, such as muscle, cartilage, and gastrointestinal tissue, has also been explored recently. The strategies of applying BG have also expanded from powder or cement form to more advanced strategies such as fabrication of composite polymer-BG scaffold, 3D printing of BG-loaded scaffold, and BG-induced extracellular vesicle production. This review presents a concise overview of the recent applications of BG in regenerative medicine. Various regenerative strategies of BG will be first introduced. Next, the applications of BG in regenerating various tissues/organs, such as bone, cartilage, muscle, tendon, skin, and gastrointestinal tissue, will be discussed. Finally, clinical applications of BG for tissue regeneration will be summarized, and future challenges and directions for the clinical translation of BG will be outlined.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong SARP. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong SARP. R. China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Laboratory of Molecular PharmacologyDepartment of PharmacologySchool of PharmacySouthwest Medical UniversityLuzhou646000P. R. China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SARP. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong SARP. R. China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsHong Kong SARP. R. China
| |
Collapse
|
5
|
Al-Naymi HAS, Al-Musawi MH, Mirhaj M, Valizadeh H, Momeni A, Danesh Pajooh AM, Shahriari-Khalaji M, Sharifianjazi F, Tavamaishvili K, Kazemi N, Salehi S, Arefpour A, Tavakoli M. Exploring nanobioceramics in wound healing as effective and economical alternatives. Heliyon 2024; 10:e38497. [PMID: 39391491 PMCID: PMC11466581 DOI: 10.1016/j.heliyon.2024.e38497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Wound healing is a sophisticated process for which various treatment methods have been developed. Bioceramics with the ability to release inorganic ions in biological environments play a crucial role in cellular metabolism and exhibit bactericidal activity, contributing to numerous physiological processes. Their multifaceted roles in biological systems highlight their significance. The release of different metallic ions from bioceramics enables the repair of both hard and soft tissues. These ions may be effective in cell motility, proliferation, differentiation, adhesion, angiogenesis, and antibiosis. Unlike conventional medications, the bioactivity and antibacterial properties of bioceramics are typically not associated with side effects or bacterial resistance. Bioceramics are commonly recognized for their capcity to facilitate the healing of hard tissues due to their exceptional mechanical properties. In this review, we first explore wound treatment and its prevalent methods, and subsequently, we discuss the application of three primary categories of bioceramics-oxide ceramics, silicate-based ceramics, and calcium-phosphate ceramics-in the context of wound treatment. This review introduces bioceramics as a cost-effective and efficient alternative for wound repair. Our aim is to inspire researchers to incorporate bioceramics with other biomaterials to achieve enhanced, economical, expedited, and safer wound healing.
Collapse
Affiliation(s)
- Hanan Adnan Shaker Al-Naymi
- Department of Chemistry, College of Education for Pure Science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Mastafa H. Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hamideh Valizadeh
- Department of tissue engineering and regenerative medicine, Faculty of advanced technologies in medicine, Iran university of medical sciences, Tehran, Iran
| | - Arefeh Momeni
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Amir Mohammad Danesh Pajooh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi, 0160, Georgia
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmadreza Arefpour
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
6
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
7
|
Karakurt EM, Huang Y, Cetin Y, Incesu A, Demirtas H, Kaya M, Yildizhan Y, Tosun M, Akbas G. Assessing Microstructural, Biomechanical, and Biocompatible Properties of TiNb Alloys for Potential Use as Load-Bearing Implants. J Funct Biomater 2024; 15:253. [PMID: 39330229 PMCID: PMC11432999 DOI: 10.3390/jfb15090253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Titanium-Niobium (TiNb) alloys are commonly employed in a number of implantable devices, yet concerns exist regarding their use in implantology owing to the biomechanical mismatch between the implant and the host tissue. Therefore, to balance the mechanical performance of the load-bearing implant with bone, TiNb alloys with differing porosities were fabricated by powder metallurgy combined with spacer material. Microstructures and phase constituents were characterized with energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The mechanical properties were tested by uniaxial compression, and the corrosion performance was determined via a potentiodynamic polarization experiment. To evaluate a highly matched potential implant with the host, biocompatibilities such as cell viability and proliferation rate, fibronectin adsorption, plasmid-DNA interaction, and an SEM micrograph showing the cell morphology were examined in detail. The results showed that the alloys displayed open and closed pores with a uniform pore size and distribution, which allowed for cell adherence and other cellular activities. The alloys with low porosity displayed compressive strength between 618 MPa and 1295 MPa, while the alloys with high porosity showed significantly lower strength, ranging from 48 MPa to 331 MPa. The biological evaluation of the alloys demonstrated good cell attachment and proliferation rates.
Collapse
Affiliation(s)
- Eyyup Murat Karakurt
- Brunel Centre for Advanced Solidification Technology, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH, UK;
| | - Yan Huang
- Brunel Centre for Advanced Solidification Technology, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH, UK;
| | - Yuksel Cetin
- The Scientific and Technological Research Council of Turkey, Life Sciences Medical Biotechnology Unit, Marmara Research Centre, Kocaeli 41470, Turkey; (Y.Y.); (M.T.); (G.A.)
| | - Alper Incesu
- TOBB Technical Sciences Vocational School, Karabuk University, Karabuk 78050, Turkey; (A.I.); (H.D.)
| | - Huseyin Demirtas
- TOBB Technical Sciences Vocational School, Karabuk University, Karabuk 78050, Turkey; (A.I.); (H.D.)
| | - Mehmet Kaya
- Machinery and Metal Technologies Department, Corlu Vocational School, Tekirdag Namik Kemal University, Tekirdag 59830, Turkey;
| | - Yasemin Yildizhan
- The Scientific and Technological Research Council of Turkey, Life Sciences Medical Biotechnology Unit, Marmara Research Centre, Kocaeli 41470, Turkey; (Y.Y.); (M.T.); (G.A.)
| | - Merve Tosun
- The Scientific and Technological Research Council of Turkey, Life Sciences Medical Biotechnology Unit, Marmara Research Centre, Kocaeli 41470, Turkey; (Y.Y.); (M.T.); (G.A.)
| | - Gulsah Akbas
- The Scientific and Technological Research Council of Turkey, Life Sciences Medical Biotechnology Unit, Marmara Research Centre, Kocaeli 41470, Turkey; (Y.Y.); (M.T.); (G.A.)
| |
Collapse
|
8
|
Cruel PTE, dos Santos CPC, Cueto TM, Avila LPV, Buchaim DV, Buchaim RL. Calcium Hydroxyapatite in Its Different Forms in Skin Tissue Repair: A Literature Review. SURGERIES 2024; 5:640-659. [DOI: 10.3390/surgeries5030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The skin is crucial for homeostasis and body defense, requiring quick healing to maintain internal balance. Initially used for bone repair, calcium hydroxyapatite (HAp) is now being studied for soft tissue engineering. This literature review investigated HAp’s role in tissue repair through searches on PubMed, Scopus (Elsevier), Science Direct, Springer Link, and Google Scholar databases without time restrictions, using keywords “hydroxyapatite AND skin AND wound” and “hydroxyapatite AND skin repair”. Inclusion criteria encompassed in vivo studies in humans and animals, English publications, full access, and sufficient data on HAp’s role in tissue repair. Exclusions included duplicates, unrelated articles, editor letters, reviews, comments, conference abstracts, dissertations, and theses. Out of the 472 articles initially identified, 139 met the inclusion criteria, with 21 focusing on HAp for tissue repair. Findings indicate that HAp and nano-HAp in skin regeneration are promising, especially when combined with other biomaterials, offering antimicrobial and anti-inflammatory benefits and stimulating angiogenesis. This suggests their potential application in dermatology, surgery, and dentistry, extending HAp’s versatility from hard tissues to enhancing critical properties for soft tissue repair and accelerating healing.
Collapse
Affiliation(s)
- Paola Tatiana Espinosa Cruel
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | | | - Thalia Malave Cueto
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | - Lisbeth Patricia Vasquez Avila
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| |
Collapse
|
9
|
Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Nanoengineered Silica-Based Biomaterials for Regenerative Medicine. Int J Mol Sci 2024; 25:6125. [PMID: 38892312 PMCID: PMC11172759 DOI: 10.3390/ijms25116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The paradigm of regenerative medicine is undergoing a transformative shift with the emergence of nanoengineered silica-based biomaterials. Their unique confluence of biocompatibility, precisely tunable porosity, and the ability to modulate cellular behavior at the molecular level makes them highly desirable for diverse tissue repair and regeneration applications. Advancements in nanoengineered silica synthesis and functionalization techniques have yielded a new generation of versatile biomaterials with tailored functionalities for targeted drug delivery, biomimetic scaffolds, and integration with stem cell therapy. These functionalities hold the potential to optimize therapeutic efficacy, promote enhanced regeneration, and modulate stem cell behavior for improved regenerative outcomes. Furthermore, the unique properties of silica facilitate non-invasive diagnostics and treatment monitoring through advanced biomedical imaging techniques, enabling a more holistic approach to regenerative medicine. This review comprehensively examines the utilization of nanoengineered silica biomaterials for diverse applications in regenerative medicine. By critically appraising the fabrication and design strategies that govern engineered silica biomaterials, this review underscores their groundbreaking potential to bridge the gap between the vision of regenerative medicine and clinical reality.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
10
|
Elshazly N, Nasr FE, Hamdy A, Saied S, Elshazly M. Advances in clinical applications of bioceramics in the new regenerative medicine era. World J Clin Cases 2024; 12:1863-1869. [PMID: 38660540 PMCID: PMC11036528 DOI: 10.12998/wjcc.v12.i11.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
In this editorial, we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing, sol-gel, and electrospinning. The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site. A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity, antibacterial properties, and angiogenic properties. All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds. Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers. The results were promising and opened new frontiers for utilizing these materials on a larger scale. The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration. Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties. All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government.
Collapse
Affiliation(s)
- Noha Elshazly
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Fayza Eid Nasr
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Ayat Hamdy
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
- Public Dental Clinic, Central Administration of Dentistry, Ministry of Health and Population, Alexandria 21554, Egypt
| | - Safa Saied
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mohamed Elshazly
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria 21526, Egypt
| |
Collapse
|
11
|
Shi S, Ou X, Cheng D. Nanoparticle-Facilitated Therapy: Advancing Tools in Peripheral Nerve Regeneration. Int J Nanomedicine 2024; 19:19-34. [PMID: 38187908 PMCID: PMC10771795 DOI: 10.2147/ijn.s442775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Peripheral nerve injuries, arising from a diverse range of etiologies such as trauma and underlying medical conditions, pose substantial challenges in both clinical management and subsequent restoration of functional capacity. Addressing these challenges, nanoparticles have emerged as a promising therapeutic modality poised to augment the process of peripheral nerve regeneration. However, a comprehensive elucidation of the complicated mechanistic foundations responsible for the favorable effects of nanoparticle-based therapy on nerve regeneration remains imperative. This review aims to scrutinize the potential of nanoparticles as innovative therapeutic carriers for promoting peripheral nerve repair. This review encompasses an in-depth exploration of the classifications and synthesis methodologies associated with nanoparticles. Additionally, we discuss and summarize the multifaceted roles that nanoparticles play, including neuroprotection, facilitation of axonal growth, and efficient drug delivery mechanisms. Furthermore, we present essential considerations and highlight the potential synergies of integrating nanoparticles with emerging technologies. Through this comprehensive review, we highlight the indispensable role of nanoparticles in propelling advancements in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
12
|
Harrop ACF, Tupally KR, Pandey P, Parekh HS. Opportunities for Bioactive Glass in Gastrointestinal Conditions: A Review of Production Methodologies, Morphology, Composition, and Performance. Mol Pharm 2023; 20:5954-5980. [PMID: 37962352 DOI: 10.1021/acs.molpharmaceut.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bioactive glasses (BGs) are widely used in orthopedic and dental applications for their ability to stimulate endogenous bone formation and regeneration. BG applications more recently broadened to include soft tissue conditions, based on their ability to stimulate angiogenesis, soft tissue regeneration, and wound healing. Sol-gel synthesis has helped facilitate this expansion, allowing formulators to tailor the morphological characteristics of the BG matrix. The effectiveness of BGs in skin wound healing is viewed as a gateway for their use as both a therapeutic and drug delivery platform in other soft tissue applications, notably gastrointestinal (GI) applications, which form the focus of this review. Recent changes in international guidelines for GI conditions shifted clinical objectives from symptom management to mucosal wound healing. The additional scrutiny of proton pump inhibitor (PPI) safety, increasing burden of disease, and financial costs associated with gastroesophageal reflux disease (GERD), peptic ulcer disease (PUD), and inflammatory bowel disease (IBD) open new clinical possibilities for BG. This narrative literature review intersects materials engineering, formulation science, and clinical practice, setting it apart from prior literature. Broadly, current evidence for BG applications in GI conditions is sparse and under-developed, which this review directly addresses. It explores and synthesizes evidence that supports the potential use of sol-gel-derived BG for the efficacious treatment of soft tissue applications, with specific reference to GI conditions. An overview with comparative analysis of current BG synthesis techniques and associated challenges is presented, and influences of composition, biologically active ions, and morphological characteristics in soft tissue applications are explored. To contextualize this, sol-gel-derived BGs are proposed as a dual, tailorable therapeutic and drug delivery platform for upper and lower GI conditions. Future directions for this largely untapped area of translational research are also proposed, based on extant literature.
Collapse
Affiliation(s)
- Angus C F Harrop
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Karnaker R Tupally
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Preeti Pandey
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
13
|
Sun Y, Zhang H, Zhang Y, Liu Z, He D, Xu W, Li S, Zhang C, Zhang Z. Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration. Bioact Mater 2023; 28:227-242. [PMID: 37292230 PMCID: PMC10245070 DOI: 10.1016/j.bioactmat.2023.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Biomaterials can modulate the local immune and repair-supportive microenvironments to promote peripheral nerve regeneration. Inorganic bioceramics have been widely used for regulating tissue regeneration and local immune response. However, little is known on whether inorganic bioceramics can have potential for enhancing peripheral nerve regeneration and what are the mechanisms underlying their actions. Here, the inorganic lithium-magnesium-silicon (Li-Mg-Si, LMS) bioceramics containing scaffolds are fabricated and characterized. The LMS-containing scaffolds had no cytotoxicity against rat Schwann cells (SCs), but promoted their migration and differentiation towards a remyelination state by up-regulating the expression of neurotrophic factors in a β-catenin-dependent manner. Furthermore, using single cell-sequencing, we showed that LMS-containing scaffolds promoted macrophage polarization towards the pro-regenerative M2-like cells, which subsequently facilitated the migration and differentiation of SCs. Moreover, implantation with the LMS-containing nerve guidance conduits (NGCs) increased the frequency of M2-like macrophage infiltration and enhanced nerve regeneration and motor functional recovery in a rat model of sciatic nerve injury. Collectively, these findings indicated that the inorganic LMS bioceramics offered a potential strategy for enhancing peripheral nerve regeneration by modulating the immune microenvironment and promoting SCs remyelination.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zheqi Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Siyi Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
14
|
Villaseñor-Cerón LS, Mendoza-Anaya D, López-Ortiz S, Rosales-Ibañez R, Rodríguez-Martínez JJ, Reyes-Valderrama MI, Rodríguez-Lugo V. Biocompatibility analysis and chemical characterization of Mn-doped hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:40. [PMID: 37515640 PMCID: PMC10386974 DOI: 10.1007/s10856-023-06744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
The present work studies the effect of Mn doping on the crystalline structure of the Hap synthesized by the hydrothermal method at 200 °C for 24 h, from Ca(OH)2 and (NH4)2HPO4, incorporating MnCl2 to 0.1, 0.5, 1.0, 1.5 and 2.0 %wt of Mn concentrations. Samples were characterized by the X-Ray Diffraction technique, which revealed the diffraction peaks that corresponded to the hexagonal and monoclinic phase of the Hap; it was observed that the average size of crystallite decreased from 23.67 to 22.69 nm as the concentration of Mn increased. TEM shows that in all samples, there are two distributions of particle sizes; one corresponds to nanorods with several tens of nanometers in length, and the other in which the diameter and length are very close. FTIR analysis revealed absorption bands corresponding to the PO4-3 and OH- groups characteristic of the Hap. It was possible to establish a substitution mechanism between the Mn and the ions of Ca+2 of the Hap. From the Alamar blue test, a cell viability of 86.88% ± 5 corresponding to the sample of Hap at 1.5 %wt Mn was obtained, considered non-cytotoxic according to ISO 10993-5. It also evaluated and demonstrated the good osteoinductive properties of the materials, which were verified by histology and immunofluorescence expression of osteogenic markers. Adhesion, viability, biocompatibility and osteoinductive properties, make these materials candidates for future applications in bone tissue engineering with likely uses in regenerative medicine.
Collapse
Affiliation(s)
- L S Villaseñor-Cerón
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Pachuca, Mexico
| | - D Mendoza-Anaya
- Instituto Nacional de Investigaciones Nucleares; Carr. México-Toluca s/n La Marquesa, C.P. 52750, Ocoyoacac, Estado de México, México
| | - S López-Ortiz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec1570, Privadas del Pedregal, San Luis Potosí, SLP, México
| | - R Rosales-Ibañez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Avenida Tenayuca-Chalmita S/N, Cuautepec Barrio Bajo, Alcaldía Gustavo A. Madero, CP. 07239, Ciudad de México, México
| | - J J Rodríguez-Martínez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Avenida Tenayuca-Chalmita S/N, Cuautepec Barrio Bajo, Alcaldía Gustavo A. Madero, CP. 07239, Ciudad de México, México
| | - M I Reyes-Valderrama
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Pachuca, Mexico
| | - V Rodríguez-Lugo
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Pachuca, Mexico.
| |
Collapse
|
15
|
Baino F, Montazerian M, Verné E. Cobalt-Doped Bioactive Glasses for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4994. [PMID: 37512268 PMCID: PMC10382018 DOI: 10.3390/ma16144994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Improving angiogenesis is the key to the success of most regenerative medicine approaches. However, how and to which extent this may be performed is still a challenge. In this regard, cobalt (Co)-doped bioactive glasses show promise being able to combine the traditional bioactivity of these materials (especially bone-bonding and osteo-stimulatory properties) with the pro-angiogenic effect associated with the release of cobalt. Although the use and local delivery of Co2+ ions into the body have raised some concerns about the possible toxic effects on living cells and tissues, important biological improvements have been highlighted both in vitro and in vivo. This review aims at providing a comprehensive overview of Co-releasing glasses, which find biomedical applications as various products, including micro- and nanoparticles, composites in combination with biocompatible polymers, fibers and porous scaffolds. Therapeutic applications in the field of bone repair, wound healing and cancer treatment are discussed in the light of existing experimental evidence along with the open issues ahead.
Collapse
Affiliation(s)
- Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterial (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Enrica Verné
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
16
|
Ekinci F, Asuroglu T, Acici K. Monte Carlo Simulation of TRIM Algorithm in Ceramic Biomaterial in Proton Therapy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4833. [PMID: 37445147 DOI: 10.3390/ma16134833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Biomaterials play a crucial role in enhancing human health and quality of life. They are employed in applications such as tissue substitution, diagnostic tools, medical supplies, therapeutic treatments, regenerative medicine, and radiation dosimetric studies. However, their predisposition to proton therapy, which is a trending treatment in the world, has not been adequately studied. Ceramic biomaterials, known for their hardness and durability, offer versatile uses, especially in bone tissue replacements. The wide range of physical, mechanical, and chemical properties exhibited by ceramics has spurred extensive research, development, and application in this field. This study focuses on investigating and analyzing the ionization, recoils, phonon release, collision events, and lateral scattering properties of ceramic biomaterials that closely resemble bone tissue in proton therapy applications. Monte Carlo (MC) Transport of Ions in Matter (TRIM) simulation tools were utilized for this analysis. The results showed that Silicon dioxide exhibited the Bragg peak position closest to bone tissue, with a deviation of 10.6%. The average recoils differed by 1.7%, and the lateral scattering differed by 3.6%. The main innovation of this study lies in considering interactions such as recoil, collision events, phonon production, and lateral scattering when selecting biomaterials, despite their limited digitization and understanding. By evaluating all these interactions, the study aimed to identify the most suitable ceramic biomaterial to replace bone tissue in proton therapy.
Collapse
Affiliation(s)
- Fatih Ekinci
- Institute of Nuclear Sciences, Ankara University, 06830 Ankara, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Koray Acici
- Artifical Intelligence and Data Engineerig, Ankara University, 06830 Ankara, Turkey
| |
Collapse
|
17
|
Rafikova G, Piatnitskaia S, Shapovalova E, Chugunov S, Kireev V, Ialiukhova D, Bilyalov A, Pavlov V, Kzhyshkowska J. Interaction of Ceramic Implant Materials with Immune System. Int J Mol Sci 2023; 24:4200. [PMID: 36835610 PMCID: PMC9959507 DOI: 10.3390/ijms24044200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.
Collapse
Affiliation(s)
- Guzel Rafikova
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Svetlana Piatnitskaia
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elena Shapovalova
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | | | - Victor Kireev
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Applied Physics, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Daria Ialiukhova
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Azat Bilyalov
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Julia Kzhyshkowska
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciecnes (MI3), Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg, 68167 Mannheim, Germany
| |
Collapse
|
18
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
19
|
Montazerian M, Baino F, Fiume E, Migneco C, Alaghmandfard A, Sedighi O, DeCeanne AV, Wilkinson CJ, Mauro JC. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. PROGRESS IN MATERIALS SCIENCE 2023; 132:101023. [DOI: 10.1016/j.pmatsci.2022.101023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Kermani F, Nazarnezhad S, Mollaei Z, Mollazadeh S, Ebrahimzadeh-Bideskan A, Askari VR, Oskuee RK, Moradi A, Hosseini SA, Azari Z, Baino F, Kargozar S. Zinc- and Copper-Doped Mesoporous Borate Bioactive Glasses: Promising Additives for Potential Use in Skin Wound Healing Applications. Int J Mol Sci 2023; 24:ijms24021304. [PMID: 36674818 PMCID: PMC9861609 DOI: 10.3390/ijms24021304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, zinc (Zn)- and copper (Cu)-doped 13-93B3 borate mesoporous bioactive glasses (MBGs) were successfully synthesized using nitrate precursors in the presence of Pluronic P123. We benefited from computational approaches for predicting and confirming the experimental findings. The changes in the dynamic surface tension (SFT) of simulated body fluid (SBF) were investigated using the Du Noüy ring method to shed light on the mineralization process of hydroxyapatite (HAp) on the glass surface. The obtained MBGs were in a glassy state before incubation in SBF. The formation of an apatite-like layer on the SBF-incubated borate glasses was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The incorporation of Zn and Cu into the basic composition of 13-93B3 glass led to changes in the glass transition temperature (Tg) (773 to 556 °C), particle size (373 to 64 nm), zeta potential (−12 to −26 mV), and specific surface area (SBET) (54 to 123 m2/g). Based on the K-means algorithm and chi-square automatic interaction detection (CHAID) tree, we found that the SFT of SBF is an important factor for the prediction and confirmation of the HAp mineralization process on the glasses. Furthermore, we proposed a simple calculation, based on SFT variation, to quantify the bioactivity of MBGs. The doped and dopant-free borate MBGs could enhance the proliferation of mouse fibroblast L929 cells at a concentration of 0.5 mg/mL. These glasses also induced very low hemolysis (<5%), confirming good compatibility with red blood cells. The results of the antibacterial test revealed that all the samples could significantly decrease the viability of Pseudomonas aeruginosa. In summary, we showed that Cu-/Zn-doped borate MBGs can be fabricated using a cost-effective method and also show promise for wound healing/skin tissue engineering applications, as especially supported by the cell test with fibroblasts, good compatibility with blood, and antibacterial properties.
Collapse
Affiliation(s)
- Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Zahra Mollaei
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran
| | - Sahar Mollazadeh
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Zoleikha Azari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: (F.B.); (S.K.)
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Correspondence: (F.B.); (S.K.)
| |
Collapse
|
21
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
22
|
Zeimaran E, Pourshahrestani S, Razak NABA, Kadri NA, Kargozar S, Baino F. Nanoscale bioactive glass/injectable hydrogel composites for biomedical applications. FUNCTIONAL NANOCOMPOSITE HYDROGELS 2023:125-147. [DOI: 10.1016/b978-0-323-99638-9.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Zhang W, Sun T, Zhang J, Hu X, Yang M, Han L, Xu G, Zhao Y, Li Z. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton's jelly based on stem cell recruitment and its application in bone tissue engineering. Mater Today Bio 2022; 18:100528. [PMID: 36636638 PMCID: PMC9830312 DOI: 10.1016/j.mtbio.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The presence of periosteum can greatly affect the repair of a bone fracture. An artificial periosteum imitates the biological function of natural periosteum, which is capable of protecting and maintaining bone tissue structure and promoting bone repair. In our artificial periosteum, biocompatible methacrylate gelatin was used to provide the mechanical support of the membrane, E7 peptide added bioactivity, and Wharton's jelly provided the biological activity support of the membrane, resulting in a hydrogel membrane (G-E-W) for the chemotactic recruitment of bone marrow mesenchymal stem cells (BMSCs) and promoting cell proliferation and osteogenic differentiation. In an in vitro experiment, the G-E-W membrane recruited BMSCs and promoted cell proliferation and osteogenic differentiation. After 4 weeks and 8 weeks of implantation in a rat skull defect, the group implanted with a G-E-W membrane was superior to the blank control group and single-component membrane group in both quantity and quality of new bone. The artificial G-E-W membrane recruits BMSC chemotaxis and promotes cell proliferation and osteogenic differentiation, thereby effectively improving the repair efficiency of fractures and bone defects.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Tianze Sun
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Xiantong Hu
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Ming Yang
- Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liwei Han
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China,Corresponding author. Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China,Corresponding author. Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
24
|
Simorgh S, Alasvand N, Khodadadi M, Ghobadi F, Malekzadeh Kebria M, Brouki Milan P, Kargozar S, Baino F, Mobasheri A, Mozafari M. Additive manufacturing of bioactive glass biomaterials. Methods 2022; 208:75-91. [PMID: 36334889 DOI: 10.1016/j.ymeth.2022.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity and biocompatibility). In addition, the reported studies have confirmed that BG-reinforced constructs can improve osteogenic, angiogenic, and antibacterial activities. This review aims to provide an up-to-date report on the development of BG-containing raw biomaterials that are currently being employed for the fabrication of 3D printed scaffolds used in tissue regeneration applications with a focus on their advantages and remaining challenges.
Collapse
Affiliation(s)
- Sara Simorgh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Alasvand
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Mahboobe Khodadadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
25
|
Wang X, Tang M. Bioceramic materials with ion-mediated multifunctionality for wound healing. SMART MEDICINE 2022; 1:e20220032. [PMID: 39188732 PMCID: PMC11235610 DOI: 10.1002/smmd.20220032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 08/28/2024]
Abstract
Regeneration of both anatomic and functional integrity of the skin tissues after injury represents a huge challenge considering the sophisticated healing process and variability of specific wounds. In the past decades, numerous efforts have been made to construct bioceramic-based wound dressing materials with ion-mediated multifunctionality for facilitating the healing process. In this review, the state-of-the-art progress on bioceramic materials with ion-mediated bioactivity for wound healing is summarized. Followed by a brief discussion on the bioceramic materials with ion-mediated biological activities, the emerging bioceramic-based materials are highlighted for wound healing applications owing to their ion-mediated bioactivities, including anti-infection function, angiogenic activity, improved skin appendage regeneration, antitumor effect, and so on. Finally, concluding remarks and future perspectives of bioceramic-based wound dressing materials for clinical practice are briefly discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Min Tang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
26
|
Kargozar S, Hooshmand S, Hosseini SA, Gorgani S, Kermani F, Baino F. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196642. [PMID: 36235178 PMCID: PMC9573515 DOI: 10.3390/molecules27196642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
Abstract
Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: S.K: (S.K.); (F.B.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: S.K: (S.K.); (F.B.)
| |
Collapse
|
27
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
28
|
An enduring in vitro wound healing phase recipient by bioactive glass-graphene oxide nanocomposites. Sci Rep 2022; 12:16162. [PMID: 36171341 PMCID: PMC9519557 DOI: 10.1038/s41598-022-20575-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Bioactive glass (BG) is an interesting topic in soft tissue engineering because of its biocompatibility and bonding potential to increase fibroblast cell proliferation, synthesize growth factors, and stimulate granulation tissue development. The proposed BG with and without sodium (Na), prepared by the sol–gel method, is employed in wound healing studies. The BG/graphene oxide (GO) and BG (Na-free)/GO nanocomposites were investigated against fibroblast L929 cells in vitro; the 45S5 BG nanocomposites exhibited desired cell viability (80%), cell proliferation (30%), cell migration (25%), metabolic activity, and wound contraction due to extracellular matrix (ECM) production and enhanced protein release by fibroblast cells. Additionally, the antioxidant assays for BG, BG (Na-free), GO, and BG/GO, BG (Na-free)/GO were evaluated for effective wound healing properties. The results showed decreased inflammation sites in the wound area, assessed by the (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) assay with ~ 80% radical scavenging activity, confirming their anti-inflammatory and improved wound healing properties.
Collapse
|
29
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
30
|
Kermani F, Sadidi H, Ahmadabadi A, Hoseini SJ, Tavousi SH, Rezapanah A, Nazarnezhad S, Hosseini SA, Mollazadeh S, Kargozar S. Modified Sol–Gel Synthesis of Mesoporous Borate Bioactive Glasses for Potential Use in Wound Healing. Bioengineering (Basel) 2022; 9:bioengineering9090442. [PMID: 36134988 PMCID: PMC9495454 DOI: 10.3390/bioengineering9090442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we successfully utilized nitrate precursors for the synthesis of silver (Ag)-doped borate-based mesoporous bioactive glass (MBGs) based on the 1393B3 glass formulation in the presence of a polymeric substrate (polyvinyl alcohol (PVA)) as a stabilizer of boric acid. The X-ray diffraction (XRD) analysis confirmed the glassy state of all the MBGs. The incorporation of 7.5 mol% Ag into the glass composition led to a decrease in the glass transition temperature (Tg). Improvements in the particle size, zeta potential, surface roughness, and surface area values were observed in the Ag-doped MBGs. The MBGs (1 mg/mL) had no adverse effect on the viability of fibroblasts. In addition, Ag-doped MBGs exhibited potent antibacterial activity against gram-positive and gram-negative species. In summary, a modified sol–gel method was confirmed for producing the Ag-doped 1393B3 glasses, and the primary in vitro outcomes hold promise for conducting in vivo studies for managing burns.
Collapse
Affiliation(s)
- Farzad Kermani
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad 9177948564, Iran
| | - Hossein Sadidi
- Thoracic Surgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 917699311, Iran
| | - Ali Ahmadabadi
- Department of General Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Surgical Oncology Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
- Correspondence: (A.A.); (S.M.); (S.K.); Tel.: +98-513-800-2482 (S.K.)
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Seyed Hasan Tavousi
- Department of General Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Alireza Rezapanah
- Department of General Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sahar Mollazadeh
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad 9177948564, Iran
- Correspondence: (A.A.); (S.M.); (S.K.); Tel.: +98-513-800-2482 (S.K.)
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: (A.A.); (S.M.); (S.K.); Tel.: +98-513-800-2482 (S.K.)
| |
Collapse
|
31
|
Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022; 218:930-968. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.
Collapse
|
32
|
Palierse E, Roquart M, Norvez S, Corté L. Coatings of hydroxyapatite-bioactive glass microparticles for adhesion to biological tissues. RSC Adv 2022; 12:21079-21091. [PMID: 35919836 PMCID: PMC9305725 DOI: 10.1039/d2ra02781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Adsorption of particles across interfaces has been proposed as a way to create adhesion between hydrogels and biological tissues. Here, we explore how this particle bridging approach can be applied to attach a soft polymer substrate to biological tissues, using bioresorbable and nanostructured hydroxyapatite-bioactive glass microparticles. For this, microparticles of aggregated flower-like hydroxyapatite and bioactive glass (HA-BG) were synthesized via a bioinspired route. A deposition technique using suspension spreading was developed to tune the coverage of HA-BG coatings at the surface of weakly cross-linked poly(beta-thioester) films. By varying the concentration of the deposited suspensions, we produced coatings having surface coverages ranging from 4% to 100% and coating densities ranging from 0.02 to 1.0 mg cm-2. The progressive dissolution of these coatings within 21 days in phosphate-buffered saline was followed by SEM. Ex vivo peeling experiments on pig liver capsules demonstrated that HA-BG coatings produce an up-to-two-fold increase in adhesion energy (9.8 ± 1.5 J m-2) as compared to the uncoated film (4.6 ± 0.8 J m-2). Adhesion energy was found to increase with increasing coating density until a maximum at 0.2 mg cm-2, well below full surface coverage, and then it decreased for larger coating densities. Using microscopy observations during and after peeling, we show that this maximum in adhesion corresponds to the appearance of particle stacks, which are easily separated and transferred onto the tissue. Such bioresorbable HA-BG coatings give the possibility of combining particle bridging with the storage and release of active compounds, therefore offering opportunities to design functional bioadhesive surfaces.
Collapse
Affiliation(s)
- Estelle Palierse
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Maïlie Roquart
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| |
Collapse
|
33
|
Ege D, Zheng K, Boccaccini AR. Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions. ACS APPLIED BIO MATERIALS 2022; 5:3608-3622. [PMID: 35816417 PMCID: PMC9382634 DOI: 10.1021/acsabm.2c00384] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the early 2000s, borate bioactive glasses (BBGs) have been extensively investigated for biomedical applications. The research so far indicates that BBGs frequently exhibit superior bioactivity and bone healing capacity compared to silicate glasses. They are also suitable candidates as drug delivery devices for infection or disease treatment such as osteoporosis. Additionally, BBGs are also an excellent option for wound healing applications, which includes the availability of commercial (FDA approved) microfibrous BBG dressings to treat chronic wounds. By addition of modifying ions, the bone or wound healing capacity of BBGs can be enhanced. For instance, addition of copper ions into BBGs was shown to drastically increase blood vessel formation for wound healing applications. Moreover, addition of ions such as magnesium, strontium, and cobalt improves bone healing. Other recent research interest related to BBGs is focused on nerve and muscle regeneration applications, while cartilage regeneration is also suggested as a potential application field for BBGs. BBGs are commonly produced by melt-quenching; however, sol-gel processing of BBGs is emerging and appears to be a promising alternative. In this review paper, the physical and biological characteristics of BBGs are analyzed based on the available literature, the applications of BBGs are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Duygu Ege
- Institute of Biomedical Engineering, Bogazici University, Rasathane Street, Kandilli 34684, Istanbul, Turkey.,Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
34
|
Lee JJ, Ng HY, Lin YH, Lin TJ, Kao CT, Shie MY. The Synergistic Effect of Cyclic Tensile Force and Periodontal Ligament Cell-Laden Calcium Silicate/Gelatin Methacrylate Auxetic Hydrogel Scaffolds for Bone Regeneration. Cells 2022; 11:2069. [PMID: 35805154 PMCID: PMC9265804 DOI: 10.3390/cells11132069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The development of 3D printing technologies has allowed us to fabricate complex novel scaffolds for bone regeneration. In this study, we reported the incorporation of different concentrations of calcium silicate (CS) powder into fish gelatin methacrylate (FGelMa) for the fabrication of CS/FGelMa auxetic bio-scaffolds using 3D printing technology. Our results showed that CS could be successfully incorporated into FGelMa without influencing the original structural components of FGelMa. Furthermore, it conveyed that CS modifications both the mechanical properties and degradation rates of the scaffolds were improved in accordance with the concentrations of CS upon modifications of CS. In addition, the presence of CS enhanced the adhesion and proliferation of human periodontal ligament cells (hPDLs) cultured in the scaffold. Further osteogenic evaluation also confirmed that CS was able to enhance the osteogenic capabilities via activation of downstream intracellular factors such as pFAK/FAK and pERK/ERK. More interestingly, it was noted that the application of extrinsic biomechanical stimulation to the auxetic scaffolds further enhanced the proliferation and differentiation of hPDLs cells and secretion of osteogenic-related markers when compared to CS/FGelMa hydrogels without tensile stimulation. This prompted us to explore the related mechanism behind this interesting phenomenon. Subsequent studies showed that biomechanical stimulation works via YAP, which is a biomechanical cue. Taken together, our results showed that novel auxetic scaffolds could be fabricated by combining different aspects of science and technology, in order to improve the future chances of clinical applications for bone regeneration.
Collapse
Affiliation(s)
- Jian-Jr Lee
- School of Medicine, China Medical University, Taichung City 406040, Taiwan;
- Department of Plastic & Reconstruction Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Hooi-Yee Ng
- Department of Education, China Medical University Hospital, Taichung City 404332, Taiwan;
| | - Yen-Hong Lin
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung City 406040, Taiwan;
| | - Ting-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan;
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| |
Collapse
|
35
|
Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol 2022; 13:909408. [PMID: 35712701 PMCID: PMC9195145 DOI: 10.3389/fphar.2022.909408] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
Targeted delivery by either systemic or local targeting of therapeutics to the bone is an attractive treatment for various bone metabolism diseases such as osteoporosis, osteoarthritis, osteosarcoma, osteomyelitis, etc. To overcome the limitations of direct drug delivery, the combination of bone-targeted agents with nanotechnology has the opportunity to provide a more effective therapeutic approach, where engineered nanoparticles cause the drug to accumulate in the bone, thereby improving efficacy and minimizing side effects. Here, we summarize the current advances in systemic or local bone-targeting approaches and nanosystem applications in bone diseases, which may provide new insights into nanocarrier-delivered drugs for the targeted treatment of bone diseases. We envision that novel drug delivery carriers developed based on nanotechnology will be a potential vehicle for the treatment of currently incurable bone diseases and are expected to be translated into clinical applications.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianmin Wu
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
36
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
38
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
39
|
Yamaguchi S, Takeuchi T, Ito M, Kokubo T. CaO-B 2O 3-SiO 2 glass fibers for wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:15. [PMID: 35072800 PMCID: PMC8786745 DOI: 10.1007/s10856-021-06618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
It was reported by Jung and Day in 2011 that a cotton-like glass fiber pad made of borate glass 13-93B3 demonstrated a remarkable wound healing effect. It was approved for sale as a novel wound dressing in the management of acute and chronic wounds in 2016. However, the detailed mechanism of its wound healing effect has not been reported. In the present study, glass fibers of different composition in the system CaO-B2O3-SiO2 were prepared and their in vitro properties investigated to determine the role of the constituent components in wound healing. Fine glass fibers that were 0.6-2.0 μm in diameter were obtained by a melt blown method. However, these fibers were accompanied by small glass beads because of the low viscosity of the glass melts. 13-93B3 glass released an appreciable amount of borate and calcium ions into simulated body fluid (SBF). The amounts of these released ions decreased with partial replacement of the B2O3 in 13-93B3 with SiO2. The addition of large amounts of the borate and calcium ions into the culture medium decreased the viability of the L929 fibroblasts. Partial replacement of the B2O3 in 13-93B3 with SiO2 induced the formation of an apatite-like phase amenable to the adsorption of biological components on its surface in SBF. The wound healing effect of these glass fibers of different composition is worth examining in future animal experiments.
Collapse
Affiliation(s)
- Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| | - Tamaki Takeuchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Morihiro Ito
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
40
|
Kargozar S, Milan PB, Amoupour M, Kermani F, Gorgani S, Nazarnezhad S, Hooshmand S, Baino F. Osteogenic Potential of Magnesium (Mg)-Doped Multicomponent Bioactive Glass: In Vitro and In Vivo Animal Studies. MATERIALS 2022; 15:ma15010318. [PMID: 35009464 PMCID: PMC8745928 DOI: 10.3390/ma15010318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
The use of bioactive glasses (BGs) has been quite fruitful in hard tissue engineering due to the capability of these materials to bond to living bone. In this work, a melt-derived magnesium (Mg)-doped BG (composition: 45SiO2–3P2O5–26CaO–15Na2O–7MgO–4K2O (mol.%)) was synthesized for being used in bone reconstruction. The prepared BGs were then manufactured as three-dimensional (3D) scaffolds by using the sponge replica approach. The microstructure of the samples was assessed by X-ray diffraction (XRD) and the surface morphology was observed by using scanning electron microscopy (SEM). The in vitro bioactivity and the release of osteo-stimulatory Mg2+ ions from the prepared samples were investigated over 7 days of incubation in simulated body fluids (SBF). In vitro cellular analyses revealed the compatibility of the Mg-doped BGs with human osteosarcoma cells (MG-63 cell line). Moreover, the Mg-doped BGs could induce bone nodule formation in vitro and improve the migratory ability of human umbilical vein endothelial cells (HUVECs). In vivo osteogenic capacity was further evaluated by implanting the BG-derived scaffolds into surgically-created critical-size bone defects in rats. Histological and immunohistological observations revealed an appropriate bone regeneration in the animals receiving the glass-based scaffolds after 12 weeks of surgery. In conclusion, our study indicates the effectiveness of the Mg-doped BGs in stimulating osteogenesis in both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
- Correspondence: (S.K.); (P.B.M.); (F.B.)
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961-4535, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran
- Correspondence: (S.K.); (P.B.M.); (F.B.)
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran;
| | - Farzad Kermani
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Francesco Baino
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (S.K.); (P.B.M.); (F.B.)
| |
Collapse
|
41
|
Zhu L, Li J, Dong Y. Effect of mesoporous bioactive glass on odontogenic differentiation of human dental pulp stem cells. PeerJ 2021; 9:e12421. [PMID: 34900414 PMCID: PMC8621711 DOI: 10.7717/peerj.12421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 01/09/2023] Open
Abstract
Healthy pulp tissue plays an important role in normal function and long-term retention of teeth. Mesoporous bioactive glass (MBG) as a kind of regenerative biomaterials shows the potential in preserving the vital pulp. In this study, MBG prepared by organic template method combined with sol-gel method were used in human dental pulp cell culture and ectopic mineralization experiment. Real-Time PCR was used to explore its ability to induce odontogenic differentiation of dental pulp cells. MBG and rat crowns were implanted under the skin of nude mice for 4 weeks to observe the formation of pulp dentin complex. We found that MBG can release Si and Ca ions and has a strong mineralization activity in vitro. The co-culture of MBG with human dental pulp cells promoted the expression of DMP-1 (dentin matrix protein-1) and ALP (alkalinephosphatase) without affecting cell proliferation. After 4 weeks of subcutaneous implantation in nude mice, the formation of hard tissue with regular structure under the material could be seen, and the structure was similar to dentin tubules. These results indicate that MBG can induce the differentiation of dental pulp cells and the formation of dental pulp-dentin complex and has the potential to promote the repair and regeneration of dental pulp injuries.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jingyi Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
42
|
Majumdar S, Gupta S, Krishnamurthy S. Multifarious applications of bioactive glasses in soft tissue engineering. Biomater Sci 2021; 9:8111-8147. [PMID: 34766608 DOI: 10.1039/d1bm01104a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE), a new paradigm in regenerative medicine, repairs and restores the diseased or damaged tissues and eliminates drawbacks associated with autografts and allografts. In this context, many biomaterials have been developed for regenerating tissues and are considered revolutionary in TE due to their flexibility, biocompatibility, and biodegradability. One such well-documented biomaterial is bioactive glasses (BGs), known for their osteoconductive and osteogenic potential and their abundant orthopedic and dental clinical applications. However, in the last few decades, the soft tissue regenerative potential of BGs has demonstrated great promise. Therefore, this review comprehensively covers the biological application of BGs in the repair and regeneration of tissues outside the skeleton system. BGs promote neovascularization, which is crucial to encourage host tissue integration with the implanted construct, making them suitable biomaterial scaffolds for TE. Moreover, they heal acute and chronic wounds and also have been reported to restore the injured superficial intestinal mucosa, aiding in gastroduodenal regeneration. In addition, BGs promote regeneration of the tissues with minimal renewal capacity like the heart and lungs. Besides, the peripheral nerve and musculoskeletal reparative properties of BGs are also reported. These results show promising soft tissue regenerative potential of BGs under preclinical settings without posing significant adverse effects. Albeit, there is limited bench-to-bedside clinical translation of elucidative research on BGs as they require rigorous pharmacological evaluations using standardized animal models for assessing biomolecular downstream pathways.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
43
|
Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. CERAMICS 2021; 4:542-563. [DOI: 10.3390/ceramics4040039] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Calcium phosphates (CaPs) are biocompatible and biodegradable materials showing a great promise in bone regeneration as good alternative to the use of auto- and allografts to guide and support tissue regeneration in critically-sized bone defects. This can be certainly attributed to their similarity to the mineral phase of natural bone. Among CaPs, hydroxyapatite (HA) deserves a special attention as it, actually is the main inorganic component of bone tissue. This review offers a comprehensive overview of past and current trends in the use of HA as grafting material, with a focus on manufacturing strategies and their effect on the mechanical properties of the final products. Recent advances in materials processing allowed the production of HA-based grafts in different forms, thus meeting the requirements for a range of clinical applications and achieving enthusiastic results both in vitro and in vivo. Furthermore, the growing interest in the optimization of three-dimensional (3D) porous grafts, mimicking the trabecular architecture of human bone, has opened up new challenges in the development of bone-like scaffolds showing suitable mechanical performances for potential use in load bearing anatomical sites.
Collapse
Affiliation(s)
- Elisa Fiume
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Giulia Magnaterra
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
44
|
Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater 2021; 129:1-17. [PMID: 34010692 DOI: 10.1016/j.actbio.2021.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Mesoporous silica-based materials, especially mesoporous bioactive glasses (MBGs), are being highly considered for biomedical applications, including drug delivery and tissue engineering, not only because of their bioactivity and biocompatibility but also due to their tunable composition and potential use as drug delivery carriers owing to their controllable nanoporous structure. Numerous researches have reported that MBGs can be doped with various therapeutic ions (strontium, copper, magnesium, zinc, lithium, silver, etc.) and loaded with specific biomolecules (e.g., therapeutic drugs, antibiotics, growth factors) achieving controllable loading and release kinetics. Therefore, co-delivery of ions and biomolecules using a single MBG carrier is highly interesting as this approach provides synergistic effects toward improved therapeutic outcomes in comparison to the strategy of sole drug or ion delivery. In this review, we discuss the state-of-the-art in the field of mesoporous silica-based materials used for co-delivery of ions and therapeutic drugs with osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties. The analysis of the literature reveals that specially designed mesoporous nanocarriers can release multiple ions and drugs at therapeutically safe and relevant levels, achieving the desired biological effects (in vivo, in vitro) for specific biomedical applications. It is expected that this review on the ion/drug co-delivery concept using MBG carriers will shed light on the advantages of such co-delivery systems for clinical use. Areas for future research directions are identified and discussed. STATEMENT OF SIGNIFICANCE: Many studies in literature focus on the potential of single drug or ion delivery by mesoporous silica-based materials, exploiting the bioactivity, biocompatibility, tunable composition and controllable nanoporosity of these materials. Recenlty, studies have adopted the "dual-delivery" concept, by designing multi-functional mesoporous silica-based systems which are capable to deliver both biologically active ions and biomolecules (growth factors, drugs) simultaneously in order to achieve synergy of their complementary therapeutic activities. This review summarizes the state of the art in the field, with focus on osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties, and discusses the challenges and prospects for further progress in this area, expecting to generate broader interest in the technology for applications in disease treatment and regenerative medicine.
Collapse
|
45
|
Stone-Weiss N, Bradtmüller H, Eckert H, Goel A. Composition-Structure-Solubility Relationships in Borosilicate Glasses: Toward a Rational Design of Bioactive Glasses with Controlled Dissolution Behavior. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31495-31513. [PMID: 34219455 DOI: 10.1021/acsami.1c07519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their fast but tunable degradation kinetics (in comparison to silicates) and excellent bioactivity, the past decade has witnessed an upsurge in the research interest of borate/borosilicate-based bioactive glasses for their potential use in a wide range of soft tissue regeneration applications. Nevertheless, most of these glasses have been developed using trial-and-error approaches wherein SiO2 has been gradually replaced by B2O3. One major reason for using this empirical approach is the complexity of short-to-intermediate range structures of these glasses which greatly complicate the development of a thorough understanding of composition-structure-solubility relationships in these systems. Transitioning beyond the current style of composition design to a style that facilitates the development of bioactive glasses with controlled ion release tailored for specific patients/diseases requires a deeper understanding of the compositional/structural dependence of glass degradation behavior in vitro and in vivo. Accordingly, the present study aims to decipher the structural drivers controlling the dissolution kinetics and ion-release behavior of potentially bioactive glasses designed in the Na2O-B2O3-P2O5-SiO2 system across a broad compositional space in simulated body environments (pH = 7.4). By employing state-of-the-art spectroscopy-based characterization techniques, it has been shown that the degradation kinetics of borosilicate glasses depend on their R (Na2O/B2O3) and K (SiO2/B2O3) ratios, while the release of particular network-forming moieties from the glass into solution is strongly influenced by their role in-and effect on-the short-to-intermediate-range molecular structure. The current study aims to promote a rational design of borosilicate-based bioactive glasses, where a delicate balance between maximizing soft tissue regeneration and minimizing calcification and cytotoxicity can be achieved by tuning the release of ionic dissolution products (of controlled identity and abundance) from bioactive glasses into physiological media.
Collapse
Affiliation(s)
- Nicholas Stone-Weiss
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Henrik Bradtmüller
- Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, Münster D48149, Germany
- Department of Materials Engineering, Federal University of São Carlos, CP 676, São Carlos, São Paulo 13565-905, Brazil
| | - Hellmut Eckert
- Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, Münster D48149, Germany
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador Saocarlense 400, São Carlos, São Paulo 13566-590, Brazil
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
46
|
Hooshmand S, Mollazadeh S, Akrami N, Ghanad M, El-Fiqi A, Baino F, Nazarnezhad S, Kargozar S. Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3337. [PMID: 34204198 PMCID: PMC8235211 DOI: 10.3390/ma14123337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
Exploring new therapies for managing skin wounds is under progress and, in this regard, mesoporous silica nanoparticles (MSNs) and mesoporous bioactive glasses (MBGs) offer great opportunities in treating acute, chronic, and malignant wounds. In general, therapeutic effectiveness of both MSNs and MBGs in different formulations (fine powder, fibers, composites etc.) has been proved over all the four stages of normal wound healing including hemostasis, inflammation, proliferation, and remodeling. The main merits of these porous substances can be summarized as their excellent biocompatibility and the ability of loading and delivering a wide range of both hydrophobic and hydrophilic bioactive molecules and chemicals. In addition, doping with inorganic elements (e.g., Cu, Ga, and Ta) into MSNs and MBGs structure is a feasible and practical approach to prepare customized materials for improved skin regeneration. Nowadays, MSNs and MBGs could be utilized in the concept of targeted therapy of skin malignancies (e.g., melanoma) by grafting of specific ligands. Since potential effects of various parameters including the chemical composition, particle size/morphology, textural properties, and surface chemistry should be comprehensively determined via cellular in vitro and in vivo assays, it seems still too early to draw a conclusion on ultimate efficacy of MSNs and MBGs in skin regeneration. In this regard, there are some concerns over the final fate of MSNs and MBGs in the wound site plus optimal dosages for achieving the best outcomes that deserve careful investigation in the future.
Collapse
Affiliation(s)
- Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Sahar Mollazadeh
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (S.M.); (N.A.); (M.G.)
| | - Negar Akrami
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (S.M.); (N.A.); (M.G.)
| | - Mehrnoosh Ghanad
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran; (S.M.); (N.A.); (M.G.)
| | - Ahmed El-Fiqi
- Glass Research Department, National Research Centre, Cairo 12622, Egypt;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
47
|
Sivaraj D, Chen K, Chattopadhyay A, Henn D, Wu W, Noishiki C, Magbual NJ, Mittal S, Mermin-Bunnell AM, Bonham CA, Trotsyuk AA, Barrera JA, Padmanabhan J, Januszyk M, Gurtner GC. Hydrogel Scaffolds to Deliver Cell Therapies for Wound Healing. Front Bioeng Biotechnol 2021; 9:660145. [PMID: 34012956 PMCID: PMC8126987 DOI: 10.3389/fbioe.2021.660145] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous wounds are a growing global health burden as a result of an aging population coupled with increasing incidence of diabetes, obesity, and cancer. Cell-based approaches have been used to treat wounds due to their secretory, immunomodulatory, and regenerative effects, and recent studies have highlighted that delivery of stem cells may provide the most benefits. Delivering these cells to wounds with direct injection has been associated with low viability, transient retention, and overall poor efficacy. The use of bioactive scaffolds provides a promising method to improve cell therapy delivery. Specifically, hydrogels provide a physiologic microenvironment for transplanted cells, including mechanical support and protection from native immune cells, and cell-hydrogel interactions may be tailored based on specific tissue properties. In this review, we describe the current and future directions of various cell therapies and usage of hydrogels to deliver these cells for wound healing applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
48
|
Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021; 204:111802. [PMID: 33964526 DOI: 10.1016/j.colsurfb.2021.111802] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Titanium (Ti) is widely applied as bone-anchoring implants in dental and orthopedic applications owing to its superior mechanical characteristics, high corrosion resistance, and excellent biocompatibility. Nevertheless, Ti-based implants with the deficiencies of insufficient osteoinduction and associated infections can result in implant failure, which significantly limits its applications in some cases. In this work, hierarchically hybrid biocoatings on Ti implants are developed by gradual incorporation of polydopamine (PDA), ZnO nanoparticles (nZnO), and chitosan (CS)/nanocrystal hydroxyapatite (nHA) via oxidative self-polymerization, nanoparticle deposition, solvent casting and evaporation methods for enhancing their antibacterial activity and osteogenesis. The modification of PDA on porous reticular Ti substrates greatly reduces the surface roughness, wettability, protein adsorption, and provides high adhesion to the deposited nZnO. Further, incorporating nZnO on PDA-coated Ti surfaces affects the surface structure and wettability, significantly inhibits the growth of both Staphylococcus aureus and Escherichia coli. Moreover, the CS/nHA-doped coating on the nZnO-modified Ti surfaces remarkably improves cytocompatibility and enhances the osteogenic differentiation of MC3T3-E1 cells by upregulating the protein expression of alkaline phosphatase. This work offers a promising alternative for developing Ti implants with long-lifetime bioactivity to achieve strong antibacterial ability and enhanced bone formation for potential dental/orthopedic applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinqiang Liu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
49
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
50
|
Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021; 9:2804-2824. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful. In the past few decades, biomaterials have gained prominence in the field of tissue engineering, in view of their major role in the regenerative process. Here we describe the effect of SARS-CoV-2 on multiple tissues/organs, and provide evidence for the positive role of biomaterials in aiding tissue repair. These findings are further extrapolated to explore their prospects as a therapeutic platform to address the tissue/organ damage that is frequently observed during this viral outbreak. This study suggests that the biomaterial-based approach could be an effective strategy for regenerating tissues/organs damaged by SARS-CoV-2.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Rupali Singh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Deepa Ghosh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| |
Collapse
|