1
|
Chung KS, Heo SW, Lee JH, Han HS, Kim GH, Kim YR, Kim MS, Hong JE, Rhee KJ, Lee KT. Protective potential of nodakenin in high-fat diet-mediated colitis-associated cancer: Inhibition of STAT3 activation and Wnt/β-catenin pathway, and gut microbiota modulation. Int Immunopharmacol 2025; 157:114734. [PMID: 40318275 DOI: 10.1016/j.intimp.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
A high-fat diet (HFD) exerts complex effects on the risk of colitis-associated cancer (CAC). Nodakenin, a key phytochemical isolated from the dried roots of Angelicae gigas Nakai (Umbelliferae), possesses anti-inflammatory and anti-adipogenic properties and shows potential as a therapeutic agent for colorectal cancer (CRC). In this study, we investigated the protective effects and underlying molecular mechanisms of nodakenin in an animal model of CRC induced by HFD, azoxymethane (AOM), and dextran sodium sulfate (DSS). Oral administration of nodakenin significantly alleviated clinical symptoms, such as recovery of weight, spleen weight, and colon length, and suppressed tumor progression in the colonic tissues of HFD/AOM/DSS-induced CRC mice. Nodakenin inhibited the activation of STAT3-related inflammatory mediators and downregulated proteins involved in the Wnt/β-catenin signaling pathway. These effects contributed to the disruption of epithelial-mesenchymal transition (EMT) and the restoration of tight junction integrity within the colonic tissue. Furthermore, nodakenin treatment improved the composition of the gut microbiota, leading to observable species-level differences. Network analysis revealed significant correlations between clinical parameters, inflammatory markers, EMT and apoptotic factors, and the composition of the gut microbiota. Specifically, negative correlations were observed between spleen weight and Alistipes, as well as between MCP-1 and Clostridium_g21. Positive correlations with spleen weight were observed with species belonging to Anaerotruncus, Emergencia, and Parvibacter. Bacteroidaceae_uc and Bacteroides correlated positively with MCP-1, Streptococcus correlated positively with PUMA, and Harryflintia, Odoribacteraceae_uc, and Roseburia correlated positively with cleaved caspase-3. Overall, our findings suggested that nodakenin effectively alleviates HFD/AOM/DSS-induced CRC by targeting inflammatory pathways (STAT3 and Wnt/β-catenin), suppressing EMT, and restoring gut microbiota balance. These multiple mechanisms underscore its potential as a promising agent for the prevention and treatment of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Hui Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye-Rin Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Su Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Lv Y, Mao W, Jin H, Qu J, He D. Associations of human exposure to 6PPD and 6PPDQ with colorectal cancer: A mixture analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126114. [PMID: 40139299 DOI: 10.1016/j.envpol.2025.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidation product, 6PPD-quinone (6PPDQ), are widely present in the environment. Toxicological studies have demonstrated that they can induce adverse health effects on the intestinal system. However, epidemiological studies examining the association between human 6PPD and 6PPDQ exposure and colorectal cancer (CRC) risk remain scarce. In this study, human urinary 6PPD and 6PPDQ concentrations were analyzed in 329 controls and 367 CRC cases from Quzhou, China. A combination of analyses, including unconditional logistic regression, Bayesian kernel machine regression (BKMR), and restricted cubic spline analysis, was employed to evaluate associations between urinary 6PPD and 6PPDQ levels and CRC risk, adjusting for demographic and lifestyle variables. The median concentration of 6PPDQ in CRC cases (0.94 vs 0.14 μg/g creatinine) was significantly higher than that in controls (Mann-Whitney U test, p = 0.001), while the median concentration of 6PPD showed no significant (p = 0.061) difference between the two groups (0.31 vs 0.38 μg/g creatinine). Higher urinary 6PPDQ concentrations were significantly associated with increased CRC risk, especially among participants with third (adjusted OR = 2.79, 95 % CI: 1.76-4.47; p for trend <0.001) and fourth (adjusted OR = 7.13, 95 % CI: 4.31-12.0; p for trend <0.001) quartiles of exposure. Additionally, the joint effects of 6PPD and 6PPDQ exposure, assessed using the BKMR model, indicated a positive association with CRC risk, suggesting a cumulative risk from co-exposure. This study provides the first epidemiological evidence linking human 6PPDQ exposure to CRC risk, highlighting its potential role in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Yangbo Lv
- Department of Colorectal Surgery, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jianli Qu
- College of Environmental Science and Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, 310018, PR China.
| | - Dongjuan He
- Department of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
3
|
Swain J, Preeti, Mohanty C, Bajoria AA, Patnaik S, Ward Gahlawat A, Nikhil K, Mohapatra SR. Deciphering the metabolic landscape of colorectal cancer through the lens of AhR-mediated intestinal inflammation. Discov Oncol 2025; 16:275. [PMID: 40053174 DOI: 10.1007/s12672-025-01949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer worldwide, with its incidence steadily increasing due to an aging demographic and various lifestyle-related risk factors, including poor nutrition, tobacco use, sedentary behaviour and obesity. These factors promote the risk of colorectal cancer by inducing chronic colonic inflammation, a principal catalyst of carcinogenesis. This review delves into evidence that suggests that metabolic abnormalities mediated through inflammatory responses are fundamental in the progression of CRC. This dysregulation of essential metabolic pathways in colorectal cancer, facilitates tumor proliferation, immune evasion, and metastasis. Additionally, this review explores how inflammatory mediators, and dietary carcinogens induce metabolic alterations, fostering a pro-tumorigenic milieu. Special focus is placed on the aryl hydrocarbon receptor (AhR) as a pivotal metabolic regulator that links inflammation and tumor metabolism, elucidating its function in the reconfiguration of cellular energetics and the inflammatory microenvironment. Furthermore, this review also focuses on clarifying the relationship between inflammation, metabolic dysregulation, and the progression of CRC, so as to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jasmine Swain
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Preeti
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Chandana Mohanty
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Atul Anand Bajoria
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aoife Ward Gahlawat
- German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Kumar Nikhil
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Soumya R Mohapatra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
4
|
Li Y, Luo Y, Ran Y, Lu F, Qin Y. Biomarkers of inflammation and colorectal cancer risk. Front Oncol 2025; 15:1514009. [PMID: 39980561 PMCID: PMC11839431 DOI: 10.3389/fonc.2025.1514009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Globally, colorectal malignancy ranks among the most prevalent forms of cancer and stands as the third principal cause of cancer-associated mortality. Recent studies indicate that inflammatory processes play a significant role in the initiation and advancement of various malignancies, colorectal cancer included. It explores inflammatory biomarkers, with C-reactive protein (CRP) being a key focus. While CRP's elevation during inflammation is linked to tumorigenesis, studies on its association with CRC risk are inconsistent, showing gender and methodological differences. Interleukin-6 (IL-6), TNF - α, and their receptors also play roles in CRC development, yet research findings vary. Adiponectin and leptin, secreted by adipocytes, have complex associations with CRC, with gender disparities noted. In terms of screening, non-invasive methods like fecal occult blood tests (FOBTs) are widely used, and combining biomarkers with iFOBT shows potential. Multi-omics techniques, including genomics and microbiomics, offer new avenues for CRC diagnosis. Overall, while evidence highlights the significance of inflammatory biomarkers in CRC risk prediction, larger prospective studies are urgently needed to clarify their roles due to existing inconsistencies and methodological limitations.
Collapse
Affiliation(s)
- Yuting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yuexin Luo
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Ran
- Second Clinic School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li Y, Duan Y, Li Y, Gu Y, Zhou L, Xiao Z, Yu X, Cai Y, Cheng E, Liu Q, Jiang Y, Yang Q, Zhang F, Lei Q, Yang B. Cascade loop of ferroptosis induction and immunotherapy based on metal-phenolic networks for combined therapy of colorectal cancer. EXPLORATION (BEIJING, CHINA) 2025; 5:20230117. [PMID: 40040829 PMCID: PMC11875444 DOI: 10.1002/exp.20230117] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/07/2024] [Indexed: 03/06/2025]
Abstract
Cancer immunotherapy is the most promising method for tumor therapy, while ferroptosis could activate the immunogenicity of cancer and strengthen the cellular immune response. However, limited by the complex tumor microenvironment, the abundant glutathione (GSH) and low reactive oxygen species (ROS) seriously weaken ferroptosis and the immune response. Herein, the authors report photothermal metal-phenolic networks (MPNs) supplied with buthionine sulfoximine (BSO) by reducing levels of GSH and then trapping the tumor cells in the ferroptosis and immunotherapy cascade loop to eliminate colorectal cancer (CRC). The MPNs coated with the model antigen ovalbumin can accumulate at the tumor site, mediate immunogenic cell death (ICD) under NIR irradiation, and initiate tumoricidal immunity. Then the activated CD8+ T cells would release IFN-γ to inhibit GPX4 and promote the immunogenic ferroptosis induced by Fe3+ and BSO. Finally, the tumor cells at intertumoral and intratumoral levels would be involved in the ferroptosis-dominated cancer-immunity circle for CRC eradication, resulting in outstanding therapeutic outcomes in both primary and distant tumor models. Overall, this strategy employs a photothermal nanoplatform to rapidly stimulate ICD and restrain the oxidation defense system, which provides a promising approach to significantly amplify the "cascade loop" of ferroptosis induction and immunotherapy for treatment of CRC.
Collapse
Affiliation(s)
- Yuwei Li
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yuxi Duan
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yunyi Li
- Department of NephrologyFirst Affiliated Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Yuan Gu
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Lu Zhou
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zhongting Xiao
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Xinying Yu
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yanjun Cai
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Erzhuo Cheng
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Qianqian Liu
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Yong Jiang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Quan Yang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Feng Zhang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Qi Lei
- Provincial Key Laboratory of Allergy and Clinical ImmunologyThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Bin Yang
- School of Biomedical EngineeringThe Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
6
|
Wang M, Wang X. Chemoprotective Potential of Cyanidin-3-Glucoside Against 1,2-Dimethylhydrazine-Induced Colorectal Cancer: Modulation of NF-κB and Bcl-2/Bax/Caspase Pathway. J Biochem Mol Toxicol 2025; 39:e70125. [PMID: 39843995 DOI: 10.1002/jbt.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH). Rats were stratified into groups and administered C3G at doses of 10 and 15 mg/kg following DMH exposure to initiate CRC. Key parameters, including organ weights, tumor burdens, and biochemical markers, were meticulously assessed. Administration of C3G significantly restored body weight while reducing the weights of colon and spleen tissues. Moreover, C3G treatment substantially suppressed tumor incidence and weight in DMH-induced CRC rats. Biochemical analysis revealed that C3G markedly reduced levels of CFA, CA19.9, LDH, and nitric oxide (NO). It also modulated lipid profiles, antioxidant activities, and the expression of both Phase I and II enzymes. Inflammatory mediators, including TNF-α, IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-17, were significantly downregulated. Notably, C3G inhibited inflammatory markers such as COX-2, PGE2, iNOS, and NF-κB while promoting Caspase-3, -6, and -9 activity. Furthermore, it regulated the Bax/Bcl-2 apoptotic axis, reducing the Bcl-2/Bax ratio. Cyanidin-3-glucoside demonstrated potent chemopreventive effects against colorectal cancer in this experimental model. Its mechanism of action is likely mediated through modulation of NF-κB and the Bcl-2/Bax/Caspase pathway, suggesting its potential as a therapeutic agent in CRC management.
Collapse
Affiliation(s)
- Miao Wang
- Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China
| | - Xiaoyong Wang
- Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China
| |
Collapse
|
7
|
Ottaviano KE, Subbaram S, Wu L, Stahl K, Mastrangelo AJ, Lee H, DiPersio CM. Integrin α3β1 Is Not Required for Onset of Dysplasia in Genetic Model of Colon Cancer but Promotes Motility of Colon Cancer Cells. Cancers (Basel) 2025; 17:371. [PMID: 39941740 PMCID: PMC11815772 DOI: 10.3390/cancers17030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The progression of colorectal cancer through clinically and histopathologically well-defined stages is driven by specific mutations that activate oncogenes or inactivate tumor-suppressor genes. In addition, pre-cancerous/cancer cells respond to cues from the tissue microenvironment that support tumorigenesis and progression, many of which are transmitted through integrin receptors for the extracellular matrix. Integrin α3β1 has pro-tumorigenic/pro-metastatic roles in many cancers, but it also has suppressive roles in some cancers or at specific stages of progression, indicating that its potential value as a therapeutic target cannot be extrapolated across cancer types or stages. In this study, we investigated roles for α3β1 in colorectal cancer using cellular and genetic models that represent different stages. METHODS We generated mice with colon-specific α3 knockout in a tamoxifen-inducible model of KRAS-mutated colorectal cancer to assess the effects of α3β1 ablation on early dysplasia. We also used siRNA to suppress α3β1 in human colorectal cancer cells, then assessed effects on motility and invasion in vitro. RESULTS Genetic deletion of α3β1 in the colon did not alter dysplasia in mice predisposed to KRAS-mutated colorectal cancer, and it was accompanied by an increase in the colocalization of α6 integrin with laminin-332 (a matrix ligand for both integrins), suggesting functional compensation. However, suppression of α3β1 caused an approximately 40% to 60% reduction in the motility/invasion of human colorectal cancer cells. CONCLUSIONS Our findings that α3β1 is not required for pre-cancerous dysplasia but promotes colorectal cancer cell motility/invasion indicate an important role for pro-migratory functions of this integrin at later stages of progression when cells invade from the primary tumor, suggesting that strategies to target α3β1 in colorectal cancer should be aimed at distinct stages of disease progression.
Collapse
Affiliation(s)
- Kathryn E. Ottaviano
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; (K.E.O.); (S.S.); (L.W.)
| | - Sita Subbaram
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; (K.E.O.); (S.S.); (L.W.)
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (K.S.); (A.J.M.)
- Department of Biology, Union College, Schenectady, NY 12308, USA
| | - Lei Wu
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; (K.E.O.); (S.S.); (L.W.)
| | - Kiley Stahl
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (K.S.); (A.J.M.)
| | - Antoinette J. Mastrangelo
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (K.S.); (A.J.M.)
| | - Hwajeong Lee
- Department of Pathology, Albany Medical College, Albany, NY 12208, USA;
| | - C. Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; (K.E.O.); (S.S.); (L.W.)
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (K.S.); (A.J.M.)
| |
Collapse
|
8
|
Paulsen EM, Braaten TB, Urbarova I, Brustad M. Pre-diagnostic 25-hydroxyvitamin D levels and subsite-specific colorectal cancer risk: a nested case-control study from the Norwegian Women and Cancer Study (NOWAC). Br J Nutr 2025; 133:1-9. [PMID: 39749802 PMCID: PMC11946035 DOI: 10.1017/s0007114524003350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/14/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Colorectal cancer (CRC), the third most common cancer globally, causes over 900 000 deaths annually. Although vitamin D is observed to have potential anti-carcinogenic properties, research findings on its preventable effect against CRC remain inconclusive. Notably, different subsites within the colon and rectum may be associated with distinct risk factors. While some studies have explored this relationship with circulating 25-hydroxyvitamin D (25(OH)D), the results remain contradictory. Our study employed a nested case-control design, involving 775 CRC cases matched with 775 cancer-free controls based on age, region of living and the time of blood sampling. The study was conducted within the Norwegian Women and Cancer post-genome cohort, which comprises approximately 50 000 women. We measured pre-diagnostic circulating plasma 25(OH)D status 5-13 years before diagnosis. Adjustment variables were based on self-administered questionnaires and included BMI, physical activity level, smoking, intake of processed meat, calcium, alcohol and fibre. An increase of 5 nmol/l in 25(OH)D reduced the risk of proximal colon cancer by 6 % (OR = 0·94, 95 % CI 0·89, 0·99). Furthermore, a sensitivity analysis revealed a 62 % increased risk among the women with 25(OH)D levels below 50 nmol/l compared with sufficient levels, ≥ 50 to < 75 nmol/l (OR = 1·62, 95 % CI 1·01, 2·61). No association was found with CRC, colon or distal colon cancer. We observed a subsite-specific association between 25(OH)D and CRC, highlighting the need for further investigation to elucidate the potential underlying mechanisms and clinical implications.
Collapse
Affiliation(s)
- Elise Marlen Paulsen
- Department of Community Medicine, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Tonje Bjørndal Braaten
- Department of Community Medicine, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Community Medicine, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Magritt Brustad
- Department of Community Medicine, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
| |
Collapse
|
9
|
Zheng J, Liu S, Yang J, Zheng S, Sun B. Per- and polyfluoroalkyl substances (PFAS) and cancer: Detection methodologies, epidemiological insights, potential carcinogenic mechanisms, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176158. [PMID: 39255941 DOI: 10.1016/j.scitotenv.2024.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals," are synthetic chemicals which have been used since the 1940s. Given their remarkable thermostability and chemical stability, PFAS have been widely utilized in commercial products, including textiles, surfactants, food packages, nonstick coatings, and fire-fighting foams. Thus, PFAS are widely distributed worldwide and have been detected in human urine, blood, breast milk, tissues and other substances. Growing concerns over the risks of PFAS, including their toxicity and carcinogenicity, have attracted people's attention. Recent reviews have predominantly emphasized advancements in the detection, adsorption, and degradation of PFAS through their chemical structures and toxic properties; however, further examination of the literature is needed to determine the link between PFAS exposure and cancer risk. Here, we introduced different PFAS detection methods based on sensors and liquid chromatography-mass spectrometry (LC-MS). Then, we discussed epidemiological investigations on PFAS levels and cancer risks in recent years, as well as the mechanisms underlying the carcinogenesis. Finally, we proposed the "4C principles" for ongoing exploration and refinement in this field. This review highlights PFAS-cancer associations to fill knowledge gaps and provide evidence-based strategies for future research.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sheng Liu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Junjie Yang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Ranjbar Zahedani M, Kazemi I, Kohanmoo A, Shateri Z, Rajabpour MM, Nouri M, Rashidkhani B. The association between non- and pro-healthy diet indices and the risk of colorectal cancer: a case-control study. BMC Gastroenterol 2024; 24:419. [PMID: 39574017 PMCID: PMC11580484 DOI: 10.1186/s12876-024-03520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Non-Healthy Diet Index (NHDI) and the Pro-Healthy Diet Index (PHDI) are two novel indices that evaluate the healthiness of a diet based on the consumption of several food groups. This study aimed to evaluate the association between adherence to the PHDI and NHDI and colorectal cancer (CRC) risk in the Iranian population. METHODS The current study was conducted as a hospital-based research using a case (n = 71)- matched-controls (n = 142) design in Tehran, Iran. A semi-quantitative food frequency questionnaire was utilized to determine participants' dietary intake after confirming the diagnosis of CRC and at the time of the interview. The PHDI-10 was employed to assess the consumption of foods with positive health effects, which is linked to the frequency of consuming 10 food groups, and the NHDI-14 was used to assess the consumption of foods that have detrimental effects on health, based on the frequency of 14 food groups. Logistic regression was used to evaluate the association between continuous PHDI and NHDI scores and their tertiles with CRC. RESULTS The results indicated that individuals in the highest tertile of the PHDI showed a lower CRC risk compared to those in the lowest tertile (adjusted model- odds ratio (OR) = 0.25; 95% confidence interval (CI): 0.10-0.61; P = 0.002). Also, lower odds of CRC risk were seen with each unit change in the total score of PHDI in the adjusted model (OR = 0.86; 95% CI: 0.76-0.96; P = 0.009). In contrast, individuals in the highest tertile of the NHDI showed a higher risk of CRC compared to those in the lowest tertile (OR = 2.62; 95% CI: 1.09-6.27; P = 0.030) in the adjusted model. Also, higher odds of CRC risk were observed with each unit increase in the total score of NHDI in the adjusted model (OR = 1.13; 95% CI: 1.03-1.25; P = 0.008). CONCLUSIONS The present study showed that higher adherence to PHDI and NHDI is associated with lower and higher CRC risk, respectively. These results provide valuable insights into the roles of healthy and unhealthy diets in CRC prevention.
Collapse
Affiliation(s)
- Maryam Ranjbar Zahedani
- Department of Nutrition Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Iman Kazemi
- Department of Internal Medicine, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Mahdi Rajabpour
- Department of Internal Medicine, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehran Nouri
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Bonfitto PHL, Rodrigues BAG, Siqueira NSN, Genaro LM, Rodrigues BL, Oliveira PDSP, Martinez CAR, Ayrizono MDLS, Leal RF. Involvement of platelet signaling pathways in colorectal cancer and new therapeutic targets. Am J Cancer Res 2024; 14:5133-5153. [PMID: 39659922 PMCID: PMC11626285 DOI: 10.62347/pjnu8987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most widespread tumor types, and it stands as the second leading cause of disease-related mortality globally. Due to its adverse effects, which lead to low patient adherence, new alternatives to conventional chemotherapy and radiotherapy treatments are being studied. Since, in most cases, platelets are positively involved in the persistence and progression of CRC, several elements of the platelet signaling pathway have been considered possible therapeutic targets. The present study assembles the main treatments for CRC and investigates the cellular mechanisms involved in the interaction between blood platelets and cancer cells. Additionally, this review cites other articles that propose possible therapeutic targets in the platelet activation pathways to be explored. Despite the reported benefits of antithrombotic therapy on CRC progression, some studies have warned about an increased bleeding risk and CRC incidence and highlight the importance of controlling this therapy through diagnostic tests. However, their high cost is still a significant obstacle to the population's access from low Human Development Index (HDI) countries. Many research groups have studied platelet signaling pathways in depth to develop a safer, more effective, and affordable therapy for the population.
Collapse
Affiliation(s)
- Pedro Henrique Leite Bonfitto
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Beatriz Alves Guerra Rodrigues
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Natalia Souza Nunes Siqueira
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Livia Moreira Genaro
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Bruno Lima Rodrigues
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Priscilla de Sene Portel Oliveira
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Carlos Augusto Real Martinez
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp) Campinas 13083-878, São Paulo, Brazil
| |
Collapse
|
12
|
Sadafi S, Amirifard N, Aleagha OE, Mirbahari SG, Sadeghi M. A Meta-Analysis of Association Between Interleukin Polymorphisms (rs4073, rs1800925, rs1179251, rs1179246, rs2227485, rs17855750, and rs153109) and Colorectal Cancer Risk. Biochem Genet 2024:10.1007/s10528-024-10969-1. [PMID: 39548028 DOI: 10.1007/s10528-024-10969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Interleukins (ILs) play a significant role in triggering the inflammatory response in blood vessels and immune cells. A systematic review and meta-analysis were conducted to investigate the relationship between IL-8 (rs4073), IL-13 (rs1800925), IL-22 (rs1179251, rs1179246, and rs2227485), and IL-27 (rs17855750 and rs153109) polymorphisms and the risk of developing colorectal cancer (CRC). Four databases were searched up until October 13, 2023, without any restrictions, to find relevant studies. The association was evaluated using crude odds ratios (ORs) and 95% confidence intervals in five genetic models. A total of twenty-three articles were entered into the meta-analysis. The pooled ORs (p-values) for the IL-8 (rs4073) polymorphism were 0.98 (0.63), 0.93 (0.44), 0.89 (0.13), 0.94 (0.38), and 0.99 (0.90) for studies following HWE without heterogeneity, and for all studies with high heterogeneity were 1.03 (0.69), 1.30 (0.07), 1.04 (0.71), 1.12 (0.20), and 1.23 (0.06). For the IL-13 (rs1800925) polymorphism, the pooled ORs were 1.44 (0.06), 2.58 (0.0004), 1.72 (0.16), 1.82 (0.09), and 2.37 (0.001) in AHHDR models, respectively. The pooled ORs of IL-22 (rs1179251) polymorphism for AHHDR models were 0.97 (0.92), 0.92 (0.90), 0.98 (p = 0.95), 1.08 (0.87), and 0.96 (0.82), respectively. The pooled ORs of IL-22 (rs1179246) polymorphism for AHHDR models were 0.98 (0.67), 0.97 (0.80), 0.92 (0.36), 0.93 (0.42), and 1.02 (0.84), respectively. The pooled ORs of IL-22 (rs2227485) polymorphism for AHHDR models were 1.47 (0.02), 2.03 (0.02), 1.28 (0.29), 1.52 (0.06), and 1.70 (0.04), respectively. The pooled ORs of IL-27 (rs17855750) polymorphism for AHHDR models were 0.53 (0.46), 0.19 (0.28), 1.10 (0.60), 0.55 (0.58), and 0.27 (p = 0.05), respectively. The pooled ORs of IL-27 (rs153109) polymorphism for AHHDR models were 1.28 (0.007), 1.45 (0.002), 1.40 (0.0002), 1.41 (< 0.0001), and 1.20 (0.09), respectively. The results reported that just the TT genotype of IL-13 (rs1800925), the T allele and TT genotype of IL-22 (rs2227485), and the G allele and GG, AG and GG + AG genotypes of IL-27 (rs153109) polymorphisms had an elevated risk in CRC patients.
Collapse
Affiliation(s)
- Sepehr Sadafi
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Amirifard
- Department of Internal Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Emami Aleagha
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Ghasem Mirbahari
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Jam Private Medical Laboratory, Kermanshah, Iran.
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Salesse L, Duval A, Sauvanet P, Da Silva A, Barnich N, Godfraind C, Dalmasso G, Nguyen HTT. ATG16L1 in myeloid cells limits colorectal tumor growth in ApcMin/+ mice infected with colibactin-producing Escherichia coli via decreasing inflammasome activation. Autophagy 2024; 20:2186-2204. [PMID: 38818900 PMCID: PMC11423662 DOI: 10.1080/15548627.2024.2359770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Escherichia coli strains producing the genotoxin colibactin, designated as CoPEC (colibactin-producing E. coli), have emerged as an important player in the etiology of colorectal cancer (CRC). Here, we investigated the role of macroautophagy/autophagy in myeloid cells, an important component of the tumor microenvironment, in the tumorigenesis of a susceptible mouse model infected with CoPEC. For that, a preclinical mouse model of CRC, the ApcMin/+ mice, with Atg16l1 deficiency specifically in myeloid cells (ApcMin/+/Atg16l1[∆MC]) and the corresponding control mice (ApcMin/+), were infected with a clinical CoPEC strain 11G5 or its isogenic mutant 11G5∆clbQ that does not produce colibactin. We showed that myeloid cell-specific Atg16l1 deficiency led to an increase in the volume of colonic tumors in ApcMin/+ mice under infection with 11G5, but not with 11G5∆clbQ. This was accompanied by increased colonocyte proliferation, enhanced inflammasome activation and IL1B/IL-1β secretion, increased neutrophil number and decreased total T cell and cytotoxic CD8+ T cell numbers in the colonic mucosa and tumors. In bone marrow-derived macrophages (BMDMs), compared to uninfected and 11G5∆clbQ-infected conditions, 11G5 infection increased inflammasome activation and IL1B secretion, and this was further enhanced by autophagy deficiency. These data indicate that ATG16L1 in myeloid cells was necessary to inhibit colonic tumor growth in CoPEC-infected ApcMin/+ mice via inhibiting colibactin-induced inflammasome activation and modulating immune cell response in the tumor microenvironment. Abbreviation: AOM, azoxymethane; APC, APC regulator of WNT signaling pathway; ATG, autophagy related; Atg16l1[∆MC] mice, mice deficient for Atg16l1 specifically in myeloid cells; CASP1, caspase 1; BMDM, bone marrow-derived macrophage; CFU, colony-forming unit; CoPEC, colibactin-producing Escherichia coli; CRC, colorectal cancer; CXCL1/KC, C-X-C motif chemokine ligand 1; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; MC, myeloid cell; MOI, multiplicity of infection; PBS, phosphate-buffered saline; pks, polyketide synthase; qRT-PCR, quantitative real-time reverse-transcription polymerase chain reaction; siRNA, small interfering RNA; TME, tumor microenvironment; TNF/TNF-α, tumor necrosis factor.
Collapse
Affiliation(s)
- Laurène Salesse
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Angéline Duval
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Pierre Sauvanet
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
- Department of Digestive and Hepatobiliary Surgery, CHU, Clermont-Ferrand, France
| | - Alison Da Silva
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Catherine Godfraind
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
- Department of Pathology, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| |
Collapse
|
14
|
Zeng X, Tang J, Zhang Q, Wang C, Qi J, Wei Y, Xu J, Yang K, Zhou Z, Wu H, Luo J, Jiang Y, Song Z, Wu J, Wu J. CircHIPK2 Contributes Cell Growth in Intestinal Epithelial of Colitis and Colorectal Cancer through Promoting TAZ Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401588. [PMID: 38981023 PMCID: PMC11425914 DOI: 10.1002/advs.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are escalating global health concerns. Despite their distinct clinical presentations, both disorders share intricate genetic and molecular interactions. The Hippo signaling pathway plays a crucial role in regulating cell processes and is implicated in the pathogenesis of IBD and CRC. Circular RNAs (circRNAs) have gained attention for their roles in various diseases, including IBD and CRC. However, a comprehensive understanding of specific circRNAs involved in both IBD and CRC, and their functional roles is lacking. Here, it is found that circHIPK2 (hsa_circRNA_104507) is a bona fide circRNA consistently upregulated in both IBD and CRC suggesting its potential as a biomarker. Furthermore, silencing of circHIPK2 suppressed the growth of CRC cells in vitro and in vivo. Interestingly, decreased circHipk2 potentiated dextran sulfate sodium (DSS)-induced colitis but alleviated colitis-associated tumorigenesis. Most significantly, mechanistic investigations further unveil that circHIPK2, mediated by FUS, interacting with EIF4A3 to promote the translation of TAZ, ultimately increasing the transcription of downstream target genes CCN1 and CCN2. Taken together, circHIPK2 emerges as a key player in the shared mechanisms of IBD and CRC, modulating the Hippo signaling pathway. CircHIPK2-EIF4A3 axis contributes to cell growth in intestinal epithelial of colitis and CRC by enhancing TAZ translation.
Collapse
Affiliation(s)
- Xixi Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Zhejiang, 324000, China
| | - Jielin Tang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Qian Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Chenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Ji Qi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yusi Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiali Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Kaiyuan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Zuolin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Hao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiarong Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jinyu Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315302, China
| |
Collapse
|
15
|
Olivo-Martínez Y, Martínez-Ruiz S, Cordero C, Badia J, Baldoma L. Extracellular Vesicles of the Probiotic Escherichia coli Nissle 1917 Reduce PepT1 Levels in IL-1β-Treated Caco-2 Cells via Upregulation of miR-193a-3p. Nutrients 2024; 16:2719. [PMID: 39203856 PMCID: PMC11356789 DOI: 10.3390/nu16162719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
PepT1, a proton-coupled oligopeptide transporter, is crucial for intestinal homeostasis. It is mainly expressed in small intestine enterocytes, facilitating the absorption of di/tri-peptides from dietary proteins. In the colon, PepT1 expression is minimal to prevent excessive responses to proinflammatory peptides from the gut microbiota. However, increased colonic PepT1 is linked to chronic inflammatory diseases and colitis-associated cancer. Despite promising results from animal studies on the benefits of extracellular vesicles (EVs) from beneficial gut commensals in treating IBD, applying probiotic EVs as a postbiotic strategy in humans requires a thorough understanding of their mechanisms. Here, we investigate the potential of EVs of the probiotic Nissle 1917 (EcN) and the commensal EcoR12 in preventing altered PepT1 expression under inflammatory conditions, using an interleukin (IL)-1-induced inflammation model in Caco-2 cells. The effects are evaluated by analyzing the expression of PepT1 (mRNA and protein) and miR-193a-3p and miR-92b, which regulate, respectively, PepT1 mRNA translation and degradation. The influence of microbiota EVs on PepT1 expression is also analyzed in the presence of bacterial peptides that are natural substrates of colonic PepT1 to clarify how the regulatory mechanisms function under both physiological and pathological conditions. The main finding is that EcN EVs significantly decreases PepT1 protein via upregulation of miR-193a-3p. Importantly, this regulatory effect is strain-specific and only activates in cells exposed to IL-1β, suggesting that EcN EVs does not control PepT1 expression under basal conditions but can play a pivotal role in response to inflammation as a stressor. By this mechanism, EcN EVs may reduce inflammation in response to microbiota in chronic intestinal disorders by limiting the uptake of bacterial proinflammatory peptides.
Collapse
Affiliation(s)
- Yenifer Olivo-Martínez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena 130015, Colombia
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
16
|
Nguyen Duy T, Le Huy H, Đao Thanh Q, Ngo Thi H, Ngo Thi Minh H, Nguyen Dang M, Le Huu S, Ngo Tat T. Association between Bacteroides fragilis and Fusobacterium nucleatum infection and colorectal cancer in Vietnamese patients. Anaerobe 2024; 88:102880. [PMID: 38942229 DOI: 10.1016/j.anaerobe.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant global health concern, and understanding the role of specific bacterial infections in its development and progression is of increasing interest. This cross-sectional study investigated the associations between Bacteroides fragilis (B. fragilis) and Fusobacterium nucleatum (F. nucleatum) infections and Vietnamese CRC patients. METHODS 192 patients with either polyps or CRC at varying stages were recruited from May 2017 to December 2020. Real-time PCR assessed infection rates and bacterial loads in CRC tissues. RESULTS B. fragilis infection was notably higher in CRC tissues (51.6 %) than polyps (9.4 %), with a fivefold higher relative load. Positive associations were found in stages II and III, indicating a fivefold increase in CRC progression risk. F. nucleatum infection rates were significantly higher in CRC tissues (55.2 %) than in polyps (10.5 %). In stage II, the infection rate exceeded that in adjacent tissues. The relative load of F. nucleatum was higher in stage III than in stages I and II. Positive F. nucleatum patients had a 3.2 times higher risk of CRC progression. CONCLUSION These findings suggest associations between loading of F. nucleatum or/and B. fragilis with the advanced stages of CRC.
Collapse
Affiliation(s)
- Truong Nguyen Duy
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Hoang Le Huy
- Department of Bacteriology, National of Hygiene and Epidemiology, Hanoi, 10000, Viet Nam
| | - Quyen Đao Thanh
- Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam
| | - Hoai Ngo Thi
- Department of Gastroenterological Intensive Care, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Hanh Ngo Thi Minh
- Department of Pathology, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Manh Nguyen Dang
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Song Le Huu
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam; Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam.
| | - Trung Ngo Tat
- Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam; Centre for Genetics Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, 100000, Viet Nam.
| |
Collapse
|
17
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
18
|
Biondi A, Vacante M, Catania R, Sangiorgio G. Extracellular Vesicles and Immune System Function: Exploring Novel Approaches to Colorectal Cancer Immunotherapy. Biomedicines 2024; 12:1473. [PMID: 39062046 PMCID: PMC11275211 DOI: 10.3390/biomedicines12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the emerging role of extracellular vesicles (EVs) in modulating immune system function and their application in novel cancer immunotherapy strategies, with a focus on colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis, types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive analysis underscores the transformative potential of EVs in cancer treatment paradigms.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Marco Vacante
- Unit of Internal Medicine Critical Area—ARNAS Garibaldi, Piazza Santa Maria di Gesù, 5, 95124 Catania, Italy;
| | - Roberta Catania
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Giuseppe Sangiorgio
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
19
|
Mehra P, Kumar A. Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology. Cell Biochem Funct 2024; 42:e4063. [PMID: 38961596 DOI: 10.1002/cbf.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 07/05/2024]
Abstract
The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.
Collapse
Affiliation(s)
- Parul Mehra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
20
|
Kwon AJ, Morales L, Chatagnier L, Quigley J, Pascua J, Pinkowski N, Brasser SM, Hong MY. Effects of moderate ethanol exposure on risk factors for cardiovascular disease and colorectal cancer in adult Wistar rats. Alcohol 2024; 117:55-63. [PMID: 38531501 DOI: 10.1016/j.alcohol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
While past studies have provided evidence linking excessive alcohol consumption to increased risk for cardiovascular diseases (CVDs) and colorectal cancer (CRC), existing data on the effects of moderate alcohol use on these conditions have produced mixed results. The purpose of this study was to investigate the effects of moderate alcohol consumption on risk factors associated with the development of CVDs and CRC in adult rats. Twenty-four, 14-month-old, non-deprived male Wistar rats were randomly assigned to either an ethanol group, which consisted of voluntary access to a 20% (v/v) ethanol solution on alternate days, or a water control group (n = 12/group) for 13 weeks. Blood samples were collected to analyze levels of albumin, glucose, adiponectin, lipids, oxidized low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (apoA1), C-reactive protein (CRP), high-mobility group box 1 protein (HMGB-1), tumor necrosis factor-alpha (TNF-α), thyroxine, thyroid-stimulating hormone, 8-oxo-2'-deoxyguanosine (8-oxo-dG), liver function enzymes, and antioxidant capacity. Colonic gene expression related to colon carcinogenesis was also assessed. Ethanol-treated rats were found to have significantly higher HDL-C and apoA1 levels compared to controls. Moderate alcohol consumption led to significantly lower CRP levels and a trend for decrease in HMGB-1, TNF-α, and 8-oxo-dG levels. In the ethanol-exposed group, colonic gene expression of superoxide dismutase was upregulated while aldehyde dehydrogenase 2 showed a trend for increase compared to the control group. These results indicate that adopting a moderate approach to alcohol consumption could potentially improve health biomarkers related to CVD and CRC by increasing HDL-C levels and antioxidant activity and reducing DNA damage and inflammatory activity.
Collapse
Affiliation(s)
- Anna J Kwon
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Lani Morales
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Louise Chatagnier
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Jacqueline Quigley
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Jeremy Pascua
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Natalie Pinkowski
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Susan M Brasser
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
21
|
Ali MA, Shaker OG, Gomaa Ali ES, Ezzat EM, Khalifa AA, Hassan EA, Habib MA, Ahmed HM, Dawood AF, Mohamed EA. Expression profile of serum LncRNAs MALAT-1 and CCAT-1 and their correlation with Mayo severity score in ulcerative colitis patients can diagnose and predict the prognosis of the disease. Noncoding RNA Res 2024; 9:318-329. [PMID: 38505308 PMCID: PMC10945117 DOI: 10.1016/j.ncrna.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
Background Ulcerative colitis (UC) has emerged as an accelerated-incidence chronic condition. UC has been identified as a precancerous lesion for colorectal cancer. Up-to-date genomic research revealed the value of many noncoding RNAs (ncRNAs) in UC pathogenesis, diagnosis, and prognosis. Aim The present study was aimed at measuring both MALAT-1 and CCAT-1 in the sera of UC patients as diagnostic and prognostic biomarkers and correlating them with the Mayo score which is a novel predictive indicator of malignant transformation as well as with clinicopathological characteristics of the disease. Patients and methods Sixty-six UC patients and 80 healthy individuals participated in this study, the serum fold changes of MALAT-1 and CCAT-1 were measured by using quantitative real-time PCR (qRT-PCR). Results The current study findings include overexpressed lncRNAs MALAT-1 and CCAT-1 in the sera of ulcerative colitis patients [(median (IQR) = 2.290 (0.16-9.36), mean ± SD = 3.37 ± 3.904 for MALAT-1, and median (IQR) = 7.305 (0.57-16.96), mean ± SD = 6.81 ± 4.002 for CCAT-1 than controls, ROC curve analysis reported that these genes could predict UC. Both genes were positively correlated with each other which enforces their synergistic effects. Both genes are diagnostic for UC patients.We related studied genes to the severity of the disease. In addition to a significant positive correlation between each gene with ESR and Mayo score, we further classified the patients according to severity (according to Mayo score to remission, mild, moderate, and severe groups) with the following results; lower levels of MALAT-1 and CCAT-1 were significantly associated with mild disease and increased gradually with more severe forms of the disease (p < 0.05). Linear regression analysis with Mayo Score as a dependent variable revealed that only the predictive power of CCAT-1 and ESR are significant. Moreover, ROC curve analysis when compared to that of the Mayo score revealed that CCAT-1 reached 99 % accuracy. In summary, both genes are prognostic factors for UC patients. Conclusion MALAT-1 and CCAT-1 are diagnostic and prognostic serum biomarkers of ulcerative colitis.
Collapse
Affiliation(s)
- Marwa A. Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - El Shimaa Gomaa Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman M. Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abeer A. Khalifa
- Department of Physiology, Faculty of Medicine, Zagazig University, Egypt
| | - Essam A. Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa A. Habib
- Department of Physiology, Faculty of Medicine, Zagazig University, Egypt
| | - Heba Mostafa Ahmed
- Department Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Asmaa F.A. Dawood
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Alhasa, Saudi Arabia
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam Ali Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
22
|
Rahmati S, Moeinafshar A, Rezaei N. The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: metastasis, immune suppression, therapy resistance, and autophagy crosstalk. J Transl Med 2024; 22:452. [PMID: 38741166 PMCID: PMC11092134 DOI: 10.1186/s12967-024-05267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.
Collapse
Affiliation(s)
- Soheil Rahmati
- Student Research Committee, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Saha P, Hegde M, Chakraborty K, Singha A, Mukerjee N, Ghosh D, Kunnumakkara AB, Khan MS, Ahmad MI, Ghosh A, Kumer A, Sil SK. Targeted inhibition of colorectal cancer proliferation: The dual-modulatory role of 2,4-DTBP on anti-apoptotic Bcl-2 and Survivin proteins. J Cell Mol Med 2024; 28:e18150. [PMID: 38494866 PMCID: PMC10945088 DOI: 10.1111/jcmm.18150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.
Collapse
Affiliation(s)
- Partha Saha
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Mangala Hegde
- Cancer Biology Laboratory and DBT‐AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiAssamIndia
| | - Kanak Chakraborty
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Achinta Singha
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| | - Nobendu Mukerjee
- Center for Global Health ResearchSaveetha Medical College and Hospital, Saveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Deepshikha Ghosh
- Cell Biology and Physiology DivisionCSIR‐Indian Institute of Chemical BiologyKolkataWest BengalIndia
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT‐AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiAssamIndia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Md Irshad Ahmad
- Department of Structural Biology, School of MedicineUTHEALTH Science CenterSan AntonioTexasUSA
| | - Arabinda Ghosh
- Department of Computational Biology and BiotechnologyMahapurusha Srimanta Sankaradeva ViswavidalayaGuwahatiAssamIndia
| | - Ajoy Kumer
- Department of Chemistry, College of Arts and SciencesIUBAT‐International University of Business Agriculture and TechnologyDhakaBangladesh
| | - Samir Kumar Sil
- Molecular Genetics and Cell Physiology Laboratory, Department of Human PhysiologyTripura UniversitySuryamaninagarTripuraIndia
| |
Collapse
|
24
|
Omadhika WA, Solikhah S, Adrianto AA, Purwestri YA, Paramita DK. M2 Macrophage Prominently Distributed in the Rat's Colon of DMH-Induced Inflammation Associated Colorectal Cancer. Asian Pac J Cancer Prev 2024; 25:1357-1362. [PMID: 38679997 PMCID: PMC11162729 DOI: 10.31557/apjcp.2024.25.4.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE The aim of this study is to examine the M1 and M2 macrophages distribution in the rat's colon of DMH-induced inflammation associated colorectal cancer. METHODS Colon tissue of three groups of 4 rats that induced using 1,2 dimethylhydrazine (DMH) at 30 mg/kg bw every week for 9, 11, and 13 weeks were used. The M1 and M2 distribution was examined by using antibody anti iNOS for M1 and anti-CD163 for M2 with immunohistochemistry method. The data was presents in figure and table in the form of percentage. RESULT M1 macrophage was found in all groups in the low distribution level (25% - 50%), while M2 macrophage was observed in all groups with 100% distribution. In the longer period of DMH induction, M2 macrophages was distributed more abundant. CONCLUSION All of the rat's colon showing chronic inflammation that led to the tumorigenesis.
Collapse
Affiliation(s)
| | | | - Albertus Ari Adrianto
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia.
| | - Yekti Asih Purwestri
- Laboratory of Biochemistry, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dewi Kartikawati Paramita
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Integrated Research Laboratory, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
25
|
Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG. Resveratrol as a Promising Nutraceutical: Implications in Gut Microbiota Modulation, Inflammatory Disorders, and Colorectal Cancer. Int J Mol Sci 2024; 25:3370. [PMID: 38542344 PMCID: PMC10970219 DOI: 10.3390/ijms25063370] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 12/20/2024] Open
Abstract
Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Mathew Cherian
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| |
Collapse
|
26
|
Jiang R, Fang Z, Lai Y, Li L, Tan J, Yu C, Fan M, Tao L, Shen W, Xu C, Sun D, Cheng H. Sophocarpine alleviates intestinal fibrosis via inhibition of inflammation and fibroblast into myofibroblast transition by targeting the Sirt1/p65 signaling axis. Eur J Pharmacol 2024; 967:176318. [PMID: 38309678 DOI: 10.1016/j.ejphar.2024.176318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
In this study, we used alkaloids from Sophora flavescens to inhibit the SASP, leading to fibroblast-into-myofibroblast transition (FMT) to maintain intestinal mucosal homeostasis in vitro and in vivo. We used western blotting (WB) and immunofluorescence staining (IF) to assess whether five kinds of alkaloids inhibit the major inflammatory pathways and chose the most effective compound (sophocarpine; SPC) to ameliorate colorectal inflammation in a dextran sulfate sodium (DSS)-induced UC mouse model. IF, Immunohistochemistry staining (IHC), WB, disease activity index (DAI), and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the mechanism of action of this compound. Next, we detected the pharmacological activity of SPC on the senescence-associated secretory phenotypes (SASP) and FMT in interleukin 6 (IL-6)-induced senescence-like fibroblasts and discussed the mucosal protection ability of SPC on a fibroblast-epithelium/organoid coculture system and organ-on-chip system. Taken together, our results provide evidence that SPC alleviates the inflammatory response, improves intestinal fibrosis and maintains intestinal mucosal homeostasis in vivo. Meanwhile, SPC was able to prevent IL-6-induced SASP and FMT in fibroblasts, maintain the expression of TJ proteins, and inhibit inflammation and genomic stability of colonic mucosal epithelial cells by activating SIRT1 in vitro. In conclusion, SPC treatment attenuates intestinal fibrosis by regulating SIRT1/NF-κB p65 signaling, and it might be a promising therapeutic agent for inflammatory bowel disease.
Collapse
Affiliation(s)
- Ruiyang Jiang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Zihan Fang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Yueyang Lai
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Liu Li
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Jiani Tan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Chengtao Yu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Minmin Fan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Lihuiping Tao
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Weixing Shen
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Changliang Xu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China; Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, China.
| |
Collapse
|
27
|
He C, Lin Y, Qiu F, Zeng Q. Increased PKN2 and M2-Polarized Macrophages Promote HCT116 Cell Invasion. Crit Rev Immunol 2024; 44:13-21. [PMID: 38505918 DOI: 10.1615/critrevimmunol.2023052095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Colorectal cancer is the third most common malignant tumor, with highly invasive and metastatic potential in the later stage. This study investigated the role of PKN2 overexpression and M2-polarized macrophages in dictating the malignant phenotype of colorectal cancer cells. HCT116 colorectal cancer cell line with PKN2 overexpression was generated to investigate the functional role of PKN2. THP-1 cells were polarized into M2-like macrophages, and the co-culture system of THP-1/M2 cells and HCT116 cells was established to examine the impacts of M2-polairzed macrophages on the malignant phenotype of colorectal cancer cells. PKN2 overexpression promoted cell proliferation, migration and invasion in HCT116 colorectal cancer cells, and reduced spontaneous cell death in the cell culture. Besides, the presence of M2-polarized THP-1 cells significantly enhanced the aggressive phenotype of HCT116 cells. Both PKN2 overexpression and M2-polarized THP-1 cells increased the expression of NF-κB p65 in HCT116 cells, indicating that enhanced NF-κB signaling may contribute to the augmented aggressiveness of HCT116 cells. These findings suggest PKN2 as an oncogenic factor in colorectal cancer and that M2-polarized THP-1 cells may promote the progression of colorectal cancer by activating NF-κB signaling.
Collapse
Affiliation(s)
- Cheng He
- Department of Gastroenterology, Fujian Provincial Geriatric Hospital, Fuzhou 350000, Fujian, China
| | - Yimei Lin
- Department of Gastroenterology, Fuqing City Hospital, Fuqing 350300, Fujian, China
| | - Feng Qiu
- Department of Gastroenterology, Fujian Provincial Geriatric Hospital, Fuzhou 350000, Fujian, China
| | | |
Collapse
|
28
|
Piccinno E, Scalavino V, Armentano R, Giannelli G, Serino G. miR-195-5p as Regulator of γ-Catenin and Desmosome Junctions in Colorectal Cancer. Int J Mol Sci 2023; 24:17084. [PMID: 38069408 PMCID: PMC10707010 DOI: 10.3390/ijms242317084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Desmosomes play a key role in the regulation of cell adhesion and signaling. Dysregulation of the desmosome complex is associated with the loss of epithelial cell polarity and disorganized tissue architecture typical of colorectal cancer (CRC). The aim of this study was to investigate and characterize the effect of miR-195-5p on desmosomal junction regulation in CRC. In detail, we proposed to investigate the deregulation of miR-195-5p and JUP, a gene target that encodes a desmosome component in CRC patients. JUP closely interacts with desmosomal cadherins, and downstream, it regulates several intracellular transduction factors. We restored the miR-195-5p levels by transient transfection in colonic epithelial cells to examine the effects of miR-195-5p on JUP mRNA and protein expression. The JUP regulation by miR-195-5p, in turn, determined a modulation of desmosome cadherins (Desmoglein 2 and Desmocollin 2). Furthermore, we focused on whether the miR-195-5p gain of function was also able to modulate the expression of key components of Wnt signaling, such as NLK, LEF1 and Cyclin D1. In conclusion, we have identified a novel mechanism controlled by miR-195-5p in the regulation of adhesive junctions, suggesting its potential clinical relevance for future miRNA-based therapy in CRC.
Collapse
Affiliation(s)
| | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (R.A.); (G.G.)
| |
Collapse
|
29
|
Gandhi GR, Mohana T, Athesh K, Hillary VE, Vasconcelos ABS, Farias de Franca MN, Montalvão MM, Ceasar SA, Jothi G, Sridharan G, Gurgel RQ, Xu B. Anti-inflammatory natural products modulate interleukins and their related signaling markers in inflammatory bowel disease: A systematic review. J Pharm Anal 2023; 13:1408-1428. [PMID: 38223446 PMCID: PMC10785269 DOI: 10.1016/j.jpha.2023.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2024] Open
Abstract
This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κβ-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Meenakshi Ammal Dental College and Hospital (MAHER), Maduravoyal, 600095, Chennai, Tamil Nadu, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Varghese Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, China
| |
Collapse
|
30
|
Cartwright BM, Corso JN, Lightner J, Whitted C, Torrenegra RD, Krishnan K, Palau VE. Achyrocline B (3,5 dihydroxy-6,7,8-trimethoxyflavone) synergizes with 5-fluorouracil allowing for dose reduction and reduced off-target toxicity in the treatment of colonic and pancreatic cancers. Biomed Pharmacother 2023; 167:115546. [PMID: 37741250 DOI: 10.1016/j.biopha.2023.115546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Surgically unresectable colorectal and pancreatic carcinomas have a high rate of mortality as current therapeutic options are limited. One common chemotherapeutic used to broadly treat both cancers is 5-flurouracil (5-Fu); however, treatment serves only to slow progression of the disease and comes with many side effects due to 5-Fu's intrinsic toxicity. Thus, strategies to decrease the dose of 5-Fu utilized therapeutically as well as reduce 5-Fu's off-target toxicity are paramount. Using cell models of colorectal and pancreatic cancers, we show that cotreatment with Achyrocline B (3,5 dihydroxy-6,7,8-trimethoxyflavone, AcB), a natural flavone from Achyrocline bogotensis, allows for four-fold reduction in 5-Fu dosage without loss of efficacy. We further show that the action of AcB is due to continued cell cycle progression despite 5-Fu pressure to synchronize at the G1/S threshold. In addition to AcB's effect on cancer cells, we found that AcB can directly reduce toxicity of 5-Fu in cells mimicking non-cancerous tissues. These in vitro results are then supported by xenograft modeling. AcB was shown to increase apoptosis in tumors leading to degeneration of the outer tumoral boundary. Furthermore, in 5-Fu treated animals it was found that AcB provided protection to the intestinal tract as indicated by preserved histological and immunohistochemical features. These results show promise for a new adjuvant therapy for colorectal and pancreatic carcinomas that not only reduces tumor progression, but more importantly has the potential to improve patient quality of life.
Collapse
Affiliation(s)
- Brian M Cartwright
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37614, United States; Department of Pathology, ETSU Quillen College of Medicine, Johnson City, TN, 37614, United States
| | - Jaclyn N Corso
- Department of Internal Medicine, ETSU Quillen College of Medicine, Johnson City, TN, 37614, United States
| | - Janet Lightner
- Department of Internal Medicine, ETSU Quillen College of Medicine, Johnson City, TN, 37614, United States
| | - Crystal Whitted
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Ruben D Torrenegra
- Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales, Bogota, Colombia
| | - Koyamangalath Krishnan
- Department of Internal Medicine, ETSU Quillen College of Medicine, Johnson City, TN, 37614, United States
| | - Victoria E Palau
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37614, United States; Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales, Bogota, Colombia.
| |
Collapse
|
31
|
Gelbach PE, Finley SD. Genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. iScience 2023; 26:107569. [PMID: 37664588 PMCID: PMC10474475 DOI: 10.1016/j.isci.2023.107569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment (TME), which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the TME. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Marinkovic M, Stojanovic-Rundic S, Stanojevic A, Ostojic M, Gavrilovic D, Jankovic R, Maksimovic N, Stroggilos R, Zoidakis J, Castellví-Bel S, Fijneman RJA, Cavic M. Exploring novel genetic and hematological predictors of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front Genet 2023; 14:1245594. [PMID: 37719698 PMCID: PMC10501402 DOI: 10.3389/fgene.2023.1245594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: The standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant chemoradiotherapy (nCRT). To select patients who would benefit the most from nCRT, there is a need for predictive biomarkers. The aim of this study was to evaluate the role of clinical, pathological, radiological, inflammation-related genetic, and hematological parameters in the prediction of post-nCRT response. Materials and methods: In silico analysis of published transcriptomics datasets was conducted to identify candidate genes, whose expression will be measured using quantitative Real Time PCR (qRT-PCR) in pretreatment formaline-fixed paraffin-embedded (FFPE) samples. In this study, 75 patients with LARC were prospectively included between June 2020-January 2022. Patients were assessed for tumor response in week 8 post-nCRT with pelvic MRI scan and rigid proctoscopy. For patients with a clinical complete response (cCR) and initially distant located tumor no immediate surgery was suggested ("watch and wait" approach). The response after surgery was assessed using histopathological tumor regression grading (TRG) categories from postoperative specimens by Mandard. Responders (R) were defined as patients with cCR without operative treatment, and those with TRG 1 and TRG 2 postoperative categories. Non-responders (NR) were patients classified as TRG 3-5. Results: Responders group comprised 35 patients (46.6%) and NR group 53.4% of patients. Analysis of published transcriptomics data identified genes that could predict response to treatment and their significance was assessed in our cohort by qRT-PCR. When comparison was made in the subgroup of patients who were operated (TRG1 vs. TRG4), the expression of IDO1 was significantly deregulated (p < 0.05). Among hematological parameters between R and NR a significant difference in the response was detected for neutrophil-to-monocyte ratio (NMR), initial basophil, eosinophil and monocyte counts (p < 0.01). According to MRI findings, non-responders more often presented with extramural vascular invasion (p < 0.05). Conclusion: Based on logistic regression model, factors associated with favorable response to nCRT were tumor morphology and hematological parameters which can be easily and routinely derived from initial laboratory results (NMR, eosinophil, basophil and monocyte counts) in a minimally invasive manner. Using various metrics, an aggregated score of the initial eosinophil, basophil, and monocyte counts demonstrated the best predictive performance.
Collapse
Affiliation(s)
- Mladen Marinkovic
- Department of Radiation Oncology, Clinic for Radiation Oncology and Diagnostics, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Suzana Stojanovic-Rundic
- Department of Radiation Oncology, Clinic for Radiation Oncology and Diagnostics, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Marija Ostojic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Dusica Gavrilovic
- Data Center, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sergi Castellví-Bel
- Gastroenterology Department, Fundació Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Clínic Barcelona, University of Barcelona, Barcelona, Spain
| | | | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
33
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
34
|
Liu L, Wang Y, Yu S, Liu H, Li Y, Hua S, Chen Y. Transforming Growth Factor Beta Promotes Inflammation and Tumorigenesis in Smad4-Deficient Intestinal Epithelium in a YAP-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300708. [PMID: 37261975 PMCID: PMC10427365 DOI: 10.1002/advs.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, plays critical roles in immune responses. However, the precise role of TGF-β in colitis and colitis-associated cancer remains poorly defined. Here, it is demonstrated that TGF-β promotes the colonic inflammation and related tumorigenesis in the absence of Smad family member 4 (Smad4). Smad4 loss in intestinal epithelium aggravates colitis and colitis-associated neoplasia induced by dextran sulfate sodium (DSS) and azoxymethane/dextran sulfate sodium (AOM/DSS), leading to over-activated immune responses and increased TGF-β1 levels. In Smad4-deficient organoids, TGF-β1 stimulates spheroid formation and impairs intestinal stem cell proliferation and lineage specification. YAP, whose expression is directly upregulated by TGF-β1 after Smad4 deletion, mediates the effect of TGF-β1 by interacting with Smad2/3. Attenuation of YAP/TAZ prevents TGF-β1-induced spheroid formation in Smad4-/- organoids and alleviates colitis and colitis-associated cancer in Smad4-deficient mice. Collectively, these results highlight an integral role of the TGF-β/Smad4 axis in restraining intestinal inflammation and tumorigenesis and suggest TGF-β or YAP signaling as therapeutic targets for these gastrointestinal diseases intervention.
Collapse
Affiliation(s)
- Liansheng Liu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Yalong Wang
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Huidong Liu
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Yehua Li
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Shan Hua
- Guangzhou LaboratoryGuangzhou510700China
- Center for Life SciencesSchool of Life SciencesYunnan UniversityKunming650500China
| | - Ye‐Guang Chen
- Guangzhou LaboratoryGuangzhou510700China
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| |
Collapse
|
35
|
Long D, Alghoul Z, Sung J, Yang C, Merlin D. Oral administration of M13-loaded nanoliposomes is safe and effective to treat colitis-associated cancer in mice. Expert Opin Drug Deliv 2023; 20:1443-1462. [PMID: 37379034 PMCID: PMC10810011 DOI: 10.1080/17425247.2023.2231345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Colitis-associated cancer (CAC) treatment lacks effective small-molecule drugs and efficient targeted delivery systems. Here, we loaded M13 (an anti-cancer drug candidate) to colon-targeting ginger-derived nanoliposomes (NL) and investigated if orally administered M13-NL could enhance the anticancer effects of M13 in CAC mouse models. METHODS The biopharmaceutical properties of M13 were assessed by physicochemical characterizations. The in vitro immunotoxicity of M13 was assessed against PBMCs using FACS and the mutagenic potential of M13 was evaluated by the Ames assay. The in vitro efficacy of M13 was tested in 2D- and 3D-cultured cancerous intestinal cells. AOM/DSS-induced CAC mice were used to evaluate the therapeutic effects of free M13 or M13-NL on CAC in vivo. RESULTS M13 has beneficial physiochemical properties, including high stability, and no apparent immunotoxicity or mutagenic potential in vitro. M13 is effective against the growth of 2D- and 3D-cultured cancerous intestinal cells in vitro. The in vivo safety and efficacy of M13 were significantly improved by using NL for drug delivery (p < 0.001). Oral administration of M13-NL exhibited excellent therapeutic effects in AOM/DSS-induced CAC mice. CONCLUSION M13-NL is a promising oral drug formulation for CAC treatment.
Collapse
Affiliation(s)
- Dingpei Long
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Zahra Alghoul
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
36
|
Jain SM, Deka D, Das A, Paul S, Pathak S, Banerjee A. Role of Interleukins in Inflammation-Mediated Tumor Immune Microenvironment Modulation in Colorectal Cancer Pathogenesis. Dig Dis Sci 2023:10.1007/s10620-023-07972-8. [PMID: 37277647 DOI: 10.1007/s10620-023-07972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Tumor cells invade and spread through a procedure termed as epithelial-to-mesenchymal cell transition (EMT). EMT is triggered by any alterations in the genes that encode the extracellular matrix (ECM) proteins, the enzymes that break down the ECM, and the activation of the genes that causes the epithelial cell to change into a mesenchymal type. The transcription factors NF-κB, Smads, STAT3, Snail, Zeb, and Twist are activated by inflammatory cytokines, for instance, Tumor Necrosis Factor, Tumor Growth Factors, Interleukin-1, Interleukin-8, and Interleukin-6, which promotes EMT. MATERIALS The current piece of work has been reviewed from the literature works published in last 10 years on the role interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis utilizing the databases like Google Scholar, PubMed, Science Direct. RESULTS Recent studies have demonstrated that pathological situations, such as epithelial malignancies, exhibit EMT characteristics, such as the downregulation of epithelial markers and the overexpression of mesenchymal markers. Several growing evidence have also proved its existence in the human colon during the carcinogenesis of colorectal cancer. Most often, persistent inflammation is thought to be one factor contributing to the initiation of human cancers, such as colorectal cancer (CRC). Therefore, according to epidemiologic and clinical research, people with ulcerative colitis and Crohn's disease have a greater probability of developing CRC. CONCLUSION A substantial amount of data points to the involvement of the NF-κB system, SMAD/STAT3 signaling cascade, microRNAs, and the Ras-mitogen-activated protein kinase/Snail/Slug in the epithelial-to-mesenchymal transition-mediated development of colorectal malignancies. As a result, EMT is reported to play an active task in the pathogenesis of colorectal cancer, and therapeutic interventions targeting the inflammation-mediated EMT might serve as a novel strategy for treating CRC. The illustration depicts the relationship between interleukins and their receptors as a driver of CRC development and the potential therapeutic targets.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc. San Pablo, 76130, Querétaro, CP, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India.
| |
Collapse
|
37
|
Li X, Chang E, Cui J, Zhao H, Hu C, O’Dea KP, Tirlapur N, Balboni G, Zhang J, Ying L, Ma D. Bv8 mediates myeloid cell migration and enhances malignancy of colorectal cancer. Front Immunol 2023; 14:1158045. [PMID: 37090721 PMCID: PMC10113555 DOI: 10.3389/fimmu.2023.1158045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Colorectal cancer (CRC) is the third most predominant malignancy in the world. Although the importance of immune system in cancer development has been well established, the underlying mechanisms remain to be investigated further. Here we studied a novel protein prokineticin 2 (Prok2, also known as Bv8) as a key pro-tumoral factor in CRC progression in in vitro and ex vivo settings. Human colorectal tumor tissues, myeloid cell lines (U937 cells and HL60 cells) and colorectal cancer cell line (Caco-2 cells) were used for various studies. Myeloid cell infiltration (especially neutrophils) and Bv8 accumulation were detected in human colorectal tumor tissue with immunostaining. The chemotactic effects of Bv8 on myeloid cells were presented in the transwell assay and chemotaxis assy. Cultured CRC cells treated with myeloid cells or Bv8 produced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF). Furthermore, ROS and VEGF acted as pro-angiogenesis buffer in myeloid cell-infiltrated CRC microenvironment. Moreover, myeloid cells or Bv8 enhanced energy consumption of glycolysis ATP and mitochondria ATP of CRC cells. Interestingly, myeloid cells increased CRC cell viability, but CRC cells decreased the viability of myeloid cells. ERK signalling pathway in CRC cells was activated in the presence of Bv8 or co-cultured myeloid cells. In conclusion, our data indicated the vital roles of Bv8 in myeloid cell infiltration and CRC development, suggesting that Bv8 may be a potential therapeutic target for colorectal cancer-related immunotherapy.
Collapse
Affiliation(s)
- Xiaomeng Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Cui
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P. O’Dea
- Division of Translational Critical Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nikhil Tirlapur
- Division of Translational Critical Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jiaqiang Zhang
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| |
Collapse
|
38
|
Lai J, Guo M, Wang D, Liu K, Hu D, Li J. Association Between Vitamin B6 and the Risk of Colorectal Cancer: A Meta-analysis of Observational Studies. Nutr Cancer 2023; 75:1281-1294. [PMID: 36961108 DOI: 10.1080/01635581.2023.2191823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE This meta-analysis aimed to assess the association between vitamin B6 intake, blood PLP levels, and the risk of colorectal cancer. METHODS The databases PubMed, Cochrane Library and Embase databases were comprehensively searched for cohort studies or case-control studies. The odds ratio (OR) and 95% confidence interval (CI) were extracted from each eligible study, and the statistical software Stata was used to perform statistical merging. RESULTS Twenty-eight studies (20 cohort studies, 8 case-control studies) were included in our meta-analysis. The combined OR for the association between colorectal cancer risk and vitamin B6 intake was 0.80 (95% CI: 0.68-0.94), while the combined OR between blood PLP levels and colorectal cancer risk was 0.54 (95% CI: 0.35-0.84). In addition, the subgroup analysis revealed that vitamin B6 could reduce the risk of colorectal cancer in women [vitamin B6 intake OR = 0.79, 95% CI (0.65-0.96); blood PLP levels OR = 0.41, 95% CI (0.30-0.57)] and also reduce the risk of colon cancer in men and women [vitamin B6 intake OR = 0.76, 95% CI (0.64-0.91); blood PLP levels OR = 0.56, 95% CI (0.42-0.73)]. CONCLUSION In this meta-analysis, vitamin B6 intake and blood PLP levels were inversely associated with colorectal cancer risk.
Collapse
Affiliation(s)
- Jianxiong Lai
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Mingqiao Guo
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dongmei Wang
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Kuan Liu
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Dengmin Hu
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
39
|
Gelbach PE, Finley SD. Ensemble-based genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.532000. [PMID: 36993493 PMCID: PMC10052244 DOI: 10.1101/2023.03.09.532000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
1Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment, which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the tumor microenvironment. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Zhu W, Chu H, Zhang Y, Luo T, Yu H, Zhu H, Liu Y, Gao H, Zhao Y, Li Q, Wang X, Li G, Yang W. Fructose-1,6-bisphosphatase 1 dephosphorylates IκBα and suppresses colorectal tumorigenesis. Cell Res 2023; 33:245-257. [PMID: 36646759 PMCID: PMC9977772 DOI: 10.1038/s41422-022-00773-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
Emerging evidence demonstrates that some metabolic enzymes that phosphorylate soluble metabolites can also phosphorylate a variety of protein substrates as protein kinases to regulate cell cycle, apoptosis and many other fundamental cellular processes. However, whether a metabolic enzyme dephosphorylates protein as a protein phosphatase remains unknown. Here we reveal the gluconeogenic enzyme fructose 1,6-biphosphatase 1 (FBP1) that catalyzes the hydrolysis of fructose 1,6-bisphosphate (F-1,6-BP) to fructose 6-phosphate (F-6-P) as a protein phosphatase by performing a high-throughput screening of metabolic phosphatases with molecular docking followed by molecular dynamics (MD) simulations. Moreover, we identify IκBα as the substrate of FBP1-mediated dephosphorylation by performing phosphoproteomic analysis. Mechanistically, FBP1 directly interacts with and dephosphorylates the serine (S) 32/36 of IκBα upon TNFα stimulation, thereby inhibiting NF-κB activation. MD simulations indicate that the catalytic mechanism of FBP1-mediated IκBα dephosphorylation is similar to F-1,6-BP dephosphorylation, except for higher energetic barriers for IκBα dephosphorylation. Functionally, FBP1-dependent NF-κB inactivation suppresses colorectal tumorigenesis by sensitizing tumor cells to inflammatory stresses and preventing the mobilization of myeloid-derived suppressor cells. Our finding reveals a previously unrecognized role of FBP1 as a protein phosphatase and establishes the critical role of FBP1-mediated IκBα dephosphorylation in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Wencheng Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huiying Chu
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yajuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tianhang Luo
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hua Yu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Hongwen Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ye Liu
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Quanlin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China.
| | - Guohui Li
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Inhibition of RNA Polymerase III Augments the Anti-Cancer Properties of TNFα. Cancers (Basel) 2023; 15:cancers15051495. [PMID: 36900285 PMCID: PMC10000776 DOI: 10.3390/cancers15051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Tumour necrosis factor alpha (TNFα) is a multifunctional cytokine that plays a pivotal role in apoptosis, cell survival, as well as in inflammation and immunity. Although named for its antitumor properties, TNFα also has tumour-promoting properties. TNFα is often present in large quantities in tumours, and cancer cells frequently acquire resistance to this cytokine. Consequently, TNFα may increase the proliferation and metastatic potential of cancer cells. Furthermore, the TNFα-driven increase in metastasis is a result of the ability of this cytokine to induce the epithelial-to-mesenchymal transition (EMT). Overcoming the resistance of cancer cells to TNFα may have a potential therapeutic benefit. NF-κB is a crucial transcription factor mediating inflammatory signals and has a wide-ranging role in tumour progression. NF-κB is strongly activated in response to TNFα and contributes to cell survival and proliferation. The pro-inflammatory and pro-survival function of NF-κB can be disrupted by blocking macromolecule synthesis (transcription, translation). Consistently, inhibition of transcription or translation strongly sensitises cells to TNFα-induced cell death. RNA polymerase III (Pol III) synthesises several essential components of the protein biosynthetic machinery, such as tRNA, 5S rRNA, and 7SL RNA. No studies, however, directly explored the possibility that specific inhibition of Pol III activity sensitises cancer cells to TNFα. Here we show that in colorectal cancer cells, Pol III inhibition augments the cytotoxic and cytostatic effects of TNFα. Pol III inhibition enhances TNFα-induced apoptosis and also blocks TNFα-induced EMT. Concomitantly, we observe alterations in the levels of proteins related to proliferation, migration, and EMT. Finally, our data show that Pol III inhibition is associated with lower NF-κB activation upon TNFα treatment, thus potentially suggesting the mechanism of Pol III inhibition-driven sensitisation of cancer cells to this cytokine.
Collapse
|
42
|
Boytar AN, Nitert MD, Morrision M, Skinner TL, Jenkins DG. Exercise-induced changes to the human gut microbiota and implications for colorectal cancer: a narrative review. J Physiol 2022; 600:5189-5201. [PMID: 36369926 PMCID: PMC10099575 DOI: 10.1113/jp283702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
Physical activity is associated with reduced risks of colorectal cancer (CRC) incidence, recurrence and mortality. While these findings are consistent, the mechanism/s underlying this association remain unclear. Growing evidence supports the many ways in which differing characteristics of the gut microbiota can be tumourigenic or protective against CRC. CRC is characterised by significant dysbiosis including reduced short chain fatty acid-producing bacteria. Recent findings suggest that exercise can modify the gut microbiota, and these changes are inverse to the changes seen with CRC; however, this exercise-microbiota interaction is currently understudied in CRC. This review summarises parallel areas of research that are rapidly developing: The exercise-gut microbiota research and cancer-gut microbiota research and highlights the salient similarities. Preliminary evidence suggests that these areas are linked, with exercise mediating changes that promote the antitumorigenic characteristics of the gut microbiota. Future mechanistic and population-specific studies are warranted to confirm the physiological mechanism/s by which exercise changes the gut microbiota, and the influence of the exercise-gut interaction on cancer specific outcomes in CRC.
Collapse
Affiliation(s)
- Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mark Morrision
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.,University of the Sunshine Coast, Maroochydore, Australia.,Applied Sports Science Technology and Medicine Research Centre, Swansea University, Wales, UK
| |
Collapse
|
43
|
Löwenmark T, Löfgren-Burström A, Zingmark C, Ljuslinder I, Dahlberg M, Edin S, Palmqvist R. Tumour Colonisation of Parvimonas micra Is Associated with Decreased Survival in Colorectal Cancer Patients. Cancers (Basel) 2022; 14:5937. [PMID: 36497419 PMCID: PMC9736682 DOI: 10.3390/cancers14235937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Increasing evidence suggests that the gut microbiota may impact colorectal cancer (CRC) development and progression. In this study, the tumour colonisation of two CRC-associated bacteria, Parvimonas micra and Fusobacterium nucleatum, was studied in relation to patient survival in a cohort of 257 CRC patients. Colonisation of P. micra and F. nucleatum was analysed in fresh frozen tumour tissue (n = 112) and in faeces (n = 250) by qPCR. When analysing tumour tissues, both P. micra and F. nucleatum were found to be associated with decreased five-year cancer-specific survival, an association that remained significant in multivariable analysis for P. micra. Furthermore, we found significant associations of high levels of P. micra and F. nucleatum with tumour molecular characteristics, i.e., tumours mutated in BRAFV600E, and tumours of the MSI subtype. The analysis of faecal samples showed weaker associations with prognosis and tumour molecular characteristics. In conclusion, our findings support a novel association of tumour colonisation of P. micra with decreased patient survival. A better understanding of the role of the gut microbiota in CRC might contribute to the advancement of prognostic tools and new targets for therapy.
Collapse
Affiliation(s)
- Thyra Löwenmark
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| | - Michael Dahlberg
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, SE-90185 Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
44
|
Gholami M, Zoughi M, Larijani B, Abdollahzadeh R, Taslimi R, Rahmani Z, Kazemeini A, Behboo R, Razi F, Bastami M, Hasani‐Ranjbar S, Amoli MM. The role of inflammatory miRNA-mRNA interactions in PBMCs of colorectal cancer and obesity patients. Immun Inflamm Dis 2022; 10:e702. [PMID: 36301024 PMCID: PMC9609448 DOI: 10.1002/iid3.702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Inflammation is a critical hallmark in obesity and colorectal cancer (CRC). This study aimed to investigate effective microRNA (miRNA)–messenger RNA (mRNA) interactions on inflammatory networks involved in obesity and CRC. Methods The literature searches were applied to identify genes expression reported on peripheral blood mononuclear cells (PBMCs) and/or blood of CRC subjects and to find inflammatory miRNA in blood samples. Furthermore, bioinformatics analysis was utilized to find inflammatory miRNA:mRNA interactions of the genes. Finally, a case‐control study was set to investigate the expression of LAMC1 and GNB3 genes besides miR‐10b, miR‐506‐3p, miR‐150‐5p, and miR‐124‐3p in CRC and control subjects. Results The expression of LAMC1 gene in healthy control groups was associated with body mass index (BMI) (p < .05). The level of miR‐10b (p < .001), miR‐506 (p < .001), and miR‐124 (p <. 001) were significantly increased in PBMCs of CRC patients, while they were not associated with BMI. The level of miR‐150 was associated with BMI in healthy subjects (p < .05). Conclusions The changes in the level of miR‐506 and miR‐124 in CRC patients may be associated with the regulatory role of these miRNAs on LAMC1 expression. The LAMC1 may be related to BMI, however, more observational studies on other populations are needed.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Rasoul Abdollahzadeh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Zeinab Rahmani
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Alireza Kazemeini
- Department of General Surgery, Imam Khomeini Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Roobic Behboo
- Hazrate Rasoole Akram HospitalIran University of Medical ScienceTehranIran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular‐Cellular sciences instituteTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
45
|
Vafaei S, Taheri H, Hajimomeni Y, Fakhre Yaseri A, Abolhasani Zadeh F. The role of NLRP3 inflammasome in colorectal cancer: potential therapeutic target. Clin Transl Oncol 2022; 24:1881-1889. [PMID: 35689136 DOI: 10.1007/s12094-022-02861-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
All phases of carcinogenesis are affected by inflammation. Activation of the inflammasome is a crucial signaling mechanism that leads to acute and chronic inflammation. When specific nucleotide-binding domains, leucine-rich repeat-containing proteins (NLRs) are activated, inflammasomes are formed. The NLRP3 is one of the NLR family members with the most functional characterization. NLRP3 can modulate the immune systems, apoptosis, growth, and/or the gut microbiome to impact cancer development. Colorectal cancer (CRC) is one of the most common cancers, and it begins as a tissue overgrowth on the internal part of the rectum or colon. In vivo and in vitro studies showed that the NLRP3 inflammasome has a role in CRC development due to its broad activity in shaping immune responses. Here, onwards, we focus on the NLRP3 inflammasome role in CRC development, as well as the therapeutic prospective of modifying NLRP3 inflammasome in the context of anti-cancer therapy.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Taheri
- Internal Medicine Cellular and Molecular, Research Center, Zahedan University of Medical Sciences, Fellowship of GI in Mashhad University of Medical Sciences, Zahedan, Iran
| | - Yasamin Hajimomeni
- Islamic Azad University of Medical Science, Qeshm International Branch, Qeshm, Iran
| | | | | |
Collapse
|
46
|
Huang M, Ye Y, Chen Y, Zhu J, Xu L, Cheng W, Lu X, Yan F. Identification and validation of an inflammation-related lncRNAs signature for improving outcomes of patients in colorectal cancer. Front Genet 2022; 13:955240. [PMID: 36246600 PMCID: PMC9561096 DOI: 10.3389/fgene.2022.955240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer is the fourth most deadly cancer worldwide. Although current treatment regimens have prolonged the survival of patients, the prognosis is still unsatisfactory. Inflammation and lncRNAs are closely related to tumor occurrence and development in CRC. Therefore, it is necessary to establish a new prognostic signature based on inflammation-related lncRNAs to improve the prognosis of patients with CRC. Methods: LASSO-penalized Cox analysis was performed to construct a prognostic signature. Kaplan-Meier curves were used for survival analysis and ROC curves were used to measure the performance of the signature. Functional enrichment analysis was conducted to reveal the biological significance of the signature. The R package "maftool" and GISTIC2.0 algorithm were performed for analysis and visualization of genomic variations. The R package "pRRophetic", CMap analysis and submap analysis were performed to predict response to chemotherapy and immunotherapy. Results: An effective and independent prognostic signature, IRLncSig, was constructed based on sixteen inflammation-related lncRNAs. The IRLncSig was proved to be an independent prognostic indicator in CRC and was superior to clinical variables and the other four published signatures. The nomograms were constructed based on inflammation-related lncRNAs and detected by calibration curves. All samples were classified into two groups according to the median value, and we found frequent mutations of the TP53 gene in the high-risk group. We also found some significantly amplificated regions in the high-risk group, 8q24.3, 20q12, 8q22.3, and 20q13.2, which may regulate the inflammatory activity of cancer cells in CRC. Finally, we identified chemotherapeutic agents for high-risk patients and found that these patients were more likely to respond to immunotherapy, especially anti-CTLA4 therapy. Conclusion: In short, we constructed a new signature based on sixteen inflammation-related lncRNAs to improve the outcomes of patients in CRC. Our findings have proved that the IRLncSig can be used as an effective and independent marker for predicting the survival of patients with CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Chen Y, Tian Z, Hou H, Gai W. The noncoding RNAs regulating pyroptosis in colon adenocarcinoma were derived from the construction of a ceRNA network and used to develop a prognostic model. BMC Med Genomics 2022; 15:201. [PMID: 36127676 PMCID: PMC9490888 DOI: 10.1186/s12920-022-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background Noncoding RNAs (ncRNAs), pyroptosis and tumours are all hot topics in current research, but there are very limited studies on pyroptosis and its regulated ncRNAs in colon adenocarcinoma (COAD). Methods The COAD transcription profile dataset from TCGA was used for differential expression analysis. Pyroptosis-related genes (PRGs), the top 200 long noncoding RNAs (lncRNAs) and circular RNA (circRNAs) were selected from the results to construct an endogenous competitive RNA (ceRNA) network. Moreover, the expression of the ceRNAs was used for consensus cluster analysis of COAD and developing a risk model after combining clinical follow-up data by the least absolute shrinkage and selection operator method. The stability and independent prognostic ability of the risk model were evaluated. Finally, gene set enrichment analysis (GSEA) and immune score comparisons between the high-risk and low-risk groups were performed. Results There were 87 PRGs with significant differences, among which casp3/8, NLRP1/3, and IL-1α/1β were at the core of the interactions. The ceRNA network consisted of 58 lncRNAs, 6 circRNAs, 25 PRGs, and 55 microRNAs. We speculated that KCNQ1OT1-miRNAs-SQSTM1 and HSA_CIRC_0001495-miRNAs-PTEN have great potential and value in the pyroptosis mechanism of COAD. Nine RNAs were involved in the risk score, which had excellent independent prognostic ability. Survival analyses were significant between the high-risk (HR) and low-risk (LR) groups (training cohort: P < 0.001; test cohort: P = 0.037). GSEA was mainly enriched in tumour proliferation and metastasis related pathways, while differences in immune activity showed a bipolar distribution between the HR and LR groups. Conclusions The overall mechanism of pyroptosis in COAD was revealed. CeRNAs most closely related to the pyroptosis mechanism of COAD were selected and used to develop a prognostic model. The results may present new regulatory sites and potential targets for COAD pyroptosis mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01359-w.
Collapse
Affiliation(s)
- Yanfeng Chen
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China
| | - Zongbiao Tian
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China
| | - Hebin Hou
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China
| | - Wei Gai
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China.
| |
Collapse
|
48
|
Li J, Fu Y, Zhang K, Li Y. Integration of Bulk and Single-Cell RNA-Seq Data to Construct a Prognostic Model of Membrane Tension-Related Genes for Colon Cancer. Vaccines (Basel) 2022; 10:vaccines10091562. [PMID: 36146640 PMCID: PMC9506318 DOI: 10.3390/vaccines10091562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The plasma membrane provides a highly dynamic barrier for cancer cells to interact with their surrounding microenvironment. Membrane tension, a pivotal physical property of the plasma membrane, has attracted widespread attention since it plays a role in the progression of various cancers. This study aimed to identify a prognostic signature in colon cancer from membrane tension-related genes (MTRGs) and explore its implications for the disease. Methods: Bulk RNA-seq data were obtained from The Cancer Genome Atlas (TCGA) database, and then applied to the differentially expressed gene analysis. By implementing a univariate Cox regression and a LASSO-Cox regression, we developed a prognostic model based on four MTRGs. The prognostic efficacy of this model was evaluated in combination with a Kaplan–Meier analysis and receiver operating characteristic (ROC) curve analysis. Moreover, the relationships between the signature and immune cell infiltration, immune status, and somatic mutation were further explored. Lastly, by utilizing single-cell RNA-seq data, cell type annotation, pseudo-time analysis, drug sensitivity, and molecular docking were implemented. Results: We constructed a 4-MTRG signature. The risk score derived from the model was further validated as an independent variable for survival prediction. Two risk groups were divided based on the risk score calculated by the 4-MTRG signature. In addition, we observed a significant difference in immune cell infiltration, such as subsets of CD4 T cells and macrophages, between the high- and low-risk groups. Moreover, in the pseudo-time analysis, TIMP1 was found to be more highly expressed with the progression of time. Finally, three small molecule drugs, elesclomol, shikonin, and bryostatin-1, exhibited a binding potential to TIMP-1. Conclusions: The novel 4-MTRG signature is a promising biomarker in predicting clinical outcomes for colon cancer patients, and TIMP1, a member of the signature, may be a sensitive regulator of the progression of colon cancer.
Collapse
Affiliation(s)
- Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yugang Fu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
- Correspondence:
| |
Collapse
|
49
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
50
|
Ficus dubia latex extract prevent DMH-induced rat early colorectal carcinogenesis through the regulation of xenobiotic metabolism, inflammation, cell proliferation and apoptosis. Sci Rep 2022; 12:15472. [PMID: 36104433 PMCID: PMC9474822 DOI: 10.1038/s41598-022-19843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Ficus dubia latex is recognized as a remedy in Asian traditional medicine with various therapeutic effects. The present study aimed to determine the preventive action of Ficus dubia latex extract (FDLE) on 1,2-dimethylhydrazine (DMH)-induced rat colorectal carcinogenesis and its mechanisms. The experiment included an initiation model in which rats were orally administered with FDLE daily for 1 week before DMH injection until the end of the experiment, while only after DMH injection until the end in the post-initiation model. The results firstly indicated that FDLE treatment could reduce the level of methylazoxymethanol (MAM) in rat colonic lumen by inhibition of the activities of both phase I xenobiotic metabolizing enzymes in the liver and β-glucuronidase in the colon, leading to reduced DNA methylation in colonic mucosal cells, related to the number of ACF in the initiation stage. Besides, FDLE modulated the inflammation which could suppress the growth and induce apoptosis of aberrant colonic mucosal cells, leading to retardation of ACF multiplicity. Therefore, FDLE showed the ability to suppress the DMH-induced rat ACF formation and inflammation promoted growth of ACF. In conclusion, FDLE had the potential to prevent carcinogens-induced rat colorectal carcinogenesis in the initiation stage.
Collapse
|