1
|
Ma Y, Jing J, Gao Y, Yu Y, Mao J, Zhang Y, Li T. MLIF inhibits inflammation and maintains intestinal flora homeostasis in a dextran sulfate sodium (DSS)-induced colitis mouse model. Food Chem Toxicol 2025; 202:115545. [PMID: 40354872 DOI: 10.1016/j.fct.2025.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease primarily affecting the colon, characterized by mucosal inflammation and ulceration. Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide derived from Entamoeba histolytica, has demonstrated the anti-inflammatory capacity. The aim of the current work was to test the protective effects of MLIF in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings indicated that MLIF significantly inhibition of colitis development, including body weight, DAI score, colon length, and spleen index. MLIF slowing the progression of inflammation in the colon of mice exposed to DSS, evidenced by HE staining and mRNA expression levels of Il1b, Il6, Il18 and Il10. MLIF significantly alleviated intestinal barrier dysfunction in mice exposed to DSS, evidenced by AB-PAS staining and mRNA expression levels of Tjp1, Ocln and Muc2. Importantly, the administration of MLIF in colitis mice exerted beneficial effects on the gut microbiota, enhancing microbial diversity and abundance, and promoting the restoration of gut microbiota homeostasis. Non-targeted metabolomics results suggest that the benefits of MLIF may arise from its modulation of tryptophan metabolism pathways. In conclusion, MLIF prevention inflammation induction and preserves intestinal homeostasis against colitis induced by DSS.
Collapse
Affiliation(s)
- Yulin Ma
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, 200125, China; School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jing Jing
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, 200125, China
| | - Yuan Gao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junqin Mao
- Department of Clinical Pharmacy, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, 200125, China.
| |
Collapse
|
2
|
Shibahara T, Temizoz B, Egashira S, Hosomi K, Park J, Surucu N, Björk A, Sag E, Doi T, Kisla Ekinci RM, Balci S, Versnel MA, Kunisawa J, Yamamoto M, Hayashi T, Ito S, Kamiyama Y, Kobiyama K, Katsikis PD, Coban C, Gursel M, Ozen S, Nishida S, Kumanogoh A, Ishii KJ. Microbial dysbiosis fuels STING-driven autoinflammation through cyclic dinucleotides. J Autoimmun 2025; 154:103434. [PMID: 40334619 DOI: 10.1016/j.jaut.2025.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Aberrant activation of the stimulator of interferon genes (STING) pathway is a hallmark of autoinflammatory disorders such as STING-associated vasculopathy with onset in infancy (SAVI), characterized by systemic inflammation affecting blood vessels, skin, and lungs. Despite its clinical significance, the mechanisms linking STING activation to disease pathology remain poorly defined. In this study, we demonstrated that SAVI mice harboring the N153S STING mutation exhibit diverse disease phenotypes, with a subset developing severe colitis and diarrhea alongside exacerbated systemic inflammation. These diarrheal SAVI mice showed pronounced dysbiosis, marked by reduced short-chain fatty acid-producing bacteria and an enrichment of segmented filamentous bacteria. This microbial imbalance was accompanied by elevated levels of both microbial and host-derived cyclic dinucleotides (CDNs), potent activators of the STING pathway. Notably, antibiotic treatment ameliorated inflammation, underscoring the role of dysbiosis in driving STING-mediated autoinflammation. Furthermore, in SAVI patients, elevated systemic microbial and host-derived CDNs were observed. In conditions such as systemic lupus erythematosus (SLE)-a heterogeneous autoimmune disease with potential STING involvement-systemic microbial CDNs were significantly correlated with disease biomarkers, including type I interferon scores and anti-dsDNA antibodies. In contrast, no such correlations were observed in STING-independent conditions like rheumatoid arthritis (RA). Importantly, this study highlights that both microbial and host-derived CDNs are key drivers of STING activation, suggesting that personalized treatment strategies could target cGAS or the microbiome based on a patient's specific CDN profile. These findings position systemic CDNs as valuable biomarkers and therapeutic targets for STING-driven diseases.
Collapse
Affiliation(s)
- Takayuki Shibahara
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Burcu Temizoz
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center (VDesC), The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan
| | - Shiori Egashira
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Naz Surucu
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Erdal Sag
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Takehiko Doi
- Department of Pediatrics, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | | | - Sibel Balci
- Department of Pediatric Rheumatology, Cukurova University, Adana, Turkey
| | - Marjan A Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Division of Infectious Disease, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoya Hayashi
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center (VDesC), The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan
| | - Shuichi Ito
- Department of Pediatrics, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Yuji Kamiyama
- Department of Pediatrics, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Kouji Kobiyama
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center (VDesC), The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Immunopathology, WPI, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; International Vaccine Design Center (VDesC), The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan
| | - Mayda Gursel
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Immunopathology, WPI, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center (VDesC), The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Chafekar D. Optimizing chronic kidney disease management: The potential of a multi-strain probiotic formulation. World J Nephrol 2025; 14:101515. [PMID: 40134645 PMCID: PMC11755232 DOI: 10.5527/wjn.v14.i1.101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025] Open
Abstract
Chronic kidney disease (CKD), which represents a significant global health concern, is characterized by a gradual decline in kidney function, leading to complications such as electrolyte imbalance, cardiovascular disease, and immune dysfunction. Standard CKD management includes dietary modifications, ketoanalogues supplementation, blood pressure and blood glucose control, hydration maintenance, and treatment of the underlying causes. Emerging evidence has indicated a significant role of the gut microbiota in CKD, and that dysbiosis of the gut microbiota contributes to the progression of CKD towards end-stage renal disease. Probiotics and prebiotics have recently garnered attention owing to their potential to enhance gastrointestinal health and well-being by restoring the balance of the gut microbiota. Specific probiotic strains, including Lactobacillus and Bifidobacterium, promote beneficial bacterial growth, suppress harmful bacteria, and exert anti-inflammatory, antihypertensive, and antidiabetic effects. The combination of Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacterium longum, and Bacillus coagulans has demonstrated potential as a therapeutic formulation for CKD management in various studies, highlighting its promise in treating CKD; however, supporting evidence remains limited, making it crucial to conduct further investigations to determine the specific effects of different probiotic formulations on outcomes in patients with CKD.
Collapse
Affiliation(s)
- Deodatta Chafekar
- Dr V N Pawar Medical College, Director Supreme Kidney Care, Nashik 422005, Mahārāshtra, India
| |
Collapse
|
4
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
5
|
Nikpour M, Morrisroe K, Calderone A, Yates D, Silman A. Occupational dust and chemical exposures and the development of autoimmune rheumatic diseases. Nat Rev Rheumatol 2025; 21:137-156. [PMID: 39910253 DOI: 10.1038/s41584-024-01216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
Although the association between certain occupational exposures and the development of autoimmune rheumatic disease was first described over a century ago, this association has only become more widely recognized in the past 10 years because of the use of high-silica-content engineered stone in construction and home renovation. There is now a substantial and growing body of evidence that occupational dust and chemical exposure, be it through mining, stonemasonry, building or other trades, increases the risk of various systemic autoimmune rheumatic diseases (SARDs) including rheumatoid arthritis and systemic sclerosis. Although the pathogenic mechanisms of silica-induced autoimmunity are not fully elucidated, it is thought that alveolar macrophage ingestion of silica and the ensuing phagosomal damage is an initiating event that ultimately leads to production of autoantibodies and immune-mediated tissue injury. The purportedly causal association between occupational exposure to chemicals, such as organic solvents, and an increased risk of SARDs is less frequently recognized compared with silica dust, and its immunopathogenesis is less well understood. An appreciation of the importance of occupational dust and chemical exposures in the development of SARDs has implications for workplace health and safety regulations and offers a unique opportunity to better understand autoimmune disease pathogenesis and implement preventative strategies.
Collapse
Affiliation(s)
- Mandana Nikpour
- University of Sydney Musculoskeletal Research Flagship Centre and School of Public Health, Camperdown, Sydney, New South Wales, Australia.
- Department of Rheumatology, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales, Australia.
| | - Kathleen Morrisroe
- Department of Medicine, The University of Melbourne at St Vincent's Hospital (Melbourne), Fitzroy, Victoria, Australia
- Department of Rheumatology, St Vincent's Hospital (Melbourne), Fitzroy, Victoria, Australia
| | - Alicia Calderone
- Department of Rheumatology, St Vincent's Hospital (Melbourne), Fitzroy, Victoria, Australia
| | - Deborah Yates
- Asbestos & Dust Diseases Research Institute, Concord, New South Wales, Australia
- Respiratory & Sleep Medicine, Macquarie University Hospital, Macquarie University, New South Wales, Australia
| | - Alan Silman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Kobayashi T, Kessoku T, Iwaki M, Nogami A, Yoneda M, Saito S, Yamana Y, Nishitani Y, Kuwahara H, Nakajima A. Lactiplantibacillus plantarum 22 A-3 ameliorates leaky gut in mice through its anti-inflammatory effects. Sci Rep 2025; 15:3264. [PMID: 39863665 PMCID: PMC11762275 DOI: 10.1038/s41598-025-87428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations. The Lactiplantibacillus plantarum 22 A-3-treated group exhibited amelioration of increased intestinal permeability, as indicated by lower blood fluorescein isothiocyanate-dextran levels compared with that of the control group. Furthermore, the messenger RNA expression of interleukin-10, an anti-inflammatory cytokine, was upregulated in the small intestine of Lactiplantibacillus plantarum 22 A-3-treated mice. Moreover, forkhead box P3 was upregulated in the small intestine and colon following Lactiplantibacillus plantarum 22 A-3 administration. Flow cytometry showed that forkhead box P3-positive regulatory T cells tended to increase in the small intestine and colon; however, this was not significant. Messenger RNA levels for the pro-inflammatory cytokines, interleukin-1 beta, and tumor necrosis factor-alpha showed no significant changes in the small intestine; however, their expressions significantly decreased in the colon. Blood fluorescein isothiocyanate-dextran levels showed that intestinal permeability also decreased in Lactiplantibacillus plantarum 22 A-3-dead bacteria. The bacterial component of Lactiplantibacillus plantarum 22 A-3 ameliorates increased intestinal permeability through its anti-inflammatory effect in the intestinal tract and may be a novel treatment for leaky gut.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
- Department of Gastroenterology, International University of Health and Welfare Graduate School of Medicine, Chiba, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Gastroenterology, Sanno Hospital, Tokyo, Japan
| | - Yoshie Yamana
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Hiroshima, Japan
| | - Yosuke Nishitani
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Hiroshima, Japan
| | | | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
7
|
Laganà M, Piticchio T, Alibrandi A, Le Moli R, Pallotti F, Campennì A, Cannavò S, Frasca F, Ruggeri RM. Effects of Dietary Habits on Markers of Oxidative Stress in Subjects with Hashimoto's Thyroiditis: Comparison Between the Mediterranean Diet and a Gluten-Free Diet. Nutrients 2025; 17:363. [PMID: 39861493 PMCID: PMC11768057 DOI: 10.3390/nu17020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The Mediterranean diet (MedD) exerts anti-inflammatory and anti-oxidant effects that are beneficial in autoimmune thyroid diseases (ATD). Recently, a gluten-free diet (GFD) has been proposed for non-celiac patients with Hashimoto's thyroiditis (HT), but its usefulness is under debate. The present pilot study evaluates the effects of these two dietary regimes, with a focus on redox homeostasis, in HT. PATIENTS AND METHODS 45 euthyroid HT patients (30 F; median age 42 years) were randomly assigned to different dietary regimes: MedD (n = 15), GFD (n = 15) and free diet (FD, n = 15). Thyroid function tests, autoantibodies, and oxidative stress markers (Advanced glycation end products, AGEs; glutathione peroxidase (GPx), thioredoxin reductase (TRxR), and total plasma antioxidant activity (TEAA) were measured at baseline and after 12 weeks. RESULTS In the MedD group, significantly lower values of AGEs and higher values of GPX, TRX and TEAA with anti-oxidant action were detected (p < 0.05) at 12 weeks compared to baseline, and compared to the GFD and FD groups, in which the oxidative stress parameters did not change significantly (p > 0.05). No significant differences in serum levels of TSH, FT4, Ab-Tg, Ab-TPO compared to baseline were found in any group. CONCLUSIONS This pilot study confirms the protective effect of the MedD against oxidative stress, while a GFD does not significantly influence markers of oxidative stress and/or thyroid autoimmunity/function parameters.
Collapse
Affiliation(s)
- Martina Laganà
- Endocrine Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125 Messina, Italy; (M.L.); (S.C.)
| | - Tommaso Piticchio
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (T.P.); (R.L.M.); (F.P.)
| | - Angela Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, 98125 Messina, Italy;
| | - Rosario Le Moli
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (T.P.); (R.L.M.); (F.P.)
| | - Francesco Pallotti
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (T.P.); (R.L.M.); (F.P.)
| | - Alfredo Campennì
- Unit of Nuclear Medicine, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Salvatore Cannavò
- Endocrine Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125 Messina, Italy; (M.L.); (S.C.)
| | - Francesco Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, 95124 Catania, Italy;
| | - Rosaria Maddalena Ruggeri
- Endocrine Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125 Messina, Italy; (M.L.); (S.C.)
| |
Collapse
|
8
|
Zhao R, Gu J, Zhao H, Wang Z, Liu X, Yuan C, Zheng X, Yang T, Xu X, Cai Y. Expression of integrin α4β1 and α4β7 on B cells correlates with autoimmune responses in Graves' disease. Int Immunopharmacol 2024; 142:113218. [PMID: 39317053 DOI: 10.1016/j.intimp.2024.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Integrins are upregulated on endothelial cells and T-lymphocytes in autoimmune thyroid disease (AITD), potentially contributing to immune response localization. The role of integrins on B-cells in AITD remains unclear. METHODS Peripheral blood samples were collected from healthy controls (n = 56), patients with Graves' disease (GD) (n = 37) and Hashimoto's thyroiditis (HT) (n = 52). Ultrasound-guided fine-needle aspiration (FNA) of the thyroid was performed in patients with non-autoimmune thyroid disease (nAITD) (n = 19), GD (n = 11), and HT (n = 40). Integrins α4β7, α4β1, and αEβ7 in B cells were measured by flow cytometry. Serum zonulin levels were quantified via ELISA. Associations of integrins on B cells with thyroid hormones, thyroid autoantibodies, AITD duration, and zonulin were analyzed. RESULTS HT patients exhibited lower α4β7 and higher α4β1 expression on B cells compared to healthy controls and GD patients. While α4β7 was predominant on circulating B cells, the dominant integrin expressed on intrathyroidal B cells varied with specific thyroid diseases. In GD patients, α4β7 and α4β1 expression on circulating B cells correlated positively and negatively with thyroid function and thyroid stimulating immunoglobulins (TSI) levels, respectively. Intrathyroidal α4β1+ B cells positively correlated with TSH levels in HT patients. Additionally, serum zonulin was elevated in HT patients, and intrathyroidal α4β7+ B cells and α4β1+ B cells correlated negatively and positively with zonulin levels, respectively. Integrin αEβ7 on B cells showed no significant association with AITD. CONCLUSION Integrins expressed on B cells potentially play a role in the pathogenesis of AITD and might serve as immune biomarkers for the disease.
Collapse
Affiliation(s)
- Ruiling Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhixiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoyun Liu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cuiping Yuan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Lazzano P, Fracas E, Nandi N, Scaramella L, Elli L. Extraintestinal complications of celiac disease: treatment considerations. Expert Rev Gastroenterol Hepatol 2024; 18:761-777. [PMID: 39673511 DOI: 10.1080/17474124.2024.2443053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION Celiac disease (CD) is an autoimmune enteropathy characterized by atrophy of the intestinal mucosa triggered by the ingestion of gluten in individuals with a genetic predisposition. CD manifests with heterogeneous array of symptoms, including a wide range of intestinal and extraintestinal symptoms and manifestations (EIMs). The mechanisms involved in the pathogenesis of EIMs in CD are not only related to intestinal mucosal damage and associated malabsorption but also to systemic inflammation. To date, the only effective treatment for CD is a lifelong gluten-free diet (GFD). Proper adherence to the GFD leads in most cases to a gradual resolution of intestinal atrophy and results in an improvement of the clinical manifestations associated with intestinal damage. AREAS COVERED This review, based on a Pubmed literature search, describes the extraintestinal complications associated with CD, emphasizing strategies for therapeutic management and responsiveness to the GFD. EXPERT OPINION CD is associated with different EIMs which can affect different organs. The main clinical interest is if these complications respond to the GFD, which occur at variable rate and not for all disorders associated with CD. Therefore, often complementary additional therapies are needed to achieve optimal symptoms resolution.
Collapse
Affiliation(s)
- Pilar Lazzano
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Elia Fracas
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Nicoletta Nandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Lucia Scaramella
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Elli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Way R, Templeton H, Ball D, Cheng MH, Tobet SA, Chen T. A microphysiological system for studying barrier health of live tissues in real time. COMMUNICATIONS ENGINEERING 2024; 3:142. [PMID: 39396075 PMCID: PMC11470921 DOI: 10.1038/s44172-024-00285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Epithelial cells create barriers that protect many different components in the body from their external environment. Increased gut barrier permeability (leaky gut) has been linked to several chronic inflammatory diseases. Understanding the cause of leaky gut and effective interventions are elusive due to the lack of tools that maintain tissue's physiological environment while elucidating cellular functions under various stimuli ex vivo. Here we present a microphysiological system that records real-time barrier permeability of mouse colon in a physiological environment over extended durations. The system includes a microfluidic chamber; media composition that preserves microbiome and creates necessary oxygen gradients across the barrier; and integrated sensor electrodes for acquiring transepithelial electrical resistance (TEER). Our results demonstrate that the system can maintain tissue viability for up to 72 h. The TEER sensors can distinguish levels of barrier permeability when treated with collagenase and low pH media and detect different thickness in the tissue explant.
Collapse
Affiliation(s)
- Ryan Way
- Department of Electrical & Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hayley Templeton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel Ball
- Department of Electrical & Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ming-Hao Cheng
- Department of Electrical & Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Thomas Chen
- Department of Electrical & Computer Engineering, Colorado State University, Fort Collins, CO, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Liu X, Tao R, Guo F, Zhang L, Qu J, Li M, Wu X, Wang X, Zhu Y, Wen L, Wang J. Soybean oil induces neuroinflammatory response through brain-gut axis under high-fat diet. J Tradit Complement Med 2024; 14:522-533. [PMID: 39262663 PMCID: PMC11384091 DOI: 10.1016/j.jtcme.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 09/13/2024] Open
Abstract
Neuroinflammation is considered the principal pathogenic mechanism underlying neurodegenerative diseases, and the incidence of brain disorders is closely linked to dietary fat consumption and intestinal health. To investigate this relationship, 60 8-week-old C57BL/6J mice were subjected to a 20-week dietary intervention, wherein they were fed lard and soybean oil, each at 15% and 35% fat energy. At a dietary fat energy level of 35%, inflammation was observed in both the soybean oil and lard groups. Nevertheless, inflammation was more pronounced in the mice that were administered soybean oil. The process by which nerve cell structure is compromised, inflammatory factors are upregulated, brain antioxidant capacity is diminished, and the TLR4/MyD88/NF-κB p65 inflammatory pathway is activated resulting in damage to the brain-gut barrier. This, in turn, leads to a reduction in the abundance of Akkermansia and unclassified_f_Lachnospiraceae, as well as an increase in Dubosiella abundance, ultimately resulting in brain inflammation and damage. These results suggested that soybean oil induces more severe neuroinflammation compared to lard. Our study demonstrated that, at a dietary fat energy level of 35%, compared to soybean oil, lard could be the healthier option, the outcomes would help provide a reference basis for the selection of residents' daily dietary oil.
Collapse
Affiliation(s)
- Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fangrui Guo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xianglin Wang
- Changsha Lvye Biotechnology Co., Ltd., Changsha, 410100, China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
13
|
Rodríguez-Ramírez R, Fernández Peralbo MA, Mendía I, Long JCD, Sousa C, Cebolla Á. Urinary excretion of gluten immunoreactive peptides as an indicator of gastrointestinal function after fasting and dietary provocation in healthy volunteers. Front Immunol 2024; 15:1433304. [PMID: 39161759 PMCID: PMC11330814 DOI: 10.3389/fimmu.2024.1433304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Understanding intestinal permeability is paramount for elucidating gastrointestinal health and pathology. The size and nature of the molecule traversing the intestinal barrier offer crucial insights into various acute and chronic diseases, as well as the evolution of some conditions. This study aims to assess the urinary excretion kinetics of gluten immunogenic peptides (u-GIP), a unique class of dietary peptides detectable in urine, in volunteers under controlled dietary conditions. This evaluation should be compared to established probes like lactulose, a non-digestible disaccharide indicative of paracellular permeability, and mannitol, reflecting transcellular permeability. Methods Fifteen participants underwent simultaneous ingestion of standardized doses of gluten (10 g), lactulose (10 g), and mannitol (1 g) under fasting conditions for at least 8 hours pre-ingestion and during 6 hours post-ingestion period. Urine samples were collected over specified time intervals. Excretion patterns were analyzed, and correlations between the lactulose-to-mannitol ratio (LMR) and u-GIP parameters were assessed. Results The majority of u-GIP were detected within the first 12 hours post-ingestion. Analysis of the variability in cumulative excretion across two sample collection ranges demonstrated that lactulose and u-GIP exhibited similar onset and excretion dynamics, although GIP reached its maximum peak earlier than either lactulose or mannitol. Additionally, a moderate correlation was observed between the LMR and u-GIP parameters within the longest urine collection interval, indicating potential shared characteristics among permeability pathways. These findings suggest that extending urine collection beyond 6 hours may enhance data reliability. Discussion This study sheds light on the temporal dynamics of u-GIP in comparison to lactulose and mannitol, established probes for assessing intestinal permeability. The resemblance between u-GIP and lactulose excretion patterns aligns with the anticipated paracellular permeability pathway. The capacity to detect antigenic food protein fragments in urine opens novel avenues for studying protein metabolism and monitoring pathologies related to the digestive and intestinal systems.
Collapse
Affiliation(s)
- Raquel Rodríguez-Ramírez
- Research and Development Department, Biomedal S.L., Seville, Spain
- Inorganic Chemistry Department, Faculty of Science, University of Granada, Granada, Spain
| | | | - Irati Mendía
- Research and Development Department, Biomedal S.L., Seville, Spain
| | | | - Carolina Sousa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ángel Cebolla
- Research and Development Department, Biomedal S.L., Seville, Spain
| |
Collapse
|
14
|
Bowes MM, Casares-Marfil D, Sawalha AH. Intestinal permeability correlates with disease activity and DNA methylation changes in lupus patients. Clin Immunol 2024; 262:110173. [PMID: 38460891 PMCID: PMC11009052 DOI: 10.1016/j.clim.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE or lupus) is a chronic autoimmune disease that can involve various organ systems. Several studies have suggested that increased intestinal permeability may play a role in the pathogenesis of lupus. The aim of this study was to elucidate the relationship between intestinal permeability, disease activity, and epigenetic changes in lupus patients. METHODS A total of 25 female lupus patients were included in this study. Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores were used as indicator of disease activity. Plasma zonulin levels were measured, using an ELISA, as a marker of intestinal permeability. Genome-wide DNA methylation patterns were assessed in neutrophils for 19 of the lupus patients using the Infinium MethylationEPIC array. Linear regression and Pearson's correlation were used to evaluate the correlation between zonulin concentrations and SLEDAI scores. The relationship between DNA methylation levels and zonulin concentrations was assessed using beta regression, linear regression, and Pearson's correlation, adjusting for age and race. RESULTS Intestinal permeability positively correlated with disease activity in lupus patients (p-value = 7.60 × 10-3, r = 0.53). DNA methylation levels in 926 CpG sites significantly correlated with intestinal permeability. The highest correlation was identified in LRIG1 (cg14159396, FDR-adjusted p-value = 1.35 × 10-12, adjusted r2 = 0.92), which plays a role in intestinal homeostasis. Gene Ontologies related to cell-cell adhesion were enriched among the genes that were hypomethylated with increased intestinal permeability in lupus. CONCLUSION Our data suggest a correlation between increased intestinal permeability and disease activity in lupus patients. Further, increased intestinal permeability might be associated with epigenetic changes that could play a role in the pathogenesis of lupus.
Collapse
Affiliation(s)
- Mckenna M Bowes
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Desiré Casares-Marfil
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Shin Y, Kim J, Song Y, Kim S, Kong H. Efficacy of Laurus nobilis L. for Tight Junction Protein Imbalance in Leaky Gut Syndrome. Nutrients 2024; 16:1250. [PMID: 38732497 PMCID: PMC11085348 DOI: 10.3390/nu16091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Yelim Shin
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
| | - Jiyeon Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
- KOSA BIO Inc., 272, Namyangju-si 12106, Republic of Korea
| | - Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
- PADAM Natural Material Research Institute, Sahmyook University, Seoul 01795, Republic of Korea
| | - Sangbum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
| | - Hyunseok Kong
- PADAM Natural Material Research Institute, Sahmyook University, Seoul 01795, Republic of Korea
- College of Animal Resources Science, Seoul 01795, Republic of Korea
| |
Collapse
|
16
|
Mo C, Bi J, Li S, Lin Y, Yuan P, Liu Z, Jia B, Xu S. The influence and therapeutic effect of microbiota in systemic lupus erythematosus. Microbiol Res 2024; 281:127613. [PMID: 38232494 DOI: 10.1016/j.micres.2024.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Systemic erythematosus lupus (SLE) is an autoimmune disease involving multiple organs that poses a serious risk to the health and life of patients. A growing number of studies have shown that commensals from different parts of the body and exogenous pathogens are involved in SLE progression, causing barrier disruption and immune dysregulation through multiple mechanisms. However, they sometimes alleviate the symptoms of SLE. Many factors, such as genetic susceptibility, metabolism, impaired barriers, food, and sex hormones, are involved in SLE, and the microbiota drives the development of SLE either by depending on or interacting with these factors. Among these, the crosstalk between genetic susceptibility, metabolism, and microbiota is a hot topic of research and is expected to lay the groundwork for the amelioration of the mechanism, diagnosis, and treatment of SLE. Furthermore, the microbiota has great potential for the treatment of SLE. Ideally, personalised therapeutic approaches should be developed in combination with more specific diagnostic methods. Herein, we provide a comprehensive overview of the role and mechanism of microbiota in lupus of the intestine, oral cavity, skin, and kidney, as well as the therapeutic potential of the microbiota.
Collapse
Affiliation(s)
- Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Martinelli S, Nannini G, Cianchi F, Coratti F, Amedei A. The Impact of Microbiota-Immunity-Hormone Interactions on Autoimmune Diseases and Infection. Biomedicines 2024; 12:616. [PMID: 38540229 PMCID: PMC10967803 DOI: 10.3390/biomedicines12030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 02/07/2025] Open
Abstract
Autoimmune diseases are complex multifactorial disorders, and a mixture of genetic and environmental factors play a role in their onset. In recent years, the microbiota has gained attention as it helps to maintain host health and immune homeostasis and is a relevant player in the interaction between our body and the outside world. Alterations (dysbiosis) in its composition or function have been linked to different pathologies, including autoimmune diseases. Among the different microbiota functions, there is the activation/modulation of immune cells that can protect against infections. However, if dysbiosis occurs, it can compromise the host's ability to protect against pathogens, contributing to the development and progression of autoimmune diseases. In some cases, infections can trigger autoimmune diseases by several mechanisms, including the alteration of gut permeability and the activation of innate immune cells to produce pro-inflammatory cytokines that recruit autoreactive T and B cells. In this complex scenario, we cannot neglect critical hormones' roles in regulating immune responses. Different hormones, especially estrogens, have been shown to influence the development and progression of autoimmune diseases by modulating the activity and function of the immune system in different ways. In this review, we summarized the main mechanisms of connection between infections, microbiota, immunity, and hormones in autoimmune diseases' onset and progression given the influence of some infections and hormone levels on their pathogenesis. In detail, we focused on rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
19
|
Martínez Gallego MÁ, Crespo Sánchez MG, Serrano Olmedo MG, Buño Soto A, Álvarez Casasempere S, Nozal P, Martínez-Ojinaga E, Molina Arias M, Losantos-García I, Molero-Luis M. Trends in Faecal Zonulin Concentrations in Paediatric Patients with Celiac Disease at Baseline and on a Gluten-Free Diet: Exploring Correlations with Other Faecal Biomarkers. Nutrients 2024; 16:684. [PMID: 38474812 DOI: 10.3390/nu16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Celiac disease (CeD) is an autoimmune condition triggered by gluten in genetically predisposed individuals, affecting all ages. Intestinal permeability (IP) is crucial in the pathogenesis of CeD and it is primarily governed by tight junctions (TJs) that uphold the intestinal barrier's integrity. The protein zonulin plays a critical role in modulating the permeability of TJs having emerged as a potential non-invasive biomarker to study IP. The importance of this study lies in providing evidence for the usefulness of a non-invasive tool in the study of IP both at baseline and in the follow-up of paediatric patients with CeD. In this single-centre prospective observational study, we explored the correlation between faecal zonulin levels and others faecal and serum biomarkers for monitoring IP in CeD within the paediatric population. We also aimed to establish reference values for faecal zonulin in the paediatric population. We found that faecal zonulin and calprotectin values are higher at the onset of CeD compared with the control population. Specifically, the zonulin levels were 347.5 ng/mL as opposed to 177.7 ng/mL in the control population (p = 0.001), while calprotectin levels were 29.8 μg/g stool compared to 13.9 μg/g stool (p = 0.029). As the duration without gluten consumption increased, a significant reduction in faecal zonulin levels was observed in patients with CeD (348.5 ng/mL vs. 157.1 ng/mL; p = 0.002), along with a decrease in the prevalence of patients with vitamin D insufficiency (88.9% vs. 77.8%). We conclude that faecal zonulin concentrations were higher in the patients with active CeD compared with healthy individuals or those following a gluten-free diet (GFD). The significant decrease in their values over the duration of the GFD suggests the potential use of zonulin as an additional tool in monitoring adherence to a GFD.
Collapse
Affiliation(s)
| | | | | | - Antonio Buño Soto
- Department of Laboratory Medicine, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Pilar Nozal
- Department of Immunology, La Paz University Hospital, 28046 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER U754), 28046 Madrid, Spain
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Eva Martínez-Ojinaga
- Paediatric Gastroenterology and Nutrition Service, La Paz University Hospital, 28046 Madrid, Spain
| | - Manuel Molina Arias
- Paediatric Gastroenterology and Nutrition Service, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Marta Molero-Luis
- Department of Laboratory Medicine, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
20
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
21
|
Pepe G, Corica D, Currò M, Aversa T, Alibrandi A, Ientile R, Caccamo D, Wasniewska M. Fasting and meal-related zonulin serum levels in a large cohort of obese children and adolescents. Front Endocrinol (Lausanne) 2024; 15:1329363. [PMID: 38405153 PMCID: PMC10885807 DOI: 10.3389/fendo.2024.1329363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Zonulin recently emerged as a valuable biological marker to assess the integrity of the intestinal mucosal barrier. Nevertheless, data about zonulin in pediatric age are extremely scarce. Aim of this study was to investigate the relationship between serum zonulin levels, both fasting and postprandial, with body mass index (BMI) and biochemical markers of insulin resistance (IR), insulin sensitivity, b-cell function and cardio-metabolic risk in obese non-diabetic youths. Methods One hundred and four children and adolescents with obesity (BMI ≥ 2.0 SDS) were enrolled (mean age 11.43 ± 2.66). All the patients underwent clinical and biochemical assessment, including oral glucose tolerance test (OGTT) and liver ultrasonography. Zonulin serum levels were measured at fasting state, at 60-minute and 120-minute OGTT timepoint. Results Impaired fasting glycaemia and impaired glucose tolerance were documented in 27.9% and 11.5% of patients, respectively. IR was documented in 69.2% of cases. Liver steatosis was diagnosed in 39.4%. Zonulin serum levels significantly increased from baseline to 60-minute and 120-minute OGTT timepoint (p positive correlation between BMI SDS and serum zonulin levels at 120-minute OGTT timepoint (p highlighted a positive association of zonulin fasting levels with IR and glutamicoxalacetic transaminase levels (GOT, p zonulin levels were demonstrated for age, sex, pubertal status, glucose, lipid profile and the other obesity-related parameters. Discussion Our results show, for the first time in a pediatric cohort, the meal-related pattern of secretion of serum zonulin, which tends to significantly increase during and at 2-hours postprandial assessment. Even if the underlying mechanisms associating intestinal permeability and obesity have not been fully elucidated yet, our data confirm a close relationship between zonulin concentration and obesity in pediatric population. IR seems to significantly influence zonulin serum levels, thus a central role of IR in this pathway is conceivable.
Collapse
Affiliation(s)
- Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | | | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
22
|
Gudi R, Johnson BM, Gaudreau MC, Sun W, Ball L, Vasu C. Intestinal permeability and inflammatory features of juvenile age correlate with the eventual systemic autoimmunity in lupus-prone female SWR × NZB F1 (SNF1) mice. Immunology 2024; 171:235-249. [PMID: 37947218 PMCID: PMC10842200 DOI: 10.1111/imm.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
The incidence of systemic lupus erythematosus (SLE) is about nine times higher in women than in men, and the underlying mechanisms that contribute to this gender bias are not fully understood. Previously, using lupus-prone (SWR × NZB)F1 (SNF1) mice, we have shown that the intestinal immune system could play a role in the initiation and progression of disease in SLE, and depletion of gut microbiota produces more pronounced disease protection in females than in males. Here, we show that the gut permeability features of lupus-prone female SNF1 mice at juvenile ages directly correlate with the expression levels of pro-inflammatory factors, faecal IgA abundance and nAg reactivity and the eventual systemic autoantibody levels and proteinuria onset. Furthermore, we observed that the disease protection achieved in female SNF1 mice upon depletion of gut microbiota correlates with the diminished gut inflammatory protein levels, intestinal permeability and circulating microbial DNA levels. However, faecal microbiota transplant from juvenile male and females did not result in modulation of gut inflammatory features or permeability. Overall, these observations suggest that the early onset of intestinal inflammation, systemic autoantibody production and clinical stage disease in lupus-prone females is linked to higher gut permeability in them starting at as early as juvenile age. While the higher gut permeability in juvenile lupus-prone females is dependent on the presence of gut microbes, it appears to be independent of the composition of gut microbiota.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Wei Sun
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Lauren Ball
- Department of Pharmacology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| |
Collapse
|
23
|
Razmjooei M, Hosseini SMH, Yousefi G, Golmakani MT, Eskandari MH. Exploiting Apical Sodium-Dependent Bile Acid Transporter (ASBT)-Mediated Endocytosis with Multi-Functional Deoxycholic Acid Grafted Alginate Amide Nanoparticles as an Oral Insulin Delivery System. Pharm Res 2024; 41:335-353. [PMID: 38114803 DOI: 10.1007/s11095-023-03641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Oral administration of insulin is a potential candidate for managing diabetes. However, it is obstructed by the gastrointestinal tract barriers resulting in negligible oral bioavailability. METHODS This investigation presents a novel nanocarrier platform designed to address these challenges. In this regard, the process involved amination of sodium alginate by ethylene diamine, followed by its conjugation with deoxycholic acid. RESULTS The resulting DCA@Alg@INS nanocarrier revealed a significantly high insulin loading content of 63.6 ± 1.03% and encapsulation efficiency of 87.6 ± 3.84%, with a particle size of 206 nm and zeta potentials of -3 mV. In vitro studies showed sustained and pH-dependent release profiles of insulin from nanoparticles. In vitro cellular studies, confocal laser scanning microscopy and flow cytometry analysis confirmed the successful attachment and internalization of DCA@Alg@INS nanoparticles in Caco-2 cells. Furthermore, the DCA@Alg@INS demonstrated a superior capacity for cellular uptake and permeability coefficient relative to the insulin solution, exhibiting sixfold and 4.94-fold enhancement, respectively. According to the uptake mechanism studies, the results indicated that DCA@Alg@INS was mostly transported through an energy-dependent active pathway since the uptake of DCA@Alg@INS by cells was significantly reduced in the presence of NaN3 by ~ 92% and at a low temperature of 4°C by ~ 94%. CONCLUSIONS Given the significance of administering insulin through oral route, deoxycholic acid-modified alginate nanoparticles present a viable option to surmount various obstacles presented by the gastrointestinal.
Collapse
Affiliation(s)
- Maryam Razmjooei
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
24
|
Liang Y, Liu D, Li Y, Hou H, Li P, Ma X, Li P, Zhan J, Wang P. Maternal polysorbate 80 intake promotes offspring metabolic syndrome through vertical microbial transmission in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168624. [PMID: 37979881 DOI: 10.1016/j.scitotenv.2023.168624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Polysorbate 80 (P80) is an emulsifier extensively produced, consumed and discharged into the environment, consequently making human exposure inevitable. Despite evidence suggesting that P80 intake causes metabolic syndrome (MS) in mammals via microbial perturbation, limited data exist on its transgenerational impacts on offspring. In this study, we found that maternal P80 treatment impaired intestinal barrier integrity, leading to metabolic endotoxemia, low-grade inflammation and MS-related symptoms in C57BL/6J female offspring. Further analysis of the gut microbiome revealed MS-related changes in the offspring of P80-treated dams. Fecal microbiota transplantation experiment confirmed the crucial role of the altered microbiome in offspring in the transgenerational impacts of P80. Furthermore, we found that the P80-induced microbial alterations were directly transmitted from P80-treated mothers to their offspring and that interrupting vertical microbial transmission through cesarean section and foster nursing blocked the transgenerational impacts of P80 on the offspring microbiome and metabolic health. Moreover, maternal pectin supplementation also effectively mitigated P80-induced microbial alterations and MS-associated phenotypes in offspring. Together, our results indicated that maternal P80 intake could impair offspring metabolic health through the mother-to-offspring transmission of the microbiome, and maternal pectin supplementation might be a promising strategy for reducing the adverse effects of P80.
Collapse
Affiliation(s)
- Yiran Liang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, People's Republic of China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Haonan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
25
|
Blenkinsopp HC, Seidler K, Barrow M. Microbial Imbalance and Intestinal Permeability in the Pathogenesis of Rheumatoid Arthritis: A Mechanism Review with a Focus on Bacterial Translocation, Citrullination, and Probiotic Intervention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:59-76. [PMID: 37294082 DOI: 10.1080/27697061.2023.2211129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
This review aims to investigate the role of intestinal permeability (IP) in rheumatoid arthritis (RA), following the hypotheses that leakage of intestinal microbes can influence increased citrullination of peptides leading to anti-citrullinated protein antibody (ACPA) production and inflammation in RA; and that leaked microbes can migrate to the peripheral joints, leading to immune responses and synovitis in peripheral joints. This review explored the evidence for the link between microbial dysbiosis and increased IP in the inflammatory state in RA, as well as the role of increased citrullination and bacterial translocation in the link between microbiota and immune responses in RA. Furthermore, this research aims to evaluate the potential effect of probiotics on RA symptoms and pathogenesis via proposed mechanisms, including the support of microbial balance and suppression of inflammatory factors in RA. A systematic literature search was conducted in three tranches (review, mechanism, intervention). 71 peer-reviewed papers met the inclusions criteria and are summarized in a narrative analysis. Primary studies were critically appraised, synthesized and their relevance to clinical practice evaluated. Evidence found in this mechanism review consistently supported intestinal dysbiosis and increased IP in arthritis. An altered intestinal microbiome was demonstrated in RA with specific microbes such as Collinsella and Eggerthella correlating with increased IP, mucosal inflammation, and immune responses. Hypercitrullination and ACPA production correlated with arthritic symptoms and intestinal microbes were shown to influence hypercitrullination. Some in vitro and animal studies demonstrated a link between leakage of microbes and bacterial translocation, but further research is needed to elucidate the link between IP and citrullination. Probiotic intervention studies evidenced reductions in inflammatory markers IL-6 and TNFα, associated with proliferation of synovial tissue and pain perception in RA joint inflammation. Despite some conflict in the literature, probiotics may present a promising nutritional intervention in the suppression of both, disease activity and inflammatory markers.Key teaching pointsThere is evidence for a dysbiotic profile of the RA gut with specific RA-associated microbes.Increased intestinal permeability and leakage of PAD enzyme facilitates citrullination of peptides.Hypercitrullination and ACPA production correlate to arthritic signs.Microbial leakage and translocation plays a role in the pathogenesis of RA.Probiotics (e.g. L. Casei 01) may reduce inflammation and ameliorate RA symptoms.
Collapse
Affiliation(s)
- Holly C Blenkinsopp
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Karin Seidler
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Michelle Barrow
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| |
Collapse
|
26
|
Zhang Z, Tanaka I, Nakahashi-Ouchida R, Ernst PB, Kiyono H, Kurashima Y. Glycoprotein 2 as a gut gate keeper for mucosal equilibrium between inflammation and immunity. Semin Immunopathol 2024; 45:493-507. [PMID: 38170255 PMCID: PMC11136868 DOI: 10.1007/s00281-023-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Glycoprotein 2 (GP2) is a widely distributed protein in the digestive tract, contributing to mucosal barrier maintenance, immune homeostasis, and antigen-specific immune response, while also being linked to inflammatory bowel disease (IBD) pathogenesis. This review sheds light on the extensive distribution of GP2 within the gastrointestinal tract and its intricate interplay with the immune system. Furthermore, the significance of GP2 autoantibodies in diagnosing and categorizing IBD is underscored, alongside the promising therapeutic avenues for modulating GP2 to regulate immunity and maintain mucosal balance.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Izumi Tanaka
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Peter B Ernst
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan.
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA.
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| |
Collapse
|
27
|
Poto R, Fusco W, Rinninella E, Cintoni M, Kaitsas F, Raoul P, Caruso C, Mele MC, Varricchi G, Gasbarrini A, Cammarota G, Ianiro G. The Role of Gut Microbiota and Leaky Gut in the Pathogenesis of Food Allergy. Nutrients 2023; 16:92. [PMID: 38201921 PMCID: PMC10780391 DOI: 10.3390/nu16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
| | - Pauline Raoul
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Cristiano Caruso
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
28
|
Kharrazian D, Herbert M, Lambert J. The Relationships between Intestinal Permeability and Target Antibodies for a Spectrum of Autoimmune Diseases. Int J Mol Sci 2023; 24:16352. [PMID: 38003542 PMCID: PMC10671756 DOI: 10.3390/ijms242216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The worldwide prevalence of autoimmune diseases that have limited treatment options and preventive strategies is rapidly rising. There is growing evidence that the microbiota and the integrity of the intestinal barrier play a role in autoimmune diseases. The potential to evaluate intestinal barrier integrity for susceptible individuals and to determine whether restoring intestinal junction integrity impacts autoimmune diseases is an important area of research that requires further attention. In the intestinal permeability model of autoimmune diseases, the breakdown of the intestinal tight junction proteins (zonulin/occludin) allows bacteria, toxins, undigested dietary proteins, and other antigens to pass into the lumen, thereby increasing the number of inflammatory reactions and the activation of immune cells throughout the body. In this study, we investigate the relationship between zonulin/occludin antibodies, which are used to determine intestinal permeability, with autoantibodies used to diagnose autoimmunity. Our investigation may identify significant levels of circulating autoantibodies in human subjects with intestinal permeability compared to those without intestinal permeability. Furthermore, we identified that significant positive linear correlations between serum occludin/zonulin antibodies and circulating autoantibodies could be used to determine autoimmune diseases.
Collapse
Affiliation(s)
- Datis Kharrazian
- Harvard Medical School, Boston, MA 02215, USA;
- Massachusetts General Hospital, Charlestown, MA 02114, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Martha Herbert
- Harvard Medical School, Boston, MA 02215, USA;
- Massachusetts General Hospital, Charlestown, MA 02114, USA
- Higher Synthesis Foundation, Cambridge, MA 02138, USA
| | - Jama Lambert
- Independent Researcher, Puerto Vallarta 48300, Jalisco, Mexico;
| |
Collapse
|
29
|
Donmez-Altuntas H, Sahin Ergul S, Altin-Celik P, Bulut K, Eci Roglu H, Uzen R, Sahin GG, Ozer NT, Temel S, Arikan TB, Esmaoglu A, Yuksel RC, Sungur M, Gundogan K. Gut barrier protein levels in serial blood samples from critically ill trauma patients during and after intensive care unit stay. Eur J Trauma Emerg Surg 2023; 49:2203-2213. [PMID: 37296330 DOI: 10.1007/s00068-023-02298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE In an effort to better manage critically ill patients hospitalised in the intensive care unit (ICU) after experiencing multiple traumas, the present study aimed to assess whether plasma levels of intestinal epithelial cell barrier proteins, including occludin, claudin-1, junctional adhesion molecule (JAM-1), tricellulin and zonulin, could be used as novel biomarkers. Additional potential markers such as intestinal fatty acid-binding protein (I-FABP), D-lactate, lipopolysaccharide (LPS) and citrulline were also evaluated. We also aimed to determine the possible relationships between the clinical, laboratory, and nutritional status of patients and the measured marker levels. METHODS Plasma samples from 29 patients (first, second, fifth and tenth days in the ICU and on days 7, 30 and 60 after hospital discharge) and 23 controls were subjected to commercial enzyme-linked immunosorbent assay (ELISA) testing. RESULTS On first day (admission) and on the second day, plasma I-FABP, D-lactate, citrulline, occludin, claudin-1, tricellulin and zonulin levels were high in trauma patients and positively correlated with lactate, C-reactive protein (CRP), number of days of ICU hospitalisation, Acute Physiology and Chronic Health Evaluation II (APACHE II) score and daily Sequential Organ Failure Assessment (SOFA) scores (P < 0.05-P < 0.01). CONCLUSION The results of the present study showed that occludin, claudin-1, tricellulin and zonulin proteins, as well as I-FABP, D-lactate and citrulline, may be used as promising biomarkers for the evaluation of disease severity in critically ill trauma patients, despite the complexity of the analysis of various barrier markers. However, our results should be supported by future studies.
Collapse
Affiliation(s)
| | - Serap Sahin Ergul
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Pinar Altin-Celik
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Kadir Bulut
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Hamiyet Eci Roglu
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- Health Services Vocational School, Alanya Alaaddin Keykubat University, 07425, Antalya, Turkey
| | - Ramazan Uzen
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Gulsah Gunes Sahin
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
- Department of Nutrition and Dietetics, School of Health Sciences, Cappadocia University, 50000, Nevşehir, Turkey
| | - Nurhayat Tugra Ozer
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Sahin Temel
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Turkmen Bahadir Arikan
- Department of General Surgery, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Aliye Esmaoglu
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Recep Civan Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Murat Sungur
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| |
Collapse
|
30
|
Perreau C, Thabuis C, Verstrepen L, Ghyselinck J, Marzorati M. Ex Vivo Colonic Fermentation of NUTRIOSE ® Exerts Immuno-Modulatory Properties and Strong Anti-Inflammatory Effects. Nutrients 2023; 15:4229. [PMID: 37836513 PMCID: PMC10574048 DOI: 10.3390/nu15194229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
NUTRIOSE® (Roquette, Lestrem, France) is a resistant dextrin with well-established prebiotic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE® on host immune response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a Colon-on-a-plate® system (ProDigest, Ghent, Belgium) with or without NUTRIOSE® supplementation. Following 48 h fermentation, colonic suspensions were tested in a Caco-2/THP1-Blue™ co-culture system to determine their effects on gut barrier activity (transepithelial electrical resistance) and immune response following lipopolysaccharide stimulation. Additionally, changes in short-chain fatty acid levels (SCFA) and microbial community composition following a 48 h fermentation in the Colon-on-a-plate® system were measured. Across all donors, immune-mediated intestinal barrier damage was significantly reduced with NUTRIOSE®-supplemented colonic suspensions versus blank. Additionally, IL-6 and IL-10 levels were significantly increased, and the level of the neutrophil chemoattractant IL-8 was significantly decreased with NUTRIOSE®-supplemented colonic suspensions versus blank in the co-culture models following lipopolysaccharide stimulation. These beneficial effects of NUTRIOSE® supplementation were likely due to increased acetate and propionate levels and the enrichment of SCFA-producing bacteria. NUTRIOSE® was well fermented by the colonic bacteria of all eight donors and had protective effects on inflammation-induced disruption of the intestinal epithelial barrier and strong anti-inflammatory effects.
Collapse
Affiliation(s)
- Caroline Perreau
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Clementine Thabuis
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Lynn Verstrepen
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Jonas Ghyselinck
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Massimo Marzorati
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
31
|
Asbjornsdottir B, Sigurdsson S, Miranda-Ribera A, Fiorentino M, Konno T, Lan J, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Evaluating Prophylactic Effect of Bovine Colostrum on Intestinal Barrier Function in Zonulin Transgenic Mice: A Transcriptomic Study. Int J Mol Sci 2023; 24:14730. [PMID: 37834178 PMCID: PMC10572565 DOI: 10.3390/ijms241914730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The intestinal barrier comprises a single layer of epithelial cells tightly joined to form a physical barrier. Disruption or compromise of the intestinal barrier can lead to the inadvertent activation of immune cells, potentially causing an increased risk of chronic inflammation in various tissues. Recent research has suggested that specific dietary components may influence the function of the intestinal barrier, potentially offering a means to prevent or mitigate inflammatory disorders. However, the precise mechanism underlying these effects remains unclear. Bovine colostrum (BC), the first milk from cows after calving, is a natural source of nutrients with immunomodulatory, anti-inflammatory, and gut-barrier fortifying properties. This novel study sought to investigate the transcriptome in BC-treated Zonulin transgenic mice (Ztm), characterized by dysbiotic microbiota, intestinal hyperpermeability, and mild hyperactivity, applying RNA sequencing. Seventy-five tissue samples from the duodenum, colon, and brain of Ztm and wild-type (WT) mice were dissected, processed, and RNA sequenced. The expression profiles were analyzed and integrated to identify differentially expressed genes (DEGs) and differentially expressed transcripts (DETs). These were then further examined using bioinformatics tools. RNA-seq analysis identified 1298 DEGs and 20,952 DETs in the paired (Ztm treatment vs. Ztm control) and reference (WT controls) groups. Of these, 733 DEGs and 10,476 DETs were upregulated, while 565 DEGs and 6097 DETs were downregulated. BC-treated Ztm female mice showed significant upregulation of cingulin (Cgn) and claudin 12 (Cldn12) duodenum and protein interactions, as well as molecular pathways and interactions pertaining to tight junctions, while BC-treated Ztm males displayed an upregulation of transcripts like occludin (Ocln) and Rho/Rac guanine nucleotide exchange factor 2 (Arhgf2) and cellular structures and interfaces, protein-protein interactions, and organization and response mechanisms. This comprehensive analysis reveals the influence of BC treatment on tight junctions (TJs) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway gene expressions. The present study is the first to analyze intestinal and brain samples from BC-treated Ztm mice applying high-throughput RNA sequencing. This study revealed molecular interaction in intestinal barrier function and identified hub genes and their functional pathways and biological processes in response to BC treatment in Ztm mice. Further research is needed to validate these findings and explore their implications for dietary interventions aimed at improving intestinal barrier integrity and function. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Snaevar Sigurdsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Biomedical Center, University of Iceland, 102 Reykjavik, Iceland
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Scientific Affairs, Landspitali University Hospital, 102 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
32
|
Lei Y, Liu Q, Li Q, Zhao C, Zhao M, Lu Q. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2023; 25:107-116. [PMID: 37083877 DOI: 10.1007/s11926-023-01102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE. RECENT FINDINGS SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation. Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
33
|
Koivusaari K, Niinistö S, Nevalainen J, Honkanen J, Ruohtula T, Koreasalo M, Ahonen S, Åkerlund M, Tapanainen H, Siljander H, Miettinen ME, Alatossava T, Ilonen J, Vaarala O, Knip M, Virtanen SM. Infant Feeding, Gut Permeability, and Gut Inflammation Markers. J Pediatr Gastroenterol Nutr 2023; 76:822-829. [PMID: 36913717 DOI: 10.1097/mpg.0000000000003756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
OBJECTIVES Increased gut permeability and gut inflammation have been linked to the development of type 1 diabetes. Little is known on whether and how intake of different foods is linked to these mechanisms in infancy. We investigated whether the amount of breast milk and intake of other foods are associated with gut inflammation marker concentrations and permeability. METHODS Seventy-three infants were followed from birth to 12 months of age. Their diet was assessed with structured questionnaires and 3-day weighed food records at the age of 3, 6, 9, and 12 months. Gut permeability was assessed with the lactulose/mannitol test and fecal calprotectin and human β-defensin-2 (HBD-2) concentrations were analyzed from stool samples at the age of 3, 6, 9, and 12 months. The associations between foods and gut inflammation marker concentrations and permeability were analyzed using generalized estimating equations. RESULTS Gut permeability and gut inflammation marker concentrations decreased during the first year of life. Intake of hydrolyzed infant formula ( P = 0.003) and intake of fruits and juices ( P = 0.001) were associated with lower intestinal permeability. Intake of fruits and juices ( P < 0.001), vegetables ( P < 0.001), and oats ( P = 0.003) were associated with lower concentrations of HBD-2. Higher intake of breast milk was associated with higher fecal calprotectin concentrations ( P < 0.001), while intake of fruits and juices ( P < 0.001), vegetables ( P < 0.001), and potatoes ( P = 0.007) were associated with lower calprotectin concentrations. CONCLUSIONS Higher intake of breast milk may contribute to higher calprotectin concentration, whereas several complementary foods may decrease gut permeability and concentrations of calprotectin and HBD-2 in infant gut.
Collapse
Affiliation(s)
- Katariina Koivusaari
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- the Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Sari Niinistö
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Nevalainen
- the Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
| | - Jarno Honkanen
- the Research Program for Translational Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terhi Ruohtula
- the Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mirva Koreasalo
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Suvi Ahonen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mari Åkerlund
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heli Tapanainen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heli Siljander
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E Miettinen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tapani Alatossava
- the Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- the Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Outi Vaarala
- the Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Suvi M Virtanen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
34
|
Biskou O, Jauregi-Miguel A. Measuring intestinal permeability in celiac disease ex vivo, using Ussing chambers. Methods Cell Biol 2023; 179:21-38. [PMID: 37625877 DOI: 10.1016/bs.mcb.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Multicellular organisms need epithelial barriers to remain compartmentalized and protected from external influences. Although much progress has been made in understanding barrier integrity disruption in Celiac disease (CD), the regulatory and genetic mechanisms underlying the increased intestinal epithelial flux are still unknown. As we learn more about the regulation of permeability in homeostasis and pathogenesis, we will be able to develop strategies to strengthen the epithelial barrier function in intestinal disorders, including CD. For this purpose, Ussing chambers are increasingly used in native tissue, such as gut mucosa or cell monolayers, to assess the integrity of the barrier. In particular, the Ussing chambers allow the measurement of paracellular and transcellular parameters of CD small intestinal biopsies under physiologically specific conditions. In diverse types of diseases, this method is commonly used to determine epithelial barrier defects, but its application to CD has not yet been widely expanded. To provide a great model of barrier ex vivo studies in CD, we facilitate a standard protocol to measure paracellular and transcellular permeability using the Ussing chamber.
Collapse
Affiliation(s)
- Olga Biskou
- Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Amaia Jauregi-Miguel
- Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
35
|
Le NPK, Altenburger MJ, Lamy E. Development of an Inflammation-Triggered In Vitro "Leaky Gut" Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages. Int J Mol Sci 2023; 24:7427. [PMID: 37108590 PMCID: PMC10139037 DOI: 10.3390/ijms24087427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The "leaky gut" syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the "leaky gut" syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a "leaky gut" became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors.
Collapse
Affiliation(s)
- Nguyen Phan Khoi Le
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| |
Collapse
|
36
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota-Gut-Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:1620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a "leaky gut." A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota-gut-brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut-brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
Affiliation(s)
- Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Costantino Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Stefania Castellaneta
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Andrea De Giacomo
- Child Neuropsychiatry Unit, Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Marianna Laguardia
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
38
|
Griebsch LV, Theiss EL, Janitschke D, Erhardt VKJ, Erhardt T, Haas EC, Kuppler KN, Radermacher J, Walzer O, Lauer AA, Matschke V, Hartmann T, Grimm MOW, Grimm HS. Aspartame and Its Metabolites Cause Oxidative Stress and Mitochondrial and Lipid Alterations in SH-SY5Y Cells. Nutrients 2023; 15:nu15061467. [PMID: 36986196 PMCID: PMC10053704 DOI: 10.3390/nu15061467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Due to a worldwide increase in obesity and metabolic disorders such as type 2 diabetes, synthetic sweeteners such as aspartame are frequently used to substitute sugar in the diet. Possible uncertainties regarding aspartame's ability to induce oxidative stress, amongst others, has led to the recommendation of a daily maximum dose of 40 to 50 mg per kg. To date, little is known about the effects of this non-nutritive sweetener on cellular lipid homeostasis, which, besides elevated oxidative stress, plays an important role in the pathogenesis of various diseases, including neurodegenerative diseases such as Alzheimer's disease. In the present study, treatment of the human neuroblastoma cell line SH-SY5Y with aspartame (271.7 µM) or its three metabolites (aspartic acid, phenylalanine, and methanol (271.7 µM)), generated after digestion of aspartame in the human intestinal tract, resulted in significantly elevated oxidative stress associated with mitochondrial damage, which was illustrated with reduced cardiolipin levels, increased gene expression of SOD1/2, PINK1, and FIS1, and an increase in APF fluorescence. In addition, treatment of SH-SY5Y cells with aspartame or aspartame metabolites led to a significant increase in triacylglycerides and phospholipids, especially phosphatidylcholines and phosphatidylethanolamines, accompanied by an accumulation of lipid droplets inside neuronal cells. Due to these lipid-mediating properties, the use of aspartame as a sugar substitute should be reconsidered and the effects of aspartame on the brain metabolism should be addressed in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Erhardt
- Physical Therapy, Campus Karlsruhe, SRH University of Applied Health Sciences, 76185 Karlsruhe, Germany
| | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| |
Collapse
|
39
|
Fedor I, Zold E, Barta Z. Contrasting Autoimmune Comorbidities in Microscopic Colitis and Inflammatory Bowel Diseases. Life (Basel) 2023; 13:652. [PMID: 36983808 PMCID: PMC10056705 DOI: 10.3390/life13030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (Crohn's disease and ulcerative colitis) and microscopic colitis (lymphocytic and collagenous colitis) are immune-mediated diseases of the gastrointestinal tract, with distinct pathophysiology. OBJECTIVE We sought to compare the prevalence of autoimmune diseases between microscopic colitis (MC) and inflammatory bowel diseases (IBDs) in our patient cohorts in their medical history. METHODS We collected data from 611 patients (508 with IBD, 103 with MC). We recorded cases of other autoimmune diseases. The screened documentation was written in the period between 2008 and 2022. We sought to determine whether colonic involvement had an impact on the prevalence of autoimmune diseases. RESULTS Ulcerative colitis patients and patients with colonic-predominant Crohn's disease had a greater propensity for autoimmune conditions across the disease course than patients with ileal-predominant Crohn's disease. Gluten-related disorders were more common in Crohn's disease than in ulcerative colitis, and slightly more common than in microscopic colitis. In ulcerative colitis, 10 patients had non-differentiated collagenosis registered, which can later develop into a definite autoimmune disease. CONCLUSIONS Predominantly colonic involvement can be a predisposing factor for developing additional autoimmune disorders in IBD. Ulcerative colitis patients may have laboratory markers of autoimmunity, without fulfilling the diagnostic criteria for definitive autoimmune disorders (non-differentiated collagenosis).
Collapse
Affiliation(s)
- Istvan Fedor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai Street 26, 4012 Debrecen, Hungary
- Department of Clinical Immunology, Faculty of Medicine, Institute of Internal Medicine, Doctoral School of Clinical Immunology and Allergology, University of Debrecen, Moricz Zs. Street 22, 4032 Debrecen, Hungary
| | - Eva Zold
- Department of Clinical Immunology, Faculty of Medicine, Institute of Internal Medicine, Doctoral School of Clinical Immunology and Allergology, University of Debrecen, Moricz Zs. Street 22, 4032 Debrecen, Hungary
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, Doctoral School of Clinical Immunology and Allergology, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary
| |
Collapse
|
40
|
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
41
|
Di Dio M, Calella P, Pelullo CP, Liguori F, Di Onofrio V, Gallè F, Liguori G. Effects of Probiotic Supplementation on Sports Performance and Performance-Related Features in Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2226. [PMID: 36767593 PMCID: PMC9914962 DOI: 10.3390/ijerph20032226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
This review aims to evaluate the effects of probiotic supplementation on performance and performance-related conditions in athletes by evaluating randomized controlled studies from the MEDLINE (Pubmed), Web of Science, Scopus, and SPORTDiscus (EBSCO) databases. From a total of 2304 relevant articles, 13 studies fulfilled the inclusion criteria. Seven studies concern endurance athletes, one to rugby players, three refer to non-specified athletes, one to badminton players, and one involves baseball players. The evidence suggests that the integration of athletes' diets with some bacterial strains and also the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. However, the type of supplementation and sport is very variable among the studies examined. Therefore, to obtain more solid evidence, further controlled and comparable studies are needed to expand the research regarding the possible repercussions of probiotics use on athletes' performance.
Collapse
Affiliation(s)
- Mirella Di Dio
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Patrizia Calella
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Concetta Paola Pelullo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Fabrizio Liguori
- Department of Economics and Legal Studies, University of Naples “Parthenope”, Via Generale Parisi 13, 80132 Naples, Italy
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| |
Collapse
|
42
|
de Paiva AKF, de Oliveira EP, Mancini L, Paoli A, Mota JF. Effects of probiotic supplementation on performance of resistance and aerobic exercises: a systematic review. Nutr Rev 2023; 81:153-167. [PMID: 35950956 DOI: 10.1093/nutrit/nuac046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CONTEXT Strenuous exercise may lead to negative acute physiological effects that can impair athletic performance. Some recent studies suggest that probiotic supplementation can curtail these effects by reducing the permeability of the intestinal barrier, yet results are inconsistent. OBJECTIVE The aim of this systematic review is to assess the effects of probiotic supplementation on athletic performance. DATA SOURCES The PubMed/MEDLINE, Cochrane, and Scopus databases were searched for articles that assessed the effects of probiotic supplementation on athletic performance. DATA EXTRACTION THIS SYSTEMATIC REVIEW IS REPORTED ACCORDING TO PRISMA guidelines. Risk of bias was assessed through the Cochrane RoB 2.0 tool. Seventeen randomized clinical trials assessing athletic performance as the primary outcome were included. In total, 496 individuals (73% male) comprising athletes, recreationally trained individuals, and untrained healthy individuals aged 18 to 40 years were investigated. DATA ANALYSIS Three studies showed an increase or an attenuation of aerobic performance (decline in time to exhaustion on the treadmill) after supplementation with probiotics, while 3 found an increase in strength. However, most studies (n = 11) showed no effect of probiotic consumption on aerobic performance (n = 9) or muscular strength (n = 2). The most frequently used strain was Lactobacillus acidophilus, used in 2 studies that observed positive results on performance. Studies that used Lactobacillus plantarum TK10 and Lactobacillus plantarum PS128 also demonstrated positive effects on aerobic performance and strength, but they had high risk of bias, which implies low confidence about the actual effect of treatment. CONCLUSION There is not enough evidence to support the hypothesis that probiotics can improve performance in resistance and aerobic exercises. Further well-controlled studies are warranted.
Collapse
Affiliation(s)
- Anne K F de Paiva
- are with the School of Nutrition, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Erick P de Oliveira
- with the Laboratory of Nutrition, Exercise and Health, School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Laura Mancini
- are with the Department of Biomedical Sciences, University of Padua, Padua, Italy.,are with the Human Inspired Technology Research Center, University of Padua, Padua, Italy
| | - Antonio Paoli
- are with the Department of Biomedical Sciences, University of Padua, Padua, Italy.,are with the Human Inspired Technology Research Center, University of Padua, Padua, Italy.,with the Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - João F Mota
- are with the School of Nutrition, Federal University of Goiás, Goiânia, Goiás, Brazil.,is with the Graduate Program of Human Movement and Rehabilitation, UniEvangélica, Anápolis, Goiás, Brazil
| |
Collapse
|
43
|
The Local Activation of Toll-like Receptor 7 (TLR7) Modulates Colonic Epithelial Barrier Function in Rats. Int J Mol Sci 2023; 24:ijms24021254. [PMID: 36674770 PMCID: PMC9865626 DOI: 10.3390/ijms24021254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLRs)-mediated host-bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2.
Collapse
|
44
|
Zheng Y, Zhang Z, Tang P, Wu Y, Zhang A, Li D, Wang CZ, Wan JY, Yao H, Yuan CS. Probiotics fortify intestinal barrier function: a systematic review and meta-analysis of randomized trials. Front Immunol 2023; 14:1143548. [PMID: 37168869 PMCID: PMC10165082 DOI: 10.3389/fimmu.2023.1143548] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Background Probiotics play a vital role in treating immune and inflammatory diseases by improving intestinal barrier function; however, a comprehensive evaluation is missing. The present study aimed to explore the impact of probiotics on the intestinal barrier and related immune function, inflammation, and microbiota composition. A systematic review and meta-analyses were conducted. Methods Four major databases (PubMed, Science Citation Index Expanded, CENTRAL, and Embase) were thoroughly searched. Weighted mean differences were calculated for continuous outcomes with corresponding 95% confidence intervals (CIs), heterogeneity among studies was evaluated utilizing I2 statistic (Chi-Square test), and data were pooled using random effects meta-analyses. Results Meta-analysis of data from a total of 26 RCTs (n = 1891) indicated that probiotics significantly improved gut barrier function measured by levels of TER (MD, 5.27, 95% CI, 3.82 to 6.72, P < 0.00001), serum zonulin (SMD, -1.58, 95% CI, -2.49 to -0.66, P = 0.0007), endotoxin (SMD, -3.20, 95% CI, -5.41 to -0.98, P = 0.005), and LPS (SMD, -0.47, 95% CI, -0.85 to -0.09, P = 0.02). Furthermore, probiotic groups demonstrated better efficacy over control groups in reducing inflammatory factors, including CRP, TNF-α, and IL-6. Probiotics can also modulate the gut microbiota structure by boosting the enrichment of Bifidobacterium and Lactobacillus. Conclusion The present work revealed that probiotics could improve intestinal barrier function, and alleviate inflammation and microbial dysbiosis. Further high-quality RCTs are warranted to achieve a more definitive conclusion. Clinical trial registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=281822, identifier CRD42021281822.
Collapse
Affiliation(s)
- Yanfei Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zengliang Zhang
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Inner Mongolia, China
| | - Ping Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Anqi Zhang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Delong Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL, United States
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jin-Yi Wan, ; Haiqiang Yao,
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jin-Yi Wan, ; Haiqiang Yao,
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL, United States
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
45
|
Lee SH, Hwang D, Goo TW, Yun EY. Prediction of intestinal stem cell regulatory genes from Drosophila gut damage model created using multiple inducers: Differential gene expression-based protein-protein interaction network analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104539. [PMID: 36087786 DOI: 10.1016/j.dci.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Intestinal tissue functions in innate immunity to prevent the entry of harmful substances, and to maintain homeostasis through the constant proliferation of intestinal stem cells (ISC). To understand the mechanisms which regulate ISC in response to gut damage, we identified 81 differentially expressed genes (DEGs) through RNA-seq analysis after oral administration of three intestinal-damaging substances to Drosophila melanogaster. Through protein-protein interaction (PPI) and functional annotation studies, the top 22 DEGs ordered by the number of nodes in the PPI network were analyzed in relation to cell development. Through network topology analysis, we identified 12 essential seed genes. From this we confirmed that p53, RpL17, Fmr1, Stat92E, CG31343, Cnot4, CG9281, CG8184, Evi5, and to were essential for ISC proliferation during gut damage using knockdown RNAi Drosophila. This study presents a method for identifying candidate genes relating to intestinal damage that has scope for furthering our understanding of gut disease.
Collapse
Affiliation(s)
- Seung Hun Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, South Korea
| | - Dooseon Hwang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, South Korea
| | - Tae-Won Goo
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, 38766, South Korea
| | - Eun-Young Yun
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
46
|
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol 2023; 23:9-23. [PMID: 35534624 DOI: 10.1038/s41577-022-00727-y] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Haebashi, Gunma, Japan
| | - Chikako Shimokawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, Japan
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
47
|
Yoshikawa T, Minaga K, Hara A, Sekai I, Kurimoto M, Masuta Y, Otsuka Y, Takada R, Kamata K, Park AM, Takamura S, Kudo M, Watanabe T. Disruption of the intestinal barrier exacerbates experimental autoimmune pancreatitis by promoting the translocation of Staphylococcus sciuri into the pancreas. Int Immunol 2022; 34:621-634. [PMID: 36044992 DOI: 10.1093/intimm/dxac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Autoimmune pancreatitis (AIP) and IgG4-related disease (IgG4-RD) are new disease entities characterized by enhanced IgG4 antibody responses and involvement of multiple organs, including the pancreas and salivary glands. Although the immunopathogenesis of AIP and IgG4-RD is poorly understood, we previously reported that intestinal dysbiosis mediates experimental AIP through the activation of IFN-α- and IL-33-producing plasmacytoid dendritic cells (pDCs). Because intestinal dysbiosis is linked to intestinal barrier dysfunction, we explored whether the latter affects the development of AIP and autoimmune sialadenitis in MRL/MpJ mice treated with repeated injections of polyinosinic-polycytidylic acid [poly (I:C)]. Epithelial barrier disruption was induced by the administration of dextran sodium sulfate (DSS) in the drinking water. Mice co-treated with poly (I:C) and DSS, but not those treated with either agent alone, developed severe AIP, but not autoimmune sialadenitis, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Sequencing of 16S ribosomal RNA revealed that Staphylococcus sciuri translocation from the gut to the pancreas was preferentially observed in mice with severe AIP co-treated with DSS and poly (I:C). The degree of experimental AIP, but not of autoimmune sialadenitis, was greater in germ-free mice mono-colonized with S. sciuri and treated with poly (I:C) than in germ-free mice treated with poly (I:C) alone, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Taken together, these data suggest that intestinal barrier dysfunction exacerbates AIP through the activation of pDCs and translocation of S. sciuri into the pancreas.
Collapse
Affiliation(s)
- Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
48
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
49
|
Abstract
BACKGROUND Increasingly, patients are asking their physicians about the benefits of dietary and alternative approaches to manage their diseases, including thyroid disease. We seek to review the evidence behind several of the vitamins, minerals, complementary medicines, and elimination diets that patients are most commonly using for the treatment of thyroid disorders. SUMMARY Several trace elements are essential to normal thyroid function, and their supplementation has been studied in various capacities. Iodine supplementation has been implemented on national scales through universal salt iodization with great success in preventing severe thyroid disease, but can conversely cause thyroid disorders when given in excess. Selenium and zinc supplementation has been found to be beneficial in specific populations with otherwise limited generalizability. Other minerals, such as vitamin B12, low-dose naltrexone, and ashwagandha root extract, have little to no evidence of any impact on thyroid disorders. Avoidance of gluten and dairy has positive impacts only in patients with concomitant sensitivities to those substances, likely by improving absorption of levothyroxine. Avoidance of cruciferous vegetables and soy has little proven benefit in patients with thyroid disorders. CONCLUSION While many patients are seeking to avoid conventional therapy and instead turn to alternative and dietary approaches to thyroid disease management, many of the most popular approaches have no proven benefit or have not been well studied. It is our responsibility to educate our patients about the evidence for or against benefit, potential harms, or dearth of knowledge behind these strategies.
Collapse
Affiliation(s)
- Dana Larsen
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Sargun Singh
- Government Medical College Amritsar, Amritsar, Punjab, India
| | - Maria Brito
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
50
|
Abril AG, Villa TG, Sánchez-Pérez Á, Notario V, Carrera M. The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. Int J Mol Sci 2022; 23:14333. [PMID: 36430811 PMCID: PMC9696009 DOI: 10.3390/ijms232214333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| |
Collapse
|