1
|
Monika P, Krishna RH, Hussain Z, Nandhini K, Pandurangi SJ, Malek T, Kumar SG. Antimicrobial hybrid coatings: A review on applications of nano ZnO based materials for biomedical applications. BIOMATERIALS ADVANCES 2025; 172:214246. [PMID: 40037050 DOI: 10.1016/j.bioadv.2025.214246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
The extreme survivability of infectious microorganisms on various surfaces prompts for the risk of disease transmissions, posing a perilous concern for global health. Thus, the treatment of these pathogenic microorganisms using the nanomaterials functionalized with antimicrobial coatings reaps relevant scope in the ongoing trend of research. Driven by their admirable biocompatibility, cost-effectiveness, and minimal toxicity, ZnO nanoparticles (ZnO-NPs) based antimicrobial hybrid coatings have emerged as a robust material to prevent the growth of infectious microorganisms on various surfaces, which in turn boosted their applications in the area of biomedical sciences. In this context, the current review focuses on the synthesis of ZnO-NPs based hybrid coatings using different polymers and inorganic materials for effective utilization in biomedical domains including dentistry, orthopedics, implantable medical devices and wound healing. The synergistic effect of ZnO-NPs hybrids with remarkable antibacterial, antifungal and antiviral property has been discussed. Finally, we highlight the future potential of ZnO-NPs based antimicrobial hybrid coatings for potential clinical translation.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India.
| | - R Hari Krishna
- Department of Chemistry, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India; Centre for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India.
| | - Zayaan Hussain
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India
| | - Krithika Nandhini
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India
| | - Samhitha J Pandurangi
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India
| | - Tausif Malek
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore 560054, India
| | - S Girish Kumar
- Department of Chemistry and Centre for Nanomaterials and Devices, RV College of Engineering, Bangalore 560059, India.
| |
Collapse
|
2
|
Alfei S, Zuccari G. Last Fifteen Years of Nanotechnology Application with Our Contribute. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:265. [PMID: 39997828 PMCID: PMC11858446 DOI: 10.3390/nano15040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The interest in nanomaterials has been strongly augmented during the last two decades, and this fact can be easily evaluated by considering the number of studies present in the literature. In November 2024, they accounted for 764,279 experimental studies developed in the years 2009-2024. During such a period, our group contributed to the field of applicative nanotechnology with several experimental and review articles, which we hope could have relevantly enhanced the knowledge of the scientific community. In this new publication, an exhaustive overview regarding the main types of developed nanomaterials, the characterization techniques, and their applications has been discussed. Particular attention has been paid to nanomaterials employed for the enhancement of bioavailability and delivery of bioactive molecules and to those used for ameliorating traditional food packaging. Then, we briefly reviewed our experimental studies on the development of nanoparticles (NPs), dendrimers, micelles, and liposomes for biomedical applications by collecting inherent details in a reader-friendly table. A brief excursus about our reviews on the topic has also been provided, followed by the stinging question of nanotoxicology. Indeed, although the application of nanotechnology translates into a great improvement in the properties of non-nanosized pristine materials, there may still be a not totally predictable risk for humans, animals, and the environment associated with an extensive application of NPs. Nanotoxicology is a science in rapid expansion, but several sneaky risks are not yet fully disclosed. So, the final part of this study discusses the pending issue related to the possible toxic effects of NPs and their impact on customers' acceptance in a scenario of limited knowledge.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
3
|
T S, R SK, Nair AR. Biosynthesis of Zinc Oxide-Zerumbone (ZnO-Zer) Nanoflakes Towards Evaluating Its Antibacterial and Reactive Oxygen Species (ROS)-Dependent Cytotoxic Activity. J Fluoresc 2025; 35:649-660. [PMID: 38148408 DOI: 10.1007/s10895-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Being the second most prevalent metal oxide, zinc oxide (ZnO) nanomaterials have been widely studied and found to exhibit promising applications in various domains of biomedicine and agriculture. Considering the enhanced bioactivities displayed by secondary metabolite (SM) derived ZnO nanomaterials, present study was undertaken to evaluate the efficacy of ZnO nanoflake (NF) derived from Zerumbone (Zer), a sesquiterpenoid from Zingiber zerumbet rhizome with diverse pharmacological properties. ZnO NF prepared by homogeneous precipitation method using ZnSO4.7H2O (0.1 M) and NaOH (0.2 M) as precursors with and without the addition of Zer (0.38 mM) were characterized by powder UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and Field emission scanning electron microscope (FESEM) analysis. Optical and physical properties of ZnO-Zer NF were found to match with the typical ZnO nanomaterial properties. XRD analysis revealed reduction in size (15 nm) of the green synthesized ZnO-Zer NF compared to ZnO NF (21 nm). ZnO-Zer NF displayed linear correlation between concentration and antimicrobial activity to Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Determination of cytotoxic potential of the synthesized ZnO-Zer NF in cervical cancer cells (HeLa) showed higher cytotoxicity of ZnO-Zer NF (39.32 ± 3.01%) compared to Zer alone (27.02 ± 1.22%). Present study revealing improvement in bioactivity of Zer following conjugation with ZnO NF signifies potential of NF formation in improving therapeutic application of Zer that otherwise displays low solubility limiting its bioavailability.
Collapse
Affiliation(s)
- Shilpa T
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Sanjay Kumar R
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Aswati R Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
4
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
5
|
Ashoub MH, Amiri M, Fatemi A, Farsinejad A. Evaluation of ferroptosis-based anti-leukemic activities of ZnO nanoparticles synthesized by a green route against Pre-B acute lymphoblastic leukemia cells (Nalm-6 and REH). Heliyon 2024; 10:e36608. [PMID: 39263164 PMCID: PMC11387337 DOI: 10.1016/j.heliyon.2024.e36608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Our research presents an efficient and practical method for producing Zinc Oxide nanoparticles (ZnO NPs), which have anti-leukemic effects based on ferroptosis. Methods The black cardamom extract was employed as a capping and reducing agent for the green synthesis. The NPs have been characterized via scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Additionally, leukemic and normal cells were exposed to ZnO NPs (25, 50, 75, 100, 150, 200, and 300 μg/mL) for 24 and 48 h. The cell vitality was then measured using the MTT test. Moreover, ferroptosis indicators were assessed via commercial testing kits, and finally, qRT-PCR and flow cytometry were used to measure gene expression and cell death. Results The findings displayed that green synthesized ZnO NPs reduced the survival of leukemic cells, with IC50 values of 150.89 μg/ml for Nalm-6 and 101.31 μg/ml for REH cells after 48 h. The ZnO NPs increased ferroptosis by significantly increasing MDA, intracellular iron, ACSL4, ALOX15, and p53 mRNA expressions while significantly decreasing GSH and GPx activity levels and SLC7A11 and GPx4 mRNA expressions. On the other hand, ZnO NPs exhibited no toxicity toward normal cells. Conclusions The research suggests that ZnO NPs synthesized using the green approach can induce ferroptosis in leukemic cells by disrupting redox homeostasis and increasing intracellular iron levels, potentially enhancing the benefits of anti-leukemic therapies in the future.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Amiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Alireza Farsinejad
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Zhang Y, Li Z, Guo B, Wang Q, Chen L, Zhu L, Zhang T, Wang R, Li W, Luo D, Liu Y. A Zinc Oxide Nanowire-Modified Mineralized Collagen Scaffold Promotes Infectious Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309230. [PMID: 38112271 DOI: 10.1002/smll.202309230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zixin Li
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Bowen Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Qibo Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Liyuan Chen
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Lisha Zhu
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting Zhang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ruoxi Wang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Weiran Li
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yan Liu
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
7
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
8
|
Singh S, Sharma K, Sharma H. Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review. Curr Drug Deliv 2024; 21:544-570. [PMID: 37278036 DOI: 10.2174/1567201820666230602164325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Globally, high death rates and poor quality of life are caused mainly by inflammatory diseases. Corticosteroids, which may have systemic side effects and would enhance the risk of infection, are the common forms of therapy. The field of nanomedicine has created composite nanoparticles that carry a pharmacological carrier and target ligands for distribution to sites of inflammation with less systemic toxicity. However, their relatively large size often causes systemic clearance. An interesting approach is metal-based nanoparticles that naturally reduce inflammation. They are made not only to be small enough to pass through biological barriers but also to allow label-free monitoring of their interactions with cells. The following literature review discusses the mechanistic analysis of the anti-inflammatory properties of several metal-based nanoparticles, including gold, silver, titanium dioxide, selenium, and zinc oxide. Current research focuses on the mechanisms by which nanoparticles infiltrate cells and the anti-inflammatory techniques using herbal extracts-based nanoparticles. Additionally, it provides a brief overview of the literature on many environmentally friendly sources employed in nanoparticle production and the mechanisms of action of various nanoparticles.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Khushi Sharma
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
9
|
Fialho L, Costa-Barbosa A, Sampaio P, Carvalho S. Effects of Zn-ZnO Core-Shell Nanoparticles on Antimicrobial Mechanisms and Immune Cell Activation. ACS APPLIED NANO MATERIALS 2023; 6:17149-17160. [PMID: 37772266 PMCID: PMC10526648 DOI: 10.1021/acsanm.3c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
The deposition of zinc-zinc oxide nanoparticles (Zn-ZnO NPs) onto porous Ta2O5 surfaces enriched with calcium phosphate by DC magnetron sputtering was investigated to improve the surface antimicrobial activity without triggering an inflammatory response. Different sizes and amounts of Zn NPs obtained by two optimized different depositions and an additional thin carbon (C) layer deposited over the NPs were explored. The deposition of the Zn NPs and the C layer mitigates the surface porosity, increasing the surface hydrophobicity and decreasing the surface roughness. The possible antimicrobial effect and immune system activation of Zn-ZnO NPs were investigated in Candida albicans and macrophage cells, respectively. It was found that the developed surfaces displayed a fungistatic behavior, as they impair the growth of C. albicans between 5 and 24 h of culture. This behavior was more evident on the surfaces with bigger NPs and the highest amounts of Zn. The same trend was observed in both reactive oxygen species (ROS) generation and loss of C. albicans' membrane integrity. After 24 h of culture, cell toxicity was also dependent on the amount of the NPs. Cell toxicity was observed in surfaces with the highest amount of Zn NPs and with the C layer, while cells were able to grow without any signs of cytotoxicity in the porous surfaces with the lowest amount of NPs. The same Zn-dose-dependent behavior was noticed in the TNF-α production. The Zn-containing surfaces show a vastly inferior cytokine secretion than the lipopolysaccharide (LPS)-stimulated cells, indicating that the modified surfaces do not induce an inflammatory response from macrophage cells. This study provides insights for understanding the Zn amount threshold that allows a simultaneous inhibition of the fungi growth with no toxic effect and the main antimicrobial mechanisms of Zn-ZnO NPs, contributing to future clinical applications.
Collapse
Affiliation(s)
- Luísa Fialho
- CEMMPRE,
Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra, Portugal
| | - Augusto Costa-Barbosa
- CBMA,
Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Paula Sampaio
- CBMA,
Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Sandra Carvalho
- CEMMPRE,
Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra, Portugal
- IPN
− LED & MAT − Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
10
|
Chumachenko V, Virych P, Nie G, Virych P, Yeshchenko O, Khort P, Tkachenko A, Prokopiuk V, Lukianova N, Zadvornyi T, Rawiso M, Ding L, Kutsevol N. Combined Dextran-Graft-Polyacrylamide/Zinc Oxide Nanocarrier for Effective Anticancer Therapy in vitro. Int J Nanomedicine 2023; 18:4821-4838. [PMID: 37662686 PMCID: PMC10473965 DOI: 10.2147/ijn.s416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Cancer chemotherapy faces two major challenges - high toxicity of active substances and tumor resistance to drugs. Low toxic nanocarriers in combination with anticancer agents can significantly increase the effectiveness of therapy. Modern advances in nanotechnology make it easy to create materials with the necessary physical and chemical properties. Methods Two hybrid nanosystems of dextran-polyacrylamide/ zinc oxide nanoparticles (D-PAA/ZnO NPs) were synthesized in aqueous solution with zinc sulphate (D-PAA/ZnO NPs (SO42-)) and zinc acetate (D-PAA/ZnO NPs (-OAc)). The light absorption, fluorescence, dynamic light scattering and transmission electron microscopy for nanocomposite characterization were used. MTT, neutral red uptake and scratch assays were selected as fibroblasts cytotoxicity assays. Cytotoxicity was tested in vitro for normal fibroblasts, MAEC, prostate (LNCaP, PC-3, DU-145) and breast (MDA-MB-231, MCF-7) cancer cells lines. Immunocytochemical methods were used for detection of Ki-67, p53, Bcl-2, Bax, e-cadherin, N-cadherin and CD44 expression. Acridine orange was used to detect morphological changes in cells. Results The radius of ZnO NPs (SO42-) was 1.5 nm and ZnO NPs (-OAc) was 2 nm. The nanosystems were low-toxic to fibroblasts, MAEC. Cells in the last stages of apoptosis with the formation of apoptotic bodies were detected for all investigated cancer cell lines. Proapoptotic proteins expression in cancer cells indicates an apoptotic death. Increased expression of E-cadherin and N-cadherin was registered for cancer cells line LNCaP, PC-3, DU-145 and MCF-7 after 48 h incubation with D-PAA/ZnO NPs (SO42-). Conclusion The nanosystems were low-toxic to fibroblasts, MAEC. The D-PAA/ZnO NPs nanosystem synthesized using zinc sulphate demonstrates high cytotoxicity due to destruction of various types of cancer cells in vitro and potentially increases adhesion between cells. Thus, our findings indicate the selective cytotoxicity of D-PAA/ZnO NPs against cancer cells and can be potentially used for cancer treatment.
Collapse
Affiliation(s)
- Vasyl Chumachenko
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlo Virych
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Guochao Nie
- Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, People’s Republic of China
| | - Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Oleg Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlo Khort
- Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliia Lukianova
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Taras Zadvornyi
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | | | - Liyao Ding
- Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, People’s Republic of China
| | - Nataliya Kutsevol
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institut Charles Sadron, Strasbourg, France
| |
Collapse
|
11
|
Pan X, Ou M, Lu Y, Nie Q, Dai X, Liu O. Immunomodulatory zinc-based materials for tissue regeneration. BIOMATERIALS ADVANCES 2023; 152:213503. [PMID: 37331243 DOI: 10.1016/j.bioadv.2023.213503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Zinc(Zn)-based materials have contributed greatly to the rapid advancements in tissue engineering. The qualities they possess that make them so beneficial include their excellent biodegradability, biocompatibility, anti-bacterial activity, among and several others. Biomedical materials that act as a foreign body, will inevitably cause host immune response when introduced to the human body. As the osteoimmunology develops, the immunomodulatory characteristics of biomaterials have become an appealing concept to improve implant-tissue interaction and tissue restoration. Recently, Zn-based materials have also displayed immunomodulatory functions, especially macrophage polarization states. It can promote the transformation of M1 macrophages into M2 macrophages to enhance the tissue regeneration and reconstruction. This review covers mainly Zn-based materials and their characteristics, including metallic Zn alloys and Zn ceramics. We highlight the current advancements in the type of immune responses, as well as the mechanisms, that are induced by Zn-based biomaterials, most importantly the regulation of innate immunity and the mechanism of promoting tissue regeneration. To this end, we discuss their applications in biomedicine, and conclude with an outlook on future research challenges.
Collapse
Affiliation(s)
- Xiaoman Pan
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410005, China
| | - Mingning Ou
- Xiangya Hospital & Xiangya School of Medicine, Central South University, Changsha 410005, China
| | - Yixuan Lu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410005, China
| | - Qian Nie
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410005, China
| | - Xiaohan Dai
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410005, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410005, China.
| |
Collapse
|
12
|
Zia S, Islam Aqib A, Muneer A, Fatima M, Atta K, Kausar T, Zaheer CNF, Ahmad I, Saeed M, Shafique A. Insights into nanoparticles-induced neurotoxicity and cope up strategies. Front Neurosci 2023; 17:1127460. [PMID: 37214389 PMCID: PMC10192712 DOI: 10.3389/fnins.2023.1127460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 05/24/2023] Open
Abstract
Nanoparticle applications are becoming increasingly popular in fields such as photonics, catalysis, magnetics, biotechnology, manufacturing of cosmetics, pharmaceuticals, and medicines. There is still a huge pile of undermining information about the potential toxicity of these products to humans, which can be encountered by neuroprotective antioxidants and anti-inflammatory compounds. Nanoparticles can be administered using a variety of methods, including oronasal, topical applications, and enteral and parenteral routes of administration. There are different properties of these nanomaterials that characterize different pathways. Crossing of the blood-brain barrier, a direct sensory nerve-to-brain pathway whose barriers are bypassed, these checks otherwise prevent the nanoparticles from entering the brain. This inflicts damage to sensory neurons and receptors by nanoparticles that lead to neurotoxicity of the central nervous system. A number of routes make nanoparticles able to penetrate through the skin. Exposure by various routes to these nanoparticles can result in oxidative stress, and immune suppression triggers inflammatory cascades and genome-level mutations after they are introduced into the body. To out-power, these complications, plant-based antioxidants, essential oils, and dietary supplements can be put into use. Direct nanoparticle transport pathways from sensory nerves to the brain via blood have been studied grossly. Recent findings regarding the direct pathways through which nanoparticles cross the blood-brain barriers, how nanoparticles elicit different responses on sensory receptors and nerves, how they cause central neurotoxicity and neurodegeneration through sensory nerve routes, and the possible mechanisms that outcast these effects are discussed.
Collapse
Affiliation(s)
- Sana Zia
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Khazeena Atta
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tasleem Kausar
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Asyia Shafique
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
13
|
Gapeeva A, Qiu H, Cojocaru A, Arndt C, Riaz T, Schütt F, Selhuber-Unkel C, Mishra YK, Tura A, Sonntag S, Gniesmer S, Grisanti S, Kaps S, Adelung R. Tetrapodal ZnO-Based Composite Stents for Minimally Invasive Glaucoma Surgery. ACS Biomater Sci Eng 2023; 9:1352-1361. [PMID: 36776118 DOI: 10.1021/acsbiomaterials.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The glaucoma burden increases continuously and is estimated to affect more than 100 million people by 2040. As there is currently no cure to restore the optic nerve damage caused by glaucoma, the only controllable parameter is the intraocular pressure (IOP). In recent years, minimally invasive glaucoma surgery (MIGS) has emerged as an alternative to traditional treatments. It uses micro-sized drainage stents that are inserted through a small incision, minimizing the trauma to the tissue and reducing surgical and postoperative recovery time. However, a major challenge for MIGS devices is foreign body reaction and fibrosis, which can lead to a complete failure of the device. In this work, the antifibrotic potential of tetrapodal ZnO (t-ZnO) microparticles used as an additive is elucidated by using rat embryonic fibroblasts as a model. A simple, direct solvent-free process for the fabrication of stents with an outer diameter of 200-400 μm is presented, in which a high amount of t-ZnO particles (45-75 wt %) is mixed into polydimethylsiloxane (PDMS) and a highly viscous polymer/particle mixture is extruded. The fabricated stents possess increased elastic modulus compared to pure PDMS while remaining flexible to adapt to the curvature of an eye. In vitro experiments showed that the fibroblast cell viability was inhibited to 43 ± 3% when stents with 75 wt % t-ZnO were used. The results indicate that cell inhibiting properties can be attributed to an increased amount of protruding t-ZnO particles on the stent surface, leading to an increase in local contacts with cells and a disruption of the cell membrane. As a secondary mechanism, the released Zn ions could also contribute to the cell-inhibiting properties in the close vicinity of the stent surface. Overall, the fabrication method and the antifibrotic and mechanical properties of developed stents make them promising for application in MIGS.
Collapse
Affiliation(s)
- Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Haoyi Qiu
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Ala Cojocaru
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Arndt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Tehseen Riaz
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, DK-6400 Sønderborg, Denmark
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Svenja Sonntag
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sören Kaps
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
14
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
15
|
Minassian G, Ghanem E, Hage RE, Rahme K. Gold Nanoparticles Conjugated with Dendrigraft Poly-L-lysine and Folate-Targeted Poly(ethylene glycol) for siRNA Delivery to Prostate cancer. Nanotheranostics 2023; 7:152-166. [PMID: 36793347 PMCID: PMC9925352 DOI: 10.7150/ntno.79050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Dendrigraft Poly-L-Lysine (d-PLL) coated gold nanoparticles (AuNPs) were synthesized by reducing Tetrachloroauric acid with ascorbic acid in the presence of d-PLL. AuNPs-d-PLL formed a stable colloidal solution that absorbs light at a maximum wavelength (λmax) centered at 570 nm as demonstrated by UV-visible (UV-Vis) spectroscopy. From Scanning Electron Microscopy (SEM) analysis, AuNPs-d-PLL were spherical in shape with a mean diameter of 128 ± 47 nm. Dynamic Light scattering (DLS) analysis of the colloidal solution exhibited one size distribution with a hydrodynamic diameter of about 131 nm (size distribution by intensity). Zeta potential (ξ) measurements revealed positively charged AuNPs-d-PLL with ξ about 32 mV, an indicator of high stability in an aqueous solution. The AuNPs-d-PLL was successfully modified with either thiolated poly (ethylene glycol) SH-PEG-OCH3 (Mw 5400 g mol-1) or folic acid-modified thiolated poly (ethylene glycol) SH-PEG-FA of similar molecular weight as demonstrated via DLS and Zeta potential measurements. Complexation of PEGylated AuNPs-d-PLL with siRNA was confirmed by DLS and gel electrophoresis. Finally, we analyzed the functionalization of our nanocomplexes with folic acid via targeted cellular uptake to prostate cancer cells using flow cytometry and LSM imaging. Our findings implicate the broader applicability of folate-PEGylated AuNPs in siRNA-based therapeutics against prostate cancer and perhaps other types of cancer.
Collapse
Affiliation(s)
- Georges Minassian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University - Louaize, Lebanon
| | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University - Louaize, Lebanon
| | - Roland El Hage
- Faculty of Sciences, Fanar Campus, Chemistry & Physics Department, and Doctoral School, Lebanese University, Beirut, Lebanon
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University - Louaize, Lebanon.,School of Chemistry & AMBER Centre, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
16
|
Railean V, Buszewski B. Flow Cytometry - Sophisticated Tool for Basic Research or/and Routine Diagnosis; Impact of the Complementarity in Both Pre- as Well as Clinical Studies. Crit Rev Anal Chem 2022; 54:2087-2109. [PMID: 36576036 DOI: 10.1080/10408347.2022.2154596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flow cytometry is a sophisticated technology used widely in both basic research and as a routine tool in clinical diagnosis. The technology has progressed from single parameter detection in the 1970s and 1980s to high end multicolor analysis, with currently 30 parameters detected simultaneously, allowing the identification and purification of rare subpopulations of cells of interest. Flow cytometry continues to evolve and expand to facilitate the investigation of new diagnostic and therapeutic avenues. The present review gives an overview of basic theory and instrumentation, presents and compares the advantages and disadvantages of conventional, spectral and imaging flow cytometry as well as mass cytometry. Current methodologies and applications in both research, pre- and clinical settings are discussed, as well as potential limitations and future evolution. This finding encourages the reader to promote such relationship between basic science, diagnosis and multidisciplinary approach since the standard methods have limitations (e.g., in differentiating the cells after staining). Moreover, such path inspires future cytometry specialists develop new/alternative frontiers between pre- and clinical diagnosis and be more flexible in designing the study for both human as well as veterinary medicine.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
17
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
18
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Doiwala, Dehradun 248016, India
| | - Subham Preetam
- Institute of Technical Education and Research, Siksha O Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Samudra Bhaumik
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Sihi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Pal
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata 700013, West Bengal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia & AFNP Med, Wien 1030, Austria
| | - Eapen P Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
19
|
Pandey A, Mishra AK. Immunomodulation, Toxicity, and Therapeutic Potential of Nanoparticles. BIOTECH 2022; 11:42. [PMID: 36134916 PMCID: PMC9497228 DOI: 10.3390/biotech11030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Altered immune responses associated with human disease conditions, such as inflammatory and infectious diseases, cancers, and autoimmune diseases, are among the primary causes of morbidity across the world. A wealth of studies has demonstrated the efficiency of nanoparticles (NPs)-based immunotherapy strategies in different laboratory model systems. Nanoscale dimensions (<100 nm) enable NPs to have increased surface area to volume ratio, surface charge, and reactivity. Physicochemical properties along with the shapes, sizes, and elasticity influence the immunomodulatory response induced by NPs. In recent years, NPs-based immunotherapy strategies have attained significant focus in the context of cancers and autoimmune diseases. This rapidly growing field of nanomedicine has already introduced ~50 nanotherapeutics in clinical practices. Parallel to wide industrial applications of NPs, studies have raised concerns about their potential threat to the environment and human health. In past decades, a wealth of in vivo and in vitro studies has demonstrated the immunotoxicity potential of various NPs. Given that the number of engineered/designed NPs in biomedical applications is continuing to increase, it is pertinent to establish the toxicity profile for their safe and intelligent use in biomedical applications. The review is intended to summarize the NPs-induced immunomodulation pertaining to toxicity and therapeutic development in human health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
20
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
21
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
22
|
Dabbah K, Perelshtein I, Gedanken A, Houri-Haddad Y, Feuerstein O. Effects of a ZnCuO-Nanocoated Ti-6Al-4V Surface on Bacterial and Host Cells. MATERIALS 2022; 15:ma15072514. [PMID: 35407847 PMCID: PMC8999654 DOI: 10.3390/ma15072514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023]
Abstract
This study aims to investigate the effects of a novel ZnCuO nanoparticle coating for dental implants—versus those of conventional titanium surfaces—on bacteria and host cells. A multispecies biofilm composed of Streptococcus sanguinis, Actinomyces naeslundii, Porphyromonas gingivalis, and Fusobacterium nucleatum was grown for 14 days on various titanium discs: machined, sandblasted, sandblasted and acid-etched (SLA), ZnCuO-coated, and hydroxyapatite discs. Bacterial species were quantified with qPCR, and their viability was examined via confocal microscopy. Osteoblast-like and macrophage-like cells grown on the various discs for 48 h were examined for proliferation using an XTT assay, and for activity using ALP and TNF-α assays. The CSLM revealed more dead bacteria in biofilms grown on titanium than on hydroxyapatite, and less on sandblasted than on machined and ZnCuO-coated surfaces, with the latter showing a significant decrease in all four biofilm species. The osteoblast-like cells showed increased proliferation on all of the titanium surfaces, with higher activity on the ZnCuO-coated and sandblasted discs. The macrophage-like cells showed higher proliferation on the hydroxyapatite and sandblasted discs, and lower activity on the SLA and ZnCuO-coated discs. The ZnCuO-coated titanium has anti-biofilm characteristics with desired effects on host cells, thus representing a promising candidate in the complex battle against peri-implantitis.
Collapse
Affiliation(s)
- Kamal Dabbah
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (K.D.); (Y.H.-H.)
| | - Ilana Perelshtein
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel; (I.P.); (A.G.)
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel; (I.P.); (A.G.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (K.D.); (Y.H.-H.)
| | - Osnat Feuerstein
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (K.D.); (Y.H.-H.)
- Correspondence: ; Tel.: +972-2-6778158
| |
Collapse
|
23
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|
24
|
Shehabeldine AM, Hashem AH, Wassel AR, Hasanin M. Antimicrobial and Antiviral Activities of Durable Cotton Fabrics Treated with Nanocomposite Based on Zinc Oxide Nanoparticles, Acyclovir, Nanochitosan, and Clove Oil. Appl Biochem Biotechnol 2022; 194:783-800. [PMID: 34541623 DOI: 10.1007/s12010-021-03649-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
In this study, cotton fabrics based on zinc oxide nanoparticles in situ synthesis, acyclovir, nanochitosan, and clove oil were treated. The treated cotton fabrics were examined by FTIR, HR-TEM, FE-SEM, EDAX, and the surface roughness processing of FE-SEM images. The obtained characterization data emphasized the nano-size of nanocomposite with high homogeneity of particles in spherical shape as well as affirmed the deposition of nanocomposite onto the textile fibers with concluded that the deposition of nanocomposite was increased parallel with sonication time. Antimicrobial and antiviral activities of treated cotton fabrics were evaluated. Results revealed that treated cotton fabrics exhibited promising antibacterial activity toward Gram-positive higher than Gram-negative bacteria. Likewise, treated cotton fabrics are still effective as antibacterial after washing for 100 cycles. Moreover, treated cotton fabrics exhibited potential antifungal activity against Candida albicans, Aspergillus niger, and Aspergillus fumigatus. The antiviral activity significantly depended on the type of virus. The treated cotton fabrics showed antiviral activity against tested viral particles (HSV-1, Adeno, and CoxB2) with viral inhibition of 95.9, 76.4, and 86.9% respectively, while in the case of coated cotton textile with acyclovir, it only exhibited viral inhibition of 49.9, 41, and 22.3% respectively.
Collapse
Affiliation(s)
- Amr M Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed R Wassel
- Electron Microscope and Thin Film Department, Physics Research Division, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
25
|
Huang Z, Dai H, Jiang J, Ye N, Zhu S, Wei Q, Lv Z, Shi F. Dietary mulberry-leaf flavonoids improve the eggshell quality of aged breeder hens. Theriogenology 2021; 179:177-186. [PMID: 34883395 DOI: 10.1016/j.theriogenology.2021.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Eggshell quality is subject to a significant decline in the late laying period, which results in huge economic losses. The purpose of this study was to investigate the effects of dietary mulberry-leaf flavonoids (MF) on the eggshell quality of aged breeder hens. A total of 270 (60-week-old) Qiling breeder hens were randomly assigned to 3 treatments with supplemental dietary MF doses (0, 30, and 60 mg/kg). The results showed that dietary MF improved the eggshell thickness and strength, following the reduced broken egg ratio (P < 0.05). Histological analysis showed that dietary MF increased glandular density and luminal epithelium height in the shell gland (P < 0.05). MF treatment reduced the apoptotic index of the shell gland, following by improved antioxidant capacity (P < 0.05). The protein expression of Caspase 3 was down-regulated, and Nrf2 was up-regulated by dietary MF (P < 0.05). Furthermore, calcium (Ca) content in the serum and shell gland, as well as the activity of Ca2+-ATPase in the shell gland were increased by dietary MF (P < 0.05). Ca transport-related genes (ESRα, ESRβ, KCNA1, OPN, CABP-28K and CDH6) in the shell gland were upregulated by dietary MF treatment (P < 0.05). In conclusion, dietary MF could ameliorate the eggshell quality of aged hens by improving antioxidative capability and Ca deposition in the shell gland of uterus.
Collapse
Affiliation(s)
- Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanli Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021; 910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer (CC) kills countless people every year throughout the globe. It persists as one of the highly lethal diseases to be treated because the overall survival rate for CC is meagre. Early diagnosis and efficient treatments are two of the biggest hurdles in the fight against cancer. In the present work, we will review thriving strategies for CC targeted drug delivery and critically explain the most recent progressions on emerging novel nanotechnology-based drug delivery systems. Nanotechnology-based animal and human clinical trial studies targeting CC are discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics and effectiveness of anticancer drugs have facilitated the powerful targeting of specific agents for CC therapy. This review provides insight into current progress and future opportunities for nanomedicines as potential curative targets for CC treatment. This information could be used as a platform for the future expansion of multi-functional nano constructs for CC's advanced detection and functional drug delivery.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hashim Abbas
- Queens Medical Center, Nottingham University Hospitals, NHS, Nottingham, UK
| |
Collapse
|
27
|
Fan P, Yang C, Wang L, Wang Q, Zhang Y, Zhou J, Weng J, Feng B. ZnO nanoparticles stimulate oxidative stress to induce apoptosis of B16F10 melanoma cells: In vitroand in vivostudies. Biomed Phys Eng Express 2021; 7. [PMID: 34500439 DOI: 10.1088/2057-1976/ac251f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is one of the most aggressive skin cancers. However, there remain many limitations in the current clinical treatments of it. Zinc oxide nanoparticles (ZnO NPs) have been considered to be a promising antitumor drug due to their excellent biocompatibility, biodegradability and biofunctionality. In this study, we prepared spherical ZnO NPs with an average diameter of less than 10 nm by a simple chemical method. According to thein vitrocytotoxicity assay, ZnO NPs in a certain concentration range (20-35μg ml-1) showed significant cytotoxicity to B16F10 melanoma cells, while having little effect on the viability of 3T3L1 fibroblasts. When cultured with B16F10 melanoma cells, ZnO NPs induced the generation of reactive oxygen and mitochondrial superoxide through the release of Zn2+, leading to oxidative stress in the cells, further reducing the mitochondrial membrane potential and decreasing the number of mitochondrial cristae. Furthermore, damaged mitochondria induced the release of apoptosis factors to promote cell apoptosis. FITC-Annexin V/propidium iodide double staining assay was used to analyze different apoptosis stages of B16F10 cells induced by ZnO NPs. A polymer hydrogel (Gel-F127-ZnO NPs) with Pluronic F127 as the carrier of ZnO NPs was fabricated for evaluating the antitumor effect of ZnO NPsin vivo. Thein vivoexperiment indicated that the tumor recurrence was significantly inhibited in tumor-bearing mice after treated with Gel-F127-ZnO NPs. Conclusively, ZnO NPs showed a strong antitumor effect bothin vitroandin vivo.
Collapse
Affiliation(s)
- Ping Fan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Congling Yang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Li Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Qiling Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Jie Zhou
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jie Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Bo Feng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
28
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
29
|
Adil BH, Aadim KA, Khalaf MA. Synthesis and Spectroscopic Characterization of Platinum Nanoparticles by Plasma Jet Method. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of 2.5[Formula: see text]min/L to prepare the platinum nanoparticles, and spectroscopic study of plasma parameter including, electron temperature, electron density, Debye length and plasma frequency, were computed using spectral analysis techniques. The effect of nanoparticles on natural lymphocytes was studied to calculate cytotoxicity and the greatest proportion was at the concentration of 100% nanoparticle platinum is 37.4%. The study results revealed that cold in the atmosphere is a promising technology when used in the production of nanoparticle materials which can be used for many industrial and medical applications.
Collapse
Affiliation(s)
- Ban H. Adil
- University of Baghdad, College of Science for Woman, Baghdad, Iraq
| | | | - Madyan A. Khalaf
- Department of Physics, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
30
|
van Gelder P, Klaassen P, Taebi B, Walhout B, van Ommen R, van de Poel I, Robaey Z, Asveld L, Balkenende R, Hollmann F, van Kampen EJ, Khakzad N, Krebbers R, de Lange J, Pieters W, Terwel K, Visser E, van der Werff T, Jung D. Safe-by-Design in Engineering: An Overview and Comparative Analysis of Engineering Disciplines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126329. [PMID: 34208018 PMCID: PMC8296130 DOI: 10.3390/ijerph18126329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we provide an overview of how Safe-by-Design is conceived and applied in practice in a large number of engineering disciplines. We discuss the differences, commonalities, and possibilities for mutual learning found in those practices and identify several ways of putting those disciplinary outlooks in perspective. The considered engineering disciplines in the order of historically grown technologies are construction engineering, chemical engineering, aerospace engineering, urban engineering, software engineering, bio-engineering, nano-engineering, and finally cyber space engineering. Each discipline is briefly introduced, the technology at issue is described, the relevant or dominant hazards are examined, the social challenge(s) are observed, and the relevant developments in the field are described. Within each discipline the risk management strategies, the design principles promoting safety or safety awareness, and associated methods or tools are discussed. Possible dilemmas that the designers in the discipline face are highlighted. Each discipline is concluded by discussing the opportunities and bottlenecks in addressing safety. Commonalities and differences between the engineering disciplines are investigated, specifically on the design strategies for which empirical data have been collected. We argue that Safe-by-Design is best considered as a specific elaboration of Responsible Research and Innovation, with an explicit focus on safety in relation to other important values in engineering such as well-being, sustainability, equity, and affordability. Safe-by-Design provides for an intellectual venue where social science and the humanities (SSH) collaborate on technological developments and innovation by helping to proactively incorporate safety considerations into engineering practices, while navigating between the extremes of technological optimism and disproportionate precaution. As such, Safe-by-Design is also a practical tool for policymakers and risk assessors that helps shape governance arrangements for accommodating and incentivizing safety, while fully acknowledging uncertainty.
Collapse
Affiliation(s)
- Pieter van Gelder
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
- Correspondence:
| | - Pim Klaassen
- Athena Institute, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Behnam Taebi
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Bart Walhout
- National Institute for Public Health and the Environment, RIVM, 3720 BA Bilthoven, The Netherlands;
| | - Ruud van Ommen
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Ibo van de Poel
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Zoe Robaey
- Department of Social Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Lotte Asveld
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Ruud Balkenende
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Frank Hollmann
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Erik Jan van Kampen
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Nima Khakzad
- School of Occupational and Public Health, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Robbert Krebbers
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Jos de Lange
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Wolter Pieters
- Faculty of Social Sciences, Radboud University, 6525 XZ Nijmegen, The Netherlands;
| | - Karel Terwel
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Eelco Visser
- Safety and Security Institute, Delft University of Technology, 2600 GA Delft, The Netherlands; (B.T.); (R.v.O.); (I.v.d.P.); (L.A.); (R.B.); (F.H.); (E.J.v.K.); (R.K.); (J.d.L.); (K.T.); (E.V.)
| | - Tiny van der Werff
- Directorate Environmental Safety and Risks, Ministry of Infrastructure and Water Management, 2515 XP The Hague, The Netherlands; (T.v.d.W.); (D.J.)
| | - Dick Jung
- Directorate Environmental Safety and Risks, Ministry of Infrastructure and Water Management, 2515 XP The Hague, The Netherlands; (T.v.d.W.); (D.J.)
| |
Collapse
|
31
|
Mancuso C, Re F, Rivolta I, Elli L, Gnodi E, Beaulieu JF, Barisani D. Dietary Nanoparticles Interact with Gluten Peptides and Alter the Intestinal Homeostasis Increasing the Risk of Celiac Disease. Int J Mol Sci 2021; 22:6102. [PMID: 34198897 PMCID: PMC8201331 DOI: 10.3390/ijms22116102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
The introduction of metallic nanoparticles (mNPs) into the diet is a matter of concern for human health. In particular, their effect on the gastrointestinal tract may potentially lead to the increased passage of gluten peptides and the activation of the immune response. In consequence, dietary mNPs could play a role in the increasing worldwide celiac disease (CeD) incidence. We evaluated the potential synergistic effects that peptic-tryptic-digested gliadin (PT) and the most-used food mNPs may induce on the intestinal mucosa. PT interaction with mNPs and their consequent aggregation was detected by transmission electron microscopy (TEM) analyses and UV-Vis spectra. In vitro experiments on Caco-2 cells proved the synergistic cytotoxic effect of PT and mNPs, as well as alterations in the monolayer integrity and tight junction proteins. Exposure of duodenal biopsies to gliadin plus mNPs triggered cytokine production, but only in CeD biopsies. These results suggest that mNPs used in the food sector may alter intestinal homeostasis, thus representing an additional environmental risk factor for the development of CeD.
Collapse
Affiliation(s)
- Clara Mancuso
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| | - Luca Elli
- Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| |
Collapse
|
32
|
Buhr CR, Eckrich J, Kluenker M, Bruns K, Wiesmann N, Tremel W, Brieger J. Determination of the LD 50 with the chick embryo chorioallantoic membrane (CAM) assay as a promising alternative in nanotoxicological evaluation. Nanotoxicology 2021; 15:690-705. [PMID: 33979554 DOI: 10.1080/17435390.2021.1916635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Toxicity tests in rodents are still considered a controversial topic concerning their ethical justifiability. The chick embryo chorioallantoic membrane (CAM) assay may offer a simple and inexpensive alternative. The CAM assay is easy to perform and has low bureaucratic hurdles. At the same time, the CAM assay allows the application of a broad variety of analytical methods in the field of nanotoxicological research. We evaluated the CAM assay as a methodology for the determination of nanotoxicity. Therefore we calculated the median lethal dose (LD50), performed in vivo microscopy and immunohistochemistry to identify organ-specific accumulation profiles, potential organ damage, and the kinetics of the in vivo circulation of the nanoparticles. Zinc oxide nanoparticles were intravascularly injected on day 10 of the egg development and showed an LD50 of 17.5 µM (1.4 µg/mLeggcontent). In comparison, the LD50 of equivalent amounts of Zn2+ was 4.6 µM (0.6 µg/mLeggcontent). Silica encapsulated ZnO@SiO2 nanoparticles conjugated with fluorescein circulated in the bloodstream for at least 24 h. Particles accumulated mostly in the liver and kidney. In immunohistochemical staining, organ damage was detected only in liver tissue after intravascular injection of zinc oxide nanoparticles in very high concentrations. Zinc oxide nanoparticles showed a different pharmacokinetic profile compared to Zn2+ ions. In conclusion, the CAM assay has proven to be a promising methodology for evaluating nanotoxicity and for the assessment of the in vivo accumulation profiles of nanoparticles. These findings may qualify the methodology for risk assessment of innovative nanotherapeutics in the future.
Collapse
Affiliation(s)
- Christoph Raphael Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin Kluenker
- Department of Chemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kai Bruns
- Department of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Wolfgang Tremel
- Department of Chemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
33
|
Efthimiou I, Kalamaras G, Papavasileiou K, Anastasi-Papathanasi N, Georgiou Y, Dailianis S, Deligiannakis Y, Vlastos D. ZnO, Ag and ZnO-Ag nanoparticles exhibit differential modes of toxic and oxidative action in hemocytes of mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144699. [PMID: 33636791 DOI: 10.1016/j.scitotenv.2020.144699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The present study investigates the cytotoxic and oxidative effects of custom-made nanoparticles (NPs) on hemocytes of Mytilus galloprovincialis, utilizing hemolymph serum (HS) as exposure medium. Specifically, hemocyte lysosomal membrane destabilization (in terms of neutral red retention time assay/NRRT), superoxide anion (O2-), nitric oxide (NO, in terms of nitrites) and lipid peroxidation content (in terms of malondialdehyde/MDA equivalents) were determined in cells treated for 1 h with different concentrations (0.1-50 μg mL-1) of ZnO NPs, Ag NPs and ZnO-Ag NPs, as well as AgNO3 and/or ZnCl2 (bulk ions, respectively). According to the results, Ag NPs were more cytotoxic than ZnO-Ag NPs and/or ZnO NPs, while NRRT values observed in AgNO3 treated cells were lower than those of ZnCl2. Furthermore, high levels of both O2- and MDA were detected in cells treated with Ag NPs, ZnO-Ag NPs, and AgNO3 at concentrations lower than 5 μg mL-1, while high NO generation was observed only in cells treated with 5-25 μg mL-1 of ZnO NPs or ZnCl2. Despite the absence of data, regarding the formation of NP-serum protein corona complexes that could mediate NP surface energy and uptake efficiency, the current study firstly revealed that ZnO NPs, probably via their surface charge, particle agglomeration, and NP Zn+ release could promote an immune-related generation of O2- and NO via the respiratory burst stimulation, a process that is questioned in the case of Ag NPs and/or ZnO-Ag NPs. Moreover, ZnO-Ag NP interaction with biological membranes and their oxidative mode of action seemed to be regulated by the release and the antagonistic/synergistic response of its ionic counterparts (ZnO+ and Ag+), but further studies are needed to elucidate the oxidative mode of action of NP metal ions in complex NP mixtures.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | | | | | | | - Yiannis Georgiou
- Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | | | | | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| |
Collapse
|
34
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
35
|
Shou X, Zhang H, Wu D, Zhong L, Ni D, Kong T, Zhao Y, Zhao Y. Antigen-Presenting Hybrid Colloidal Crystal Clusters for Promoting T cells Expansion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006955. [PMID: 33711196 DOI: 10.1002/smll.202006955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Indexed: 06/12/2023]
Abstract
T cell based-immunotherapy has been a powerful strategy to eradicate tumor cells in clinical trials. Effectively expanding the therapeutic T cells for clinical demand is still a challenge. Here, artificial antigen-presenting scaffolds are created for T cell ex vivo expansion. The antigen-presenting hybrid colloidal crystal clusters (HCCCs) with multiple stimuli are generated by internal encapsulation with prosurvival cytokines and surface decoration with activating antibodies to CD3ε and CD28, respectively. With the large loading capacity endowed by their abundant nanoporous structures, the antigen-presenting HCCCs can constantly release prosurvival cytokine IL-2. It is found that following the direct and multiple stimulations, the antigen-presenting HCCCs can effectively promote the expansion of T cells, which exhibits robust antitumor activity in vitro. Thus, the antigen-presenting HCCCs provide a novel expansion platform for clinical manufacturing of T cells.
Collapse
Affiliation(s)
- Xin Shou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, 530021, China
| | - Dong Ni
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, 530021, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
36
|
Ibrahim ATA, Banaee M, Sureda A. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108942. [PMID: 33220515 DOI: 10.1016/j.cbpc.2020.108942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023]
Abstract
The considerable increment in the use of Nanoparticles in the industry has been recognized as an environmental concern today. Therefore, this study aimed to investigate the toxicity effects of green synthesized cadmium nanoparticles [Cd]NPs using Moringa oleifera leaves extract on multi-biomarkers in Oreochromis niloticus after four weeks of exposure. The results showed that LC50 values of [Cd]NPs for 24, 48, 72 and 96 h were 2.17, 1.75, 1.49 and 1.22 mg l-1, respectively. There was a significant decrease in the number of white and red blood cells, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration value in fish exposed to [Cd]NPs. The mean corpuscular volume and neutrophils were increased. [Cd]NPs exposure to fish has led to cytotoxic and genotoxic changes in the erythrocytes. Significant changes were observed in the cortisol, triiodothyronine, and thyroxine levels of the fish exposed to [Cd]NPs. The activities of aspartate aminotransferase and alanine aminotransferase increased. Glucose, total lipids, urea, and creatinine levels increased in the serum of fish exposed to [Cd]NPs, whereas total protein contents and alkaline phosphatase activity decreased. A significant reduction was observed in glycogen, total antioxidant levels, and superoxide dismutase, catalase and glutathione S-transferase activities of fish exposed to [Cd]NPs. In contrast, the [Cd]NPs exposure resulted in a significant increase in DNA fragmentation percentages, lipid peroxidation, and carbonyl protein levels in different tissues. The results of the present study confirmed that [Cd]NPs has the toxicity potential to cause Cyto-genotoxicity, oxidative damages, changes in the hematological and biochemical changes, and endocrine disruptor in the fish.
Collapse
Affiliation(s)
| | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
37
|
Mahmoud MAM, Yahia D, Abdel-Magiud DS, Darwish MHA, Abd-Elkareem M, Mahmoud UT. Broiler welfare is preserved by long-term low-dose oral exposure to zinc oxide nanoparticles: preliminary study. Nanotoxicology 2021; 15:605-620. [PMID: 33792477 DOI: 10.1080/17435390.2021.1905099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The potential public health risk through utilizing of zinc oxide nanoparticles (ZnO NPs) in food constitutes the major obstacle to the expansion of nanoparticle (NP) in food industry. Liver histology, bone marrow and liver genotoxicity, immunity, and oxidant status were investigated upon long-term ZnO NPs feed supplementation. One hundred and sixty male IR (Indian River) chicks were randomly allocated to one of the four dietary treatments: control, ZnO NPs at 10, 20, or 40 mg/kg for 42 days. This study revealed non-significant hepatic histopathological alterations and DNA damage and the treatment had no influence on body and organ weights, liver enzymes, lipid peroxidation (MDA), IgG, IgM, and interferon gamma (IFN-γ). This study suggests that low-dose (< 40 mg/kg diet) long-term ZnO NPs supplementation to broiler chicks has no observed potential adverse effects on normal histology of the liver, blood physiology, immune system, and DNA damage of liver and bone marrows, which are critical features for validating ZnO NPs for use in food. Further studies are required to evaluate the probable withdrawal period of ZnO NPs before approval as a dietary supplement in broiler or livestock diets.
Collapse
Affiliation(s)
- Manal A M Mahmoud
- Department of Animal Hygiene and Environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa S Abdel-Magiud
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Madeha H A Darwish
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Usama T Mahmoud
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
38
|
Moratin H, Ickrath P, Scherzad A, Meyer TJ, Naczenski S, Hagen R, Hackenberg S. Investigation of the Immune Modulatory Potential of Zinc Oxide Nanoparticles in Human Lymphocytes. NANOMATERIALS 2021; 11:nano11030629. [PMID: 33802496 PMCID: PMC7999554 DOI: 10.3390/nano11030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics. Knowledge of potential immunosuppressive or stimulating effects of NP is indispensable for the safety of consumers as well as patients. In this study, primary human peripheral blood lymphocytes of 9 donors were treated with different sub-cytotoxic concentrations of ZnO-NP for the duration of 1, 2, or 3 days. Flow cytometry was performed to investigate changes in the activation profile and the proportion of T cell subpopulations. ZnO-NP applied in this study did not induce any significant alterations in the examined markers, indicating their lack of impairment in terms of immune modulation. However, physicochemical characteristics exert a major influence on NP-associated bioactivity. To allow a precise simulation of the complex molecular processes of immune modulation, a physiological model including the different components of an immune response is needed.
Collapse
Affiliation(s)
- Helena Moratin
- Correspondence: (H.M.); (P.I.); Tel.: +49-931-201-21323 (H.M.)
| | - Pascal Ickrath
- Correspondence: (H.M.); (P.I.); Tel.: +49-931-201-21323 (H.M.)
| | | | | | | | | | | |
Collapse
|
39
|
Wang M, Li Y, Yang J, Shi R, Xiong L, Sun Q. Effects of food-grade inorganic nanoparticles on the probiotic properties of Lactobacillus plantarum and Lactobacillus fermentum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Ankamwar (NanoBA) B, Yadwade R. A review: non-antibacterial, non-antifungal and non-anticancer properties of nanoparticles the forgotten paradigm. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
The review highlights the need of non-antibacterial, non-antifungal and non-anticancer characters of metal or metal oxide nanoparticles. The usage of nanoparticles as a part of therapeutic measures results in certain unfavourable effects. The nanoparticles can disturb healthy gut microorganisms that may bring about some health damages regarding pathogenic diseases, obesity, and inflammation likewise. Even the nonspecific interactions of nanoparticles with healthy cells and tissues can cause altered expressions of various pro-inflammatory factors and stress related genes. This review indicates and prospect about the demand of nanoparticles with non-antibacterial, non-antifungal and non-anticancer properties. Such nanoparticles will be effective in various remedial and diagnostic purposes.
Collapse
|
41
|
Hu L, Zhong H, He Z. Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity. Colloids Surf B Biointerfaces 2021; 200:111609. [PMID: 33588242 DOI: 10.1016/j.colsurfb.2021.111609] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Fluorescent quantum dots (QDs) have received extensive attention because of their excellent optical properties and wide utilization in biological and biomedical areas. Nonetheless, there have been intense concerns on the cytotoxicity assessment of cadmium-containing QDs due to free cadmium ions release and nano-size effects. This paper reviews the representative synthetic strategies for preparation of cadmium-containing QDs and their applications. Then the toxicity assessments of QDs from cell studies to animal models are discussed, which can aid in improving our understanding of the cytotoxicity of QDs, and the toxicity mechanism is proposed. Several critical physicochemical properties of QDs are discussed and suggestions are provided for optimizing QDs design in view of minimal cytotoxicity. Finally, accurate detection techniques and systematic methodologies for the toxicity assessment of QDs are expected to achieve further breakthroughs in the future, especially in-situ, real-time, and rapid quantitative analysis methods.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
42
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
43
|
Singh P, Singh RK, Kumar R. Journey of ZnO quantum dots from undoped to rare-earth and transition metal-doped and their applications. RSC Adv 2021; 11:2512-2545. [PMID: 35424186 PMCID: PMC8693809 DOI: 10.1039/d0ra08670c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Currently, developments in the field of quantum dots (QDs) have attracted researchers worldwide. A large variety of QDs have been discovered in the few years, which have excellent optoelectronic, antibacterial, magnetic, and other properties. However, ZnO is the single known material that can exist in the quantum state and can hold all the above properties. There is a lot of work going on in this field and we will be shorthanded if we do not accommodate this treasure at one place. This manuscript will prove to be a milestone in this noble cause. Having a tremendous potential, there is a developing enthusiasm toward the application of ZnO QDs in diverse areas. Sol-gel method being the simplest is the widely-favored synthetic method. Synthesis via this method is largely affected by a number of factors such as the reaction temperature, duration of the reaction, type of solvent, pH of the solution, and the precipitating agent. Doping enhances the optical, magnetic, anti-bacterial, anti-microbial, and other properties of ZnO QDs. However, doping elements reside mostly on the surface of the QDs. The presence of doping elements inside the core is still a major challenge for doping techniques. In this review article, we have focused on pure, rare-earth, and transition metal-doped ZnO QD properties, and the various synthetic processes and applications. Quantum confinement effect is present in nearly every aspect of the QDs. The effect of quantum confinement has also been summarized in this manuscript. Furthermore, the doping of rare earth elements and transition metal, synthetic methods for different organic molecule-capped ZnO QDs, mechanisms for reactive oxygen species (ROS) generation, drug delivery system for cancer treatment, and many more application are discussed in this paper.
Collapse
Affiliation(s)
- Pushpendra Singh
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
| | - Rajan Kumar Singh
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
- Department of Chemical Engineering, National Taiwan University Taipei Taiwan ROC
| | - Ranveer Kumar
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
| |
Collapse
|
44
|
Krishnaiah D, Khiari M, Klibet F, Kechrid Z. Oxidative stress toxicity effect of potential metal nanoparticles on human cells. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Liu Y, Li X, Xiao S, Liu X, Chen X, Xia Q, Lei S, Li H, Zhong Z, Xiao K. The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice. Int J Nanomedicine 2020; 15:9499-9514. [PMID: 33281445 PMCID: PMC7709869 DOI: 10.2147/ijn.s276606] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023] Open
Abstract
Background Gold nanoparticles (AuNPs) have shown great promise in various biomedical applications, but their effects on male reproductive function remain to be ascertained. The aim of this study was to investigate the uptake, cytotoxicity and testosterone production inhibition of AuNPs in mouse Leydig cells, as well as their accumulation in the testes of male mice and their effects on male reproductive function. Results AuNPs (5 nm) were able to be internalized into the endosomes/lysosomes of TM3 Leydig cells, induce the formation of autophagosomes, increase the production of reactive oxygen species (ROS), and disrupt the cell cycle in S phase, resulting in concentration-dependent cytotoxicity and DNA damage. Interestingly, AuNPs significantly reduced testosterone production in TM3 cells by inhibiting the expression of 17α-hydroxylase, an important enzyme in androgen synthesis. After repeated intravenous injection, AuNPs gradually accumulated and retained in the testes of male BALB/c mice in a dose-dependent manner. One week after withdrawal, the level of plasma testosterone in the 0.5 mg/kg AuNPs group was significantly reduced compared to that in the PBS control group, accompanied by the decreased expression of 17α-hydroxylase in the testes. In addition, AuNPs treatment significantly increased the rate of epididymal sperm malformation, but without affecting fertility. Conclusion Our results suggest that AuNPs can accumulate in the testes and reduce testosterone production in Leydig cells by down-regulating the expression of 17α-hydroxylase, thus affecting the quality of epididymal sperm.
Collapse
Affiliation(s)
- Ying Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaojie Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuwen Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuanming Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiyue Xia
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihui Zhong
- Laboratory of Non-Human Primate Disease Model Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
46
|
Buhr CR, Wiesmann N, Tanner RC, Brieger J, Eckrich J. The Chorioallantoic Membrane Assay in Nanotoxicological Research-An Alternative for In Vivo Experimentation. NANOMATERIALS 2020; 10:nano10122328. [PMID: 33255445 PMCID: PMC7760845 DOI: 10.3390/nano10122328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation. In this review, we outline several application fields for the CAM assay in the field of nanotoxicology. Furthermore, analytical methods applicable with this model were evaluated in detail. We further discuss ethical, financial, and bureaucratic aspects and benchmark the assay with other established in vivo models such as rodents.
Collapse
Affiliation(s)
- Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Department of Oral and Maxillofacial Surgery, -Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Rachel C. Tanner
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Correspondence: ; Tel.: +49-(0)-6131-17-3354
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| |
Collapse
|
47
|
Aalami AH, Mesgari M, Sahebkar A. Synthesis and Characterization of Green Zinc Oxide Nanoparticles with Antiproliferative Effects through Apoptosis Induction and MicroRNA Modulation in Breast Cancer Cells. Bioinorg Chem Appl 2020; 2020:8817110. [PMID: 33273900 PMCID: PMC7695509 DOI: 10.1155/2020/8817110] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Changes in the expression of microRNAs can affect cancer cells' viability and behavior and the impact on cancer treatment. In this study, the expression of miR-155-5p, miR-203a-3p, and miR-223-3p in the MCF7 cancer cell line was studied when exposed to ZnO nanoparticles synthesized through a green route. Mentioned ZnO-NPs were well characterized by UV-vis spectroscopy, DLS, XRD, FTIR, FE-SEM, EDX, zeta potential, and AFM analyses. Cellular studies were conducted using ZnO-NPs before miRNA investigations including MTT cytotoxicity test against MCF7, MDA-MB-231, and HFF cell lines. Moreover, apoptosis assays were performed using morphological analysis, fluorescent dyes, flow cytometry, and evaluation of caspase-3 and caspase-8 gene expression. Biological properties such as the antioxidant and antimicrobial activity of these novel ZnO-NPs were considered. MTT assays showed that the inhibitory concentration (IC50) of ZnO-NPs after 24 h was 11.16 μg/mL, 60.08 μg/mL, and 26.3 μg/mL on MCF7, MDA-MB-231, and HFF cells, respectively. The qRT-PCR results showed reduced expression of miR-155-5p, miR-203a-3p, and miR-223-3p when the MCF7 cells were treated with the IC50 concentration of ZnO-NPs (11.16 μg/mL). The antioxidant activity results showed EC50 values at 57.19 μg/mL and 31.5 μg/mL in DPPH and ABTS assays, respectively. The antimicrobial activity of ZnO-NPs was determined on Gram-negative and Gram-positive bacterial strains and fungi using MIC and MBC assays. These NPs had a significant effect in reducing the expression of microRNAs in breast cancer cells. Finally, ZnO-NPs exerted antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Rahimi Kalateh Shah Mohammad G, Homayouni-Tabrizi M, Ghahremanloo A, Yazdanbakhsh N. Cytotoxic effect, apoptotic activity, hematological and histological alterations induced by green synthesized ZnO nanoparticles applying Hyssopus officinalis leaves. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1849303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Yazdanbakhsh
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
49
|
Bobrowska-Korczak B, Gątarek P, Skrajnowska D, Bielecki W, Wyrebiak R, Kovalczuk T, Wrzesień R, Kałużna-Czaplińska J. Effect of Zinc Supplementation on the Serum Metabolites Profile at the Early Stage of Breast Cancer in Rats. Nutrients 2020; 12:nu12113457. [PMID: 33187201 PMCID: PMC7696632 DOI: 10.3390/nu12113457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The cytotoxic properties of zinc nanoparticles have been evaluated in vitro against several types of cancer. However, there is a lack of significant evidence of their activity in vivo, and a potential therapeutic application remains limited. Herein we report the effective inhibition of tumor growth by zinc nanoparticles in vivo, as the effect of the dietary intervention, after the chemical induction in a rodent model of breast cancer. Biopsy images indicated grade 1 tumors with multiple inflammatory infiltrates in the group treated with zinc nanoparticles, whereas, in the other groups, a moderately differentiated grade 2 adenocarcinoma was identified. Moreover, after the supplementation with zinc nanoparticles, the levels of several metabolites associated with cancer metabolism, important to its survival, were found to have been altered. We also revealed that the biological activity of zinc in vivo depends on the size of applied particles, as the treatment with zinc microparticles has not had much effect on cancer progression.
Collapse
Affiliation(s)
- Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Stefana Banacha 1, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-225-720-785
| | - Paulina Gątarek
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Stefana Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (J.K.-C.)
| | - Dorota Skrajnowska
- Department of Bromatology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Stefana Banacha 1, 02-097 Warsaw, Poland;
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland;
| | - Rafal Wyrebiak
- Department of Biomaterials Chemistry, Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Stefana Banacha 1, 02-097 Warsaw, Poland;
| | - Tomas Kovalczuk
- LECO Instrumente Plzen, Plaska 66, 323 00 Plzen, Czech Republic;
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Medical University of Warsaw, Stefana Banacha 1a, 02-091 Warsaw, Poland;
| | - Joanna Kałużna-Czaplińska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Stefana Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (J.K.-C.)
| |
Collapse
|
50
|
Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater 2020; 36:1365-1378. [PMID: 32981749 PMCID: PMC7516471 DOI: 10.1016/j.dental.2020.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The number of dental nanomaterials has increased significantly over the past years. A variety of commercial dental nanomaterials are available and researched. Nevertheless, how these nanomaterials work, what makes them special and whether they are superior to traditional dental materials is not always clear to dentists and researchers. The objective of this review paper is, therefore, to give an overview of the principles of nanomaterials and basic research and applications of dental nanomaterials. METHODS The fundamentals of materials science of nanomaterials as well as their advantages and disadvantages are elaborated. The most important dental nanomaterials are discussed. This is mainly based on a survey of the literature and a review of the most frequently cited scientific papers in the international peer reviewed journal Dental Materials over the past five years. The developments of commercial dental nanomaterials as well as aspects of their clinical use are considered in this review. RESULTS Nanomaterials have unique structures and properties that distinguish them from other materials. The journal Dental Materials is the journal with the highest numbers of articles and citations on the subject of dental nanomaterials. The most frequently reported dental nanomaterials are nanocomposites, nanoparticles, antimicrobial nanomaterials and bio-mineralization systems. Hallmarks of dental nanomaterials include a set of unique properties and challenges in the preparation of these materials. SIGNIFICANCE By understanding the physical principles of dental nanomaterials, their strengths, limitations and their specific benefits will be better appreciated. Dental nanomaterials have potential for the future but currently do not always exhibit superior properties, for example in clinical situations.
Collapse
|