1
|
Georgiev YH, Schöne-Leupolz M, Nordmeyer J, Schlensak C, Berger R, Fideler F, Schuhmann MU, Zipfel J, Michel J, Neunhoeffer F. Macro- and microcirculation characteristics in the territory of the anterior cerebral artery in infants with congenital heart diseases. Heart Vessels 2025:10.1007/s00380-025-02549-z. [PMID: 40411567 DOI: 10.1007/s00380-025-02549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
Although cerebral macrocirculation is routinely assessed postoperatively in infants in the pediatric intensive care unit, monitoring cerebral microcirculation is not yet a standard practice. Our objective was to investigate the correlation between parameters of cerebral macro- and microcirculation in children following cardiac surgery and compare them with patients after neurosurgical and abdominal procedures. We conducted a prospective observational study in infants who underwent congenital cardiac surgery, visceral surgery, and neurosurgical procedures to measure parameters of cerebral macro- and microcirculation. Doppler ultrasound of anterior cerebral artery was performed, along with measurements of microcirculatory parameters using O2C device. 89 infants were included in the study. Group 1 (n = 35) comprised children after corrective cardiac surgery, group 2 (n = 22), after aortopulmonary shunt procedures, group 3 (n = 11), after Glenn operations, and group 4 (n = 21), after abdominal or neurosurgical procedures. The systolic peak flow was significantly lower in groups 2 and 3 compared to groups 1 and 4, 52.3 and 56.7 versus 59.6 and 68.8 cm/s, p = 0.01, respectively. Pulsatility index was higher in patients of group 2 compared to groups 1, 3 and 4, 2.5 vs. 1.3, 1.4, and 1.5 (p < 0.001), respectively. The cerebral blood flow in the staged palliation groups (2 and 3) was lower compared to groups 1 and 4, 203 and 236 vs. 250 and 262 AU, p = 0.045. Children undergoing staged palliation may show variations in cerebral macro- and microcirculation. Both approaches described in our study provide complementary information and can accordingly be utilized in the postoperative intensive care period. Future studies should focus on establishing reference values for macro- and microcirculation parameters across various patient populations.
Collapse
Affiliation(s)
- Yordan Hristov Georgiev
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany.
| | - Mirjam Schöne-Leupolz
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Johannes Nordmeyer
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Rafal Berger
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Frank Fideler
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Martin Ulrich Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Julian Zipfel
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Jörg Michel
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Felix Neunhoeffer
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| |
Collapse
|
2
|
Fournier R, Greaves DK, Shoemaker JK, Arbeille P, Hughson RL, Robertson AD. Cerebrovascular pulsatility following long duration spaceflight is associated with changes in pulse pressure and carotid artery stiffness. Exp Physiol 2025. [PMID: 40388559 DOI: 10.1113/ep092272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/21/2025] [Indexed: 05/21/2025]
Abstract
Central artery stiffening increases the haemodynamic pulsations transmitted downstream towards target organs, including the brain. While recent evidence suggests that long duration spaceflight is associated with reduced common carotid artery (CCA) distensibility, cerebrovascular pulsatility has not been extensively characterized in astronauts. This study investigated changes in pulsatility from pre-flight to after 6 months in space, using a secondary analysis of data from four separate experiments. Middle cerebral artery blood velocity (MCAv) was measured during supine rest in 27 astronauts (20 men, 7 women). In subsets of this cohort, we measured CCA distensibility and β stiffness (n = 20), and CCA wave intensity (n = 12). The overall increase in MCAv pulsatility index (PImca) from pre-flight to post-flight was not significant (0.73 ± 0.12 vs. 0.77 ± 0.11, P = 0.060, partial η2 = 0.13). However, individual changes in PImca were directly associated with changes in estimated aortic pulse pressure (r = 0.51, P = 0.007) and β stiffness (r = 0.54, P = 0.015), and inversely associated with changes in distensibility (r = -0.62, P = 0.003), in separate bivariate analyses. Wave intensity analysis suggested a reduction in normalized wave reflection (P = 0.07), and that forward compression wave amplitude was directly related to PImca (r = 0.64, P = 0.025). These findings suggest that PImca in the days immediately following spaceflight is a function of lower carotid distensibility, highlighting the interplay between arterial stiffness and cerebrovascular pulsatility.
Collapse
Affiliation(s)
- Roxanne Fournier
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | | | | | - Philippe Arbeille
- CERCOM-UMPS, Faculté de Médecine, Université de Tours, Tours, France
| | | | - Andrew D Robertson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Brunetti DJ, Leonardis F, Frisardi F, Dauri M, Deana C, Aspide R, Cammarota G, Pisani L, Adorno R, Polidoro R, Tiseo M, Sergi PG, Vetrugno L, Mascia L, Biasucci DG. Effects of 'Head Up' Prone Position on Transcranial Color Doppler-Based Estimators of Intracranial Pressure in Moderate to Severe Acute Respiratory Distress Syndrome Without Brain Injury: A Cross-Over, Longitudinal, Physiological Study. Neurocrit Care 2025:10.1007/s12028-025-02240-1. [PMID: 40133757 DOI: 10.1007/s12028-025-02240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Prone positioning is recommended in acute respiratory distress syndrome (ARDS) to ensure adequate gas exchange. However, it may lead to an increase in intracranial pressure (ICP), mostly due to a reduction of venous return from the brain. ICP can be noninvasively estimated with transcranial color-coded Doppler (TCCD) using methods based on the relationships between the pulsatility index (PI) and ICP or methods based on the estimate of cerebral perfusion pressure (eCPP) and estimate of ICP (eICP). This study was aimed at assessing the effects of a 30° reverse Trendelenburg ('head up') prone position on two noninvasive estimators of ICP (eICP and PI). METHODS This is a cross-over, longitudinal, physiological study conducted on a cohort of adult patients fulfilling Berlin definition criteria for moderate to severe ARDS without brain injury but with clinical indication to prone positioning. We registered TCCD parameters of cerebral hemodynamic and systemic hemodynamic parameters, blood gas exchange data, and respiratory mechanics parameters in a horizonal supine position, in a 30° semirecumbent supine position, in the standard prone position, and, finally, in the 30° 'head up' prone position, obtained by tilting the entire bed to a reverse Trendelenburg position. One-way repeated measures analysis of variance was used to analyze data. RESULTS In 20 patients included, switching from a supine position to the standard prone position resulted in a significant increase in mean ± SD PI (from 0.99 ± 0.22 to 1.29 ± 0.25, p < 0.01) and eICP (from 12.5 ± 3.8 to 17.5 ± 4.1, p < 0.01), whereas moving from this latter position to the 'head up' prone position resulted in a decrease in the mean ± SD PI (from 1.29 ± 0.25 to 1.0 ± 0.23, p < 0.01). Hemodynamic and respiratory mechanics parameters did not differ. CONCLUSIONS The 30° 'head up' prone position may limit the increase in PI in moderate to severe ARDS without brain injury. As a noninvasive estimator of ICP, PI may allow detection of changes in ICP when moving from the 'head up' semirecumbent supine position to the standard prone position and from this latter position to the 'head up' prone position.
Collapse
Affiliation(s)
| | | | | | - Mario Dauri
- Department of Clinical Science and Translational Medicine, 'Tor Vergata' University of Rome, Rome, Italy
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Raffaele Aspide
- Anesthesia and Neurointensive Care Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gianmaria Cammarota
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Luigi Pisani
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Rossella Adorno
- Intensive Care Unit, Tor Vergata' University Hospital, Rome, Italy
| | - Roberto Polidoro
- Intensive Care Unit, Tor Vergata' University Hospital, Rome, Italy
| | - Marco Tiseo
- Intensive Care Unit, Tor Vergata' University Hospital, Rome, Italy
| | | | - Luigi Vetrugno
- Department of Medical, Oral, and Biotechnological Sciences, University G. D'Annunzio, Chieti, Italy
| | | | - Daniele Guerino Biasucci
- Department of Clinical Science and Translational Medicine, 'Tor Vergata' University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Russell MB, Locke DP, Adams HM, Pelley AR, Saghian R, Maekawa AS, Stapleton D, Mercer GV, Sled JG, Cahill LS. Sex-specific ultrasound imaging biomarkers of neurodegeneration in a mouse model. Front Aging Neurosci 2025; 16:1445164. [PMID: 39839306 PMCID: PMC11747422 DOI: 10.3389/fnagi.2024.1445164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Early detection of neurodegeneration is essential for optimizing interventions. The highly reproducible progression of neurodegeneration in the decrepit (dcr) mouse allows investigation of early biomarkers and mechanisms of brain injury. Methods Using high-frequency ultrasound, the common carotid arteries of female and male dcr and control mice were imaged longitudinally at time points bracketing the disease progression (50, 75, and 125 days of age) (n = 6 mice/group/sex). Results Over the disease time course, the female dcr mice demonstrated increased carotid artery blood flow and pulse wave velocity while the male dcr mice had a decrease in heart rate and no change in carotid artery ultrasound parameters. Early imaging biomarkers were sex-specific, with decreased carotid artery blood flow in female dcr mice and increased carotid artery diameter and decreased pulse wave velocity in males. Discussion Carotid artery and wave reflection ultrasound is a promising screening tool for early detection of neurodegeneration.
Collapse
Affiliation(s)
- Mark B. Russell
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Drew P. Locke
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Haley M. Adams
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Alexander R. Pelley
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Rojan Saghian
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Alexandre S. Maekawa
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Darcie Stapleton
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Grace V. Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
5
|
Soued M, Le Gouez A, Mercier FJ. Anesthetic Management of a Patient With Arnold Chiari Malformation and Syringomyelia During Laparoscopic Surgery With Neurologic Monitoring: A Case Report. A A Pract 2025; 19:e01908. [PMID: 39831716 PMCID: PMC11761015 DOI: 10.1213/xaa.0000000000001908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
We describe a patient with severe Arnold Chiari Malformation and syringomyelia who underwent gynecological laparoscopy in an emergency context; no brain imaging was available. We here report the successful use of optic nerve sheath diameter (ONSD) and middle cerebral artery (MCA) velocity measurements as surrogate monitoring for cerebral blood flow and intracranial pressure, respectively. MCA velocity was low when assessed after peritoneal insufflation and ONSD increased to 6.3 mm after Trendelenburg positioning. This noninvasive Ultrasound and Doppler neurological monitoring helped adapt the anesthetic management and the patient recovered both normal ONSD and MCA velocity values.
Collapse
Affiliation(s)
- Mickaël Soued
- From the Service d’Anesthésie, Clinique les Martinets, Groupe Ramsay Santé, Rueil-Malmaison, France
- Département d’Anesthésie, Hôpital Antoine Béclère, APHP.Université Paris-Saclay, Clamart, France
| | - Agnès Le Gouez
- Département d’Anesthésie, Hôpital Antoine Béclère, APHP.Université Paris-Saclay, Clamart, France
| | - Frédéric J. Mercier
- Département d’Anesthésie, Hôpital Antoine Béclère, APHP.Université Paris-Saclay, Clamart, France
| |
Collapse
|
6
|
Albin CSW, Cunha CB, Glaser TP, Schachter M, Snow JW, Oto B. The Approach to Altered Mental Status in the Intensive Care Unit. Semin Neurol 2024; 44:634-651. [PMID: 39137901 DOI: 10.1055/s-0044-1788894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Altered mental status (AMS) is a syndrome posing substantial burden to patients in the intensive care unit (ICU) in both prevalence and intensity. Unfortunately, ICU patients are often diagnosed merely with syndromic labels, particularly the duo of toxic-metabolic encephalopathy (TME) and delirium. Before applying a nonspecific diagnostic label, every patient with AMS should be evaluated for specific, treatable diseases affecting the central nervous system. This review offers a structured approach to increase the probability of identifying specific causal etiologies of AMS in the critically ill. We provide tips for bedside assessment in the challenging ICU environment and review the role and yield of common neurodiagnostic procedures, including specialized bedside modalities of diagnostic utility in unstable patients. We briefly review two common etiologies of TME (uremic and septic encephalopathies), and then review a selection of high-yield toxicologic, neurologic, and infectious causes of AMS in the ICU, with an emphasis on those that require deliberate consideration as they elude routine screening. The final section lays out an approach to the various etiologies of AMS in the critically ill.
Collapse
Affiliation(s)
| | - Cheston B Cunha
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Rhode Island Hospital, Providence, Rhode Island
| | - Timlin P Glaser
- University of Arizona College of Medicine, Phoenix, Arizona
- Banner University Medical Center, Phoenix, Arizona
| | | | - Jerry W Snow
- University of Arizona College of Medicine, Phoenix, Arizona
- Banner University Medical Center, Phoenix, Arizona
| | - Brandon Oto
- sBridgeport Hospital, Yale New Haven Health, Bridgeport, Connecticut
| |
Collapse
|
7
|
Cucciolini G, Corda I, Forfori F, Corradi F. Brain Ultrasonography in Critically Ill Septic Patients: A Scoping Review. J Clin Med 2024; 13:6920. [PMID: 39598064 PMCID: PMC11595057 DOI: 10.3390/jcm13226920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is linked to high mortality and impaired neurologic outcome. Brain ultrasonography (US) is a non-invasive tool for cerebral monitoring. A scoping review of the literature in three databases was performed to answer if brain perfusion is altered in sepsis, to determine the role of brain US in guiding resuscitation and its ability to predict the outcome. Randomized controlled trials, clinical trials, observational studies, and systematic reviews on adults with sepsis or septic shock in the ICU were included. A total of 625 articles were screened, and 34 included. There were 85% observational studies and 15% systematic reviews with or without meta-analysis. The majority of studies had a small sample size and used different metrics. The studies focused on cerebral blood flow (CBF) alterations reporting variable results (CBF increased, normal, or decreased). The findings showed a variable rate of cerebral autoregulation (CAR) impairment, with higher incidence in the early stages of sepsis and associations with poor neurological outcomes. However, the impact of CAR and CBF alterations on neurological outcomes and mortality was not clear. Very few studies were found on resuscitation. In conclusion, brain US can identify cerebral perfusions alterations and its usage in sepsis is promising. However, the current body of evidence for its usage is poor and lacks standardization.
Collapse
Affiliation(s)
- Giada Cucciolini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (I.C.); (F.F.); (F.C.)
| | | | | | | |
Collapse
|
8
|
Song X, Liang J, Tian C. Hemodynamic alterations and their clinical implications in the vertebrobasilar system among patients with isolated posterior circulation ischemic vertigo. Front Neurol 2024; 15:1463042. [PMID: 39555484 PMCID: PMC11563943 DOI: 10.3389/fneur.2024.1463042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background This research aimed to ascertain independent risk factors and the diagnostic value of vascular parameters in differentiating posterior circulation ischemic isolated vertigo (PCI-IV) from vestibular peripheral vertigo (VPV). Methods This study involved 247 patients with acute-onset vertigo, categorized into two groups: PCI-IV and VPV. Multivariate logistic regression was conducted to pinpoint independent risk factors for PCI-IV. Results The duration of vertigo, particularly episodes lasting more than a few hours, was a significant predictor of PCI-IV (OR = 2.183, p < 0.001). The presence of diabetes mellitus (OR = 1.746, p = 0.008) and hypertension (OR = 2.291, p = 0.004) also notably increased the likelihood of PCI-IV. Hemodynamic measurements such as the inner diameter and average blood flow velocity (Vmean) of the vertebral artery, as well as the resistive index (RI), were identified as significant predictive factors (p ≤ 0.033). The ROC analysis demonstrated the vertebral artery RI had the highest diagnostic accuracy with an area under the curve (AUC) of 0.78, indicating an optimal balance between sensitivity and specificity. Conclusion Clinical features such as the duration of vertigo, diabetes mellitus, and hypertension, along with vascular hemodynamics, are crucial in assessing the risk of PCI-IV. The RI in the vertebral artery emerged as a particularly potent diagnostic parameter. These findings advocate a multifaceted diagnostic approach, combining clinical and vascular parameters for the effective identification and management of PCI-IV.
Collapse
Affiliation(s)
| | | | - Congzhe Tian
- Department of Otorhinolaryngology, The Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
9
|
Fedriga M, Martini S, Iodice FG, Sortica da Costa C, Pezzato S, Moscatelli A, Beqiri E, Czosnyka M, Smielewski P, Agrawal S. Cerebral autoregulation in pediatric and neonatal intensive care: A scoping review. J Cereb Blood Flow Metab 2024; 44:1208-1226. [PMID: 38867574 PMCID: PMC11542144 DOI: 10.1177/0271678x241261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Deranged cerebral autoregulation (CA) is associated with worse outcome in adult brain injury. Strategies for monitoring CA and maintaining the brain at its 'best CA status' have been implemented, however, this approach has not yet developed for the paediatric population. This scoping review aims to find up-to-date evidence on CA assessment in children and neonates with a view to identify patient categories in which CA has been measured so far, CA monitoring methods and its relationship with clinical outcome if any. A literature search was conducted for studies published within 31st December 2022 in 3 bibliographic databases. Out of 494 papers screened, this review includes 135 studies. Our literature search reveals evidence for CA measurement in the paediatric population across different diagnostic categories and age groups. The techniques adopted, indices and thresholds used to assess and define CA are heterogeneous. We discuss the relevance of available evidence for CA assessment in the paediatric population. However, due to small number of studies and heterogeneity of methods used, there is no conclusive evidence to support universal adoption of CA monitoring, technique, and methodology. This calls for further work to understand the clinical impact of CA monitoring in paediatric and neonatal intensive care.
Collapse
Affiliation(s)
- Marta Fedriga
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOUBO, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca G Iodice
- Paediatric Cardiac Anaesthesia and Intensive Care Unit, IRCCS, Bambino Gesu’ Hospital, Rome, Italy
| | | | - Stefano Pezzato
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Shruti Agrawal
- Department of Paediatric Intensive Care, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Bharadwaj S, Urner TM, Cowdrick KR, Brothers RO, Boodooram T, Zhao H, Goyal V, Sathialingam E, Wu YC, Quadri A, Turrentine K, Akbar MM, Triplett SE, Bai S, Buckley EM. Stand-alone segmentation of blood flow pulsatility measured with diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6052-6062. [PMID: 39421785 PMCID: PMC11482157 DOI: 10.1364/boe.533916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
We present a stand-alone blood flow index (BFI) pulse segmentation method for diffuse correlation spectroscopy that uses a wavelet-based representation of the BFI signal at the cardiac frequency in place of an exogenous physiological reference. We use this wavelet-based segmentation method to quantify BFI waveform morphology in a cohort of 30 healthy adults. We demonstrate that the waveform morphology features obtained with the wavelet approach strongly agree with those obtained using an exogenous blood pressure reference signal. These results suggest the promise of stand-alone wavelet-based BFI segmentation for quantifying BFI waveform morphological features.
Collapse
Affiliation(s)
- Srinidhi Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Tara M. Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Tisha Boodooram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Vidisha Goyal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Yueh-Chi Wu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Katherine Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Mariam M. Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Sydney E. Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Shasha Bai
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, USA
- Children's Research Scholar, Children's Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, Georgia 30322, USA
| |
Collapse
|
11
|
Rivera-Rivera LA, Roberts GS, Peret A, Langhough RE, Jonaitis EM, Du L, Field A, Eisenmenger L, Johnson SC, Johnson KM. Unraveling diurnal and technical variability in cerebral hemodynamics from neurovascular 4D-Flow MRI. J Cereb Blood Flow Metab 2024; 44:1362-1375. [PMID: 38340787 PMCID: PMC11342721 DOI: 10.1177/0271678x241232190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
Neurovascular 4D-Flow MRI enables non-invasive evaluation of cerebral hemodynamics including measures of cerebral blood flow (CBF), vessel pulsatility index (PI), and cerebral pulse wave velocity (PWV). 4D-Flow measures have been linked to various neurovascular disorders including small vessel disease and Alzheimer's disease; however, physiological and technical sources of variability are not well established. Here, we characterized sources of diurnal physiological and technical variability in cerebral hemodynamics using 4D-Flow in a retrospective study of cognitively unimpaired older adults (N = 750) and a prospective study of younger adults (N = 10). Younger participants underwent repeated MRI sessions at 7am, 4 pm, and 10 pm. In the older cohort, having an MRI earlier on the day was significantly associated with higher CBF and lower PI. In prospective experiments, time of day significantly explained variability in CBF and PI; however, not in PWV. Test-retest experiments showed high CBF intra-session repeatability (repeatability coefficient (RPC) =7.2%), compared to lower diurnal repeatability (RPC = 40%). PI and PWV displayed similar intra-session and diurnal variability (PI intra-session RPC = 22%, RPC = 24% 7am vs 4 pm; PWV intra-session RPC = 17%, RPC = 21% 7am vs 4 pm). Overall, CBF measures showed low technical variability, supporting diurnal variability is from physiology. PI and PWV showed higher technical variability but less diurnal variability.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony Peret
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
Brasil S, Romeijn H, Haspels EK, Paiva W, Schaafsma A. Improved Transcranial Doppler Waveform Analysis for Intracranial Hypertension Assessment in Patients with Traumatic Brain Injury. Neurocrit Care 2024; 40:931-940. [PMID: 37932509 DOI: 10.1007/s12028-023-01849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Transcranial Doppler (TCD) is a noninvasive bedside tool for cerebral hemodynamic assessments in multiple clinical scenarios. TCD, by means of measuring systolic and diastolic blood velocities, allows the calculation of the pulsatility index (PI), a parameter that is correlated with intracranial pressure (ICP). Nevertheless, the predictive value of the PI for raised ICP appears to be low, as it is subjected to several, often confounding, factors not related to ICP. Recently, the pulsatile apparent resistance (PaR) index was developed as a PI corrected for arterial blood pressure, reducing some of the confounding factors influencing PI. This study compares the predictive value of PaR versus PI for intracranial hypertension (IH) (ICP > 20 mm Hg) in patients with traumatic brain injury. METHODS Patients with traumatic brain injury admitted to the neurocritical care unit who required invasive ICP monitoring were included prospectively within 5 days of admission. TCD measurements were performed in both middle cerebral arteries, allowing calculations of the PI and PaR. The optimal cutoff, discriminative power of these parameters for ICP ≥ 20 mm Hg, was assessed by calculating the area under the receiver operator characteristics curve (AUC). RESULTS In total, 93 patients were included. A total of 20 (22%) patients experienced IH during the recording sessions. The discriminative power was low for PI (AUC 0.63) but slightly higher for PaR (AUC 0.77). Nonparametric analysis indicated significant difference for PaR when comparing patients with (median 0.169) and without IH (median - 0.052, p = 0.001), whereas PI medians for patients with and without IH were 0.86 and 0.77, respectively (p = 0.041). Regarding subanalyses, the discriminative power of these parameters increased after exclusion of patients who had undergone a neurosurgical procedure. This was especially true for the PaR (AUC 0.89) and PI (AUC 0.72). Among these patients, a PaR cutoff value of - 0.023 had 100% sensitivity and 52.9% specificity. CONCLUSIONS In the present study, discriminative power of the PaR for discriminating IH was superior to the PI. The PaR seems to be a reliable noninvasive parameter for detecting IH. Further studies are warranted to define its clinical application, especially in aiding neurosurgical decision making, following up in intensive care units, and defining its ability to indicate responses according to the therapies administered.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | - Hannah Romeijn
- Intensive Care Department, Martini General Hospital, Groningen, The Netherlands
| | - Esther K Haspels
- Intensive Care Department, Martini General Hospital, Groningen, The Netherlands
| | - Wellingson Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Arjen Schaafsma
- Department of Clinical Neurophysiology, Martini General Hospital, Groningen, The Netherlands
| |
Collapse
|
13
|
Martínez-Palacios K, Vásquez-García S, Fariyike OA, Robba C, Rubiano AM. Non-Invasive Methods for Intracranial Pressure Monitoring in Traumatic Brain Injury Using Transcranial Doppler: A Scoping Review. J Neurotrauma 2024; 41:1282-1298. [PMID: 37861291 DOI: 10.1089/neu.2023.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Intracranial pressure (ICP) monitoring is necessary for managing patients with traumatic brain injury (TBI). Although gold-standard methods include intraventricular or intraparenchymal transducers, these systems cannot be used in patients with coagulopathies or in those who are at high risk of catheter-related infections, nor can they be used in resource-constrained settings. Therefore, a non-invasive modality that is more widely available, cost effective, and safe would have tremendous impact. Among such non-invasive choices, transcranial Doppler (TCD) provides indirect ICP estimates through waveform analysis of cerebral hemodynamic changes. The objective of this scoping review is to describe the existing evidence for the use of TCD-derived methods in estimating ICP in adult TBI patients as compared with gold-standard invasive methods. This review was conducted in accordance with the Joanna Briggs Institute methodology for scoping reviews, with a main search of PubMed and Embase. The search was limited to studies conducted in adult TBI patients published in any language between 2012 and 2022. Twenty-two studies were included for analysis, with most being prospective studies conducted in high-income countries. TCD-derived non-invasive ICP (nICP) methods are either mathematical or non-mathematical, with the former having slightly better correlation with invasive methods, especially when using time-trending ICP dynamics over one-time estimated values. Nevertheless, mathematical methods are associated with greater cost and complexity in their application. Formula-based methods showed promise in excluding elevated ICP, exhibiting a high negative predictive value. Therefore, TCD-derived methods could be useful in assessing ICP changes instead of absolute ICP values for high-risk patients, especially in low-resource settings.
Collapse
Affiliation(s)
- Karol Martínez-Palacios
- Neuroscience Institute, Universidad El Bosque, Bogotá, Colombia
- MEDITECH Foundation, Cali, Colombia
| | - Sebastián Vásquez-García
- MEDITECH Foundation, Cali, Colombia
- Neurology Department, Universidad del Rosario, Bogotá, Colombia
| | - Olubunmi A Fariyike
- MEDITECH Foundation, Cali, Colombia
- Faculty of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, Policlinico San Martino, Genova, Italy
| | - Andrés M Rubiano
- Neuroscience Institute, Universidad El Bosque, Bogotá, Colombia
- MEDITECH Foundation, Cali, Colombia
| |
Collapse
|
14
|
Zuin M, De Vito A, Romagnoli T, Polastri M, Capatti E, Azzini C, Brombo G, Zuliani G. Cerebral Blood Flow in Alzheimer's Disease: A Meta-Analysis on Transcranial Doppler Investigations. Geriatrics (Basel) 2024; 9:58. [PMID: 38804315 PMCID: PMC11130854 DOI: 10.3390/geriatrics9030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cerebrovascular hemodynamic impairment has been reported in Alzheimer's disease (AD). We performed a systematic review and meta-analysis to investigate changes in cerebral blood flow (CBF) in AD patients. METHODS Data were obtained by searching MEDLINE and Scopus for all investigations published between 1 January 2011 and 1 November 2021, comparing the cerebrovascular hemodynamic between AD patients and cognately healthy age-matched controls, using transcranial Doppler (TCD) ultrasound. RESULTS Twelve studies, based on 685 patients [395 with AD and 290 age-matched cognitively healthy controls, with a mean age of 71.5 and 72.1 years, respectively] were included in the analysis. A random effect model revealed that AD patients, in the proximal segments of the middle cerebral artery (MCA), have a significantly lower CBF velocity, compared to controls (MD: -7.80 cm/s, 95%CI: -10.78 to -5.13, p < 0.0001, I2 = 71.0%). Due to a significant Egger's test (t = 3.12, p = 0.008), a trim-and-fill analysis was performed, confirming the difference (MD: -11.05 cm/s, 95%CI: -12.28 to -9.82, p < 0.0001). Meta-regression analysis demonstrated that the mean CBF at the proximal MCA was directly correlated with arterial hypertension (p = 0.03) and MMSE score (p < 0.001), but inversely correlated with age (p = 0.01). In AD patients, the pulsatility index was significantly higher compared to controls (MD: 0.16, 95%CI: 0.07 to 0.25, p < 0.0001, I2: 84.5%), while the breath-holding index test results were significant lower (MD: -1.72, 95%CI: -2.53 to -0.91, p < 0.001, I2: 85.4%). CONCLUSIONS AD patients have a significant impairment in relation to their cerebrovascular perfusion, suggesting that cerebrovascular hemodynamic deterioration, evaluated using TCD, may be a useful diagnostic tool.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| | - Alessandro De Vito
- Department of Neurology, Stroke Division, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy;
| | - Tommaso Romagnoli
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| | - Michele Polastri
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| | - Eleonora Capatti
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| | - Cristiano Azzini
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| | - Gloria Brombo
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| | - Giovanni Zuliani
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Ferrara, Italy; (M.Z.); (T.R.); (M.P.); (E.C.); (C.A.); (G.B.)
| |
Collapse
|
15
|
Heredia-Orbegoso O, Vences MA, Failoc-Rojas VE, Fernández-Merjildo D, Lainez-Chacon RH, Villamonte R. Cerebral hemodynamics and optic nerve sheath diameter acquired via neurosonology in critical patients with severe coronavirus disease: experience of a national referral hospital in Peru. Front Neurol 2024; 15:1340749. [PMID: 38765265 PMCID: PMC11099257 DOI: 10.3389/fneur.2024.1340749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Aim We aimed to describe the neurosonological findings related to cerebral hemodynamics acquired using transcranial Doppler and to determine the frequency of elevated ICP by optic nerve sheath diameter (ONSD) measurement in patients with severe coronavirus disease (COVID-19) hospitalized in the intensive care unit of a national referral hospital in Peru. Methods We included a retrospective cohort of adult patients hospitalized with severe COVID-19 and acute respiratory failure within the first 7 days of mechanical ventilation under deep sedoanalgesia, with or without neuromuscular blockade who underwent ocular ultrasound and transcranial Doppler. We determine the frequency of elevated ICP by measuring the diameter of the optic nerve sheath, choosing as best cut-off value a diameter equal to or >5.8 mm. We also determine the frequency of sonographic patterns obtained by transcranial Doppler. Through insonation of the middle cerebral artery. Likewise, we evaluated the associations of clinical, mechanical ventilator, and arterial blood gas variables with ONSD ≥5.8 mm and pulsatility index (PI) ≥1.1. We also evaluated the associations of hemodynamic findings and ONSD with mortality the effect size was estimated using Poisson regression models with robust variance. Results This study included 142 patients. The mean age was 51.39 ± 13.3 years, and 78.9% of patients were male. Vasopressors were used in 45.1% of patients, and mean arterial pressure was 81.87 ± 10.64 mmHg. The mean partial pressure of carbon dioxide (PaCO2) was elevated (54.08 ± 16.01 mmHg). Elevated intracranial pressure was seen in 83.1% of patients, as estimated based on ONSD ≥5.8 mm. A mortality rate of 16.2% was reported. In the multivariate analysis, age was associated with elevated ONSD (risk ratio [RR] = 1.07). PaCO2 was a protective factor (RR = 0.64) in the cases of PI ≥ 1.1. In the mortality analysis, the mean velocity was a risk factor for mortality (RR = 1.15). Conclusions A high rate of intracranial hypertension was reported, with ONSD measurement being the most reliable method for estimation. The increase in ICP measured by ONSD in patients with severe COVID-19 on mechanical ventilation is not associated to hypercapnia or elevated intrathoracic pressures derived from protective mechanical ventilation.
Collapse
Affiliation(s)
- Omar Heredia-Orbegoso
- Centro de Emergencia de Lima Metropolitana, Hospital Nacional Edgardo Rebagliati Martins, Unidad de Cuidados Intensivos, Lima, Peru
| | | | | | | | - Richard H. Lainez-Chacon
- Centro de Emergencia de Lima Metropolitana, Hospital Nacional Edgardo Rebagliati Martins, Unidad de Cuidados Intensivos, Lima, Peru
| | - Renán Villamonte
- Centro de Emergencia de Lima Metropolitana, Hospital Nacional Edgardo Rebagliati Martins, Unidad de Cuidados Intensivos, Lima, Peru
| |
Collapse
|
16
|
Lakhanpal V, Ray S, Chakravarty K, Sharma B, Bhatia V, Dogra M, Takkar A, Handa S, Mahesh KV, Khurana D, Lal V. Establishing continuum in Transcranial Doppler characteristics of IIH, migraine and healthy controls- An exploratory study. Clin Neurol Neurosurg 2024; 240:108240. [PMID: 38554529 DOI: 10.1016/j.clineuro.2024.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND IIH is a severe form of headache that often has superimposed migraine and often it is very difficult to distinguish the two forms of headache. Intracranial hemodynamics is a relatively unexplored means of distinguishing between the two forms of headache. OBJECTIVES We aimed to study intracranial flow dynamics using Transcranial Doppler in patients with IIH, migraine, and normal controls. MATERIALS AND METHODS It was a hospital-based observational study that included 51 people with IIH, 87 people with migraine, and 101 healthy controls and all were subjected to TCD study after detailed clinical examination. RESULTS Mean age of patients in three groups were similar with the mean age in IIH being 33.41 ± 10.75 (age in years ± SD). Vision loss was present in 66.67% of patients with IIH, and most common field defect was generalized constriction (27.5%). Neuroimaging was abnormal in 94.11% of patients of IIH with mean CSF pressure was 31.27±5.32 cm of water. Of all the TCD-measured velocities, mean flow velocity (MFV) showed a significant difference in all three groups with (p-value <0.001). The pulsatility index, both for middle cerebral arteries as well as ophthalmic arteries showed a significant difference in the three groups with the highest values in IIH patients (p-value<.001). The mean VMR in IIH (1.11±0.32) was lower than the mean VMR in migraine (1.34±0.43) as well as controls (1.49±0.46). CONCLUSION TCD parameters like MFV and PI are useful parameters that show considerable variation and can be used to differentiate between IIH and migraine.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Bhatia
- Department of Radiology, PGIMER, Chandigarh, India
| | - Mohit Dogra
- Department of Ophthalmology, PGIMER Chandigarh, India
| | | | - Sabia Handa
- Department of Ophthalmology, AIIMS Bathinda, India
| | | | | | - Vivek Lal
- Department of Neurology, PGIMER Chandigarh, India
| |
Collapse
|
17
|
Zavriyev AI, Kaya K, Wu KC, Pierce ET, Franceschini MA, Robinson MB. Measuring pulsatile cortical blood flow and volume during carotid endarterectomy. BIOMEDICAL OPTICS EXPRESS 2024; 15:1355-1369. [PMID: 38495722 PMCID: PMC10942688 DOI: 10.1364/boe.507730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 03/19/2024]
Abstract
Carotid endarterectomy (CEA) involves removal of plaque in the carotid artery to reduce the risk of stroke and improve cerebral perfusion. This study aimed to investigate the utility of assessing pulsatile blood volume and flow during CEA. Using a combined near-infrared spectroscopy/diffuse correlation spectroscopy instrument, pulsatile hemodynamics were assessed in 12 patients undergoing CEA. Alterations to pulsatile amplitude, pulse transit time, and beat morphology were observed in measurements ipsilateral to the surgical side. The additional information provided through analysis of pulsatile hemodynamic signals has the potential to enable the discovery of non-invasive biomarkers related to cortical perfusion.
Collapse
Affiliation(s)
- Alexander I. Zavriyev
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kutlu Kaya
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kuan Cheng Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric T. Pierce
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mitchell B. Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Llompart-Pou JA, Galarza L, Amaya-Villar R, Godoy DA. Transcranial sonography in the critical patient. Med Intensiva 2024; 48:165-173. [PMID: 38431382 DOI: 10.1016/j.medine.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 03/05/2024]
Abstract
Transcranial ultrasonography is a non-invasive, bedside technique that has become a widely implemented tool in the evaluation and management of neurocritically ill patients. It constitutes a technique in continuous growth whose fundamentals (and limitations) must be known by the intensivist. This review provides a practical approach for the intensivist, including the different sonographic windows and planes of insonation and its role in different conditions of the neurocritical patients and in critical care patients of other etiologies.
Collapse
Affiliation(s)
- Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
| | - Laura Galarza
- Servicio de Medicina Intensiva, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
| | - Rosario Amaya-Villar
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Daniel Agustín Godoy
- Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, San Fernando del Valle de Catamarca, Argentina
| |
Collapse
|
19
|
Agrawal S, Abecasis F, Jalloh I. Neuromonitoring in Children with Traumatic Brain Injury. Neurocrit Care 2024; 40:147-158. [PMID: 37386341 PMCID: PMC10861621 DOI: 10.1007/s12028-023-01779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Traumatic brain injury remains a major cause of mortality and morbidity in children across the world. Current management based on international guidelines focuses on a fixed therapeutic target of less than 20 mm Hg for managing intracranial pressure and 40-50 mm Hg for cerebral perfusion pressure across the pediatric age group. To improve outcome from this complex disease, it is essential to understand the pathophysiological mechanisms responsible for disease evolution by using different monitoring tools. In this narrative review, we discuss the neuromonitoring tools available for use to help guide management of severe traumatic brain injury in children and some of the techniques that can in future help with individualizing treatment targets based on advanced cerebral physiology monitoring.
Collapse
Affiliation(s)
- Shruti Agrawal
- Department of Paediatric Intensive Care, Cambridge University Hospitals National Health Service Foundation Trust, Level 3, Box 7, Addenbrookes Hospital Hills Road, Cambridge, UK.
- University of Cambridge, Cambridge, UK.
| | - Francisco Abecasis
- Paediatric Intensive Care Unit, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Ibrahim Jalloh
- University of Cambridge, Cambridge, UK
- Department of Neurosurgery, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| |
Collapse
|
20
|
Appavu B, Dunning E, Hildebrandt K, Hanalioglu D, Abruzzo T. Changes in autonomic function and cerebral and somatic oxygenation with arterial flow pulsatility for children requiring veno-arterial extracorporeal membrane oxygenation. BRAIN & SPINE 2023; 4:102731. [PMID: 38510614 PMCID: PMC10951706 DOI: 10.1016/j.bas.2023.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Background Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) carries variability in arterial flow pulsatility (AFP). Research question What changes in cerebral and somatic oxygenation, hemodynamics, and autonomic function are associated with AFP during VA-ECMO? Methods This is a prospective study of children on VA-ECMO undergoing neuromonitoring. AFP was quantified by arterial blood pressure pulse amplitude and subcategorized: no pulsatility (<1 mmHg), minimal pulsatility (1 to <5 mmHg), moderate pulsatility (5 to <15 mmHg) and high pulsatility (≥15 mmHg). CVPR was assessed using the cerebral oximetry index (COx). Cerebral and somatic oxygenation was assessed using cerebral regional oximetry (rSO2) or peripheral oxygen saturation (SpO2). Autonomic function was assessed using baroreflex sensitivity (BRs), low-frequency high-frequency (LF/HF) ratio and standard deviation of heart rate R-R intervals (HRsd). Differences were assessed across AFP categories using linear mixed effects models with Tukey pairwise comparisons. Univariate logistic regression was used to explore risk of AFP with brain injuries. Results Among fifty-three children, comparisons of moderate to high pulsatility were associated with reductions in rSO2 (p < 0.001), SpO 2 (p = 0.005), LF/HF ratio (p = 0.028) and an increase in HRsd (p < 0.001). Reductions in BRs were observed across comparisons of none to minimal (P < 0.001) and minimal to moderate pulsatility (p = 0.004). Comparisons of no to low pulsatility were associated with reductions in BRs (p < 0.001) and ABP (p < 0.001) with increases in SpO2 (p < 0.001) and HR (p < 0.001). Arterial ischemic stroke was associated with higher pulsatility (p = 0.0384). Conclusion During VA-ECMO support, changes toward high AFP are associated with autonomic dysregulation and compromised cerebral and somatic tissue oxygenation.
Collapse
Affiliation(s)
- Brian Appavu
- Barrow Neurological Institute at Phoenix Children's Hospital, Department of Neurosciences, 1919 E. Thomas Road, Ambulatory Building B, 4th Floor, Phoenix, AZ, 85016, USA
| | - Elise Dunning
- Creighton University Health Sciences Campus – Phoenix, 3100 N Central Avenue, Phoenix, AZ, 85012, USA
| | - Kara Hildebrandt
- Barrow Neurological Institute at Phoenix Children's Hospital, Department of Neurosciences, 1919 E. Thomas Road, Ambulatory Building B, 4th Floor, Phoenix, AZ, 85016, USA
| | - Damla Hanalioglu
- Barrow Neurological Institute at Phoenix Children's Hospital, Department of Neurosciences, 1919 E. Thomas Road, Ambulatory Building B, 4th Floor, Phoenix, AZ, 85016, USA
| | - Todd Abruzzo
- Phoenix Children's Hospital, Department of Radiology, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA
| |
Collapse
|
21
|
Czosnyka Z, Lalou A, Pelah AI, Joanides AJ, Smielewski P, Placek MM, Marek C. Cerebral hemodynamic monitoring combined with infusion test in hydrocephalus. BRAIN & SPINE 2023; 3:102705. [PMID: 38021025 PMCID: PMC10668090 DOI: 10.1016/j.bas.2023.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/14/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023]
Abstract
Introduction Disturbance in cerebrospinal fluid (CSF) circulation may overlap with abnormality of cerebral blood flow (CBF) in hydrocephalus. Transcranial Doppler (TCD) ultrasonography is a non-invasive technique able to assess CBF velocity (CBFv) dynamics in response to a controlled rise in ICP during CSF infusion tests. Research question Which TCD-derived cerebral hemodynamic parameters change during controlled rise of ICP, and in which direction? Material and methods Infusion tests combined with TCD monitoring and non-invasive monitoring of arterial blood pressure (ABP) were conducted in 65 hydrocephalic patients. TCD-based hemodynamic variables: spectral pulsatility index (sPI), compliance of CSF space (Ci), cerebral autoregulation index (Mx), critical closing pressure (CrCP), cerebrovascular wall tension (WT) and diastolic closing margin (DCM-distance between diastolic ABP and CrCP) were calculated retrospectively. Results During the test ICP increased on average to 25 mm Hg (p < 0.0001), with a parallel decrease in cerebral perfusion pressure (CPP, p < 0.0003). The CBFv waveform changed, showing a rise in sPI (p < 0.0001). Ci decreased inversely proportional to a rise in ICP, and correlated well with changes of compliance calculated from the Marmarou model. CrCP increased in response to rising ICP (p < 0.001) while WT decreased (p < 0.002). DCM correlated with cerebrospinal elasticity (R = -0.31; p < 0.04). Cerebral autoregulation was worse in patients with normal CSF circulation, measured as resistance to CSF outflow (Rout): Pearson correlation between Mx and Rout was R = -0.41; p < 0.02. Conclusion A controlled rise in ICP affects cerebral hemodynamics in a moderate manner. Parameters like cerebral autoregulation index or DCM correlate with CSF dynamics and may be considered as supplementary variables for the diagnosis of hydrocephalus.
Collapse
Affiliation(s)
- Zofia Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Afroditi Lalou
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Adam I. Pelah
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Alexis J. Joanides
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Michal M. Placek
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Czosnyka Marek
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
22
|
de Moraes FM, Adissy ENB, Rocha E, Barros FCD, Freitas FGR, Miranda M, Valiente RA, de Andrade JBC, Chaddad-Neto FEA, Silva GS. Multimodal monitoring intracranial pressure by invasive and noninvasive means. Sci Rep 2023; 13:18404. [PMID: 37891406 PMCID: PMC10611734 DOI: 10.1038/s41598-023-45834-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Although the placement of an intraventricular catheter remains the gold standard method for the diagnosis of intracranial hypertension (ICH), the technique has several limitations including but not limited to its invasiveness. Current noninvasive methods, however, still lack robust evidence to support their clinical use. We aimed to estimate, as an exploratory hypothesis generating analysis, the discriminative power of four noninvasive methods to diagnose ICH. We prospectively collected data from adult intensive care unit (ICU) patients with subarachnoid hemorrhage (SAH), intraparenchymal hemorrhage (IPH), and ischemic stroke (IS) in whom invasive intracranial pressure (ICP) monitoring had been placed. Measures were simultaneously collected from the following noninvasive methods: optic nerve sheath diameter (ONSD), pulsatility index (PI) using transcranial Doppler (TCD), a 5-point visual scale designed for brain Computed Tomography (CT), and two parameters (time-to-peak [TTP] and P2/P1 ratio) of a noninvasive ICP wave morphology monitor (Brain4Care[B4c]). ICH was defined as a sustained ICP > 20 mmHg for at least 5 min. We studied 18 patients (SAH = 14; ICH = 3; IS = 1) on 60 occasions with a mean age of 52 ± 14.3 years. All methods were recorded simultaneously, except for the CT, which was performed within 24 h of the other methods. The median ICP was 13 [9.8-16.2] mmHg, and intracranial hypertension was present on 18 occasions (30%). Median values from the noninvasive techniques were ONSD 4.9 [4.40-5.41] mm, PI 1.22 [1.04-1.43], CT scale 3 points [IQR: 3.0], P2/P1 ratio 1.16 [1.09-1.23], and TTP 0.215 [0.193-0.237]. There was a significant statistical correlation between all the noninvasive techniques and invasive ICP (ONSD, r = 0.29; PI, r = 0.62; CT, r = 0.21; P2/P1 ratio, r = 0.35; TTP, r = 0.35, p < 0.001 for all comparisons). The area under the curve (AUC) to estimate intracranial hypertension was 0.69 [CIs = 0.62-0.78] for the ONSD, 0.75 [95% CIs 0.69-0.83] for the PI, 0.64 [95%Cis 0.59-069] for CT, 0.79 [95% CIs 0.72-0.93] for P2/P1 ratio, and 0.69 [95% CIs 0.60-0.74] for TTP. When the various techniques were combined, an AUC of 0.86 [0.76-0.93]) was obtained. The best pair of methods was the TCD and B4cth an AUC of 0.80 (0.72-0.88). Noninvasive technique measurements correlate with ICP and have an acceptable discrimination ability in diagnosing ICH. The multimodal combination of PI (TCD) and wave morphology monitor may improve the ability of the noninvasive methods to diagnose ICH. The observed variability in non-invasive ICP estimations underscores the need for comprehensive investigations to elucidate the optimal method-application alignment across distinct clinical scenarios.
Collapse
Affiliation(s)
| | | | - Eva Rocha
- Neurology and Neurosurgery Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Maramelia Miranda
- Neurology and Neurosurgery Department, Federal University of São Paulo, São Paulo, Brazil
| | - Raul Alberto Valiente
- Neurology and Neurosurgery Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Gisele Sampaio Silva
- Neurology and Neurosurgery Department, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Favilla CG, Carter S, Hartl B, Gitlevich R, Mullen MT, Yodh AG, Baker WB, Konecky S. Validation of the Openwater wearable optical system: cerebral hemodynamic monitoring during a breath hold maneuver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296612. [PMID: 37873126 PMCID: PMC10592983 DOI: 10.1101/2023.10.11.23296612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bedside cerebral blood flow (CBF) monitoring has the potential to inform and improve care for acute neurologic diseases, but technical challenges limit the use of existing techniques in clinical practice. Here we validate the Openwater optical system, a novel wearable headset that uses laser speckle contrast to monitor microvascular hemodynamics. We monitored 25 healthy adults with the Openwater system and concurrent transcranial Doppler (TCD) while performing a breath-hold maneuver to increase CBF. Relative blood flow (rBF) was derived from the changes in speckle contrast, and relative blood volume (rBV) was derived from the changes in speckle average intensity. A strong correlation was observed between beat-to-beat optical rBF and TCD-measured cerebral blood flow velocity (CBFv), R=0.79; the slope of the linear fit indicates good agreement, 0.87 (95% CI:0.83-0.92). Beat-to-beat rBV and CBFv were strongly correlated, R=0.72, but as expected the two variables were not proportional; changes in rBV were smaller than CBFv changes, with linear fit slope of 0.18 (95% CI:0.17-0.19). Further, strong agreement was found between rBF and CBFv waveform morphology and related metrics. This first in vivo validation of the Openwater optical system highlights its potential as a cerebral hemodynamic monitor, but additional validation is needed in disease states.
Collapse
|
24
|
Reichenbach A, Alteheld L, Henriksen J, Nakstad ER, Andersen GØ, Sunde K, Šaltytė Benth J, Lundqvist C. Transcranial Doppler during the first week after cardiac arrest and association with 6-month outcomes. Front Neurol 2023; 14:1222401. [PMID: 37859655 PMCID: PMC10582351 DOI: 10.3389/fneur.2023.1222401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
Background Early prediction of outcomes in comatose patients after out-of-hospital cardiac arrest is challenging. Prognostication tools include clinical examination, biomarkers, and neuroradiological and neurophysiological tests. We studied the association between transcranial Doppler (TCD) and the outcome. Methods This was a pre-defined sub-study of the prospective observational Norwegian Cardiorespiratory Arrest Study. Patients underwent standardized post-resuscitation care, including target temperature management (TTM) to 33°C for 24 h. TCD was performed at days 1, 3, and 5-7. The primary endpoint was cerebral performance category (CPC) at 6 months, dichotomized into good (CPC 1-2) and poor (CPC 3-5) outcomes. We used linear mixed modeling time-series analysis. Results Of 139 TCD-examined patients, 81 (58%) had good outcomes. Peak systolic velocity in the middle cerebral artery (PSV) was low during TTM (Day 1) and elevated after rewarming (Day 3). Thereafter, it continued to rise in patients with poor, but normalized in patients with good, outcomes. At days 5-7, PSV was 1.0 m/s (95% CI 0.9; 1.0) in patients with good outcomes and 1.3 m/s (95% CI 1.1; 1.4) in patients with poor outcomes (p < 0.001). Conclusion Elevated PSV at days 5-7 indicated poor outcomes. Our findings suggest that serial TCD examinations during the first week after cardiorespiratory arrest may improve our understanding of serious brain injury.
Collapse
Affiliation(s)
- Antje Reichenbach
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Lars Alteheld
- Department of Neurology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Julia Henriksen
- Department of Neurology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Espen Rostrup Nakstad
- Department of Acute Medicine, Oslo University Hospital Ullevaal, Oslo, Norway
- Norwegian National Unit for Chemical, Biological, Radioactive, Nuclear, and Explosive Medicine, Oslo University Hospital Ullevaal, Oslo, Norway
| | | | - Kjetil Sunde
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Jūratė Šaltytė Benth
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Faculty of Medicine, Institute of Clinical Medicine, Campus Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Christofer Lundqvist
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Faculty of Medicine, Institute of Clinical Medicine, Campus Akershus University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Traub J, Schließer M, Morbach C, Frantz S, Pham M, Störk S, Stoll G, Frey A, Neugebauer H. Internal carotid artery blood flow and pulsatility index in cognitively impaired people with chronic heart failure. ESC Heart Fail 2023; 10:3203-3208. [PMID: 37401264 PMCID: PMC10567624 DOI: 10.1002/ehf2.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
AIMS Mild cognitive impairment and dementia are common and serious co-morbidities in people with chronic heart failure (HF) as they increase hospitalization rates, mortality and health care costs. Upon other factors, dysregulated cerebral perfusion might contribute to brain pathology. We aimed to evaluate the association of non-invasively measured blood flow (BF) and pulsatility index (PI) of the internal carotid artery (ICA) with (i) chronic HF parameters, (ii) brain morphologic measures and (iii) cognitive impairment. METHODS AND RESULTS This post-hoc analysis of the observational, prospective Cognition.Matters-HF study included 107 chronic HF patients without atrial fibrillation or carotid artery stenosis (aged 63 ± 10 years; 19% women). Using extracranial sonography, we measured ICA-BF and ICA-PI 1.5 cm distal of the carotid bifurcation. Brain magnetic resonance imaging was performed on a 3-Tesla scanner to quantify cerebral atrophy, hippocampal atrophy and white matter hyperintensities. Extensive neuropsychological testing tested the cognitive domains intensity of attention, visual/verbal memory and executive function (including its subdomains selectivity of attention, visual/verbal fluency and working memory) using a comprehensive test battery. (i) Neither ICA-BF (median 630 (quartiles 570, 700) mL/min) nor ICA-PI (1.05 (0.96. 1.23)) related to left ventricular ejection fraction, left atrial volume index or NT-proBNP. (ii) Higher ICA-PI (r = 0.25; P = 0.011), but not ICA-BF (r = 0.08; P = 0.409), associated with increased volume of white matter hyperintensities beyond ageing, while neither ICA-PI nor ICA-BF related to cerebral or hippocampal atrophy indices. (iii) ICA-BF, but not ICA-PI, positively correlated with age-adjusted T-scores of executive function (r = 0.38; P < 0.001) and its subdomains working memory (r = 0.32; P < 0.001) and visual/verbal fluency (r = 0.32; P < 0.001). In a multivariate linear model of executive function, only ICA-BF (T = 3.79; P < 0.001), but not HF or magnetic resonance imaging parameters, remained a significant correlate of executive function. CONCLUSIONS ICA-BF and ICA-PI, measured in broadly available extracranial sonography, independently related to measures of functional and structural brain changes in people with chronic HF, respectively. Due to limitations of this cross-sectional approach without a healthy control group, larger controlled longitudinal studies are needed to further elucidate the role of ICA-BF dysregulation and its implication for clinical care in this vulnerable cohort.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine IUniversity Hospital WürzburgWürzburgGermany
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
- Interdisciplinary Center for Clinical ResearchUniversity Hospital WürzburgWürzburgGermany
| | - Mira Schließer
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Caroline Morbach
- Department of Internal Medicine IUniversity Hospital WürzburgWürzburgGermany
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
| | - Stefan Frantz
- Department of Internal Medicine IUniversity Hospital WürzburgWürzburgGermany
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
| | - Mirko Pham
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
- Department of NeuroradiologyUniversity Hospital WürzburgWürzburgGermany
| | - Stefan Störk
- Department of Internal Medicine IUniversity Hospital WürzburgWürzburgGermany
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
| | - Guido Stoll
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Anna Frey
- Department of Internal Medicine IUniversity Hospital WürzburgWürzburgGermany
- Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
| | | |
Collapse
|
26
|
Burzyńska M, Uryga A, Kasprowicz M, Czosnyka M, Goździk W, Robba C. Cerebral Autoregulation, Cerebral Hemodynamics, and Injury Biomarkers, in Patients with COVID-19 Treated with Veno-Venous Extracorporeal Membrane Oxygenation. Neurocrit Care 2023; 39:425-435. [PMID: 36949359 PMCID: PMC10033181 DOI: 10.1007/s12028-023-01700-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND This study aimed to describe the cerebrovascular dynamics, in particular cerebral autoregulation (CA), and cerebral biomarkers as neuron-specific enolase (NSE) in patients with a diagnosis of coronavirus disease 2019 and acute respiratory distress syndrome as well as undergoing veno-venous extracorporeal membrane treatment. METHODS This was a single center, observational study conducted in the intensive care unit of the University Hospital in Wroclaw from October 2020 to February 2022. Transcranial Doppler recordings of the middle cerebral artery conducted for at least 20 min were performed. Cerebral autoregulation (CA) was estimated by using the mean velocity index (Mxa), calculated as the moving correlation coefficient between slow-wave oscillations in cerebral blood flow velocity and arterial blood pressure. Altered CA was defined as a positive Mxa. Blood samples for the measurement of NSE were obtained at the same time as transcranial Doppler measurements. RESULTS A total of 16 patients fulfilled the inclusion criteria and were enrolled in the study. The median age was 39 (34-56) years. Altered CA was found in 12 patients, and six out of seven patients who died had altered CA. A positive Mxa was a significant predictor of mortality, with a sensitivity of 85.7%. We found that three out of five patients with pathological changes in brain computed tomography and six out of ten patients with neurological complications had altered CA. NSE was a significant predictor of mortality (cutoff value: 28.9 µg/L); area under the curve = 0.83, p = 0.006), with a strong relationship between increased level of NSE and altered CA, χ2 = 6.24; p = 0.035; φ = 0.69. CONCLUSIONS Patients with coronavirus disease 2019-related acute respiratory distress syndrome, requiring veno-venous extracorporeal membrane treatment, are likely to have elevated NSE levels and altered CA. The CA was associated with NSE values in this group. This preliminary analysis suggests that advanced neuromonitoring and evaluation of biomarkers should be considered in this population.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Waldemar Goździk
- Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, Wroclaw, Poland
| | - Chiara Robba
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| |
Collapse
|
27
|
Gutteridge D, Tully P, Smith A, Loetscher T, Keage H. Cross-sectional associations between short and mid-term blood pressure variability, cognition, and vascular stiffness in older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100181. [PMID: 37711969 PMCID: PMC10497990 DOI: 10.1016/j.cccb.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Background High blood pressure variability (BPV), particularly in older age, appears to be an independent risk factor for incident dementia. The current study aimed to investigate the association between different BPV measures (short- and mid-term BPV including circadian patterns) and cognitive functioning as well as vascular stiffness measures to better understand the role that BPV plays in cognitive impairment. Methods 70 older adults (60-80-year-olds) without dementia completed a cognitive test battery and had their blood pressure (BP) assessed via a 24-hour ambulatory BP monitor (divided into sleep and wake for short-term BPV) and 4-day morning and evening home-based BP monitor (for day-to-day BPV). Arterial stiffness was evaluated via pulse wave analysis and pulse wave velocity (PWV) and cerebrovascular pulsatility was assessed via transcranial doppler sonography of the middle cerebral arteries. Results High systolic as well as diastolic short- and mid-term BPV were associated with poorer cognitive functioning, independent of the mean BP. Higher short-term BPV was associated with poorer attention and psychomotor speed, whilst day-to-day BPV was negatively linked with executive functioning. Circadian BP patterns (dipping and morning BP surge) showed no significant relationships with cognition after adjusting for covariates. Higher systolic short-term BPV was associated with higher arterial stiffness (PWV) and higher diastolic day-to-day BPV was linked with lower arterial stiffness. No significant associations between BPV measures and cerebrovascular pulsatility were present. Conclusion High BPV, independently of the mean BP, is associated with lower cognitive performance and increased arterial stiffness in older adults without clinically-relevant cognitive impairment. This highlights the role of systolic and diastolic BPV as a potential early clinical marker for cognitive impairment.
Collapse
Affiliation(s)
- D.S. Gutteridge
- Cognitive Ageing and Impairment Neuroscience Laboratory (CAIN), University of South Australia, Adelaide, SA, Australia
| | - P.J. Tully
- Faculty of Medicine and Health, School of Psychology, University of New England, Armidale, NSW, Australia
| | - A.E. Smith
- Alliance for Research in Exercise Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - T. Loetscher
- Cognitive Ageing and Impairment Neuroscience Laboratory (CAIN), University of South Australia, Adelaide, SA, Australia
| | - H.A. Keage
- Cognitive Ageing and Impairment Neuroscience Laboratory (CAIN), University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
28
|
Verma D, Sadayandi RA, Anbazhagan S, Nagarajan K, Bidkar PU. Is optic nerve sheath diameter a promising screening tool to predict neurological outcomes and the need for secondary decompressive craniectomy in moderate to severe head injury patients? A prospective monocentric observational pilot study. Surg Neurol Int 2023; 14:276. [PMID: 37680910 PMCID: PMC10481796 DOI: 10.25259/sni_318_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
Background Optic nerve sheath diameter (ONSD) has been shown to be a noninvasive and quick method to calculate intracranial pressure (ICP) and subsequent neurologic outcomes, although with variable cutoffs. ICP can be indirectly assessed by noninvasive methods such as transcranial Doppler, ONSD, tympanic membrane displacement, and fundoscopy. Knowledge regarding the diagnostic accuracy of ONSD for predicting unfavorable outcomes within 72 hours (h) of moderate and severe head injury is limited. The objective of this study was to measure ONSD measurements at 24-h intervals in moderate to severe head injury patients and to find its association with clinical outcomes in the target population. Methods This prospective observational study was done on moderate to severe head injury patients. ONSD was measured twice at 24-h intervals over 48 h. The clinical outcome was divided into the favorable group (patients who were in conservative treatment with a stable Glasgow Coma Scale [GCS] score and discharged following treatment) and the unfavorable group (patients who had a drop in GCS motor score of one or more, or expired or underwent surgical intervention) within 72 h following traumatic brain injury. The Kruskal-Wallis test, Mann- Whitney test, and receiver operating characteristic curves were used to establish the association between ONSD and clinical outcomes. Results ONSD values measured at 24-h intervals >6.1 mm (P < 0.0146) and 6.2 mm (P < 0.0001) were found to be predictors of unfavorable outcomes (expired or underwent surgery), and hence the need for a secondary decompressive craniectomy (DC). Conclusion ONSD is an efficient screening tool to assess neurological outcomes in severe head injury patients. It can reliably predict the need for secondary DC at an earlier stage before secondary brain damage ensues in these patients.
Collapse
Affiliation(s)
- Dinesh Verma
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ramesh Andi Sadayandi
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sathiaprabhu Anbazhagan
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Krishnan Nagarajan
- Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Prasanna Udupi Bidkar
- Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
29
|
Urner TM, Cowdrick KR, Brothers RO, Boodooram T, Zhao H, Goyal V, Sathialingam E, Quadri A, Turrentine K, Akbar MM, Triplett SE, Bai S, Buckley EM. Normative cerebral microvascular blood flow waveform morphology assessed with diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3635-3653. [PMID: 37497521 PMCID: PMC10368026 DOI: 10.1364/boe.489760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 07/28/2023]
Abstract
Microvascular cerebral blood flow exhibits pulsatility at the cardiac frequency that carries valuable information about cerebrovascular health. This study used diffuse correlation spectroscopy to quantify normative features of these waveforms in a cohort of thirty healthy adults. We demonstrate they are sensitive to changes in vascular tone, as indicated by pronounced morphological changes with hypercapnia. Further, we observe significant sex-based differences in waveform morphology, with females exhibiting higher flow, greater area-under-the-curve, and lower pulsatility. Finally, we quantify normative values for cerebral critical closing pressure, i.e., the minimum pressure required to maintain flow in a given vascular region.
Collapse
Affiliation(s)
- Tara M Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Kyle R Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Tisha Boodooram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Vidisha Goyal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Katherine Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Mariam M Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Sydney E Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Shasha Bai
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Children's Research Scholar, Children's Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Chalkias A, Adamos G, Mentzelopoulos SD. General Critical Care, Temperature Control, and End-of-Life Decision Making in Patients Resuscitated from Cardiac Arrest. J Clin Med 2023; 12:4118. [PMID: 37373812 DOI: 10.3390/jcm12124118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac arrest affects millions of people per year worldwide. Although advances in cardiopulmonary resuscitation and intensive care have improved outcomes over time, neurologic impairment and multiple organ dysfunction continue to be associated with a high mortality rate. The pathophysiologic mechanisms underlying the post-resuscitation disease are complex, and a coordinated, evidence-based approach to post-resuscitation care has significant potential to improve survival. Critical care management of patients resuscitated from cardiac arrest focuses on the identification and treatment of the underlying cause(s), hemodynamic and respiratory support, organ protection, and active temperature control. This review provides a state-of-the-art appraisal of critical care management of the post-cardiac arrest patient.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Georgios Adamos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| | - Spyros D Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| |
Collapse
|
31
|
Steele CN, Oh ES, Wang W, Farmer-Bailey H, Gitomer BY, Chonchol M, Nowak KL. Cerebrovascular Pulsatility Index Is Reduced in Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 2023; 54:165-174. [PMID: 37231790 PMCID: PMC10529076 DOI: 10.1159/000530583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Cerebrovascular dysfunction, characterized by increased brain pulsatile flow, reduced cerebrovascular reactivity, and cerebral hypoperfusion precedes the onset of dementia and is linked to cognitive dysfunction. Autosomal dominant polycystic kidney disease (ADPKD) may increase the risk of dementia, and intracranial aneurysms are more prevalent in ADPKD patients. However, cerebrovascular function has not been previously characterized in patients with ADPKD. METHODS Using transcranial Doppler, we compared middle cerebral artery (MCA) pulsatility index (PI, cerebrovascular stiffness) and MCA blood velocity response to hypercapnia (normalized for blood pressure and end-tidal CO2, cerebrovascular reactivity) in patients with early-stage ADPKD versus age-matched healthy controls. We also administered the NIH cognitive toolbox (cognitive function) and measured carotid-femoral pulse-wave velocity (PWV, aortic stiffness). RESULTS Fifteen participants with ADPKD (9F, 27 ± 4 yrs, eGFR: 106 ± 22 mL/min/1.73 m2) were compared to 15 healthy controls (8F, 29 ± 4 yrs, eGFR: 109 ± 14 mL/min/1.73 m2). MCA PI was unexpectedly lower in ADPKD (0.71 ± 0.07) versus controls (0.82 ± 0.09 AU; p < 0.001); however, normalized MCA blood velocity in response to hypercapnia did not differ between groups (2.0 ± 1.2 vs. 2.1 ± 0.8 %Δ/mm Hg; p = 0.85). Lower MCA PI was associated with a lower crystalized composite score (cognition), which persisted after adjustment for age, sex, eGFR, and education (β = 0.58, p = 0.007). There was no association of MCA PI with carotid-femoral PWV (r = 0.01, p = 0.96), despite greater carotid-femoral PWV in ADPKD, suggesting MCA PI reflects vascular properties other than arterial stiffness (such as low wall shear stress) in ADPKD. DISCUSSION/CONCLUSION MCA PI is lower in patients with ADPKD. Follow-up research on this observation is merited as low PI has been associated with intracranial aneurysm in other populations.
Collapse
Affiliation(s)
- Cortney N Steele
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ester S Oh
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wei Wang
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heather Farmer-Bailey
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Berenice Y Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
32
|
Roberts GS, Peret A, Jonaitis EM, Koscik RL, Hoffman CA, Rivera-Rivera LA, Cody KA, Rowley HA, Johnson SC, Wieben O, Johnson KM, Eisenmenger LB. Normative Cerebral Hemodynamics in Middle-aged and Older Adults Using 4D Flow MRI: Initial Analysis of Vascular Aging. Radiology 2023; 307:e222685. [PMID: 36943077 PMCID: PMC10140641 DOI: 10.1148/radiol.222685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
Background Characterizing cerebrovascular hemodynamics in older adults is important for identifying disease and understanding normal neurovascular aging. Four-dimensional (4D) flow MRI allows for a comprehensive assessment of cerebral hemodynamics in a single acquisition. Purpose To establish reference intracranial blood flow and pulsatility index values in a large cross-sectional sample of middle-aged (45-65 years) and older (>65 years) adults and characterize the effect of age and sex on blood flow and pulsatility. Materials and Methods In this retrospective study, patients aged 45-93 years (cognitively unimpaired) underwent cranial 4D flow MRI between March 2010 and March 2020. Blood flow rates and pulsatility indexes from 13 major arteries and four venous sinuses and total cerebral blood flow were collected. Intraobserver and interobserver reproducibility of flow and pulsatility measures was assessed in 30 patients. Descriptive statistics (mean ± SD) of blood flow and pulsatility were tabulated for the entire group and by age and sex. Multiple linear regression and linear mixed-effects models were used to assess the effect of age and sex on total cerebral blood flow and vessel-specific flow and pulsatility, respectively. Results There were 759 patients (mean age, 65 years ± 8 [SD]; 506 female patients) analyzed. For intra- and interobserver reproducibility, median intraclass correlation coefficients were greater than 0.90 for flow and pulsatility measures across all vessels. Regression coefficients β ± standard error from multiple linear regression showed a 4 mL/min decrease in total cerebral blood flow each year (age β = -3.94 mL/min per year ± 0.44; P < .001). Mixed effects showed a 1 mL/min average annual decrease in blood flow (age β = -0.95 mL/min per year ± 0.16; P < .001) and 0.01 arbitrary unit (au) average annual increase in pulsatility over all vessels (age β = 0.011 au per year ± 0.001; P < .001). No evidence of sex differences was observed for flow (β = -1.60 mL/min per male patient ± 1.77; P = .37), but pulsatility was higher in female patients (sex β = -0.018 au per male patient ± 0.008; P = .02). Conclusion Normal reference values for blood flow and pulsatility obtained using four-dimensional flow MRI showed correlations with age. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Steinman in this issue.
Collapse
Affiliation(s)
- Grant S. Roberts
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Anthony Peret
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Erin M. Jonaitis
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Rebecca L. Koscik
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Carson A. Hoffman
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Leonardo A. Rivera-Rivera
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Karly A. Cody
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Howard A. Rowley
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Sterling C. Johnson
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Oliver Wieben
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Kevin M. Johnson
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Laura B. Eisenmenger
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| |
Collapse
|
33
|
Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14:1155986. [PMID: 37153655 PMCID: PMC10157267 DOI: 10.3389/fneur.2023.1155986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed "multimodal monitoring," is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Collapse
Affiliation(s)
- Jeffrey R. Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States
| | - Nicholas E. Loper
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
34
|
Okamoto K, Takahashi N, Kobayashi T, Shiba T, Hori Y, Fujii H. Novel superpixel method to visualize fundus blood flow resistivity in healthy adults. Sci Rep 2023; 13:6171. [PMID: 37061579 PMCID: PMC10105763 DOI: 10.1038/s41598-023-33450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/13/2023] [Indexed: 04/17/2023] Open
Abstract
We aimed to perform superpixel segmentation of ocular blood flow maps obtained using laser speckle flowgraphy (LSFG) and investigate the effects of systemic parameters such as body weight, height, and sex on ocular blood flow resistivity. We studied 757 healthy participants (583 men, 174 women). We calculated the average beat strength over mean blur rate (BOM) as a LSFG resistivity index, as a function of age and sex using ordinary regions of interest (ROI) centered on the optic nerve head (ONH), the retinal vessels region and tissue around the ONH, and the choroid (CHD). We compared the ROI and superpixel-based methods, which are segmented based on image processing, for calculating the BOM. The sex differences in the BOM for the ONH, retinal-vessels region and tissue region of the ONH and CHD were significant for individuals aged ≤ 50 years (P < 0.01) but not those > 50 years old (P > 0.05). The average BOMs calculated using the ROI and superpixel methods were strongly correlated in the ONH (coefficient = 0.87, R2 = 0.8, P < 0.0001, n = 5465). In summary, a superpixel-segmented BOM map is suitable for two-dimensional visualization of ocular blood flow resistivity.
Collapse
Affiliation(s)
| | | | - Tatsuhiko Kobayashi
- Department of Ophthalmology, School of Medicine, Toho University, Tokyo, Japan
- Department of Ophthalmology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Tomoaki Shiba
- Department of Ophthalmology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuichi Hori
- Department of Ophthalmology, School of Medicine, Toho University, Tokyo, Japan
| | - Hitoshi Fujii
- Softcare Co., Ltd., Fukutsu, Japan
- Department of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| |
Collapse
|
35
|
González Olmos A, Humlesen Z, Matchkov V, Postnov DD. Lossless temporal contrast analysis of laser speckle images from periodic signals. BIOMEDICAL OPTICS EXPRESS 2023; 14:1355-1363. [PMID: 37078029 PMCID: PMC10110321 DOI: 10.1364/boe.485951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
Laser speckle contrast imaging is a technique that provides valuable physiological information about vascular topology and blood flow dynamics. When using contrast analysis, it is possible to obtain detailed spatial information at the cost of sacrificing temporal resolution and vice versa. Such a trade-off becomes problematic when assessing blood dynamics in narrow vessels. This study presents a new contrast calculation method that preserves fine temporal dynamics and structural features when applied to periodic blood flow changes, such as cardiac pulsatility. We use simulations and in vivo experiments to compare our method with the standard spatial and temporal contrast calculations and demonstrate that the proposed method retains the spatial and temporal resolutions, resulting in the improved estimation of the blood flow dynamics.
Collapse
Affiliation(s)
- Alberto González Olmos
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Zaka Humlesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Dmitry D. Postnov
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Abstract
OBJECTIVES Critically ill patients are at high risk of acute brain injury. Bedside multimodality neuromonitoring techniques can provide a direct assessment of physiologic interactions between systemic derangements and intracranial processes and offer the potential for early detection of neurologic deterioration before clinically manifest signs occur. Neuromonitoring provides measurable parameters of new or evolving brain injury that can be used as a target for investigating various therapeutic interventions, monitoring treatment responses, and testing clinical paradigms that could reduce secondary brain injury and improve clinical outcomes. Further investigations may also reveal neuromonitoring markers that can assist in neuroprognostication. We provide an up-to-date summary of clinical applications, risks, benefits, and challenges of various invasive and noninvasive neuromonitoring modalities. DATA SOURCES English articles were retrieved using pertinent search terms related to invasive and noninvasive neuromonitoring techniques in PubMed and CINAHL. STUDY SELECTION Original research, review articles, commentaries, and guidelines. DATA EXTRACTION Syntheses of data retrieved from relevant publications are summarized into a narrative review. DATA SYNTHESIS A cascade of cerebral and systemic pathophysiological processes can compound neuronal damage in critically ill patients. Numerous neuromonitoring modalities and their clinical applications have been investigated in critically ill patients that monitor a range of neurologic physiologic processes, including clinical neurologic assessments, electrophysiology tests, cerebral blood flow, substrate delivery, substrate utilization, and cellular metabolism. Most studies in neuromonitoring have focused on traumatic brain injury, with a paucity of data on other clinical types of acute brain injury. We provide a concise summary of the most commonly used invasive and noninvasive neuromonitoring techniques, their associated risks, their bedside clinical application, and the implications of common findings to guide evaluation and management of critically ill patients. CONCLUSIONS Neuromonitoring techniques provide an essential tool to facilitate early detection and treatment of acute brain injury in critical care. Awareness of the nuances of their use and clinical applications can empower the intensive care team with tools to potentially reduce the burden of neurologic morbidity in critically ill patients.
Collapse
Affiliation(s)
- Swarna Rajagopalan
- Department of Neurology, Cooper Medical School of Rowan University, Camden, NJ
| | - Aarti Sarwal
- Department of Neurology, Atrium Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
37
|
Tamagnone FM, Cheong I, Luna E, Previgliano I, Otero Castro V. Ultrasound-guided cerebral resuscitation in patients with severe traumatic brain Injury. J Clin Monit Comput 2023; 37:359-363. [PMID: 36454340 DOI: 10.1007/s10877-022-00954-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
Traumatic brain injury (TBI) is a worldwide public health concern given its significant morbidity and mortality, years of potential life lost, reduced quality of life and elevated healthcare costs. The primary injury occurs at the moment of impact, but secondary injuries might develop as a result of brain hemodynamic abnormalities, hypoxia, and hypotension. The cerebral edema and hemorrhage of the injured tissues causes a decrease in cerebral perfusion pressure (CPP), which leads to higher risk of cerebral ischemia, herniation and death. In this setting, our role as physicians is to minimize damage by the optimization of the CPP and therefore to reduce mortality and improve neurological outcomes. Performing a transcranial doppler ultrasound (TCD) allows to estimate cerebral blood flow velocities and identify states of low flow and high resistance. We propose to include TCD as an initial assessment and further monitoring tool for resuscitation guidance in patients with severe TBI. We present an Ultrasound-Guided Cardio-cerebral Resuscitation (UGCeR) protocol in Patients with Severe TBI.
Collapse
Affiliation(s)
| | - Issac Cheong
- Argentinian Critical Care Ultrasonography Association (ASARUC), Buenos Aires, Argentina.
- Department of critical care medicine, Sanatorio De los Arcos, Buenos Aires, Argentina.
- Department of critical care medicine, Sanatorio De los Arcos, Juan B. Justo 909, Buenos Aires, Argentina.
| | - Ezequiel Luna
- Department of critical care medicine, Sanatorio Guemes, Buenos Aires, Argentina
| | - Ignacio Previgliano
- Maimonides University, Buenos aires, Argentina
- Hospital General de Agudos J. A. Fernández, Buenos Aires, Argentina
| | - Victoria Otero Castro
- Department of critical care medicine, Sanatorio De los Arcos, Buenos Aires, Argentina
| |
Collapse
|
38
|
Wolthers SA, Engelholm CP, Uslu B, Brandt CT. Noninvasive intracranial pressure monitoring in central nervous system infections. Minerva Anestesiol 2023; 89:206-216. [PMID: 36422116 DOI: 10.23736/s0375-9393.22.16863-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracranial pressure (ICP) monitoring constitutes an important part of the management of traumatic brain injury. However, its application in other brain pathologies such as neuroinfections like acute bacterial meningitis is unclear. Despite focus on aggressive, prompt treatment, morbidity and mortality from acute bacterial meningitis remain high. Increased ICP is well-known to occur in severe neuroinfections. The increased ICP compromise cerebral perfusion pressure and may ultimately lead to brain stem herniation. Therefore, controlling the ICP could also be important in acute bacterial meningitis. However, risk factors for complications due to invasive monitoring among these patients may be significantly increased due to higher age and levels of comorbidity compared to the traumatic brain injury patient from which the ICP treatment algorithms are developed. This narrative review evaluates the different modalities of ICP monitoring with the aim to elucidate current status of non-invasive alternatives to invasive monitoring as a decision tool and eventually monitoring. Non-invasive screening using ultrasound of the optical nerve sheath, transcranial doppler, magnetic resonance imaging or preferably a combination of these modalities, provides measurements that can be used as a decision guidance for invasive ICP measurement. The available data do not support the replacement of invasive techniques for continuous ICP measurement in patients with increased ICP. Non-invasive modalities should be taken into consideration in patients with neuroinfections at low risk of increased ICP.
Collapse
Affiliation(s)
- Signe A Wolthers
- Department of Anesthesia and Intensive Care Medicine, Zealand University Hospital, Roskilde, Denmark -
| | - Cecilie P Engelholm
- Department of Anesthesia and Intensive Care Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Bülent Uslu
- Department of Anesthesia and Intensive Care Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Christian T Brandt
- Unit of Infectious Diseases, Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
39
|
Ziółkowski A, Pudełko A, Kazimierska A, Uryga A, Czosnyka Z, Kasprowicz M, Czosnyka M. Peak appearance time in pulse waveforms of intracranial pressure and cerebral blood flow velocity. Front Physiol 2023; 13:1077966. [PMID: 36685171 PMCID: PMC9846027 DOI: 10.3389/fphys.2022.1077966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The shape of the pulse waveforms of intracranial pressure (ICP) and cerebral blood flow velocity (CBFV) typically contains three characteristic peaks. It was reported that alterations in cerebral hemodynamics may influence the shape of the pulse waveforms by changing peaks' configuration. However, the changes in peak appearance time (PAT) in ICP and CBFV pulses are only described superficially. We analyzed retrospectively ICP and CBFV signals recorded in traumatic brain injury patients during decrease in ICP induced by hypocapnia (n = 11) and rise in ICP during episodes of ICP plateau waves (n = 8). All three peaks were manually annotated in over 48 thousand individual pulses. The changes in PAT were compared between periods of vasoconstriction (expected during hypocapnia) and vasodilation (expected during ICP plateau waves) and their corresponding baselines. Correlation coefficient (rS) analysis between mean ICP and mean PATs was performed in each individual recording. Vasodilation prolonged PAT of the first peaks of ICP and CBFV pulses and the third peak of CBFV pulse. It also accelerated PAT of the third peak of ICP pulse. In contrast, vasoconstriction shortened appearance time of the first peaks of ICP and CBFV pulses and the second peak of ICP pulses. Analysis of individual recordings demonstrated positive association between changes in PAT of all three peaks in the CBFV pulse and mean ICP (rS range: 0.32-0.79 for significant correlations). Further study is needed to test whether PAT of the CBFV pulse may serve as an indicator of changes in ICP-this may open a perspective for non-invasive monitoring of alterations in mean ICP.
Collapse
Affiliation(s)
- Arkadiusz Ziółkowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agata Pudełko
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Kazimierska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Zofia Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,*Correspondence: Magdalena Kasprowicz,
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
40
|
Li J, Wang S, Li J, Fang Y, Wang Y, Zhang Y. Nomogram to Predict Cognitive Impairment in Patients with Asymptomatic Middle Cerebral Artery Stenosis. Int J Gen Med 2023; 16:1333-1343. [PMID: 37089137 PMCID: PMC10115204 DOI: 10.2147/ijgm.s407728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose This study aims to investigate the characteristics and influencing factors of cognitive impairment in patients with asymptomatic middle cerebral artery stenosis (aMCAS) and to construct a nomogram to predict the risk of cognitive impairment in patients with aMCAS. Patients and Methods We collected 54 patients with aMCAS and 35 healthy controls to investigate the impaired cognitive domains and pathogenesis in patients with aMCAS. All patients underwent a cranial MRI, CT perfusion, transcranial Doppler ultrasound, blood tests, and a comprehensive neuropsychological evaluation. According to the MoCA score, patients were divided into cognitively normal and cognitively impaired groups. To construct the nomogram, we conducted univariate and multivariate logistic regression analyses to identify factors that affect cognitive function. And the performance of nomogram was evaluated by ROC curves, calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC). Results In 54 patients with aMCAS, 24 patients presented with cognitive normal, and 30 patients presented with cognitive impairment. The results of multivariate logistic regression suggested that perfusion decompensation, middle cerebral artery mean flow velocity, and LDL-cholesterol levels were independent influencing factors of cognitive impairment. In the following step, a nomogram was constructed. The AUC of the nomogram is 0.862. Calibrating curves show good agreement between nomogram predictions and actual observations, while DCA and CIC show great clinical usefulness. Conclusion Patients with aMCAS have cognitive impairment in multiple cognitive domains, and impaired executive function was observed during the perfusion compensation period. Furthermore, a nomogram was constructed and validated to predict the risk of cognitive impairment in patients with aMCAS, which can help clinicians to identify at an early stage and improve the management of patients.
Collapse
Affiliation(s)
- Jiayang Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shaoshuai Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jun Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yalan Fang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ying Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuanyuan Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yuanyuan Zhang, Shanxi Medical University, No. 56 South Xinjian Road, Yingze District, Taiyuan, Shanxi Province, 03000, People’s Republic of China, Tel +8619834516348, Fax +863414867027, Email
| |
Collapse
|
41
|
Rivera-Rivera LA, Kecskemeti S, Jen ML, Miller Z, Johnson SC, Eisenmenger L, Johnson KM. Motion-corrected 4D-Flow MRI for neurovascular applications. Neuroimage 2022; 264:119711. [PMID: 36307060 PMCID: PMC9801539 DOI: 10.1016/j.neuroimage.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Neurovascular 4D-Flow MRI has emerged as a powerful tool for comprehensive cerebrovascular hemodynamic characterization. Clinical studies in at risk populations such as aging adults indicate hemodynamic markers can be confounded by motion-induced bias. This study develops and characterizes a high fidelity 3D self-navigation approach for retrospective rigid motion correction of neurovascular 4D-Flow data. A 3D radial trajectory with pseudorandom ordering was combined with a multi-resolution low rank regularization approach to enable high spatiotemporal resolution self-navigators from extremely undersampled data. Phantom and volunteer experiments were performed at 3.0T to evaluate the ability to correct for different amounts of induced motions. In addition, the approach was applied to clinical-research exams from ongoing aging studies to characterize performance in the clinical setting. Simulations, phantom and volunteer experiments with motion correction produced images with increased vessel conspicuity, reduced image blurring, and decreased variability in quantitative measures. Clinical exams revealed significant changes in hemodynamic parameters including blood flow rates, flow pulsatility index, and lumen areas after motion correction in probed cerebral arteries (Flow: P<0.001 Lt ICA, P=0.002 Rt ICA, P=0.004 Lt MCA, P=0.004 Rt MCA; Area: P<0.001 Lt ICA, P<0.001 Rt ICA, P=0.004 Lt MCA, P=0.004 Rt MCA; flow pulsatility index: P=0.042 Rt ICA, P=0.002 Lt MCA). Motion induced bias can lead to significant overestimation of hemodynamic markers in cerebral arteries. The proposed method reduces measurement bias from rigid motion in neurovascular 4D-Flow MRI in challenging populations such as aging adults.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Steve Kecskemeti
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States
| | - Mu-Lan Jen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States
| | - Zachary Miller
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States.
| |
Collapse
|
42
|
Liang Y, Duan Y, Xing C, Jin J, Yan L, Liu X, Wang J. Clinical Value of TCCD for Evaluating the Prognosis of Patients with Severe Traumatic Brain Injury After Large Decompressive Craniectomy: A Retrospective Study. Adv Ther 2022; 39:4556-4567. [PMID: 35934765 DOI: 10.1007/s12325-022-02251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION It is challenging to assess the prognosis of patients with severe traumatic brain injury (sTBI) after large decompressive craniectomy (DC). The aim of this study was to evaluate the clinical value of transcranial color-coded duplex sonography (TCCD) for assessing the prognosis of sTBI patients 6 months after large DC. METHODS This was a retrospective observational study that consecutively enrolled 84 patients with sTBI who were followed up for prognosis until 6 months after large DC. The primary endpoint was the Glasgow Outcome Score (GOS). According to the GOS, patients were divided into an unfavorable prognosis group (GOS 1-3, n = 47) and a favorable prognosis group (GOS 4-5, n = 37). RESULTS Significant between-group differences were found in age and hemodynamic parameters (systolic peak blood flow velocity, end-diastolic blood flow velocity, mean blood flow velocity, pulsatility index and resistance index) of the middle cerebral artery detected by TCCD (P < 0.05 for all). Subsequently, ridge regression was used to build a prognostic model for patients with large DC. Based on the cerebral hemodynamic parameters measured by TCCD and age, the mean (± standard deviation) area under the curve of the prognostic model in patients with sTBI after large DC was 0.76 ± 0.22. The sensitivity and specificity were 82.08% and 74.17%, respectively. CONCLUSIONS The cerebral hemodynamic parameters detected by TCCD, combined with age, may be used to predict the outcomes of patients with sTBI at 6 months after large DC. As a noninvasive method, TCCD has the potential to assess the prognosis of these patients. TRIAL REGISTRATION ChiCTR: ChiCTR1800019758. Registered 27 November 2018-retrospectively registered ( http://www.chictr.org.cn/index.aspx ).
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Changyang Xing
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jinglan Jin
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lingjuan Yan
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xi Liu
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia Wang
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
43
|
Hawryluk GWJ, Citerio G, Hutchinson P, Kolias A, Meyfroidt G, Robba C, Stocchetti N, Chesnut R. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med 2022; 48:1471-1481. [PMID: 35816237 DOI: 10.1007/s00134-022-06786-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Intracranial pressure (ICP) monitoring is now viewed as integral to the clinical care of many life-threatening brain insults, such as severe traumatic brain injury, subarachnoid hemorrhage, and malignant stroke. It serves to warn of expanding intracranial mass lesions, to prevent or treat herniation events as well as pressure elevation which impedes nutrient delivery to the brain. It facilitates the calculation of cerebral perfusion pressure (CPP) and the estimation of cerebrovascular autoregulatory status. Despite advancements in our knowledge emanating from a half century of experience with this technology, important controversies remain related even to fundamental aspects of ICP measurements, including indications for monitoring, ICP treatment thresholds, and management of intracranial hypertension. Here, we review the history of ICP monitoring, the underlying pathophysiology as well as current perspectives on why, when and how ICP monitoring is best used. ICP is typically assessed invasively but a number of emerging, non-invasive technologies with inherently lower risk are showing promise. In selected cases, additional neuromonitoring can be used to assist in the interpretation of ICP monitoring information and adapt directed treatment accordingly. Additional efforts to expand the evidence base relevant to ICP monitoring, related technologies and management remain a high priority in neurosurgery and neurocritical care.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Section of Neurosurgery, University of Manitoba, GB1, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,Neuro-Intensive Care, Department of Neurosciences, San Gerardo Hospital, ASST-MONZA, Monza, Italy
| | - Peter Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| | - Angelos Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Herestraat 49, Box 7003, 63 3000, Leuven, Belgium
| | - Chiara Robba
- Anaesthesia and Intensive Care, San Martino Research Hospital, Genoa, Italy
| | - Nino Stocchetti
- Anesthesia and Intensive Care, Department of Physiopathology and Transplantation, Milan University, Milan, Italy.,Department of Anaesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Randall Chesnut
- Neurosurgery, Neurotrauma, Department of Neurological Surgery, Department of Orthopaedic Surgery, School of Global Health, Harborview Medical Center, University of Washington, 325 Ninth Ave, Mailstop 359766, Seattle, WA, 98104-2499, USA
| |
Collapse
|
44
|
Mahinrad S, Tan CO, Ma Y, Aristova M, Milstead AL, Lloyd‐Jones D, Schnell S, Markl M, Sorond FA. Intracranial Blood Flow Quantification by Accelerated Dual-venc 4D Flow MRI: Comparison With Transcranial Doppler Ultrasound. J Magn Reson Imaging 2022; 56:1256-1264. [PMID: 35146822 PMCID: PMC9363520 DOI: 10.1002/jmri.28115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Dual-venc 4D flow MRI, recently introduced for the assessment of intracranial hemodynamics, may provide a promising complementary approach to well-established tools such as transcranial Doppler ultrasound (TCD) and overcome some of their disadvantages. However, data comparing intracranial flow measures from dual-venc 4D flow MRI and TCD are lacking. PURPOSE To compare cerebral blood flow velocity measures derived from dual-venc 4D flow MRI and TCD. STUDY TYPE Prospective cohort. SUBJECTS A total of 25 healthy participants (56 ± 4 years old, 44% female). FIELD STRENGTH/SEQUENCE A 3 T/dual-venc 4D flow MRI using a time-resolved three-dimensional phase-contrast sequence with three-dimensional velocity encoding. ASSESSMENT Peak velocity measurements in bilateral middle cerebral arteries (MCA) were quantified from dual-venc 4D flow MRI and TCD. The MRI data were quantified by two independent observers (S.M and Y.M.) and TCD was performed by a trained technician (A.L.M.). We assessed the agreement between 4D flow MRI and TCD measures, and the interobserver agreement of 4D flow MRI measurements. STATISTICAL TESTS Peak velocity from MRI and TCD was compared using Bland-Altman analysis and coefficient of variance. Intraclass correlation coefficient (ICC) was used to assess MRI interobserver agreement. A P value < 0.05 was considered statistically significant. RESULTS There was excellent interobserver agreement in dual-venc 4D flow MRI-based measurements of peak velocity in bilateral MCA (ICC = 0.97 and 0.96 for the left and right MCA, respectively). Dual-venc 4D flow MRI significantly underestimated peak velocity in the left and right MCA compared to TCD (bias = 0.13 [0.59, -0.33] m/sec and 0.15 [0.47, -0.17] m/sec, respectively). The coefficient of variance between dual-venc 4D flow MRI and TCD measurements was 26% for the left MCA and 22% for the right MCA. DATA CONCLUSION There was excellent interobserver agreement for the assessment of MCA peak velocity using dual-venc 4D flow MRI, and ≤20% under-estimation compared with TCD. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Can Ozan Tan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cerebrovascular Research LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Yue Ma
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of RadiologyShengjing Hospital of China Medical UniversityChina
| | - Maria Aristova
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Andrew L. Milstead
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Donald Lloyd‐Jones
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Susanne Schnell
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Institute of Physics, Department of Medical PhysicsUniversity of GreifswaldGermany
| | - Michael Markl
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Farzaneh A. Sorond
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
45
|
Gao X, Hsieh YL, Wang S, Shi S, Wang W. Intracranial pressure, lateral sinus patency, and jugular ultrasound hemodynamics in patients with venous pulsatile tinnitus. Front Neurol 2022; 13:992416. [PMID: 36188386 PMCID: PMC9523694 DOI: 10.3389/fneur.2022.992416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical and hemodynamic characteristics of venous pulsatile tinnitus (PT) patients with normal or elevated cerebrospinal fluid pressure (CSFP) have not been clearly differentiated. This study aimed to explore CSFP among patients with PT as the solitary symptom, as well as quantitatively and qualitatively assess the role of the degree of transverse sinus (TS) stenosis and jugular hemodynamics in venous PT patients. A total of 50 subjects with venous PT with or without sigmoid sinus wall anomalies (SSWAs) were enrolled in this study. In addition to radiologic assessments for TS stenosis and invagination of arachnoid granulation (AG) in TS, CSFP and jugular hemodynamics were measured via cerebrospinal fluid (CSF) manometry and Doppler ultrasound. Apart from group comparisons and correlation analyses, multivariate linear regression, and receiver operating characteristic (ROC) models were used to identify the sensitivity and specificity of the index of transverse sinus stenosis (ITSS) and hemodynamic variables with inferential significance. The mean CSFP of all cases was 199.5 ± 52.7 mmH2O, with no statistical difference in CSFP between the diverticulum and dehiscence groups. Multivariate linear regression analysis demonstrated that CSFP was linearly correlated with ITSS and pulsatility index (PI). ROC analysis showed that the area under the ROC curve of PI was 0.693 at 200 mmH2O threshold, and the best PI cut-off value was 0.467, with a sensitivity of 65.7% and specificity of 81.8%. For 250 mmH2O threshold, the area under the ROC curve of PI was 0.718, and the best PI cut-off value was 0.467 with a sensitivity of 68.4% and specificity of 75.0%. Additionally, the area under the ROC curve of ITSS was 0.757, and the best ITSS cutoff value was 8.5 (p = 0.002, 95% CI = 0.616–0.898) with a sensitivity of 72.4% and specificity of 75.0% at 200 mmH2O threshold. In conclusion, patients with venous PT as the only presenting symptom should be suspected of having borderline or increased CSFP when they present with high ITSS, BMI and low PI. Further, AG in TS without encephalocele and empty sellae are not limiting findings for differentiating the level of CSFP in patients with venous PT.
Collapse
Affiliation(s)
- Xiuli Gao
- Department of Radiology, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
| | - Yue-Lin Hsieh
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Shenjiang Wang
- Department of Radiology, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
| | - Suming Shi
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Wuqing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
- *Correspondence: Wuqing Wang
| |
Collapse
|
46
|
Tomoto T, Le T, Tarumi T, Dieppa M, Bell K, Madden C, Zhang R, Ding K. Carotid Arterial Compliance and Aerobic Exercise Training in Chronic Traumatic Brain Injury: A Pilot Study. J Head Trauma Rehabil 2022; 37:263-271. [PMID: 34570024 DOI: 10.1097/htr.0000000000000722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Decreased carotid arterial compliance (CAC) is associated with cerebral microvascular damage, cerebral blood flow (CBF) dysregulation, and increased risk for stroke and dementia, which are reported to be prevalent after traumatic brain injury (TBI). However, the effect of TBI on CAC has not been reported. The purposes of this pilot study were to (1) compare CAC between participants with chronic traumatic brain injury (cTBI) and age-matched healthy control (HC) subjects and (2) to examine whether CAC changed after 3 months of exercise training in those with cTBI. SETTING Community based. PARTICIPANTS Nineteen participants with cTBI (6-72 months postinjury) and 19 HC matched for age and sex were tested at baseline. The same cTBI cohort was enrolled in a proof-of-concept randomized controlled exercise training program to investigate the effects of 3 months of aerobic exercise training (AET) or nonaerobic stretching and toning (SAT) on cerebrovascular parameters. DESIGN Cross-sectional study and randomized controlled trial. MAIN MEASURES CAC was measured by tonometry and ultrasonography at the common carotid artery; CBF was measured by ultrasonography at the bilateral internal carotid and vertebral arteries, and pulsatile CBF was measured by transcranial Doppler ultrasonography at the middle cerebral arteries. Cerebrovascular resistance (CVR) was calculated as mean arterial pressure divided by total CBF. RESULTS Relative to HC, the participants with cTBI had lower CAC (0.10 ± 0.03 vs 0.12 ± 0.03 mm 2 /mm Hg, P = .046) and higher CVR (0.17 ± 0.03 vs 0.15 ± 0.03 mm Hg/mL/min, P = .028). CAC tended to increase after AET compared with SAT ( P = .080). Increases in CAC were associated with decreased pulsatile CBF ( r = -0.689, P = .003). CONCLUSION These findings suggest that the individuals with cTBI have decreased CAC, which may potentially be improved by AET.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (Drs Tomoto, Tarumi, and Zhang); Departments of Neurology (Drs Tomoto, Le, Tarumi, Dieppa, Zhang, and Ding), Physical Medicine and Rehabilitation (Dr Bell), Neurological Surgery (Dr Madden), and Internal Medicine (Dr Zhang), University of Texas Southwestern Medical Center, Dallas; and Human Informatics Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan (Dr Tarumi)
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jordan J, Ladores S, Kong M, Smith T, Li P, Reuter-Rice K. Association between Day-to-Day Pulsatility Index Change and Neurocognitive Outcomes in Pediatric Traumatic Brain Injury. Neurotrauma Rep 2022; 3:369-376. [PMID: 36204387 PMCID: PMC9531876 DOI: 10.1089/neur.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) remains a significant cause of morbidity and mortality in children despite advances in prevention and mitigation strategies. Transcranial Doppler (TCD) ultrasound measures cerebral arterial circulation and allows for the calculation of pulsatility indices (PIs), which provides an assessment of cerebral blood flow changes. Yet, the use of PIs in children with TBI is not well understood. In this study, we defined the day-to-day (DTD) PI change of the anterior cerebral circulation and describe its relationship with injury characteristics and neurocognitive outcomes in children with TBI. A prospective observational parent study of 42 children, 2 months to 15 years of age, with mild or moderate-severe TBI who had serial TCDs provided data for this analysis. Both the mean and variation of DTD PI change were evaluated in the context of injury severity, injury sidedness, and neurocognitive outcome. In those with a unilateral injury, a larger mean DTD PI change in both the injured and uninjured side was found in those with a worse Glasgow Outcome Scale-Extended Pediatrics score at discharge. A larger variation in PI was associated with a worse neurocognitive outcome, irrespective of injury severity. Therefore, the mean and variation of DTD PI change may serve as a potential cerebral vascular biomarker of ongoing secondary injury. The use of PI measurements in the monitoring of children with TBI may provide clinicians with new diagnostic and prognostic insights to inform therapeutic interventions and recovery strategies. However, a larger prospective study is needed to confirm these findings and elucidate potential mechanistic links between DTD PI and clinical outcome measures. To our knowledge, this study is the first of its kind to evaluate the use of PI changes in cerebral vasculature in pediatric TBI patients admitted to the hospital.
Collapse
Affiliation(s)
- Jeremy Jordan
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pediatric Critical Care Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | - Sigrid Ladores
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michele Kong
- Pediatric Critical Care Medicine, Children's of Alabama, Birmingham, Alabama, USA
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tedra Smith
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peng Li
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
48
|
Yoo IH, Kim JM, Han SH, Ryu J, Jung KH, Park KY. Increased pulsatility index of the basilar artery is a risk factor for neurological deterioration after stroke: a case control study. Clin Hypertens 2022; 28:27. [PMID: 35965347 PMCID: PMC9377089 DOI: 10.1186/s40885-022-00210-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Higher pulsatility of the middle cerebral artery (MCA) is known to be associated with stroke progression. We investigated whether pulsatility index (PI) of the basilar artery (BA) can predict neurological deterioration (ND) after acute cerebral infarction. Methods A total of 708 consecutive patients with acute ischemic stroke who had undergone transcranial Doppler (TCD) ultrasonography were included. ND was defined as an increase in the National Institutes of Health Stroke Scale scores by two or more points after admission. The patients were categorized into quartiles according to BA PI. Multivariable logistic regression analysis was performed to examine whether BA PI is independently associated with ND. Results BA PI was well correlated with the right (n = 474, r2 = 0.573, P < 0.001) by Pearson correlation analysis although MCA PI could not be measured from right MCA (n = 234, 33.05%) and left MCA (n = 252, 35.59%) by TCD owing to insufficient temporal bone window. Multivariable logistic regression analysis including age, sex, cerebral atherosclerosis burden, National Institutes of Health Stroke Scale at admission, and the proportion of patients with current smoking status, hypertension, diabetes mellitus, atrial fibrillation revealed that the higher BA PI (odds ratio, 3.28; confidence interval, 1.07–10.17; P = 0.038) was independently associated with ND. Conclusions BA PI, which would be identified regardless of temporal window, could predict ND among acute stroke patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40885-022-00210-9.
Collapse
|
49
|
Macaulay TR, Hegarty A, Yan L, Duncan D, Pa J, Kutch JJ, La Rocca M, Lane CJ, Schroeder ET. Effects of a 12-Week Periodized Resistance Training Program on Resting Brain Activity and Cerebrovascular Function: A Nonrandomized Pilot Trial. Neurosci Insights 2022; 17:26331055221119441. [PMID: 35983377 PMCID: PMC9379950 DOI: 10.1177/26331055221119441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/27/2022] [Indexed: 01/26/2023] Open
Abstract
Resistance training is a promising strategy to promote healthy cognitive aging; however, the brain mechanisms by which resistance training benefits cognition have yet to be determined. Here, we examined the effects of a 12-week resistance training program on resting brain activity and cerebrovascular function in 20 healthy older adults (14 females, mean age 69.1 years). In this single group clinical trial, multimodal 3 T magnetic resonance imaging was performed at 3 time points: baseline (preceding a 12-week control period), pre-intervention, and post-intervention. Along with significant improvements in fluid cognition (d = 1.27), 4 significant voxelwise clusters were identified for decreases in resting brain activity after the intervention (Cerebellum, Right Middle Temporal Gyrus, Left Inferior Parietal Lobule, and Right Inferior Parietal Lobule), but none were identified for changes in resting cerebral blood flow. Using a separate region of interest approach, we provide estimates for improved cerebral blood flow, compared with declines over the initial control period, in regions associated with cognitive impairment, such as hippocampal blood flow (d = 0.40), and posterior cingulate blood flow (d = 0.61). Finally, resistance training had a small countermeasure effect on the age-related progression of white matter lesion volume (rank-biserial = -0.22), a biomarker of cerebrovascular disease. These proof-of-concept data support larger trials to determine whether resistance training can attenuate or even reverse salient neurodegenerative processes.
Collapse
Affiliation(s)
- Timothy R Macaulay
- Division of Biokinesiology and Physical
Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles,
CA, USA,Timothy R Macaulay, Division of
Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of
Southern California, 1540 E. Alcazar Street, CHP149, Los Angeles, CA 90089, USA.
| | - Amy Hegarty
- Division of Biokinesiology and Physical
Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles,
CA, USA
| | - Lirong Yan
- Mark and Mary Stevens Neuroimaging and
Informatics Institute, Department of Neurology, Keck School of Medicine, University
of Southern California, Los Angeles, CA, USA
| | - Dominique Duncan
- Mark and Mary Stevens Neuroimaging and
Informatics Institute, Department of Neurology, Keck School of Medicine, University
of Southern California, Los Angeles, CA, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and
Informatics Institute, Department of Neurology, Keck School of Medicine, University
of Southern California, Los Angeles, CA, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical
Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles,
CA, USA
| | - Marianna La Rocca
- Mark and Mary Stevens Neuroimaging and
Informatics Institute, Department of Neurology, Keck School of Medicine, University
of Southern California, Los Angeles, CA, USA,Department of Preventive Medicine, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christianne J Lane
- Dipartimento Interateneo di Fisica,
Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - E Todd Schroeder
- Division of Biokinesiology and Physical
Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles,
CA, USA
| |
Collapse
|
50
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|