1
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Qian W, Xu CY, Hong W, Li ZM, Xu DG. Transmembrane protein 176B promotes epithelial-mesenchymal transition in colorectal cancer through inflammasome inhibition. World J Gastrointest Oncol 2025; 17:97673. [PMID: 40092936 PMCID: PMC11866255 DOI: 10.4251/wjgo.v17.i3.97673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Activation of the epithelial-mesenchymal transition (EMT), a pivotal process in tumor metastasis and evasion, as well as the NLRP3 inflammasome, both promote colorectal cancer (CRC) progression. Recent studies have shown that Transmembrane protein 176B (TMEM176B) regulates NLRP3 and promotes CRC malignant phenotypes. AIM To investigate the role of TMEM176B in modulating NLRP3 inflammasome and its implications on EMT and tumor progression in CRC. METHODS CRC in situ mouse and co-cultured cell models were established using CT26 cells, BALB/c mice, and primary cultured mouse natural killer (NK) cells. Short hairpin RNA knocked down TMEM176B and NLRP3 expression in CT26 cells. Fluorescence imaging, Terminal deoxynucleotidyl transferase dUTP nick end labeling assays, immunohistochemistry staining, flow cytometry, and molecular assays were used to investigate the effects of TMEM176B knockdown on the NLRP3 inflammasome in NK cells to assess tumor metastasis, apoptosis, and EMT indicators. RESULTS Silencing TMEM176B in CRC mice significantly reduced tumor metastasis, proliferation, and EMT, while activating apoptosis, NLRP3 inflammasome, and NK cell activity. Furthermore, silencing TMEM176B in co-cultured cell models inhibited cell migration and invasion, and promoted apoptosis. The interference of NLRP3 reversed these effects by modulating key proteins such as phosphorylated nuclear factor kappa B subunit 1 p65, matrix metallopeptidase 9, and transforming growth factor-β. CONCLUSION This study highlights the critical role of TMEM176B/NLRP3 in CRC progression and provides a basis for targeting this axis as a novel therapeutic approach to manage CRC progression and metastasis.
Collapse
Affiliation(s)
- Wei Qian
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Chong-Yi Xu
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Wei Hong
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhe-Ming Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Dao-Gun Xu
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
3
|
Hu Y, Qi E, Yun C, Li X, Liu F, Cheng Z, Guan N, Wang Q, Zhao H, Xiao W, Peng L, Yang J, Yu X. Photothermal therapy combined with a STING agonist induces pyroptosis, and gasdermin D could be a new biomarker for guiding the treatment of pancreatic cancer. J Transl Med 2025; 23:271. [PMID: 40038726 PMCID: PMC11877846 DOI: 10.1186/s12967-025-06247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
PURPOSE Although photothermal therapy (PTT) can induce antitumour immunity, the mechanisms underlying its effects in pancreatic cancer (PC) require further exploration. In this study, the mechanism of action of PTT and its connection to pyroptosis as well as the therapeutic potential of PTT alone and in combination with STING agonists, were investigated. In addition, a biomarker of PC was found to stratify patients who are suitable for PTT. EXPERIMENTAL DESIGN We explored whether PTT can induce pyroptosis in vitro and evaluated the therapeutic efficacy and antitumour immunity-inducing ability of PTT combined with STING agonist (c-di-GMP) as immune adjuvant in vivo in PC. We also evaluated gasdermin D (GSDMD) expression in tumour tissues and investigated drug sensitivity in patient-derived organoids (PDOs) with differential GSDMD expression. RESULTS Our study demonstrated that local PTT induces pyroptosis via the caspase-1/GSDMD pathway and elicits antitumour immunity. PTT combined with a STING agonist exhibits better therapeutic efficacy than PTT alone while limiting distant tumour metastasis, and enhances the immune response by promoting dendritic cell maturation, increasing the frequency of tumour infiltrating T cells, and converting macrophages from the M2 to the M1 phenotype. In addition, we found that GSDMD is highly expressed in tumour tissues and that overexpression of GSDMD in PC might suggest increased resistance to chemotherapy and the potential benefits of local therapy. We further confirmed that PDOs with higher GSDMD expression are less sensitive to a chemotherapeutic agent (5-Fluorouracil) than PDOs with lower GSDMD expression, making GSDMD a new biomarker for identifying patients who may benefit from PTT. CONCLUSIONS In this work, c-di-GMP was used as an immune adjuvant for PTT to treat PC for the first time, and the results provide clues for the development of novel combination immunotherapies that simultaneously suppress primary tumours and distant metastases. GSDMD has great potential as a new biomarker for the selection of individualized treatment modalities.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - ErPeng Qi
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Chao Yun
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Specialty in Oncology, Jinzhou Medical University, Jinzhou, China
| | - Xi Li
- Department of Urology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - Fangyi Liu
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Na Guan
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Specialty in Oncology, Jinzhou Medical University, Jinzhou, China
| | - Qiong Wang
- Department of Ultrasound, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Huixia Zhao
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenhua Xiao
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liang Peng
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jingwen Yang
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
4
|
Khawas S, Sharma N. Cell death crosstalk in respiratory diseases: unveiling the relationship between pyroptosis and ferroptosis in asthma and COPD. Mol Cell Biochem 2025; 480:1305-1326. [PMID: 39112808 DOI: 10.1007/s11010-024-05062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/29/2024] [Indexed: 02/21/2025]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous obstructive diseases characterized by airflow limitations and are recognized as significant contributors to fatality all over the globe. Asthma accounts for about 4, 55,000 deaths, and COPD is the 3rd leading contributor of mortality worldwide. The pathogenesis of these two obstructive disorders is complex and involves numerous mechanistic pathways, including inflammation-mediated and non-inflammation-mediated pathways. Among all the pathological categorizations, programmed cell deaths (PCDs) play a dominating role in the progression of these obstructive diseases. The two major PCDs that are involved in structural and functional remodeling in the progression of asthma and COPD are Pyroptosis and Ferroptosis. Pyroptosis is a PCD mechanism mediated by the activation of the Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, leading to the maturation and release of Interleukin-1β and Interleukin-18, whereas ferroptosis is a lipid peroxidation-associated cell death. In this review, the major molecular pathways contributing to these multifaceted cell deaths have been discussed, and crosstalk among them regarding the pathogenesis of asthma and COPD has been highlighted. Further, the possible therapeutic approaches that can be utilized to mitigate both cell deaths at once have also been illustrated.
Collapse
Affiliation(s)
- Sayak Khawas
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
5
|
Yang H, Sun T, Sun Z, Wang H, Liu D, Wu D, Qin T, Zhou M. Unravelling the role of ubiquitin-specific proteases in breast carcinoma: insights into tumour progression and immune microenvironment modulation. World J Surg Oncol 2025; 23:60. [PMID: 39979972 PMCID: PMC11841324 DOI: 10.1186/s12957-025-03667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer is a prevalent malignancy worldwide, and its treatment has increasingly shifted towards precision medicine, with immunotherapy emerging as a key therapeutic strategy. Deubiquitination, an essential epigenetic modification, is regulated by deubiquitinating enzymes (DUBs) and plays a critical role in immune function and tumor progression. Ubiquitin-specific proteases (USPs), a prominent subgroup of DUBs, are involved in regulating immune cell functions, antigen processing, and T cell development in the context of breast cancer. Certain USPs also modulate the differentiation of immune cells, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), within the breast cancer immune microenvironment. Furthermore, several USPs influence the expression of PD-L1, thus affecting the efficacy of immune checkpoint inhibitors. The overexpression of USPs may promote immune evasion, contributing to the development of treatment resistance. This review elucidates the role of USPs in modulating the immune microenvironment and immune responses in breast cancer. Additionally, it discusses effective strategies for combining USP inhibitors with other therapeutic agents to enhance treatment outcomes. Therefore, targeting USPs presents the potential to enhance the efficacy of immunotherapy and overcome drug resistance, offering a more effective treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Huiyuan Yang
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China
| | - Tingting Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Haining Wang
- Department of Oncology, No. 971 Hospital of the People's Liberation Army Navy, Qingdao, 266001, China
| | - Dongjie Liu
- Department of Second Recuperation, Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, Dalian, 116013, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Tao Qin
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Mi Zhou
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
6
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Matico R, Grauwen K, Chauhan D, Yu X, Abdiaj I, Adhikary S, Adriaensen I, Aranzazu GM, Alcázar J, Bassi M, Brisse E, Cañellas S, Chaudhuri S, Delgado F, Diéguez-Vázquez A, Du Jardin M, Eastham V, Finley M, Jacobs T, Keustermans K, Kuhn R, Llaveria J, Leenaerts J, Linares ML, Martín ML, Martín-Pérez R, Martínez C, Miller R, Muñoz FM, Muratore ME, Nooyens A, Perez-Benito L, Perrier M, Pietrak B, Serré J, Sharma S, Somers M, Suarez J, Tresadern G, Trabanco AA, Van den Bulck D, Van Gool M, Van Hauwermeiren F, Varghese T, Vega JA, Youssef SA, Edwards MJ, Oehlrich D, Van Opdenbosch N. Navigating from cellular phenotypic screen to clinical candidate: selective targeting of the NLRP3 inflammasome. EMBO Mol Med 2025; 17:54-84. [PMID: 39653810 PMCID: PMC11730736 DOI: 10.1038/s44321-024-00181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in host defense and drives inflammation against microbial threats, crystals, and danger-associated molecular patterns (DAMPs). Dysregulation of NLRP3 activity is associated with various human diseases, making it an attractive therapeutic target. Patients with NLRP3 mutations suffer from Cryopyrin-Associated Periodic Syndrome (CAPS) emphasizing the clinical significance of modulating NLRP3. In this study, we present the identification of a novel chemical class exhibiting selective and potent inhibition of the NLRP3 inflammasome. Through a comprehensive structure-activity relationship (SAR) campaign, we optimized the lead molecule, compound A, for in vivo applications. Extensive in vitro and in vivo characterization of compound A confirmed the high selectivity and potency positioning compound A as a promising clinical candidate for diseases associated with aberrant NLRP3 activity. This research contributes to the ongoing efforts in developing targeted therapies for conditions involving NLRP3-mediated inflammation, opening avenues for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Rosalie Matico
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Karolien Grauwen
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dhruv Chauhan
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Xiaodi Yu
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Irini Abdiaj
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Suraj Adhikary
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Ine Adriaensen
- Janssen Research & Development, LLC, In Vivo Sciences (IVS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Garcia Molina Aranzazu
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jesus Alcázar
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Michela Bassi
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ellen Brisse
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Shubhra Chaudhuri
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Spring House, PA, 19044, USA
| | - Francisca Delgado
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Marc Du Jardin
- Janssen Research & Development, LLC, Discovery Pharmaceutics, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Victoria Eastham
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael Finley
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Tom Jacobs
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ken Keustermans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Robert Kuhn
- Janssen Interventional Oncology, Spring House, PA, 19044, USA
| | - Josep Llaveria
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jos Leenaerts
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria Lourdes Linares
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Maria Luz Martín
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Rosa Martín-Pérez
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Carlos Martínez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Robyn Miller
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Frances M Muñoz
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael E Muratore
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Amber Nooyens
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Laura Perez-Benito
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mathieu Perrier
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Beth Pietrak
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Jef Serré
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sujata Sharma
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Marijke Somers
- Janssen Research & Development, LLC, Drug Metabolism and Phamacokinetcs (DMPK), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Javier Suarez
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Gary Tresadern
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Andres A Trabanco
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Dries Van den Bulck
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michiel Van Gool
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Teena Varghese
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Juan Antonio Vega
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Sameh A Youssef
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Matthew J Edwards
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
8
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024; 30:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
9
|
Zhao C, Ma M, Yang J, Ye Z, Ma P, Song D. "Hedgehog Ball"-Shaped Nanoprobes for Multimodal Detection and Imaging of Inflammatory Markers in Osteosarcoma Using Fluorescence and Electrochemiluminescence. Anal Chem 2024; 96:16053-16062. [PMID: 39316735 DOI: 10.1021/acs.analchem.4c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Inflammation can affect the progression of cancer at tumor sites, such as in osteosarcoma, by intensifying metastasis and complicating outcomes. The current diagnostic methods lack the specificity and sensitivity required for early and accurate detection, particularly in differentiating between inflammation-induced changes and tumor activities. To address this, a novel "hedgehog ball"-shaped nanoprobe, Fe3O4@Au-pep-CQDs, was developed and designed to enhance the detection of caspase-1, a key marker of inflammation. This magnetic nanoprobe facilitates simultaneous fluorescence (FL) and electrochemiluminescence (ECL) detection. Magnetic separation minimizes the quenching of nanoparticles in solution and eliminates the need for frequent electrode replacement in ECL tests, thereby simplifying diagnostic procedures. The experimental results showed that in the detection of caspase-1, the nanoprobe had a detection limit of 0.029 U/mL (FL) and 0.033 U/mL (ECL) and had a dynamic range of 0.05 to 1.0 U/mL. Additionally, the nanoprobe achieved high recovery rates of 94.36 to 102.44% (FL) and 94.36-100.12% (ECL) in spiked biological samples. Furthermore, the nanoprobe's capabilities were extended to in vivo bioimaging to provide direct, intuitive visualization of biological processes. These novel nanoprobes were able to significantly enhance the accurate detection of inflammation at tumor sites, thereby optimizing both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
10
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
11
|
Liu Y, Jiang Z, Zhang L, Tian W, Lin A, Li M. Blockage of the NLRP3 inflammasome by MCC950 inhibits migration and invasion in adenomyosis. Reprod Biomed Online 2024; 49:104319. [PMID: 39121559 DOI: 10.1016/j.rbmo.2024.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 08/12/2024]
Abstract
RESEARCH QUESTION Does the NOD-like receptor protein 3 (NLRP3) inflammasome have an effect in adenomyosis? DESIGN Fresh-frozen endometrial tissues and paraffin specimens were obtained from endometrial tissues from patients with adenomyosis and controls. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were applied to assess expression of the NLRP3 inflammasome components. Primary eutopic endometrial stromal cells were isolated from the uteri of patients with adenomyosis. After NLRP3 was knocked down using small interfering RNA, proliferation, invasion and epithelial-mesenchymal transition (EMT) were evaluated using EdU, CCK8, transwell assays and western blot. Importantly, a mouse model of adenomyosis was established to evaluate the effects of the NLRP3 inhibitor MCC950 on the formation of adenomyosis. RESULTS Expression of the NLRP3 inflammasome components was elevated in the ectopic or eutopic endometrium of patients with adenomyosis. NLRP3 knockdown inhibited migration, invasion and EMT in endometrial cells and primary endometrial cells (P < 0.0001). MCC950, which blocks the NLRP3 inflammasome, reduced migration and invasion of endometrial cells (P < 0.01) and primary endometrial cells (P < 0.0001) considerably. Importantly, in the mouse model of adenomyosis, MCC950 had a mitigating effect on the severity of adenomyosis (P < 0.01). CONCLUSIONS NLRP3 was found to enhance migration, invasion and EMT of human endometrial cells in adenomyosis. Notably, the NLRP3 inhibitor MCC950 reduced migration and invasion of endometrial cells effectively. Furthermore, in the mouse model of adenomyosis, MCC950 exhibited a therapeutic effect by alleviating the severity of adenomyosis.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhou Jiang
- Department of Reproductive Medicine, Qingdao Women and Children's Hospital, Qingdao, Shandong, People's Republic of China
| | - Lu Zhang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Jining Medical Univeristy, Jining, Shandong, People's Republic of China
| | - Wei Tian
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Aimin Lin
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, P.R. China
| | - Mingjiang Li
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
12
|
Bao X, Sun M, Meng L, Zhang H, Yi X, Zhang P. Applications of pyroptosis activators in tumor immunotherapy. Mater Today Bio 2024; 28:101191. [PMID: 39221221 PMCID: PMC11363858 DOI: 10.1016/j.mtbio.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Contemporary progress in tumor immunotherapy has solidified its role as an effective approach in combating cancer. Nonetheless, the prevalent "immune cold" state within the tumor microenvironment poses a substantial barrier to its efficacy. Addressing this, pyroptosis-a gasdermin-mediated programmed cell death characterized by its inflammatory profile-emerges as a crucial mechanism. It catalyzes the release of vast quantities of pro-inflammatory cytokines and immunogens, potentially transforming immunosuppressive "cold" tumors into reactive "hot" ones. Herein, we will initially present an overview of pyroptosis as a distinct form of cell death, along with its molecular mechanisms. Subsequently, we will focus on introducing how pyroptosis activators are utilized in the field of tumor immunotherapy. Insights gained from applications of pyroptosis activators in tumor immunotherapy could lead to the development of safe and efficient pyroptosis activators, significantly enriching the arsenal for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Bao
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Mengmeng Sun
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Lingfei Meng
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Hong Zhang
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| |
Collapse
|
13
|
Bao H, Chen Y, Zhang Y, Lan H, Jin K. Exosomes-based immunotherapy for cancer: Effective components in the naïve and engineered forms. Int Immunopharmacol 2024; 139:112656. [PMID: 39043104 DOI: 10.1016/j.intimp.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
Today, cancer treatment is one of the main challenges for researchers. The main cause of tumor cell formation is mutations that lead to uncontrolled proliferation and inhibition of apoptosis in malignant cells. Tumor cells also create a microenvironment that can suppress the immune system cells' responses through various methods, including producing soluble factors and cell-to-cell communication. After being produced from tumor cells, exosomes can also affect the functions of other cells in this microenvironment. Various studies have shown that exosomes from different sources, including tumor cells and immune cells, can be used to treat cancers due to their characteristics. Since tumor cells are rich sources of various types of tumor peptides, they can induce anti-tumor responses. Immune cells also produce exosomes that mimic the functions of their cells of origin, such that exosomes derived from NK cells and CTLs can directly lead to their apoptosis after merging with tumor cells. However, many researchers have pointed out that naïve exosomes have a limited therapeutic function, and their therapeutic potential can be increased by manipulating and engineering them. There are various methods to modify exosomes and improve their therapeutic potential. In general, these methods are divided into two parts, which include changing the cell of origin of the exosome and encapsulating the exosome to carry different drugs. In this review, we will discuss the studies on the therapeutic use of naive and engineered exosomes and provide an update on new studies in this field.
Collapse
Affiliation(s)
- Huan Bao
- Department of Neurosurgery, Jiashan First People's Hospital, Jiashan First People's Hospital Luoxing Branch, Jiashan, Zhejiang 314100, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China
| | - Youni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital, Taizhou, Zhejiang 317200, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China.
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
14
|
Hu M, Deng F, Song X, Zhao H, Yan F. The crosstalk between immune cells and tumor pyroptosis: advancing cancer immunotherapy strategies. J Exp Clin Cancer Res 2024; 43:190. [PMID: 38987821 PMCID: PMC11234789 DOI: 10.1186/s13046-024-03115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Pyroptosis is a cell death process characterized by cell swelling until membrane rupture and release of intracellular contents. As an effective tumor treatment strategy, inducing tumor cell pyroptosis has received widespread attention. In this process, the immune components within the tumor microenvironment play a key regulatory role. By regulating and altering the functions of immune cells such as cytotoxic T lymphocytes, natural killer cells, tumor-associated macrophages, and neutrophils, tumor cell pyroptosis can be induced. This article provides a comprehensive review of the molecular mechanisms of cell pyroptosis, the impact of the tumor immune microenvironment on tumor cell pyroptosis, and its mechanisms. It aims to gain an in-depth understanding of the communication between the tumor immune microenvironment and tumor cells, and to provide theoretical support for the development of new tumor immunotherapies.
Collapse
Affiliation(s)
- Mengyuan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Fengying Deng
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Xinlei Song
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650031, Yunnan, China.
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China.
| |
Collapse
|
15
|
Mousset A, Albrengues J. Neutrophil extracellular traps modulate chemotherapy efficacy and its adverse side effects. Biol Cell 2024; 116:e2400031. [PMID: 38724262 DOI: 10.1111/boc.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 07/13/2024]
Abstract
Neutrophils, major regulator of innate immunity have recently emerged as key components of the tumor microenvironment. The role of neutrophils in cancer has been linked to their ability to form neutrophil extracellular traps (NETs), structures composed of decondensed DNA decorated with enzymes that are released into the extracellular space. Here, we discuss the pivotal roles of NETs, in influencing responses to chemotherapy and its severe adverse effect. Highlighting recent insights, we discuss the dual nature of NETs in the context of chemotherapy treatment, examining their potential to either counteract or enhance treatment outcomes. Strategic targeting of NETs emerges as a promising avenue for determining combination therapies that could help counteracting resistance or enhancing chemotherapy efficacy as well as limiting complications due to this type of treatment.
Collapse
Affiliation(s)
- Alexandra Mousset
- Institute for Research on Cancer and Aging, University Côte d'Azur, Nice, France
| | - Jean Albrengues
- Institute for Research on Cancer and Aging, University Côte d'Azur, Nice, France
| |
Collapse
|
16
|
Liang T, Gu L, Kang X, Li J, Song Y, Wang Y, Ma W. Programmed cell death disrupts inflammatory tumor microenvironment (TME) and promotes glioblastoma evolution. Cell Commun Signal 2024; 22:333. [PMID: 38890642 PMCID: PMC11184850 DOI: 10.1186/s12964-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 06/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixuan Song
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
17
|
Liu X, Miao M, Sun J, Wu J, Qin X. PANoptosis: a potential new target for programmed cell death in breast cancer treatment and prognosis. Apoptosis 2024; 29:277-288. [PMID: 38001342 PMCID: PMC10873433 DOI: 10.1007/s10495-023-01904-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/26/2023]
Abstract
Breast cancer is a prevalent and severe form of cancer that affects women all over the world. The incidence and mortality of breast cancer continue to rise due to factors such as population growth and the aging of the population. There is a growing area of research focused on a cell death mechanism known as PANoptosis. This mechanism is primarily regulated by the PANoptosome complex and displays important characteristics of cell death, including pyroptosis, apoptosis, and/or necroptosis, without being strictly defined by the cell death pathway. PANoptosis acts as a defensive response to external stimuli and pathogens, contributing to the maintenance of cellular homeostasis and overall stability. Increasing evidence suggests that programmed cell death (PCD) plays an important role in the development of breast cancer, and PANoptosis, as a novel form of PCD, may be a crucial factor in the development of breast cancer, potentially leading to the identification of new therapeutic strategies. Therefore, the concept of PANoptosis not only deepens our understanding of PCD, but also opens up new avenues for treating malignant diseases, including breast cancer. This review aims to provide an overview of the definition of PANoptosis, systematically explore the interplay between PANoptosis and various forms of PCD, and discuss its implications for breast cancer. Additionally, it delves into the current progress and future directions of PANoptosis research in the context of breast cancer, establishing a theoretical foundation for the development of molecular targets within critical signaling pathways related to PANoptosis, as well as multi-target combination therapy approaches, with the goal of inducing PANoptosis as part of breast cancer treatment.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Basic Medical Sciences, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Meiqi Miao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jijing Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jianli Wu
- School of Basic Medical Sciences, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Xunyun Qin
- Department of Oncology, Beijing Yao Medicine Hospital, Beijing, 100071, China.
| |
Collapse
|
18
|
Khamis SSS, Lu J, Yi Y, Rao S, Sun W. Pyroptosis-related gene signature for predicting gastric cancer prognosis. Front Oncol 2024; 14:1336734. [PMID: 38571505 PMCID: PMC10990040 DOI: 10.3389/fonc.2024.1336734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
Gastric cancer (GC) is a prevalent form of malignancy characterized by significant heterogeneity. The development of a specific prediction model is of utmost importance to improve therapy alternatives. The presence of H. pylori can elicit pyroptosis, a notable carcinogenic process. Furthermore, the administration of chemotherapeutic drugs is often employed as a therapeutic approach to addressing this condition. In the present investigation, it was observed that there were variations in the production of 17 pyroptosis-regulating proteins between stomach tissue with tumor development and GC cells. The predictive relevance of each gene associated with pyroptosis was assessed using the cohort from the cancer genome atlas (TCGA). The least absolute shrinkage and selection operator (LASSO) was utilized to enhance the outcomes of the regression approach. Patients with gastric cancer GC in the cohort from the TCGA were categorized into low-risk or high-risk groups based on their gene expression profiles. Patients with a low risk of gastric cancer had a higher likelihood of survival compared to persons classified as high risk (P<0.0001). A subset of patients diagnosed with GC from a Genes Expression Omnibus (GEO) cohort was stratified according to their overall survival (OS) duration. The statistical analysis revealed a higher significance level (P=0.0063) regarding OS time among low-risk individuals. The study revealed that the GC risk score emerged as a significant independent prognostic factor for OS in patients diagnosed with GC. The results of Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) research revealed that genes associated with a high-risk group had significantly elevated levels of immune system-related activity. Furthermore, it was found that the state of immunity was diminished within this particular group. The relationship between the immune response to cancer and pyroptosis genes is highly interconnected, suggesting that these genes have the potential to serve as prognostic indicators for GC.
Collapse
Affiliation(s)
- Salem Saeed Saad Khamis
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhua Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongdong Yi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangrui Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Sun
- Department of General Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
20
|
Calabrese L, Fiocco Z, Mellett M, Aoki R, Rubegni P, French LE, Satoh TK. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol 2024; 190:305-315. [PMID: 37889986 DOI: 10.1093/bjd/ljad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1β and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Zeno Fiocco
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
21
|
Guo C, Yang X, Li L. Pyroptosis-Related Gene Signature Predicts Prognosis and Response to Immunotherapy and Medication in Pediatric and Young Adult Osteosarcoma Patients. J Inflamm Res 2024; 17:417-445. [PMID: 38269108 PMCID: PMC10807455 DOI: 10.2147/jir.s440425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Purpose Pyroptosis, a new form of inflammatory programmed cell death, has recently gained attention. However, the impact of the expression levels of pyroptosis-related genes (PRGs) on the overall survival (OS) of osteosarcoma patients remains unclear. This study aims to investigate the impact of the expression levels of PRGs on the OS of pediatric and young adult patients with osteosarcoma. Patients and Methods Transcriptome matrix datasets of normal muscle or skeletal tissues from the Genotype-Tissue Expression (GTEx) project and osteosarcoma specimen the National Cancer Institute's (NCI) Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were used to identify pyroptosis-related genes (PRGs) associated with prognosis. The National Center for Biotechnology Information's (NCBI) GSE21257 dataset was employed to validate the predictive value of the pyroptosis-related signature (PRS). Additionally, reverse transcription polymerase chain reaction (RT-qPCR) experiment was performed in normal and osteosarcoma cell lines. Results The study identified 18 differentially expressed PRGs (DEPRGs) between normal muscle or skeletal tissues and tumor samples. Multiple machine learning techniques were used to select PRGs, resulting in the identification of four hub PRGs. A PRS-score was calculated for each sample based on the expression of these four hub PRGs, and samples were categorized into low and high PRS-score level groups. It was confirmed that metastatic status and PRS-score level are independent prognostic predictors. A nomogram model for predicting OS of osteosarcoma patients was constructed. Single-cell RNA-sequencing data display the expression patterns of the hub PRGs. RT-qPCR data results were found to be consistent with the differential expression analysis performed on TARGET and GTEx samples. Conclusion The study developed a novel pyroptosis-related gene signature that can stratify pediatric and young adult osteosarcoma patients into different risk groups, thus predicting their response to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Chaofan Guo
- Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, People’s Republic of China
- Department of Spine Surgery, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Xin Yang
- Department of Neurosurgery, Chongqing Fourth People’s Hospital, Chongqing, People’s Republic of China
| | - Lijun Li
- Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, People’s Republic of China
- Department of Spine Surgery, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| |
Collapse
|
22
|
Fraile-Martinez O, García-Montero C, Pekarek L, Saz JV, Álvarez-Mon MÁ, Barrena-Blázquez S, García-Honduvilla N, Buján J, Asúnsolo Á, Coca S, Alvarez-Mon M, Guijarro LG, Saez MA, Ortega MA. Decreased survival in patients with pancreatic cancer may be associated with an increase in histopathological expression of inflammasome marker NLRP3. Histol Histopathol 2024; 39:35-40. [PMID: 37057822 DOI: 10.14670/hh-18-617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Pancreatic cancer is a malignant neoplasm that, despite its low frequency, has a 5-year survival rate of less than 10%. The study of different histopathological markers has allowed a better understanding of the onset and development of this type of tumor as well as facilitating an approach to clinical variables based on their diagnostic, prognostic, and predictive value. In this sense, the NLRP3 protein of the inflammasome has been shown to be a component of great relevance in the initiation and progression of pancreatic cancer, although the value of this biomarker in patients has not yet been clarified. In this study, we selected 41 patients with pancreatic cancer and followed them for 60 months (5 years), evaluating their NLRP3 expression using immunohistochemical techniques. Furthermore, by performing Kaplan-Meier curves, we evaluated the survival of these patients in relation to their NLRP3 expression. Our results show that a significant percentage of our cohort had high expression of this component (90.74%) and that there is an inverse relationship between the expression of NLRP3 and patient survival. High levels of NLRP3 expression are related to lower survival and worse prognosis in these patients, possibly due to an ineffective immune system response and increased tumor-promoted inflammation. Future studies should be aimed at confirming these results in larger groups and evaluating various clinical strategies based on this knowledge.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Oncology Service, Guadalajara University Hospital, Guadalajara, Spain
| | - José V Saz
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | | | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Ángel Asúnsolo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain.
| |
Collapse
|
23
|
Li W, Liu M, Chu M. Strategies targeting IL-33/ST2 axis in the treatment of allergic diseases. Biochem Pharmacol 2023; 218:115911. [PMID: 37981174 DOI: 10.1016/j.bcp.2023.115911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Interleukin-33 (IL-33) and its receptor Serum Stimulation-2 (ST2, also called Il1rl1) are members of the IL-1 superfamily that plays a crucial role in allergic diseases. The interaction of IL-33 and ST2 mainly activates NF-κB signaling and MAPK signaling via the MyD88/IRAK/TRAF6 module, resulting in the production and secretion of pro-inflammatory cytokines. The IL-33/ST2 axis participates in the pathogenesis of allergic diseases, and therefore serves as a promising strategy for allergy treatment. In recent years, strategies blocking IL-33/ST2 through targeting regulation of IL-33 and ST2 or targeting the molecules involved in the signal transduction have been extensively studied mostly in animal models. These studies provide various potential therapeutic agents other than antibodies, such as small molecules, nucleic acids and traditional Chinese medicines. Herein, we reviewed potential targets and agents targeting IL-33/ST2 axis in the treatment of allergic diseases, providing directions for further investigations on treatments for IL-33 induced allergic diseases.
Collapse
Affiliation(s)
- Wenran Li
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Mengqi Liu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
24
|
Wang W, Wang Y. Integrative bioinformatics analysis of biomarkers and pathways for exploring the mechanisms and molecular targets associated with pyroptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1207142. [PMID: 38034011 PMCID: PMC10684677 DOI: 10.3389/fendo.2023.1207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Research has shown that pyroptosis contributes greatly to the progression of diabetes and its complications. However, the exact relationship between this particular cell death process and the pathology of type 2 diabetes mellitus (T2DM) remains unclear. In this study, we used bioinformatic tools to identify the pyroptosis-related genes (PRGs) associated with T2DM and to analyze their roles in the disease pathology. Methods Two microarray datasets, GSE7014 and GSE25724, were obtained from the GEO database and assessed for differentially expressed genes (DEGs). The T2DM-associated DEGs that overlapped with differentially expressed PRGs were noted as T2DM-PRGs. Subsequently, 25 T2DM-PRGs were validated and subjected to functional enrichment analysis through Gene Ontology annotation analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis (GSEA). The diagnostic and predictive value of the T2DM-PRGs was evaluated using receiver operating characteristic curves (ROC). Additionally, a single-sample GSEA algorithm was applied to study immune infiltration in T2DM and assess immune infiltration levels. Results We identified 25 T2DM-PRGs that were significantly enriched in the nuclear factor-kappa B signaling and prostate cancer pathways. The top five differentially expressed prognostic T2DM-PRGs targeted by miRNAs were PTEN, BRD4, HSP90AB1, VIM, and PKN2. The top five differentially expressed T2DM-PRGs associated with transcription factors were HSP90AB1, VIM, PLCG1, SCAF11, and PTEN. The genes PLCG1, PTEN, TP63, CHI3L1, SDHB, DPP8, BCL2, SERPINB1, ACE2, DRD2, DDX58, and BTK showed excellent diagnostic performance. The immune infiltration analysis revealed notable differences in immune cells between T2DM and normal tissues in both datasets. These findings suggest that T2DM-PRGs play a crucial role in the development and progression of T2DM and could be used as potential diagnostic biomarkers and therapeutic targets. Discussion Investigating the mechanisms and biomarkers associated with pyroptosis may offer valuable insights into the pathophysiology of T2DM and lead to novel therapeutic approaches to treat the disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, Jiangsu, China
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, China
| | - Yao Wang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
You HM, Wang L, Meng HW, Huang C, Fang GY, Li J. Pyroptosis: shedding light on the mechanisms and links with cancers. Front Immunol 2023; 14:1290885. [PMID: 38016064 PMCID: PMC10651733 DOI: 10.3389/fimmu.2023.1290885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Pyroptosis, a novel form of programmed cell death (PCD) discovered after apoptosis and necrosis, is characterized by cell swelling, cytomembrane perforation and lysis, chromatin DNA fragmentation, and the release of intracellular proinflammatory contents, such as Interleukin (IL) 8, IL-1β, ATP, IL-1α, and high mobility group box 1 (HMGB1). Our understanding of pyroptosis has increased over time with an increase in research on the subject: gasdermin-mediated lytic PCD usually, but not always, requires cleavage by caspases. Moreover, new evidence suggests that pyroptosis induction in tumor cells results in a strong inflammatory response and significant cancer regression, which has stimulated great interest among scientists for its potential application in clinical cancer therapy. It's worth noting that the side effects of chemotherapy and radiotherapy can be triggered by pyroptosis. Thus, the intelligent use of pyroptosis, the double-edged sword for tumors, will enable us to understand the genesis and development of cancers and provide potential methods to develop novel anticancer drugs based on pyroptosis. Hence, in this review, we systematically summarize the molecular mechanisms of pyroptosis and provide the latest available evidence supporting the antitumor properties of pyroptosis, and provide a summary of the various antitumor medicines targeting pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Hong-mei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Hong-wu Meng
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Yang M, Zheng H, Su Y, Xu K, Yuan Q, Cai Y, Aihaiti Y, Xu P. Novel pyroptosis-related lncRNAs and ceRNAs predict osteosarcoma prognosis and indicate immune microenvironment signatures. Heliyon 2023; 9:e21503. [PMID: 38027935 PMCID: PMC10661155 DOI: 10.1016/j.heliyon.2023.e21503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To study pyroptosis-related biomarkers that are associated with the prognosis and immune microenvironment characteristics of osteosarcoma (OS). The goal is to establish a foundation for the prognosis and treatment of OS. Methods We retrieved transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database for 88 OS patients. Using this data, we constructed a prognostic model to identify pyroptosis-related genes (PRGs) associated with OS prognosis. To further explore the biological function of these PRGs, we performed enrichment analysis. To identify pyroptosis-related long non-coding RNAs (PRLncs) associated with the prognosis of OS, we performed co-expression analysis. Subsequently, a risk prognostic model was constructed using these PRLncs to generate a risk score, termed as PRLncs-score, thereby obtaining PRLncs associated with the prognosis of OS. The accuracy of the prognostic model was verified through survival analysis, risk curve, independent prognostic analysis, receiver operating characteristic (ROC) curve, difference analysis between high- and low-risk groups, and clinical correlation analysis. And to determine whether PRLncs-score is independent prognostic factor for OS. In addition, we further conducted external and internal validation for the risk prognosis model. Further analyses of immune cell infiltration and tumor microenvironment were performed. A pyroptosis-related competitive endogenous RNA (PRceRNA) network was constructed to obtain PRceRNAs associated with the prognosis of OS and performed gene set enrichment analysis (GSEA) on PRceRNA genes. Results We obtained five PRGs (CHMP4C, BAK1, GSDMA, CASP1, and CASP6) that predicted OS prognosis and seven PRLncs (AC090559.1, AP003119.2, CARD8-AS1, AL390728.4, SATB2-AS1, AL133215.2, and AC009495.3) and one PRceRNA (CARD8-AS1-hsa-miR-21-5p-IL1B) that predicted OS prognosis and indicated characteristics of the OS immune microenvironment. The PRLncs-score, in combination with other clinical features, was established as an independent prognostic factor for OS patients. Subsequent scrutiny of the tumor microenvironment and immune infiltration indicated that patients with low-PRLncs-scores were associated with reduced metastatic risk, improved survival rates, heightened levels of immune cells and stroma, and increased immune activity compared to those with high-PRLncs-scores. Conclusion The study's findings offer insight into the prognosis of OS and its immune microenvironment, and hold promise for improving early diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
27
|
Sheng Y, Liu J, Zhang M, Zheng S. Unveiling the link between inflammasomes and skin cutaneous melanoma: Insights into expression patterns and immunotherapy response prediction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19912-19928. [PMID: 38052629 DOI: 10.3934/mbe.2023881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Skin cutaneous melanoma (SKCM) is one of the most malignant forms of skin cancer, characterized by its high metastatic potential and low cure rate in advanced stages. Despite advancements in clinical therapies, the overall cure rate for SKCM remains low due to its resistance to conventional treatments. Inflammation is associated with the activation and regulation of inflammatory responses and plays a crucial role in the immune system. It has been implicated in various physiological and pathological processes, including cancer. However, the mechanisms of inflammasome activation in SKCM remain largely unexplored. In this study, we quantified the expression level of six inflammasome-related gene sets using transcriptomic data from SKCM patients. As a result, we found that inflammasome features were closely associated with various clinical characteristics and served as a favorable prognostic factor for patients. A functional enrichment analysis revealed the oncogenic role of inflammasome features in SKCM. Unsupervised clustering was applied to identify immune clusters and inflammatory subtypes, revealing a significant overlap between immune cluster 4 and SKCM subtype 2. The CASP1, GSDMD, NLRP3, IL1B, and IL18 features could predict immune checkpoint blockade therapy response in various SKCM cohorts. In conclusion, our study highlighted the significant association between the inflammasome and cancer treatment. Understanding the role of inflammasome signaling in SKCM pathology can help identify potential therapeutic targets and improve patient prognosis.
Collapse
Affiliation(s)
- Yu Sheng
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang 150001, China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang 150001, China
| | - Miao Zhang
- Department of Dermatology, Heilongjiang Provincial Hospital, Heilongjiang 150036, China
| | - Shuyun Zheng
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang 150001, China
| |
Collapse
|
28
|
Xu JZ, Xia QD, Sun JX, Liu CQ, Lu JL, Xu MY, An Y, Xun Y, Liu Z, Hu J, Li C, Wang SG. Establishment of a novel indicator of pyroptosis regulated gene transcription level and its application in pan-cancer. Sci Rep 2023; 13:17911. [PMID: 37863886 PMCID: PMC10589244 DOI: 10.1038/s41598-023-44700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pyroptosis is a type of programmed cell death and plays a dual role in distinct cancers. It is elusive to evaluate the activation level of pyroptosis and to appraise the involvement of pyroptosis in the occurrence and development of diverse tumors. Accordingly, we herein established an indicator to evaluate pyroptosis related gene transcription levels based on the expression level of genes involved in pyroptosis and tried to elaborated on the association between pyroptosis and tumors across diverse tumor types. We found that pyroptosis related gene transcription levels could predict the prognosis of patients, which could act as either a favorable or a dreadful factor in diverse cancers. According to signaling pathway analyses we observed that pyroptosis played a significant role in immune regulation and tumorigenesis and had strong links with other forms of cell death. We also performed analysis on the crosstalk between pyroptosis and immune status and further investigated the predictive potential of pyroptosis level for the efficacy of immunotherapy. Lastly, we manifested that pyroptosis status could serve as a biomarker to the efficacy of chemotherapy across various cancers. In summary, this study established a quantitative indicator to evaluate pyroptosis related gene transcription levels, systematically explored the role of pyroptosis in pan-cancer. These results could provide potential research directions targeting pyroptosis, and highlighted that pyroptosis may be used to develop a novel strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye An
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
30
|
DAL Z, ARU B. The role of curcumin on apoptosis and NLRP3 inflammasome-dependent pyroptosis on colorectal cancer in vitro. Turk J Med Sci 2023; 53:883-893. [PMID: 38031951 PMCID: PMC10760590 DOI: 10.55730/1300-0144.5652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/18/2023] [Accepted: 03/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. Many factors such as stress, lifestyle, and dietary habits are known to play a role in the initiation and progression of the disease. Herbal therapeutic agents including curcumin can hold a great potential against cancer treatment; however, their efficacy on CRC is still under investigation. Herein, we evaluated the anticancer mechanism of curcumin on four different CRC cell lines. METHODS Cells were treated with curcumin for 24, 48 and 72 h, and IC50 doses for each cell line were calculated. Mechanistic studies were conducted with the lowest IC50 dose determined for each cell line by evaluating apoptosis and necrosis, cell division, and NLRP3-mediated pyroptosis. RESULTS Curcumin treatment significantly decreased viability while increasing the SubG1 phase in all cell lines tested, indicating apoptosis is the main programmed cell death pathway activated upon curcumin treatment in CRC. In terms of pyroptosis, components of NLRP3 inflammasome were found to be elevated in SW480 and HCT116 cell lines, although to a lesser extent in the latter, and NLRP3 inflammasome activation was not observed in LoVo and HT29 cells. DISCUSSION Our results reveal that while curcumin effectively induces apoptosis, its effects on NLRP3-inflammasome mediated pyroptosis vary. Our results underline the need for further research focusing on the other inflammasome complexes to confirm the differential effects of curcumin on CRC.
Collapse
Affiliation(s)
- Zeynep DAL
- 6th Phase Student, Faculty of Medicine, Yeditepe University, İstanbul,
Turkiye
| | - Başak ARU
- Department of Immunology, Faculty of Medicine, Yeditepe University, İstanbul,
Turkiye
| |
Collapse
|
31
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
32
|
Deng H, Chen Y, An R, Wang J. Pyroptosis-related lncRNA prognostic signatures for cutaneous melanoma and tumor microenvironment status. Epigenomics 2023; 15:657-675. [PMID: 37577979 DOI: 10.2217/epi-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Aims: To explore whether the expression of pyroptosis-related lncRNAs makes a difference in the prognosis and antitumor immunity of cutaneous melanoma (CM) patients. Methods: A series of analyses were conducted to establish a prognostic risk model and validate its accuracy. Immune-related analyses were performed to further assess the associations among immune status, tumor microenvironment and the prognostic risk model. Results: Eight pyroptosis-related lncRNAs relevant to prognosis were ascertained and applied to establish the prognostic risk model. The low-risk group had a higher overall survival rate. Conclusion: The established prognostic risk model presents better prediction ability for the prognosis of CM patients and provides new possible therapeutic targets for CM.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxuan Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
33
|
He J, Zhou W, Zhang M. Prognostic characterization of the pyroptosis-related subtypes and tumor microenvironment infiltration in glioma. Cancer Biomark 2023:CBM220362. [PMID: 37248887 DOI: 10.3233/cbm-220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pyroptosis could regulate tumor cell trafficking, invasion, and metastasis, as well as the tumor microenvironment (TME). However, prognostic characteristics of pyroptosis-related genes (PRGs) and their effect on the progression of glioma remain insufficient. METHODS The genetic, transcriptional, and survival data of patients with glioma used for bioinformatic analysis were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. RESULTS Screening of two different molecular subtypes revealed that PRG variations were associated with characteristics of TME cell infiltration, clinicopathological characteristics, and prognosis of patients with glioma. After Cox regression of differentially expressed genes, a risk score for predicting overall survival (OS) and progression-free survival (PFS) were calculated. Its predictive accuracy in patients with glioma was validated. The high-risk group of PRG signature had a poorer OS than the low-risk group (training cohort, P< 0.001; validation cohort, P< 0.001). A high risk score implies more immune cell infiltration and better immunotherapy response to immune checkpoint blockers. In addition, the differential expression of three pyroptosis-pairs in tumor and normal tissues was identified. Furthermore, the risk score was significantly associated with chemotherapeutic drug sensitivity and cancer stem cell (CSC) index. Subsequently, a highly accurate nomogram was established to facilitate applicability in the preliminary clinical application of risk score. CONCLUSION Our findings may provide the basis for future research targeting pyroptosis in glioma and evaluation of prognosis and development of more effective immunotherapy strategies.
Collapse
|
34
|
Liu SW, Song WJ, Ma GK, Wang H, Yang L. Pyroptosis and its role in cancer. World J Clin Cases 2023; 11:2386-2395. [PMID: 37123307 PMCID: PMC10130989 DOI: 10.12998/wjcc.v11.i11.2386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
Programmed cell death (PCD) is mediated by specific genes that encode signals. It can balance cell survival and death. Pyroptosis is a type of inflammatory, caspase-dependent PCD mediated by gasdermin proteins, which function in pore formation, cell expansion, and plasma membrane rupture, followed by the release of intracellular contents. Pyroptosis is mediated by caspase-1/3/4/5/11 and is primarily divided into the classical pathway, which is dependent on caspase-1, and the non-classical pathway, which is dependent on caspase-4/5/11. Inflammasomes play a vital role in these processes. The various components of the pyroptosis pathway are related to the occurrence, invasion, and metastasis of tumors. Research on pyroptosis has revealed new options for tumor treatment. This article summarizes the recent research progress on the molecular mechanism of pyroptosis, the relationship between the various components of the pyroptosis pathway and cancer, and the applications and prospects of pyroptosis in anticancer therapy.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Joint Surgery, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Wen-Jing Song
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Gui-Kai Ma
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Hui Wang
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Liang Yang
- Department of Joint Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
35
|
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B, Spector DL, Ehmsen S, Renault S, Hego C, Mechta-Grigoriou F, Bidard FC, Terp MG, Egeblad M, Gaggioli C, Albrengues J. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell 2023; 41:757-775.e10. [PMID: 37037615 PMCID: PMC10228050 DOI: 10.1016/j.ccell.2023.03.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Metastasis is the major cause of cancer death, and the development of therapy resistance is common. The tumor microenvironment can confer chemotherapy resistance (chemoresistance), but little is known about how specific host cells influence therapy outcome. We show that chemotherapy induces neutrophil recruitment and neutrophil extracellular trap (NET) formation, which reduces therapy response in mouse models of breast cancer lung metastasis. We reveal that chemotherapy-treated cancer cells secrete IL-1β, which in turn triggers NET formation. Two NET-associated proteins are required to induce chemoresistance: integrin-αvβ1, which traps latent TGF-β, and matrix metalloproteinase 9, which cleaves and activates the trapped latent TGF-β. TGF-β activation causes cancer cells to undergo epithelial-to-mesenchymal transition and correlates with chemoresistance. Our work demonstrates that NETs regulate the activities of neighboring cells by trapping and activating cytokines and suggests that chemoresistance in the metastatic setting can be reduced or prevented by targeting the IL-1β-NET-TGF-β axis.
Collapse
Affiliation(s)
- Alexandra Mousset
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Enora Lecorgne
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France
| | - Isabelle Bourget
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France
| | - Pascal Lopez
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Kitti Jenovai
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Julien Cherfils-Vicini
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Chloé Dominici
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Géraldine Rios
- University Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Sophia Antipolis, France
| | - Cédric Girard-Riboulleau
- University Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Sophia Antipolis, France
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sidse Ehmsen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Caroline Hego
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, INSERM, U830, PSL Research University, Ligue Nationale Contre le Cancer labeled Team, 26, Rue d'Ulm, 75005, Paris, France
| | - François-Clément Bidard
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France; Department of Medical Oncology, Institut Curie, Saint Cloud, Paris, France; University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Saint Cloud, France
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cédric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France.
| | - Jean Albrengues
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
| |
Collapse
|
36
|
Caligiuri I, Vincenzo C, Asano T, Kumar V, Rizzolio F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Semin Cancer Biol 2023; 91:143-157. [PMID: 36871635 DOI: 10.1016/j.semcancer.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.
Collapse
Affiliation(s)
- Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Canzonieri Vincenzo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tomochiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy.
| |
Collapse
|
37
|
Guan X, Li M, Bai Y, Feng Y, Li G, Wei W, Fu M, Li H, Wang C, Jie J, Meng H, Wu X, Deng Q, Li F, Yang H, Zhang X, He M, Guo H. Associations of mitochondrial DNA copy number with incident risks of gastrointestinal cancers: A prospective case-cohort study. Mol Carcinog 2023; 62:224-235. [PMID: 36250641 DOI: 10.1002/mc.23478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023]
Abstract
Epidemiological investigations implied that mitochondrial DNA copy number (mtDNAcn) variations could trigger predisposition to multiple cancers, but evidence regarding gastrointestinal cancers (GICs) was still uncertain. We conducted a case-cohort study within the prospective Dongfeng-Tongji cohort, including incident cases of colorectal cancer (CRC, n = 278), gastric cancer (GC, n = 138), and esophageal cancer (EC, n = 72) as well as a random subcohort (n = 1173), who were followed up from baseline to the end of 2018. We determined baseline blood mtDNAcn and associations of mtDNAcn with the GICs risks were estimated by using weighted Cox proportional hazards models. Significant U-shaped associations were observed between mtDNAcn and GICs risks. Compared to subjects within the second quartile (Q2) mtDNAcn subgroup, those within the 1st (Q1), 3rd (Q3), and 4th (Q4) quartile subgroups showed increased risks of CRC (hazard ratio [HR] [95% confidence interval, CI] = 2.27 [1.47-3.52], 1.65 [1.04-2.62], and 2.81 [1.85-4.28], respectively) and total GICs (HR [95%CI] = 1.84 [1.30-2.60], 1.47 [1.03-2.10], and 2.51 [1.82-3.47], respectively], and those within Q4 subgroup presented elevated GC and EC risks (HR [95% CI] = 2.16 [1.31-3.54] and 2.38 [1.13-5.02], respectively). Similar associations of mtDNAcn with CRC and total GICs risks remained in stratified analyzes by age, gender, smoking, and drinking status. This prospective case-cohort study showed U-shaped associations between mtDNAcn and GICs risks, but further research works are needed to uncover underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Deng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangqing Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation, Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Wang X, Wang L, Wen X, Zhang L, Jiang X, He G. Interleukin-18 and IL-18BP in inflammatory dermatological diseases. Front Immunol 2023; 14:955369. [PMID: 36742296 PMCID: PMC9889989 DOI: 10.3389/fimmu.2023.955369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-18, an interferon-γ inducer, belongs to the IL-1 family of pleiotropic pro-inflammatory factors, and IL-18 binding protein (IL-18BP) is a native antagonist of IL-18 in vivo, regulating its activity. Moreover, IL-18 exerts an influential function in host innate and adaptive immunity, and IL-18BP has elevated levels of interferon-γ in diverse cells, suggesting that IL-18BP is a negative feedback inhibitor of IL-18-mediated immunity. Similar to IL-1β, the IL-18 cytokine is produced as an indolent precursor that requires further processing into an active cytokine by caspase-1 and mediating downstream signaling pathways through MyD88. IL-18 has been implicated to play a role in psoriasis, atopic dermatitis, rosacea, and bullous pemphigoid in human inflammatory skin diseases. Currently, IL-18BP is less explored in treating inflammatory skin diseases, while IL-18BP is being tested in clinical trials for other diseases. Thereby, IL-18BP is a prospective therapeutic target.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xian Jiang, ; Gu He,
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xian Jiang, ; Gu He,
| |
Collapse
|
39
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
40
|
Liu D, Zhou LQ, Cheng Q, Wang J, Kong WJ, Zhang SL. Developing a pyroptosis-related gene signature to better predict the prognosis and immune status of patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:988606. [PMID: 36685979 PMCID: PMC9845251 DOI: 10.3389/fgene.2022.988606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic inflammation may promote the incidence and development of neoplasms. As a pro-inflammatory death pathway, pyroptosis could induce normal cells to transform into cancerous cells, but the potential effect of pyroptosis in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study developed and evaluated a pyroptosis-related gene signature to predict the prognosis and immune status of patients with HNSCC. The gene expression, mutation information, and clinical characteristics of HNSCC were extracted from TCGA to establish a comprehensive genome database (GEO). Based on LASSO Cox regression model, nine pyroptosis-related genes (TTLL1, TRIML2, DYNC1I1, KLHL35, CAMK2N1, TNFRSF18, GLDC, SPINK5, and DKK1) were used to construct a pyroptosis-related gene signature, which had good ability to predict the prognosis of HNSCC. Furthermore, the expression of nine pyroptosis-related genes in HNSCC and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR). The potential immunotherapeutic features and drug sensitivity prediction of this signature were also explored. Because pyroptosis regulators play an important role in HNSCC development and prognoses, further exploration might assist in identifying new biomarkers and predictors of prognosis to benefit clinical identification and management.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu-Qing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Cheng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Lin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Su-Lin Zhang,
| |
Collapse
|
41
|
Novel pyroptosis-associated genes signature for predicting the prognosis of sarcoma and validation. Biosci Rep 2022; 42:231859. [PMID: 36155774 DOI: 10.1042/bsr20221053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sarcoma is a rare mesenchymal malignant tumor. Recently, pyroptosis has been reported to be a mode of programmed cell death. Nonetheless, levels of pyroptosis-associated genes in sarcoma and its relevance to prognostic outcomes are yet to be elucidated. RESULTS Sarcoma cases were classified into two subtypes with regards to differentially expressed genes. We established a profile composed of seven genes and classified the sarcoma patients into low- and high-risk groups through least absolute shrinkage and selection operator Cox regression. Survival rate of low-risk sarcoma patients was markedly higher, relative to high-risk group (P<0.001). In combination with clinical features, the risk score was established to be an independent predictive factor for OS of sarcoma patients. Chemotherapeutic drug sensitivity response analysis found 65 drugs with higher drug sensitivity in low-risk, than in high-risk group and 14 drugs with higher drug sensitivity in the high-risk patient group, compared with low-risk patient group. In addition, functional enrichment, pathway and gene mutation of the two modules were analyzed. Finally, we used qRT-PCR to detect the expression of seven pyroptosis-related genes in tumor cells, and human skeletal muscle cells, compared with human skeletal muscle cells, PODXL2, LRRC17, GABRA3, SCUBE3 and RFLNB genes show high expression levels in tumor cells, while IGHG2 and hepatic leukemia factor show low expression levels in tumor cells. CONCLUSIONS Our research suggest that pyroptosis is closely associated with sarcoma, and these findings confirm that pyroptosis-associated seven genes have a critical role in sarcoma and are potential prognostic factors for sarcoma.
Collapse
|
42
|
Wang P, Gu Y, Yang J, Qiu J, Xu Y, Xu Z, Gao J, Wan C. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY) 2022; 14:9980-10008. [PMID: 36541912 PMCID: PMC9831740 DOI: 10.18632/aging.204438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammasomes are related to tumorigenesis and immune-regulation. Here, we investigated the prognostic value of the NLR family pyrin domain containing (NLRP) 1/NLRP3 inflammasome and its potential mechanisms in immune-regulation in gastric cancer (GC). METHODS We analyzed the differential expression of NLRP1/NLRP3 between tumor and normal tissues using the Oncomine and Tumor Immune Estimate Resource (TIMER) databases. Immunohistochemistry and western blotting were used to detect NLRP1/NLRP3 protein expression in GC tissues. Correlations between NLRP1/NLRP3 expression levels and patient survival were analyzed using Kaplan-Meier survival curves. The relationships of NLRP1/NLRP3 expression and tumor-infiltrating immune cells/marker genes were assessed using the TIMER database. NLRP1/NLRP3 and immune checkpoint gene correlations were verified by single-gene co-expression analyses, and tumor immune-related pathways involving NLRP1/NLRP3 were analyzed using gene set enrichment analysis (GSEA). RESULTS Elevated NLRP1/NLRP3 expression was significantly correlated with lymph node metastasis, poor survival, immune-infiltrating cell abundances, and immune cell markers. NLRP3 showed stronger correlations with immune infiltration and the prognosis of gastric cancer. NLRP1 and NLRP3 might be involved in the same tumor immune-related pathways. Thus, high NLRP1/NLRP3 expression promotes immune cell infiltration and poor prognosis in GC. NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC. CONCLUSIONS NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Yulan Gu
- Department of Oncology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiamin Qiu
- Department of Pathology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Yeqiong Xu
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| | - Zengxiang Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiguang Gao
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Chuandan Wan
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| |
Collapse
|
43
|
Pyroptosis and Its Role in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14235764. [PMID: 36497244 PMCID: PMC9739612 DOI: 10.3390/cancers14235764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, is characterized by the caspase-mediated pore formation of plasma membranes and the release of large quantities of inflammatory mediators. In recent years, the morphological characteristics, induction mechanism and action process of pyroptosis have been gradually unraveled. As a malignant tumor with high morbidity and mortality, cervical cancer is seriously harmful to women's health. It has been found that pyroptosis is closely related to the initiation and development of cervical cancer. In this review the mechanisms of pyroptosis and its role in the initiation, progression and treatment application of cervical cancer are summarized and discussed.
Collapse
|
44
|
Molecular subtypes identified by pyroptosis-related genes are associated with tumor microenvironment cell infiltration in colon cancer. Aging (Albany NY) 2022; 14:9020-9036. [PMID: 36384889 PMCID: PMC9740378 DOI: 10.18632/aging.204379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
The important role of pyroptosis in tumor progression has been well characterized in recent years. However, little is known about the impact of tumor pyroptosis characteristics on patient prognosis and tumor microenvironment (TME) as well as efficacy of immunotherapy. In this study, we successfully classified colon cancer samples into three pyroptosis characterizations with different prognosis and TME cell infiltration patterns based on the expression of pyroptosis-related genes. Cluster 2, with the characterizations of immunosuppression, was classified as immune-desert cell infiltration patterns. Cluster 3, with the patterns of immune-inflamed cell infiltration, had the feature of an activated innate and adaptive immunity and significant prolonged survival. The activation of stromal pathways including EMT, angiogenesis and TGF-β in cluster 1 may mediate the impaired immune penetration of this cluster, which was classified as immune-excluded cell infiltration patterns. Our results demonstrated the PyroSig signature was a robust and independent biomarker for predicting patient prognosis. Patients with low PyroSig signature was confirmed to be correlated with treatment advantages and significant prolonged survival in two anti-checkpoint immunotherapy cohorts. This study identified three pyroptosis-related subtypes with distinct molecular features, clinical and microenvironment cell infiltration patterns in colon cancer, which could promote individualized immunotherapy for colon cancer.
Collapse
|
45
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
46
|
Zhou H, Zhang L, Luo W, Hong H, Tang D, Zhou D, Zhou L, Li Y. AIM2 inflammasome activation benefits the therapeutic effect of BCG in bladder carcinoma. Front Pharmacol 2022; 13:1050774. [PMID: 36386141 PMCID: PMC9659910 DOI: 10.3389/fphar.2022.1050774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
A large proportion of bladder cancer (BLCA) patients suffer from malignant progression to life-threatening muscle-invasive bladder cancer (MIBC). Inflammation is a critical event in cancer development, but little is known about the role of inflammation in BLCA. In this study, the expression of the innate immune sensor AIM2 is much lower in high-grade BLCA and positively correlates with the survival rates of the BLCA patients. A novel AIM2 overexpressed BLCA model is proposed to investigate the impact of AIM2 on BLCA development. Mice inoculated with AIM2-overexpressed cells show tumor growth delay and prolonged survival compared to the control group. Meanwhile, CD11b+ cells significantly infiltrate AIM2-overexpressed tumors, and AIM2-overexpression in 5637 cells enhanced the inflammasome activation. In addition, oligodeoxynucleotide (ODN) TTAGGG (A151), an AIM2 inflammasome inhibitor, could abolish the elevation of AIM2-induced cleavage of inflammatory cytokines and pyroptosis. Orthotopic BLCA by AIM2-overexpressed cells exhibits a better response to Bacillus Calmette-Guérin (BCG) immunotherapy. Overall, AIM2 inflammasome activation can inhibit the BLCA tumorigenesis and enhance the therapeutic effect of BCG in BLCA. This study provides new insights into the anti-tumor effect of AIM2 inflammasome activation in BLCA and the immunotherapeutic strategy of BLCA development.
Collapse
Affiliation(s)
- Houhong Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
- Luohu Clinical Medicine School, Shantou University Medical College, Shantou University, Shantou, China
| | - Lei Zhang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
| | - Weihan Luo
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
- Luohu Clinical Medicine School, Shantou University Medical College, Shantou University, Shantou, China
| | - Huaishan Hong
- Department of Urology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Dongdong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
| | - Dewang Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
| | - Lingli Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
- *Correspondence: Lingli Zhou, ; Yuqing Li,
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen University, Shenzhen, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Lingli Zhou, ; Yuqing Li,
| |
Collapse
|
47
|
Di Filippo M, Hennig P, Karakaya T, Slaufova M, Beer HD. NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development. Int J Mol Sci 2022; 23:12308. [PMID: 36293159 PMCID: PMC9603439 DOI: 10.3390/ijms232012308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.
Collapse
Affiliation(s)
- Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marta Slaufova
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
48
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
49
|
Yan C, Niu Y, Li F, Zhao W, Ma L. System analysis based on the pyroptosis-related genes identifies GSDMC as a novel therapy target for pancreatic adenocarcinoma. J Transl Med 2022; 20:455. [PMID: 36199146 PMCID: PMC9533512 DOI: 10.1186/s12967-022-03632-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors of the digestive tract. Pyroptosis is a newly discovered programmed cell death that highly correlated with the prognosis of tumors. However, the prognostic value of pyroptosis in PAAD remains unclear. Methods A total of 178 pancreatic cancer PAAD samples and 167 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The “DESeq2” R package was used to identify differntially expressed pyroptosis-related genes between normal pancreatic samples and PAAD samples. The prognostic model was established in TCGA cohort based on univariate Cox and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses, which was validated in test set from Gene Expression Omnibus (GEO) cohort. Univariate independent prognostic analysis and multivariate independent prognostic analysis were used to determine whether the risk score can be used as an independent prognostic factor to predict the clinicopathological features of PAAD patients. A nomogram was used to predict the survival probability of PAAD patients, which could help in clinical decision-making. The R package "pRRophetic" was applied to calculate the drug sensitivity of each samples from high- and low-risk group. Tumor immune infiltration was investigated using an ESTIMATE algorithm. Finally, the pro‐tumor phenotype of GSDMC was explored in PANC-1 and CFPAC-1 cells. Result On the basis of univariate Cox and LASSO regression analyses, we constructed a risk model with identified five pyroptosis-related genes (IL18, CASP4, NLRP1, GSDMC, and NLRP2), which was validated in the test set. The PAAD samples were divided into high-risk and low-risk groups on the basis of the risk score's median. According to Kaplan Meier curve analysis, samples from high-risk groups had worse outcomes than those from low-risk groups. The time-dependent receiver operating characteristics (ROC) analysis revealed that the risk model could predict the prognosis of PAAD accurately. A nomogram accompanied by calibration curves was presented for predicting 1-, 2-, and 3-year survival in PAAD patients. More importantly, 4 small molecular compounds (A.443654, PD.173074, Epothilone. B, Lapatinib) were identified, which might be potential drugs for the treatment of PAAD patients. Finally, the depletion of GSDMC inhibits the proliferation, invasion, and migration of pancreatic adenocarcinoma cells. Conclusion In this study, we developed a pyroptosis-related prognostic model based on IL18, CASP4, NLRP1, NLRP2, and GSDMC , which may be helpful for clinicians to make clinical decisions for PAAD patients and provide valuable insights for individualized treatment. Our result suggest that GSDMC may promote the proliferation and migration of PAAD cell lines. These findings may provide new insights into the roles of pyroptosis-related genes in PAAD, and offer new therapeutic targets for the treatment of PAAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03632-z.
Collapse
Affiliation(s)
- Cheng Yan
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Yandie Niu
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Wei Zhao
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Liukai Ma
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
50
|
Zhou K, Gu X, Tan H, Yu T, Liu C, Ding Z, Liu J, Shi H. Identification pyroptosis-related gene signature to predict prognosis and associated regulation axis in colon cancer. Front Pharmacol 2022; 13:1004425. [PMID: 36249755 PMCID: PMC9559861 DOI: 10.3389/fphar.2022.1004425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Pyroptosis is an important component of the tumor microenvironment and associated with the occurrence and progression of cancer. As the expression of pyroptosis-related genes and its impact on the prognosis of colon cancer (CC) remains unclear, we constructed and validated a pyroptosis-related genes signature to predict the prognosis of patients with CC. Methods: Microarray datasets and the follow-up clinical information of CC patients were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. Candidate genes were screened out for further analysis. Various methods were combined to construct a robust pyroptosis-related genes signature for predicting the prognosis of patients with CC. Based on the gene signature and clinical features, a decision tree and nomogram were developed to improve risk stratification and quantify risk assessment for individual patients. Results: The pyroptosis-related genes signature successfully discriminated CC patients with high-risk in the training cohorts. The prognostic value of this signature was further confirmed in independent validation cohort. Multivariable Cox regression and stratified survival analysis revealed this signature was an independent prognostic factor for CC patients. The decision tree identified risk subgroups powerfully, and the nomogram incorporating the gene signature and clinical risk factors performed well in the calibration plots. Conclusion: Pyroptosis-related genes signature was an independent prognostic factor, and can be used to predict the prognosis of patients with CC.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Xuyu Gu
- School of Medicine, Southeast University, Nanjing, China
| | - Huaicheng Tan
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Ting Yu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, China
| | - Chunhua Liu
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Zhenyu Ding
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Jiyan Liu
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Huashan Shi
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
- Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- *Correspondence: Huashan Shi,
| |
Collapse
|