1
|
de Assis GG, Murawska-Ciałowicz E. Exercise and Weight Management: The Role of Leptin-A Systematic Review and Update of Clinical Data from 2000-2022. J Clin Med 2023; 12:4490. [PMID: 37445524 DOI: 10.3390/jcm12134490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
A well-balanced metabolism means a lower risk for metabolism-related neuropsychiatric disorders. Leptin is a secretory adipokine involved in the central control of appetite that appears to play a role in the etiology of feeding-related disorders. Additionally, the influence of exercise on feeding behaviors potentially modulates the circulation of metabolites that signal through the central nervous system. In this systematic review, we collected the recent clinical evidence on the effect of exercise on leptin concentrations in health individuals published from 2000 to 20 September 2022, according to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA 2020 statement). Six hundred and thirty-eight papers were retrieved and forty-eight papers were included in the qualitative synthesis. Data supports that exercise positively influences appetite via enhancing peripheral and central leptin signaling (reuptake), especially during weight loss. Exercise modulation of leptin signaling through leptin receptors helps to stabilize increases in food intake during periods of negative energy balance, prior to a decrease in the body fat tissue content. At a high intensity, exercise appears to counteract leptin resistance.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Department of Physiology and Pathology, School of Dentistry, UNESP, São Paulo State University, Araraquara 14801-903, Brazil
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| |
Collapse
|
2
|
Kapitanov GI, Chabot JR, Narula J, Roy M, Neubert H, Palandra J, Farrokhi V, Johnson JS, Webster R, Jones HM. A Mechanistic Site-Of-Action Model: A Tool for Informing Right Target, Right Compound, And Right Dose for Therapeutic Antagonistic Antibody Programs. FRONTIERS IN BIOINFORMATICS 2021; 1:731340. [DOI: 10.3389/fbinf.2021.731340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative modeling is increasingly utilized in the drug discovery and development process, from the initial stages of target selection, through clinical studies. The modeling can provide guidance on three major questions–is this the right target, what are the right compound properties, and what is the right dose for moving the best possible candidate forward. In this manuscript, we present a site-of-action modeling framework which we apply to monoclonal antibodies against soluble targets. We give a comprehensive overview of how we construct the model and how we parametrize it and include several examples of how to apply this framework for answering the questions postulated above. The utilities and limitations of this approach are discussed.
Collapse
|
3
|
Sivandzadeh GR, Askari H, Safarpour AR, Ejtehadi F, Raeis-Abdollahi E, Vaez Lari A, Abazari MF, Tarkesh F, Bagheri Lankarani K. COVID-19 infection and liver injury: Clinical features, biomarkers, potential mechanisms, treatment, and management challenges. World J Clin Cases 2021; 9:6178-6200. [PMID: 34434987 PMCID: PMC8362548 DOI: 10.12998/wjcc.v9.i22.6178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
It is hypothesized that liver impairment caused by coronavirus disease 2019 (COVID-19) infection might play a central role in severe clinical presentations. Liver injury is closely associated with severe disease and, even with antiviral drugs, have a poor prognosis in COVID-19 patients. In addition to the common hepatobiliary disorders caused by COVID-19, patients with pre-existing liver diseases demand special considerations during the current pandemic. Thus, it is vital that upon clinical presentation, patients with concurrent pre-existing liver disease associated with metabolic dysfunction and COVID-19 be managed properly to prevent liver failure. Careful monitoring and early detection of liver damage through biomarkers after hospitalization for COVID-19 is underscored in all cases, particularly in those with pre-existing metabolic liver injury. The purpose of this study was to determine most recent evidence regarding causality, potential risk factors, and challenges, therapeutic options, and management of COVID-19 infection in vulnerable patients with pre-existing liver injury. This review aims to highlight the current frontier of COVID-19 infection and liver injury and the direction of liver injury in these patients.
Collapse
Affiliation(s)
- Gholam Reza Sivandzadeh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Fardad Ejtehadi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom 1417613151, Iran
| | - Armaghan Vaez Lari
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135715794, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Firoozeh Tarkesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | | |
Collapse
|
4
|
Effenberger M, Grander C, Grabherr F, Griesmacher A, Ploner T, Hartig F, Bellmann-Weiler R, Joannidis M, Zoller H, Weiss G, Adolph TE, Tilg H. Systemic inflammation as fuel for acute liver injury in COVID-19. Dig Liver Dis 2021; 53:158-165. [PMID: 32873520 PMCID: PMC7416681 DOI: 10.1016/j.dld.2020.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND A cytokine storm conceivably contributes to manifestations of corona virus disease (COVID-19). Inflammatory cytokines such as interleukin-6 (IL-6) cause acute liver injury while serum detectability indicates systemic inflammation. AIMS We explored a link between systemic IL-6, related acute phase proteins and liver injury in hospitalized COVID-19 patients. METHODS 655 patients with suspected COVID-19 were screened in the emergency department at the University Hospital of Innsbruck, Austria, between February and April 2020. 96 patients (∼15%) were hospitalized with COVID-19. 15 patients required intensive-care treatment (ICT). Plasma aminotransferases, alkaline phosphatase, bilirubin, and gamma glutamyl transferase, as well as IL-6, C-reactive protein (CRP), ferritin and lactate dehydrogenase (LDH) were determined by standard clinical assays. RESULTS Of all hospitalized COVID-19 patients, 41 (42%) showed elevated aspartate aminotransferase (AST) concentration. COVID-19 patients with elevated AST exhibited significantly higher IL-6 (p < 0.001), ferritin (p < 0.001), LDH (p < 0.001) and CRP (p < 0.05) serum concentrations compared to patients with normal AST. Liver injury correlated with systemic IL-6 (p < 0.001), CRP (p < 0.001), ferritin (p < 0.001) and LDH (p < 0.001) concentration. In COVID-19 patients requiring ICT, correlations were more pronounced. CONCLUSION Systemic inflammation could be a fuel for hepatic injury in COVID-19.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Thomas Ploner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Frank Hartig
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Disease, Pulmonology & Rheumatology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Michael Joannidis
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Disease, Pulmonology & Rheumatology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Timon Erik Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria.
| |
Collapse
|
5
|
Bumbaca B, Li Z, Shah DK. Pharmacokinetics of protein and peptide conjugates. Drug Metab Pharmacokinet 2019; 34:42-54. [PMID: 30573392 PMCID: PMC6378135 DOI: 10.1016/j.dmpk.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Protein and peptide conjugates have become an important component of therapeutic and diagnostic medicine. These conjugates are primarily designed to improve pharmacokinetics (PK) of those therapeutic or imaging agents, which do not possess optimal disposition characteristics. In this review we have summarized preclinical and clinical PK of diverse protein and peptide conjugates, and have showcased how different conjugation approaches are used to obtain the desired PK. We have classified the conjugates into peptide conjugates, non-targeted protein conjugates, and targeted protein conjugates, and have highlighted diagnostic and therapeutic applications of these conjugates. In general, peptide conjugates demonstrate very short half-life and rapid renal elimination, and they are mainly designed to achieve high contrast ratio for imaging agents or to deliver therapeutic agents at sites not reachable by bulky or non-targeted proteins. Conjugates made from non-targeted proteins like albumin are designed to increase the half-life of rapidly eliminating therapeutic or imaging agents, and improve their delivery to tissues like solid tumors and inflamed joints. Targeted protein conjugates are mainly developed from antibodies, antibody derivatives, or endogenous proteins, and they are designed to improve the contrast ratio of imaging agents or therapeutic index of therapeutic agents, by enhancing their delivery to the site-of-action.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA.
| |
Collapse
|
6
|
Fischer S, Diers S, Bauerfeind R, Czerny CP, Neumann S. Dynamics of salivary immunoglobulin A and serum interleukin 6 levels in newborn calves. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Bertsch T, Triebel J, Bollheimer C, Christ M, Sieber C, Fassbender K, Heppner HJ. C-reactive protein and the acute phase reaction in geriatric patients. Z Gerontol Geriatr 2015; 48:595-600. [DOI: 10.1007/s00391-015-0938-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/07/2015] [Indexed: 12/01/2022]
|
8
|
He XL, Yin HL, Wu J, Zhang K, Liu Y, Yuan T, Rao HL, Li L, Yang G, Zhang XM. A multiple-dose pharmacokinetics of polyethylene glycol recombinant human interleukin-6 (PEG-rhIL-6) in rats. J Zhejiang Univ Sci B 2011; 12:32-9. [PMID: 21194184 PMCID: PMC3017414 DOI: 10.1631/jzus.b1000085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/29/2010] [Indexed: 01/24/2023]
Abstract
Radiation therapy has been widely applied in cancer treatment. However, it often causes thrombocytopenia (deficiency of white blood cells) as an adverse effect. Recombinant human interleukin-6 (rhIL-6) has been found to be a very effective way against this thrombocytopenia, but IL-6 has low stability in blood, which reduces its efficacy. To increases the stability and half-life of rhIL-6, it was modified by polyethylene glycol (PEG). The pharmacokinetics and the tissue distribution of PEG-rhIL-6 labeled with (125)I were examined after subcutaneous injection in rats. The pharmacokinetic pattern of PEG-rhIL-6 was defined with linear-kinetics, and we fitted a one-compartment model with half-lives of 10.44-11.37 h (absorption, t(1/2Ka)) and 19.77-21.53 h (elimination, t(1/2Ke)), and peak concentrations at 20.51-21.96 h (t(peak)) in rats. Half-lives and t(peak) of PEG-rhIL-6 were longer than those of rhIL-6 previously reported. In the present study, for deposition of PEG-rhIL-6 in rats, the tissue distribution examination showed that blood was the major organ involved, rather than liver. However, as to the elimination of PEG-rhIL-6, the major organ was the kidney. The excretion fraction of the injection dose recovered from urine was 23.32% at 192 h after subcutaneous administration. Less than 6% of PEG-rhIL-6 was eliminated via the feces at 192 h. These results indicate that PEG-rhIL-6 is a good candidate drug formulation for patients with cancer.
Collapse
Affiliation(s)
- Xue-ling He
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Hai-lin Yin
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Jiang Wu
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Ke Zhang
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Yan Liu
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Tao Yuan
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Hai-lin Rao
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Liang Li
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Xue-mei Zhang
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| |
Collapse
|
9
|
Nicolini A, Carpi A. Immune manipulation of advanced breast cancer: an interpretative model of the relationship between immune system and tumor cell biology. Med Res Rev 2009; 29:436-71. [PMID: 19105214 DOI: 10.1002/med.20143] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes some recent clinical immunological approaches with cytokines and/or antibodies for therapy of advanced breast cancer. It considers the recent advances in genetics and molecular tumor biology related to impaired immunosurveillance involving cytokines and growth factors to explain clinical results. Evasion of the host immune attack might be induced by the following groups of mechanisms: (a) tumor dependent (genomic instability, HLA class I antigen abnormalities, upregulation of fetal type nonclassical HLA class I molecules, epitope immunodominance, apoptosis inhibition by defective death receptor signaling, apoptosis of activated T cells, tumor cannibalism and constitutive activation of signal transducer, and activator of transcription-3 (Stat 3) and nuclear factor-kappaB (NF-kappaB) signaling); (b) host dependent (CD4+CD25+ regulatory T cells (T reg), CD4+ T cells anergy, Th2 antitumor immunity diversion and myeloid suppressor cells); (c) tumor and host dependent (lack of co-stimulation molecules, immunosuppressive cytokines (vascular endothelial growth factor (VEGF), interleukin (IL)-10, prostaglandin (PG)E2, transforming growth factor (TGF)-beta)). Cytokines and growth factors are involved in virtually all three types of mechanisms. These mechanisms are integrated with the current knowledge of tumor growth and inhibited apoptosis primarily mediated by cytokines and growth factors to propose an interpretation of the relationships among tumor cells, tumor stroma, and tumor-infiltrating lymphocytes. Tumor growth, defective immunorecognition and immunosuppression are the three principal effects considered responsible for immune evasion.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
10
|
Abstract
In recent decades many advances have occurred in the understanding of the role of cytokines in breast cancer. New signalling pathways of interleukin (IL)-1 family, IL-6, IL-11, IL-18, interferons (IFNs) and interferon regulatory factors 1 (IRF-1) and 2 (IRF-2) have been found within tumour microenvironments and in metastatic sites. Some cytokines (IL-1, IL-6, IL-11, TGFbeta) stimulate while others (IL-12, IL-18, IFNs) inhibit breast cancer proliferation and/or invasion. Similarly, high circulating levels of some cytokines seem to be favourable (soluble IL-2R) while others are unfavourable (IL-1beta, IL-6, IL-8, IL-10, IL-18, gp130) prognostic indicators. So far IL-2, IFNalpha, IFNbeta and occasionally IFNgamma, IL-6, IL-12 have been the cytokines used for anti tumour treatment of advanced breast cancer either to induce or increase hormone sensitivity and/or to stimulate cellular immunity. Disappointing results occurred in most trials; however, two long-term pilot studies suggest that IL-2 and IFNbeta, when used appropriately can have a positive effect on clinical benefit and overall survival of patients with minimal residual disease after chemotherapy or with disseminated disease controlled by conventional endocrine therapy.
Collapse
Affiliation(s)
- A Nicolini
- Department of Internal Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | | | | |
Collapse
|
11
|
|
12
|
Eue I. Growth inhibition of human mammary carcinoma by liposomal hexadecylphosphocholine: Participation of activated macrophages in the antitumor mechanism. Int J Cancer 2001; 92:426-33. [PMID: 11291082 DOI: 10.1002/ijc.1201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was undertaken to investigate the antitumor effect of liposomal hexadecylphosphocholine (L-HPC), a synthetic phospholipid encapsulated into multilamellar vesicles (MLV). The effect of these liposomes was tested in an orthotopic nude mouse model using the human mammary carcinomas MDA-MB 435 and 231. The main interest of the investigation was to study whether activated macrophages are substantially involved in the tumor growth inhibition mechanism. The growth of both MDA-MB 435 and 231 tumors in the mammary fat pad was significantly inhibited by a 14-day intraperitoneal therapy with L-HPC. The remaining tumors were shown to be heavily infiltrated with macrophages. In vitro studies of mPEM demonstrated a significant induction of macrophage-mediated tumor cytotoxicity (MMCTX) against the 2 cell lines by L-HPC. The L-HPC-mediated activation mechanism was characterized to be IL-6 and TNFalpha dependent but rather independent of IL-1alpha and nitric oxide (NO). NMA, a specific inhibitor of NO production, did not inhibit L-HPC-induced MMCTX. Furthermore, L-HPC was shown to upregulate the matrixmetalloproteinases MMP-9 and MMP-2 secretion into the supernatant. Considering cytokine release and production of collagenases, the L-HPC-induced macrophage activation cascade is assumed to be comparable with that of classical activators such as lipopolysaccharide (LPS) and interferon (IFN) gamma. As far as NO production is considered, the L-HPC activation mechanism differs from that caused by LPS and IFN gamma.
Collapse
Affiliation(s)
- I Eue
- Institute of Experimental Dermatology, University of Münster, Münster, Germany.
| |
Collapse
|