1
|
Barrientos-Riosalido A, Bertran L, Vilaró-Blay M, Aguilar C, Martínez S, Paris M, Sabench F, Riesco D, Binetti J, Castillo DD, Richart C, Auguet T. The Role of Olfactomedin 2 in the Adipose Tissue–Liver Axis and Its Implication in Obesity-Associated Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24065221. [PMID: 36982296 PMCID: PMC10049551 DOI: 10.3390/ijms24065221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
This study’s objective was to assess the involvement of olfactomedin 2 (OLFM2), a secreted glycoprotein related to lipid metabolism regulation, in nonalcoholic fatty liver disease (NAFLD) mediated by the adipose-tissue–liver axis. OLFM2 mRNA expression was analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue by RT–qPCR. The cohort included women with normal weight (n = 16) or morbid obesity (MO, n = 60) who were subclassified into normal liver (n = 20), simple steatosis (n = 21), and nonalcoholic steatohepatitis (NASH, n = 19) groups. The results showed that OLFM2 expression in SAT was enhanced in MO individuals and in the presence of NAFLD. Specifically, OLFM2 expression in SAT was increased in mild and moderate degrees of steatosis in comparison to the absence of it. Moreover, OLFM2 expression in SAT was negatively correlated with interleukin-6 levels. On the other hand, OLFM2 expression in VAT decreased in the presence of NASH and exhibited a positive correlation with adiponectin levels. In conclusion, OLFM2 in SAT seems to be implicated in hepatic lipid accumulation. Additionally, since we previously suggested the possible implication of hepatic OLFM2 in NAFLD progression, now we propose a possible interaction between the liver and SAT, reinforcing the potential implication of this tissue in NAFLD development.
Collapse
Affiliation(s)
- Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Mercè Vilaró-Blay
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Marta Paris
- Servei de Cirurgia, Hospital Sant Joan de Reus. Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Fàtima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus. Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - David Riesco
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Jessica Binetti
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus. Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
2
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
3
|
Yang X, Sun NN, Zhao ZN, He SX, Zhang M, Zhang DD, Yu XW, Zhang JM, Fan ZG. Coinheritance of OLFM2 and SIX6 variants in a Chinese family with juvenile-onset primary open-angle glaucoma: A case report. World J Clin Cases 2021; 9:697-706. [PMID: 33553411 PMCID: PMC7829722 DOI: 10.12998/wjcc.v9.i3.697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Juvenile-onset primary open-angle glaucoma (JOAG), characterized by severe elevation of intraocular pressure and optic neuropathy prior to the age of 40, is a rare subtype of primary open-angle glaucoma. Several genetic mutations have been associated with JOAG.
CASE SUMMARY The proband patient was a young male, diagnosed with primary open-angle glaucoma at the age of 27. The patient and his unaffected parents who have been excluded from classic genetic mutations for primary open-angle glaucoma were included to explore for other possible genetic variants through whole genome sequencing and bioinformatics analysis. In this trio, we found two heterozygous variants inherited from the parents in the proband: c.281G>A, p.Arg94His in OLFM2 and c.177C>G, p.Ile59Met in SIX6. Both genetic mutations are predicted through bioinformatics analysis to replace evolutionary conserved amino acids, therefore rendering a pathogenic effect on proteins. In contrast, very low frequencies for these genetic mutations were recorded in most common control databases.
CONCLUSION This is the first report on coinherited mutations of OLFM2 and SIX6 in a JOAG family, which shows the complexity of JOAG inheritance. Large-scale clinical screening and molecular functional investigations on these coinherited mutations are imperative to improve our understanding of the development of JOAG.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Nan-Nan Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhen-Ni Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Shu-Xiang He
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou 510060, Guangdong Province, China
| | - Miao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Dan-Dan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Wei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Jia-Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhi-Gang Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
4
|
Yaylacioglu Tuncay F, Guntekin Ergun S, Oner A, Turan A, Ozmert E, Ergun MA, Ozdek S. Inherited eye diseases in Turkey: Current approaches and future directions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:773-781. [PMID: 32864844 DOI: 10.1002/ajmg.c.31829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
The aim of this review is to reveal Turkey's current status of medical practice in inherited eye diseases and the necessary steps to improve healthcare services and research activities in this area. Since consanguinity rate is high, disease burden is estimated to be high in Turkey. Universal health insurance system, easily accessible medical specialists, increasing genetic test, and counseling opportunities are the key advantages of Turkey's healthcare system. However, specialized clinics for inherited eye diseases, low-vision rehabilitation services, training of ophthalmologists about the recent developments in ocular genetics, and multidisciplinary translational research are the main headlines needed to be focused for better health services and successful research in Turkey.
Collapse
Affiliation(s)
| | - Sezen Guntekin Ergun
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayse Oner
- Ophthalmology Clinic, Acıbadem Atakent Kayseri Hospital, Kayseri, Turkey
| | - Ayse Turan
- Department of Ophthalmology, Yıldırım Beyazıt Faculty of Medicine, Ankara, Turkey
| | - Emin Ozmert
- Department of Ophthalmology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Sengul Ozdek
- Department of Ophthalmology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Oliver JAC, Wright H, Massidda PA, Burmeister LM, Mellersh CS. A variant in OLFML3 is associated with pectinate ligament abnormality and primary closed-angle glaucoma in Border Collies from the United Kingdom. Vet Ophthalmol 2019; 23:25-36. [PMID: 31141290 DOI: 10.1111/vop.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Canine primary closed-angle glaucoma (PCAG) is a complex disease caused by multiple genetic factors. A c.590G>A variant in OLFML3 was recently reported to be a candidate for pectinate ligament abnormality (PLA) and PCAG in the Border Collie. We investigated the association of this variant with PLA and PCAG in Border Collies from the United Kingdom. METHODS The OLFML3 variant was genotyped in 106 Border Collies comprising 90 with normal eyes (controls) and 16 with PLA (n = 11) and/or PCAG (n = 5) (cases). Genotyping was performed in an additional 103 Border Collies to estimate variant frequency within the population. To investigate the association of the variant with disease in other breeds, genotyping was performed in 337 non-Border Collies with PLA and/or PCAG. RESULTS Of the 90 controls, 71 were homozygous for the wild-type allele, two were homozygous for the variant, and 17 were heterozygous. Of the 16 cases, three were homozygous for the wild-type allele, 11 were homozygous for the variant, and two were heterozygous. The association of the variant allele with disease was significant (P = 1.1 x 10-9 ). We estimated the frequency of this variant to be 4.4% within the United Kingdom Border Collie population, and it was not identified in clinically affected dogs of any other breed. CONCLUSIONS This study confirms the association of the OLFML3 variant with PLA and PCAG in Border Collies from the United Kingdom. DNA testing for the variant and selective breeding can reasonably be expected to result in a reduction of PLA and PCAG prevalence in the breed.
Collapse
Affiliation(s)
- James A C Oliver
- Ophthalmology Service, Dick White Referrals, Cambridge, UK.,Canine Genetics Research, Animal Health Trust, Suffolk, UK
| | - Hattie Wright
- Canine Genetics Research, Animal Health Trust, Suffolk, UK
| | | | | | | |
Collapse
|
6
|
Pugh CA, Farrell LL, Carlisle AJ, Bush SJ, Ewing A, Trejo-Reveles V, Matika O, de Kloet A, Walsh C, Bishop SC, Prendergast JGD, Rainger J, Schoenebeck JJ, Summers KM. Arginine to Glutamine Variant in Olfactomedin Like 3 ( OLFML3) Is a Candidate for Severe Goniodysgenesis and Glaucoma in the Border Collie Dog Breed. G3 (BETHESDA, MD.) 2019; 9:943-954. [PMID: 30696701 PMCID: PMC6404605 DOI: 10.1534/g3.118.200944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 12/23/2022]
Abstract
Goniodysgenesis is a developmental abnormality of the anterior chamber of the eye. It is generally considered to be congenital in dogs (Canis lupus familiaris), and has been associated with glaucoma and blindness. Goniodysgenesis and early-onset glaucoma initially emerged in Border Collies in Australia in the late 1990s and have subsequently been found in this breed in Europe and the USA. The objective of the present study was to determine the genetic basis of goniodysgenesis in Border Collies. Clinical diagnosis was based on results of examinations by veterinary ophthalmologists of affected and unaffected dogs from eleven different countries. Genotyping using the Illumina high density canine single nucleotide variant genotyping chip was used to identify a candidate genetic region. There was a highly significant peak of association over chromosome 17, with a p-value of 2 × 10-13 Expression profiles and evolutionary conservation of candidate genes were assessed using public databases. Whole genome sequences of three dogs with glaucoma, three severely affected by goniodysgenesis and three unaffected dogs identified a missense variant in the olfactomedin like 3 (OLFML3) gene in all six affected animals. This was homozygous for the risk allele in all nine cases with glaucoma and 12 of 14 other severely affected animals. Of 67 reportedly unaffected animals, only one was homozygous for this variant (offspring of parents both with goniodysgenesis who were also homozygous for the variant). Analysis of pedigree information was consistent with an autosomal recessive mode of inheritance for severe goniodysgenesis (potentially leading to glaucoma) in this breed. The identification of a candidate genetic region and putative causative variant will aid breeders to reduce the frequency of goniodysgenesis and the risk of glaucoma in the Border Collie population.
Collapse
Affiliation(s)
- Carys A Pugh
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Lindsay L Farrell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Ailsa J Carlisle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Stephen J Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Adam Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Arne de Kloet
- Animal Genetics, 1336 Timberlane Rd, Tallahassee, FL 32312
| | - Caitlin Walsh
- Animal Genetics, 1336 Timberlane Rd, Tallahassee, FL 32312
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Kim M Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| |
Collapse
|
7
|
Hendee KE, Sorokina EA, Muheisen SS, Reis LM, Tyler RC, Markovic V, Cuturilo G, Link BA, Semina EV. PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet 2018; 27:1675-1695. [PMID: 29506241 PMCID: PMC5932568 DOI: 10.1093/hmg/ddy074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
The PITX2 (paired-like homeodomain 2) gene encodes a bicoid-like homeodomain transcription factor linked with several human disorders. The main associated congenital phenotype is Axenfeld-Rieger syndrome, type 1, an autosomal dominant condition characterized by variable defects in the anterior segment of the eye, an increased risk of glaucoma, craniofacial dysmorphism and dental and umbilical anomalies; in addition to this, one report implicated PITX2 in ring dermoid of the cornea and a few others described cardiac phenotypes. We report three novel PITX2 mutations-c.271C > T, p.(Arg91Trp); c.259T > C, p.(Phe87Leu); and c.356delA, p.(Gln119Argfs*36)-identified in independent families with typical Axenfeld-Rieger syndrome characteristics and some unusual features such as corneal guttata, Wolf-Parkinson-White syndrome, and hyperextensibility. To gain further insight into the diverse roles of PITX2/pitx2 in vertebrate development, we generated various genetic lesions in the pitx2 gene via TALEN-mediated genome editing. Affected homozygous zebrafish demonstrated congenital defects consistent with the range of PITX2-associated human phenotypes: abnormal development of the cornea, iris and iridocorneal angle; corneal dermoids; and craniofacial dysmorphism. In addition, via comparison of pitx2M64* and wild-type embryonic ocular transcriptomes we defined molecular changes associated with pitx2 deficiency, thereby implicating processes potentially underlying disease pathology. This analysis identified numerous affected factors including several members of the Wnt pathway and collagen types I and V gene families. These data further support the link between PITX2 and the WNT pathway and suggest a new role in regulation of collagen gene expression during development.
Collapse
Affiliation(s)
- Kathryn E Hendee
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena A Sorokina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa S Muheisen
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Linda M Reis
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebecca C Tyler
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Vujica Markovic
- Faculty of Medicine, University of Belgrade, Serbia
- Clinical Centre of Serbia, University Eye Hospital, Belgrade, Serbia
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Serbia
- Department of Medical Genetics, University Children’s Hospital, Belgrade, Serbia
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Ceroni F, Aguilera-Garcia D, Chassaing N, Bax DA, Blanco-Kelly F, Ramos P, Tarilonte M, Villaverde C, da Silva LRJ, Ballesta-Martínez MJ, Sanchez-Soler MJ, Holt RJ, Cooper-Charles L, Bruty J, Wallis Y, McMullan D, Hoffman J, Bunyan D, Stewart A, Stewart H, Lachlan K, Fryer A, McKay V, Roume J, Dureau P, Saggar A, Griffiths M, Calvas P, Ayuso C, Corton M, Ragge NK. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet 2018; 138:1027-1042. [PMID: 29464339 DOI: 10.1007/s00439-018-1875-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Domingo Aguilera-Garcia
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Dorine Arjanne Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Fiona Blanco-Kelly
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Patricia Ramos
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Maria Tarilonte
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Villaverde
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Luciana Rodrigues Jacy da Silva
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | | | | | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Lisa Cooper-Charles
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Bruty
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Yvonne Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Dominic McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Hoffman
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - David Bunyan
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Alison Stewart
- Sheffield Clinical Genetics Department, Northern General Hospital, Sheffield, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Genetics and Genomic Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alan Fryer
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Victoria McKay
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Joëlle Roume
- Department of Clinical Genetics, Centre de Référence "AnDDI Rares", Poissy Hospital GHU PIFO, Poissy, France
| | - Pascal Dureau
- Fondation Ophtalmologique Adolphe-de-Rothschild, Paris, France
| | - Anand Saggar
- Clinical Genetics Unit, St Georges University of London, London, UK
| | - Michael Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Carmen Ayuso
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Corton
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK.
| |
Collapse
|
9
|
Riera M, Wert A, Nieto I, Pomares E. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns. Mol Genet Genomic Med 2017; 5:709-719. [PMID: 29178648 PMCID: PMC5702572 DOI: 10.1002/mgg3.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Background Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single‐gene analyses failed to identify the molecular cause. Methods A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeqTM Exome technology and the Ion ProtonTM platform. Results A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal‐dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. Conclusion This study highlights that panel‐based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2,PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders.
Collapse
Affiliation(s)
- Marina Riera
- Departament de Genètica, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Ana Wert
- Departament d'Oftalmologia Pediàtrica, Estrabisme i Neuroftalmologia, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Isabel Nieto
- Departament de Còrnia, Cataracta i Cirurgia Refractiva, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Esther Pomares
- Departament de Genètica, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| |
Collapse
|