1
|
Majerus SJA, Cabal D, Hacohen Y, Hanzlicek B, Smiley A, Wang Y, Liu W, Larauche M, Million M, Damaser MS, Bourbeau DJ. A Flexible Implant for Multi-Day Monitoring of Colon Segment Activity. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:941-951. [PMID: 37363840 PMCID: PMC10732233 DOI: 10.1109/tbcas.2023.3289768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Monitoring of colon activity is currently limited to tethered systems like anorectal manometry. These systems have significant drawbacks, but fundamentally limit the observation time of colon activity, reducing the likelihood of detecting specific clinical events. While significant technological advancement has been directed to mobile sensor capsules, this work describes the development and feasibility of a stationary sensor for describing the coordinated activity between neighboring segments of the colon. Unlike wireless capsules, this device remains in position and measures propagating pressure waves and impedances between colon segments to describe activity and motility. This low-power, flexible, wireless sensor-the colon monitor to capture activity (ColoMOCA) was validated in situ and in vivo over seven days of implantation. The ColoMOCA diameter was similar to common endoscopes to allow for minimally invasive diagnostic placement. The ColoMOCA included two pressure sensors, and three impedance-sensing electrodes arranged to describe the differential pressures and motility between adjacent colon segments. To prevent damage after placement in the colon, the ColoMOCA was fabricated with a flexible polyimide circuit board and a silicone rubber housing. The resulting device was highly flexible and suitable for surgical attachment to the colon wall. In vivo testing performed in eleven animals demonstrated suitability of both short term (less than 3 hours) and 7-day implantations. Data collected wirelessly from animal experiments demonstrated the ColoMOCA described colon activity similarly to wired catheters and allowed untethered, conscious monitoring of organ behavior.
Collapse
|
2
|
Koppen IJN, Benninga MA. Functional Constipation and Dyssynergic Defecation in Children. Front Pediatr 2022; 10:832877. [PMID: 35252068 PMCID: PMC8890489 DOI: 10.3389/fped.2022.832877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Defecation is a complex physiological process, which relies on intricate mechanisms involving the autonomic and somatic nervous system, the pelvic floor muscles, and the anal sphincter complex. Anorectal dysfunction may result in constipation, a bothersome defecation disorder that can severely affect daily lives of children and their families. In this review, we focus on different mechanisms underlying anorectal dysfunction and specific treatment options aimed at improving defecation dynamics in children with functional constipation.
Collapse
Affiliation(s)
- Ilan J N Koppen
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc A Benninga
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Scott SM, Simrén M, Farmer AD, Dinning PG, Carrington EV, Benninga MA, Burgell RE, Dimidi E, Fikree A, Ford AC, Fox M, Hoad CL, Knowles CH, Krogh K, Nugent K, Remes-Troche JM, Whelan K, Corsetti M. Chronic constipation in adults: Contemporary perspectives and clinical challenges. 1: Epidemiology, diagnosis, clinical associations, pathophysiology and investigation. Neurogastroenterol Motil 2021; 33:e14050. [PMID: 33263938 DOI: 10.1111/nmo.14050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic constipation is a prevalent disorder that affects patients' quality of life and consumes resources in healthcare systems worldwide. In clinical practice, it is still considered a challenge as clinicians frequently are unsure as to which treatments to use and when. Over a decade ago, a Neurogastroenterology & Motility journal supplement devoted to the investigation and management of constipation was published (2009; 21 (Suppl.2)). This included seven articles, disseminating all themes covered during a preceding 2-day meeting held in London, entitled "Current perspectives in chronic constipation: a scientific and clinical symposium." In October 2018, the 3rd London Masterclass, entitled "Contemporary management of constipation" was held, again over 2 days. All faculty members were invited to author two new review articles, which represent a collective synthesis of talks presented and discussions held during this meeting. PURPOSE This article represents the first of these reviews, addressing epidemiology, diagnosis, clinical associations, pathophysiology, and investigation. Clearly, not all aspects of the condition can be covered in adequate detail; hence, there is a focus on particular "hot topics" and themes that are of contemporary interest. The second review addresses management of chronic constipation, covering behavioral, conservative, medical, and surgical therapies.
Collapse
Affiliation(s)
- S Mark Scott
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Magnus Simrén
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Farmer
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Institute of Applied Clinical Science, University of Keele, Keele, UK
| | - Philip G Dinning
- College of Medicine and Public Health, Flinders Medical Centre, Flinders University & Discipline of Gastroenterology, Adelaide, SA, Australia
| | - Emma V Carrington
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Surgical Professorial Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Marc A Benninga
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rebecca E Burgell
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Vic., Australia
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Asma Fikree
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Alexander C Ford
- Leeds Institute of Medical Research at St. James's, Leeds Gastroenterology Institute, Leeds Teaching Hospitals Trust, University of Leeds, Leeds, UK
| | - Mark Fox
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland.,Digestive Function: Basel, Laboratory and Clinic for Motility Disorders and Functional Gastrointestinal Diseases, Centre for Integrative Gastroenterology, Klinik Arlesheim, Arlesheim, Switzerland
| | - Caroline L Hoad
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre (BRC), Hospitals NHS Trust and the University of Nottingham, Nottingham University, Nottingham, UK
| | - Charles H Knowles
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karen Nugent
- Department of Surgery, Southampton University Hospital NHS Foundation Trust, Southampton, UK
| | - Jose Maria Remes-Troche
- Digestive Physiology and Motility Lab, Medical Biological Research Institute, Universidad Veracruzana, Veracruz, Mexico
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Hospitals NHS Trust and the University of Nottingham, Nottingham University, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Schütt M, Stamatopoulos K, Simmons MJH, Batchelor HK, Alexiadis A. Modelling and simulation of the hydrodynamics and mixing profiles in the human proximal colon using Discrete Multiphysics. Comput Biol Med 2020; 121:103819. [PMID: 32568686 DOI: 10.1016/j.compbiomed.2020.103819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
The proximal part of the colon offers opportunities to prolong the absorption window following oral administration of a drug. In this work, we used computer simulations to understand how the hydrodynamics in the proximal colon might affect the release from dosage forms designed to target the colon. For this purpose, we developed and compared three different models: a completely-filled colon, a partially-filled colon and a partially-filled colon with a gaseous phase present (gas-liquid model). The highest velocities of the liquid were found in the completely-filled model, which also shows the best mixing profile, defined by the distribution of tracking particles over time. No significant differences with regard to the mixing and velocity profiles were found between the partially-filled model and the gas-liquid model. The fastest transit time of an undissolved tablet was found in the completely-filled model. The velocities of the liquid in the gas-liquid model are slightly higher along the colon than in the partially-filled model. The filling level has an impact on the exsisting shear forces and shear rates, which are decisive factors in the development of new drugs and formulations.
Collapse
Affiliation(s)
- M Schütt
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - K Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - H K Batchelor
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT United Kingdom
| | - A Alexiadis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
5
|
Li YW, Yu YJ, Fei F, Zheng MY, Zhang SW. High-resolution colonic manometry and its clinical application in patients with colonic dysmotility: A review. World J Clin Cases 2019; 7:2675-2686. [PMID: 31616684 PMCID: PMC6789394 DOI: 10.12998/wjcc.v7.i18.2675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
The detailed process and mechanism of colonic motility are still unclear, and colonic motility disorders are associated with numerous clinical diseases. Colonic manometry is considered to the most direct means of evaluating colonic peristalsis. Colonic manometry has been studied for more than 30 years; however, the long duration of the examination, high risk of catheterization, huge amount of real-time data, strict catheter sterilization, and high cost of disposable equipment restrict its wide application in clinical practice. Recently, high-resolution colonic manometry (HRCM) has rapidly developed into a major technique for obtaining more effective information involved in the physiology and/or pathophysiology of colonic contractile activity in colonic dysmotility patients. This review focuses on colonic motility, manometry, operation, and motor patterns, and the clinical application of HRCM. Furthermore, the limitations, future directions, and potential usefulness of HRCM in the evaluation of clinical treatment effects are also discussed.
Collapse
Affiliation(s)
- Yu-Wei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300071, China
| | - Yong-Jun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300071, China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300071, China
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Min-Ying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300071, China
| | - Shi-Wu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300071, China
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol Gastrointest Liver Physiol 2018; 315:G896-G907. [PMID: 30095295 DOI: 10.1152/ajpgi.00237.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of short-chain fatty acids (SCFAs) in the control of colonic motility is controversial. Germ-free (GF) mice are unable to produce these metabolites and serve as a model to study how their absence affects colonic motility. GF transit is slower than controls, and colonization of these mice improves transit and serotonin [5-hydroxytryptamine (5-HT)] levels. Our aim was to determine the role SCFAs play in improving transit and whether this is dependent on mucosal 5-HT signaling. Motility was assessed in GF mice via spatiotemporal mapping. First, motor patterns in the whole colon were measured ex vivo with or without luminal SCFA, and outflow from the colon was recorded to quantify outflow caused by individual propulsive contractions. Second, artificial fecal pellet propulsion was measured. Motility was then assessed in tryptophan hydroxylase-1 (TPH1) knockout (KO) mice, devoid of mucosal 5-HT, with phosphate buffer, butyrate, or propionate intraluminal perfusion. GF mice exhibited a lower proportion of propulsive contractions, lower volume of outflow/contraction, slower velocity of contractions, and slower propulsion of fecal pellets compared with controls. SCFAs changed motility patterns to that of controls in all parameters. Butyrate administration increased the proportion of propulsive contractions in controls yet failed to in TPH1 KO mice. Propionate inhibited propulsive contractions in all mice. Our results reveal significant abnormalities in the propulsive nature of colonic motor patterns in GF mice, explaining the decreased transit time in in vivo studies. We show that butyrate but not propionate activates propulsive motility and that this may require mucosal 5-HT. NEW & NOTEWORTHY Understanding the role that the microbiota play in governing the physiology of colonic motility is lacking. Here, we offer for the first time, to our knowledge, a detailed analysis of colonic motor patterns and pellet propulsion using spatiotemporal mapping in the absence of microbiota. We show a striking difference in germ-free and control phenotypes and attribute this to a lack of fermentation-produced short-chain fatty acid. We then show that butyrate but not propionate can restore motility and that the butyrate effect likely requires mucosal 5-hydroxytryptamine.
Collapse
Affiliation(s)
- Alexander D Vincent
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Xuan-Yu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Sean P Parsons
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Waliul I Khan
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
7
|
Koppen IJN, Wiklendt L, Yacob D, Di Lorenzo C, Benninga MA, Dinning PG. Motility of the left colon in children and adolescents with functional constpation; a retrospective comparison between solid-state and water-perfused colonic manometry. Neurogastroenterol Motil 2018; 30:e13401. [PMID: 30039585 DOI: 10.1111/nmo.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/28/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Using water-perfused (WP) high-resolution manometry, we recently demonstrated that children with functional constipation (FC) lacked the postprandial increase in distal colonic cyclic motor patterns that was observed in healthy adults. Our aim was to determine if similar results could be detected using a solid-state (SS) manometry catheter. METHODS We performed a retrospective analysis of 19 children with FC (median age 11.1 years, 58% male) who underwent colonic manometry with a SS catheter (36 sensors, 3 cm apart). Data were compared with previously published data using a WP catheter (36 sensors, 1.5 cm apart) recorded from 18 children with FC (median age 15 years; 28% male). KEY RESULTS The cyclic motor patterns recorded by the SS catheter did not differ from those previously recorded by the WP catheter. There was no detected increase in this activity in response to the meal in either group. Long-single motor patterns were recorded in most patients (n = 16, 84%) with the SS catheter. The number of these events did not differ from the WP recordings. In the SS data, HAPCs were observed in 4 children prior to the meal, in 5 after the meal. This did not differ significantly from the WP data. CONCLUSIONS & INFERENCES These data recorded by SS manometry did not differ from WP manometry data. Regardless of the catheter used, both studies revealed an abnormal colonic response to a meal, indicating a pathology which is not related to the catheter used to record these data.
Collapse
Affiliation(s)
- I J N Koppen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - L Wiklendt
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - D Yacob
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - C Di Lorenzo
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - M A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - P G Dinning
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
8
|
El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Chromogranin A cell density in the large intestine of Asian and European patients with irritable bowel syndrome. Scand J Gastroenterol 2017; 52:691-697. [PMID: 28346031 DOI: 10.1080/00365521.2017.1305123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Patients with irritable bowel syndrome (IBS) in Asia show distinctive differences from those in the western world. The gastrointestinal endocrine cells appear to play an important role in the pathophysiology of IBS. The present study aimed at studying the density of chromogranin A (CgA) cells in the large intestine of Thai and Norwegian IBS patients. METHODS Thirty Thai IBS patients and 20 control subjects, and 47 Norwegian IBS patients and 20 control subjects were included. A standard colonoscopy was performed in both the patients and controls, and biopsy samples were taken from the colon and the rectum. The biopsy samples were stained with hematoxylin-eosin and immunostained for CgA. The density of CgA cells was determined by computerized image analysis. RESULTS In the colon and rectum, the CgA cell densities were far higher in both IBS and healthy Thai subjects than in Norwegians. The colonic CgA cell density was lower in Norwegian IBS patients than in controls, but did not differ between Thai IBS patients and controls. In the rectum, the CgA cell densities in both Thai and Norwegian patients did not differ from those of controls. CONCLUSIONS The higher densities of CgA cells in Thai subjects than Norwegians may be explained by a higher exposure to infections at childhood and the development of a broad immune tolerance, by differences in the intestinal microbiota, and/or differing diet habits. The normal CgA cell density in Thai IBS patients in contrast to that of Norwegians may be due to differences in pathophysiology.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology , Stord Helse-Fonna Hospital , Stord , Norway.,b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway
| | - Tanisa Patcharatrakul
- d Division of Gastroenterology, Department of Medicine Faculty of Medicine , GI Motility Research Unit, Chulalongkorn University , Bangkok , Thailand.,e Thai Red Cross Society , King Chulalongkorn Memorial Hospital , Bangkok , Thailand
| | - Jan Gunnar Hatlebakk
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway
| | - Trygve Hausken
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway.,e Thai Red Cross Society , King Chulalongkorn Memorial Hospital , Bangkok , Thailand
| | - Odd Helge Gilja
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway.,f Department of Medicine , National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital , Bergen , Norway
| | - Sutep Gonlachanvit
- d Division of Gastroenterology, Department of Medicine Faculty of Medicine , GI Motility Research Unit, Chulalongkorn University , Bangkok , Thailand.,e Thai Red Cross Society , King Chulalongkorn Memorial Hospital , Bangkok , Thailand
| |
Collapse
|
9
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
10
|
Soares ASGF, Barbosa LER. Colonic Inertia: approach and treatment. JOURNAL OF COLOPROCTOLOGY 2017; 37:063-071. [DOI: 10.1016/j.jcol.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractObjective Revision of the state of the art of the knowledge regarding pathophysiology, diagnosis and treatment of Colonic Inertia, which predominantly affects young women and has a significant socio-economic impact.Methods A search was made in “colonic inertia”, “colon inertia” and “slow transit constipation” in PubMed database for articles of the last 5 years, in Portuguese or English with available abstract and full text. 59 articles and 2013 guidelines of the American Gastroenterological Association on constipation were included.Results The pathophysiology is not completely elucidated and the reduction of the interstitial cells of Cajal is the most consistent histological finding. Diagnosis requires the exclusion of secondary causes of constipation and obstructed defecation syndrome, to which contribute several complementary diagnostic tests. Given the frequency of failure of the medical treatment, surgery is often the only possible option. Sacral nerve stimulation seems to be a promising therapeutical alternative.Conclusion A deeper investigation of the pathophysiological mechanisms is fundamental to acquire a more global and integrated vision. Rigorous patient selection for each treatment and the discovery of new therapeutical targets may avoid the use of surgical therapies.
Collapse
|
11
|
El-Salhy M, Umezawa K, Hatlebakk JG, Gilja OH. Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis. Mol Med Rep 2017; 15:2106-2112. [PMID: 28259987 PMCID: PMC5364957 DOI: 10.3892/mmr.2017.6266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine whether there is an association between abnormalities in enteroendocrine cells in dextran sulfate sodium (DSS)-induced colitis and the clonogenic and/or proliferative activities of stem cells. A total of 48 male Wistar rats were divided into four groups. Animals in the control group were provided with normal drinking water, whereas DSS colitis was induced in the remaining three groups. The rats with DSS-induced colitis were randomized into the following three groups: i) DSS group, which received 0.5 ml 0.5% carboxymethyl cellulose (CMC; vehicle); ii) DSS-G group, which was treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide at 20 mg/kg body weight in 0.5% CMC; and iii) DSS-Q group, which was treated with dehydroxymethylepoxyquinomicin at 15 mg/kg body weight in 0.5% CMC. Treatments were administered intraperitoneally twice daily for 5 days in all groups. Subsequently, tissue samples from the colon were stained with hematoxylin-eosin, or immunostained for chromogranin A (CgA), Musashi 1 (Msi1), Math-1, neurogenin 3 (Neurog3) and neurogenic differentiation D1 (NeuroD1). The densities of CgA, Msi1-, Math-1-, Neurog3- and NeuroD1-immunoreactive cells were determined. DTCM-G, and DHMEQ ameliorated the inflammation in DSS-induced colitis. The density of CgA-, Neurog3- and NeuroD1-immunoreactive cells was significantly higher in the DSS group compared with in the control group, and the density of CgA cells was correlated with the densities of Neurog3- and NeuroD1-immunoreactive cells. There were no significant differences in the densities of Msi1- and Math-1-immunoreactive cells among the four experimental groups. The elevated densities of enteroendocrine cells detected in DSS-induced colitis may be due to the increased differentiation of early enteroendocrine progenitors during secretory lineage. It is probable that the DSS-induced inflammatory processes trigger certain signaling pathways, which control differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5409 Stord, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, School of Medicine, Nagakute, Aichi 480‑1195, Japan
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
12
|
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci Rep 2017; 7:41436. [PMID: 28216670 PMCID: PMC5316981 DOI: 10.1038/srep41436] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal.
Collapse
|
13
|
Stamatopoulos K, Batchelor HK, Simmons MJ. Dissolution profile of theophylline modified release tablets, using a biorelevant Dynamic Colon Model (DCM). Eur J Pharm Biopharm 2016; 108:9-17. [DOI: 10.1016/j.ejpb.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/13/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
|
14
|
El-Salhy M, Hatlebakk JG. Changes in enteroendocrine and immune cells following colitis induction by TNBS in rats. Mol Med Rep 2016; 14:4967-4974. [PMID: 27840918 PMCID: PMC5355731 DOI: 10.3892/mmr.2016.5902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Approximately 3.6 million individuals suffer from inflammatory bowel disease (IBD) in the western world, with an annual global incidence rate of 3–20 cases/100,000 individuals. The etiology of IBD is unknown, and the currently available treatment options are not satifactory for long-term treatment. Patients with inflammatory bowel disease present with abnormalities in multiple intestinal endocrine cell types, and a number of studies have suggested that interactions between gut hormones and immune cells may serve a pivotal role in the pathophysiology of IBD. The aim of the present study was to investigate alterations in colonic endocrine cells in a rat model of IBD. A total of 30 male Wistar rats were divided into control and trinitrobenzene sulfonic acid (TNBS)-induced colitis groups. Colonoscopies were performed in the control and TNBS groups at day 3 following the induction of colitis, and colonic tissues were collected from all animals. Colonic endocrine and immune cells in the obtained tissue samples were immunostained and their densities were quantified. The densities of chromogranin A, peptide YY, and pancreatic polypeptide-producing cells were significantly lower in the TNBS group compared with the control group, whereas the densities of serotonin, oxyntomodulin, and somatostatin-producing cells were significantly higher in the TNBS group. The densities of mucosal leukocytes, B/T-lymphocytes, T-lymphocytes, B-lymphocytes, macrophages/monocytes and mast cells were significantly higher in the TNBS group compared with the controls, and these differences were strongly correlated with alterations in all endocrine cell types. In conclusion, the results suggest the presence of interactions between intestinal hormones and immune cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
15
|
El-Salhy M, Mazzawi T, Umezawa K, Gilja OH. Enteroendocrine cells, stem cells and differentiation progenitors in rats with TNBS-induced colitis. Int J Mol Med 2016; 38:1743-1751. [PMID: 27779708 PMCID: PMC5117771 DOI: 10.3892/ijmm.2016.2787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD), as well as animal models of human IBD have abnormal enteroendocrine cells. The present study aimed to identify the possible mechanisms underlying these abnormalities. For this purpose, 40 male Wistar rats were divided into 4 groups as follows: the control group, the group with trinitrobenzene sulfonic acid (TNBS)-induced colitis with no treatment (TNBS group), the group with TNBS-induced colitis treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G; an activator protein-1 inhibitor) (DTCM-G group), and the group with TNBS-induced colitis treated with dehydroxymethylepoxyquinomicin (DHMEQ; a nuclear factor-κB inhibitor) treatment (DHMEQ group). Three days following the administration of TNBS, the rats were treated as follows: those in the control and TNBS groups received 0.5 ml of the vehicle [0.5% carboxymethyl cellulose (CMC)], those in the DTCM-G group received DTCM-G at 20 mg/kg body weight in 0.5% CMC, and those in the DHMEQ group received DHMEQ at 15 mg/kg body weight in 0.5% CMC. All injections were administered intraperitoneally twice daily for 5 days. The rats were then sacrificed, and tissue samples were taken from the colon. The tissue sections were stained with hemotoxylin-eosin and immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP), somatostatin, Musashi1 (Msi1), Math1, Neurogenin3 (Neurog3) and NeuroD1. The staining was quantified using image analysis software. The densities of CgA-, PYY-, PP-, Msi1-, Neurog3- and NeuroD1-positive cells were significantly lower in the TNBS group than those in the control group, while those of serotonin-, oxyntomodulin- and somatostatin-positive cells were significantly higher in the TNBS group than those in the control group. Treatment with either DTCM-G or DHMEQ restored the densities of enteroendocrine cells, stem cells and their progenitors to normal levels. It was thus concluded that the abnormalities in enteroendocrine cells and stem cells and their differentiation progenitors may be caused by certain signaling substances produced under inflammatory processes, resulting in changes in hormone expression in enteroendocrine cells. These substances may also interfere with the colonogenic activity and the differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, 5416 Stord, Norway
| | - Tarek Mazzawi
- Division of Gastroenterology, Institute of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, School of Aichi Medical University, School of Medicine, Nagakute, 480-1195 Aichi, Japan
| | - Odd Helge Gilja
- Division of Gastroenterology, Institute of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
16
|
El-Salhy M, Umezawa K. Effects of AP‑1 and NF‑κB inhibitors on colonic endocrine cells in rats with TNBS‑induced colitis. Mol Med Rep 2016; 14:1515-22. [PMID: 27357734 PMCID: PMC4940105 DOI: 10.3892/mmr.2016.5444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Interactions between intestinal neuroendocrine peptides/amines and the immune system appear to have an important role in the pathophysiology of inflammatory bowel disease (IBD). The present study investigated the effects of activator protein (AP)‑1 and nuclear factor (NF)‑κB inhibitors on inflammation‑induced alterations in enteroendocrine cells. A total of 48 male Wistar rats were divided into the following four groups (n=12 rats/group): Control, trinitrobenzene sulfonic acid (TNBS)‑induced colitis only (TNBS group), TNBS‑induced colitis with 3‑[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM‑G) treatment (DTCM‑G group), and TNBS‑induced colitis with dehydroxymethylepoxyquinomicin (DHMEQ) treatment (DHMEQ group). A total of 3 days following administration of TNBS, the rats were treated as follows: The control and TNBS groups received 0.5 ml vehicle (0.5% carboxymethyl cellulose; CMC), respectively; the DTCM‑G group received DTCM‑G (20 mg/kg body weight) in 0.5% CMC; and the DHMEQ group received DHMEQ (15 mg/kg body weight) in 0.5% CMC. All injections were performed intraperitoneally twice daily for 5 days. The rats were sacrificed, and tissue samples obtained from the colon were examined histopathologically and immunohistochemically. Inflammation was evaluated using a scoring system. In addition, the sections were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP) and somatostatin, and immunostaining was quantified using image‑analysis software. The density of cells expressing CgA, PYY and PP was significantly lower in the TNBS group compared with in the control group, whereas the density of cells expressing serotonin, oxyntomodulin and somatostatin was significantly higher in the TNBS group compared with in the control group. None of the endocrine cell types differed significantly between the control group and either the DTCM‑G or DHMEQ groups. All of the colonic endocrine cell types were affected in rats with TNBS‑induced colitis. The expression density of these endocrine cell types was restored to control levels following treatment with AP‑1 or NF‑κB inhibitors. These results indicated that the immune system and enteroendocrine cells interact in IBD.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Helse‑Fonna Hospital, 5416 Stord, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, School of Aichi Medical University, School of Medicine, Nagakute, Aichi 480‑1195, Japan
| |
Collapse
|
17
|
Abstract
The symptom-based diagnosis of irritable bowel syndrome (IBS) has not been established in everyday clinical practice, and the diagnosis of this disorder remains one of exclusion. It has been demonstrated that the densities of duodenal chromogranin A, rectal peptide YY and somatostatin cells are good biomarkers for the diagnosis of sporadic IBS, and low-grade mucosal inflammation is a promising biomarker for the diagnosis of postinfectious IBS. Genetic markers are not useful as biomarkers for IBS since the potential risk genes have yet to be validated, and the intestinal microbiota cannot be used because of the lack of an association between a specific bacterial species and IBS. Furthermore, gastrointestinal dysmotility and visceral hypersensitivity tests produce results that are too nonconsistent and noncharacteristic to be used in the diagnosis of IBS. A combination of symptom-based assessment, exclusion of overlapping gastrointestinal diseases and positive biomarkers appears to be the best way to diagnose IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway
| |
Collapse
|
18
|
El-Salhy M, Hausken T. The role of the neuropeptide Y (NPY) family in the pathophysiology of inflammatory bowel disease (IBD). Neuropeptides 2016; 55:137-44. [PMID: 26431932 DOI: 10.1016/j.npep.2015.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) includes three main disorders: ulcerative colitis, Crohn's disease, and microscopic colitis. The etiology of IBD is unknown and the current treatments are not completely satisfactory. Interactions between the gut neurohormones and the immune system are thought to play a pivot role in inflammation, especially in IBD. These neurohormones are believed to include members of the neuropeptide YY (NPY) family, which comprises NPY, peptide YY (PYY), and pancreatic polypeptide (PP). Understanding the role of these peptides may shed light on the pathophysiology of IBD and potentially yield an effective treatment tool. Intestinal NPY, PYY, and PP are abnormal in both patients with IBD and animal models of human IBD. The abnormality in NPY appears to be primarily caused by an interaction between immune cells and the NPY neurons in the enteric nervous system; the abnormalities in PYY and PP appear to be secondary to the changes caused by the abnormalities in other gut neurohormonal peptides/amines that occur during inflammation. NPY is the member of the NPY family that can be targeted in order to decrease the inflammation present in IBD.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Section for Neuroendocrine Gastroenterology, Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Trygve Hausken
- Section for Neuroendocrine Gastroenterology, Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
19
|
Lu L, Yan G, Zhao K, Xu F. Analysis of the Chaotic Characteristics of Human Colonic Activities and Comparison of Healthy Participants to Costive Subjects. IEEE J Biomed Health Inform 2016; 20:231-9. [DOI: 10.1109/jbhi.2014.2371073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
A study of human colonic motility in healthy and constipated subjects using the wireless capsule. Comput Biol Med 2015; 65:269-78. [PMID: 26238703 DOI: 10.1016/j.compbiomed.2015.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023]
Abstract
Constipation is a common and distressing condition that has been linked to major morbidity, burdens the health care system, and impacts patients׳ quality of life. However, there is no perfect method for diagnosing and treating constipation. The purpose of this paper is to develop an automatic algorithm to identify patients with constipation from healthy subjects. Data from 12 healthy subjects and 10 patients with constipation were analyzed. The key challenges for data processing were data filtering, feature extraction, information evaluation, and providing the reference conclusion; these were resolved by employing the phase space reconstruction (PSR), independent component analysis (ICA), dynamic feature extraction algorithm, and the Wilcoxon rank sum test. The contractile frequency (Fr), motility index per unit time (MIU), average peak of peristaltic wave (Pave) and variance (Var) were extracted as dynamic parameters and analyzed. Results between groups were compared with the Wilcoxon rank sum test. There were statistically significant differences between healthy subjects and patients with constipation for Fr and MIU (P<0.05), whereas there was no statistically difference for Var. Moreover, the Fr and MIU of patients with normal transit constipation (NTC) are significantly lower compared to healthy subjects, whereas patients with slow transit constipation (STC) did not show significant differences. The proposed algorithms were able to differentiate between healthy subjects and patients with constipation based on the colonic motility profiles.
Collapse
|
21
|
Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 2014; 20:423-46. [PMID: 25273115 PMCID: PMC4204412 DOI: 10.5056/jnm14092] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation.
Collapse
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kyu Joo Park
- Department of Surgery, School of Medicine, Seoul National University, Seoul Korea
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
22
|
Lee YY, Erdogan A, Rao SSC. How to perform and assess colonic manometry and barostat study in chronic constipation. J Neurogastroenterol Motil 2014; 20:547-52. [PMID: 25230902 PMCID: PMC4204415 DOI: 10.5056/jnm14056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/13/2022] Open
Abstract
Management of chronic constipation with refractory symptoms can be challenging. Although new drugs and behavioral treatments have improved outcome, when they fail, there is little guidance on what to do next. At this juncture, typically most doctors may refer for surgical intervention although total colectomy is associated with morbidity including complications such as recurrent bacterial overgrowth. Recently, colonic manometry with sensory/tone/compliance assessment with a barostat study has been shown to be useful. Technical challenges aside, adequate preparation, and appropriate equipment and knowledge of colonic physiology are keys for a successful procedure. The test itself appears to be safe with little complications. Currently, colonic manometry is usually performed with a 6–8 solid state or water-perfused sensor probe, although high-resolution fiber-optic colonic manometry with better spatiotemporal resolutions may become available in the near future. For a test that has evolved over 3 decades, normal physiology and abnormal findings for common phenotypes of chronic constipation, especially slow transit constipation, have been well characterized only recently largely through the advent of prolonged 24-hour ambulatory colonic manometry studies. Even though the test has been largely restricted to specialized laboratories at the moment, emerging new technologies and indications may facilitate its wider use in the near future.
Collapse
Affiliation(s)
- Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, KubangKerian, Kota Bahru, Kelantan, Malaysia
| | - Askin Erdogan
- Department of Medicine, Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, Georgia, USA
| | - Satish S C Rao
- Department of Medicine, Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
23
|
Wang XY, Chen JH, Li K, Zhu YF, Wright GWJ, Huizinga JD. Discrepancies between c-Kit positive and Ano1 positive ICC-SMP in the W/Wv and wild-type mouse colon; relationships with motor patterns and calcium transients. Neurogastroenterol Motil 2014; 26:1298-310. [PMID: 25039457 DOI: 10.1111/nmo.12395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Interstitial cells of Cajal associated with the submuscular plexus (ICC-SMP) generate omnipresent slow-wave activity in the colon and are associated with prominent motor patterns. Our aim was to investigate colon motor dysfunction in W/W(v) mice in which the ICC are reportedly reduced. METHODS Whole organ colon motility was studied using spatio-temporal mapping; immunohistochemical staining was carried out for c-Kit and Ano1; calcium imaging was applied to ICC-SMP. KEY RESULTS Discrepancies between Ano1 and c-Kit staining were found in both wild-type and W/W(v) colon. ICC-SMP were reduced to ~50% in the W/W(v) mouse colon according to c-Kit immunohistochemistry, but Ano1 staining indicated a normal network of ICC-SMP. The latter was consistent with rhythmic calcium transients occurring at the submucosal border of the colon in W/W(v) mice, similar to the rhythmic transients in wild-type ICC-SMP. Furthermore, the motor pattern associated with ICC-SMP pacemaking, the so-called 'ripples' were normal in the W/W(v) colon. CONCLUSIONS & INFERENCES c-Kit is not a reliable marker for quantifying ICC-SMP in the mouse colon. Ano1 staining revealed a normal network of ICC-SMP consistent with the presence of a normal 'ripples' motor pattern. We detected a class of Ano1 positive c-Kit negative cells that do not depend on Kit expression for maintenance, a feature shared with ICC progenitors.
Collapse
Affiliation(s)
- Xuan-Yu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Rychter J, Espín F, Gallego D, Vergara P, Jiménez M, Clavé P. Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide. Therap Adv Gastroenterol 2014; 7:156-66. [PMID: 25057296 PMCID: PMC4107708 DOI: 10.1177/1756283x14525250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Otilonium bromide (OB) is a spasmolytic compound of the family of quaternary ammonium derivatives and has been successfully used in the treatment of patients with irritable bowel syndrome (IBS) due to its specific pharmacodynamic effects on motility patterns in the human colon and the contractility of colonic smooth muscle cells. This article examines how. OB inhibits the main patterns of human sigmoid motility in vitro, which are spontaneous rhythmic phasic contractions, smooth muscle tone, contractions induced by stimulation of excitatory motor neurons and contractions induced by direct effect of excitatory neurotransmitters. It does this mainly by blocking calcium influx through L-type calcium channels and interfering with mobilization of cellular calcium required for smooth muscle contraction, thereby limiting excessive intestinal contractility and abdominal cramping. OB also inhibits T-type calcium channels and muscarinic responses. Finally, OB inhibits tachykinin receptors on smooth muscle and primary afferent neurons which may have the joint effect of reducing motility and abdominal pain. All these mechanisms mediate the therapeutic effects of OB in patients with IBS and might be useful in patients with other spastic colonic motility disorders such as diverticular disease.
Collapse
Affiliation(s)
- Jakub Rychter
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Francisco Espín
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain,Department of Surgery, Hospital de Mataró, Mataró, Spain
| | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Patri Vergara
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcel Jiménez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Clavé
- Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, C/ Cirera s/n, Mataró, Barcelona 08304, Spain
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To critically evaluate recent advances in the anatomy and physiology of colorectal motility and sensation and to discuss their potential clinical implications. RECENT FINDINGS Relatively noninvasive methods for the assessment of colonic transit have been developed and validated and high-resolution colonic and anorectal manometry as well as the barostat, despite their technical challenges, are beginning to show promise in clinical practice. At a more basic level, the importance of interstitial cells of Cajal as pacemakers, neuromodulators and stretch receptors has been revealed and their dysfunction associated with a number of disease states. Although the impact of a variety of biologically active agents on colonic sensorineural function in vitro has been described, the clinical implications of most of these effects remain unknown at this time. As the molecular bases of colonic motor and sensory function are identified, new disease entities are being described and novel therapeutic targets revealed. Equally important is the growing recognition of luminal factors and of the colonic microbiota, in particular, in the generation and modulation of colonic motility and sensation. SUMMARY The complexities of the basic physiology of colorectal motility and sensation continue to be revealed and our understanding of their regulation has progressed; clinical implications remain at a preliminary stage. Progress has been made, however, in the clinical assessment of colonic motor function.
Collapse
|