1
|
Cao C, Wang Y, Wu X, Li Z, Guo J, Sun W. The roles and mechanisms of circular RNAs related to mTOR in cancers. J Clin Lab Anal 2022; 36:e24783. [PMID: 36426933 PMCID: PMC9757007 DOI: 10.1002/jcla.24783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/13/2022] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are stable molecules with covalently closed structures that have an irreplaceable role in the occurrence, progression, and even treatment of plenty of cancers. Mammalian/mechanistic target of rapamycin (mTOR) is a key regulator in cancers and plays several biological functions, such as proliferation, migration, invasion, autophagy, and apoptosis. METHODS All data were collected through PubMed and CNKI, using terms including "circRNA," "mTOR," "caner," "signaling pathway," "biomarker," "diagnosis," "treatment." Articles published in Chinese and English were included. RESULTS In this review, the expression, function, and mechanism of circRNA-associated mTOR in cancers were described. CircRNA-associated-mTOR can regulate the progression and therapy of a variety of cancers in multiple signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mTOR, mitogen-activated protein kinase (MAPK)/mTOR, and AMP-activated protein kinase (AMPK)/mTOR axis. These cancers including esophageal carcinoma (circLPAR3, ciRS-7), gastric cancer (circNRIP1, hsa_circ_0010882, hsa_circ_0000117, hsa_circ_0072309, and circST3GAL6), colorectal cancer (hsa_circ_0000392, hsa_circ_0084927, hsa_circ_0104631, and circFBXW7), liver cancer (circC16orf62, hsa_circ_100338, hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792, hsa_circ_0079299, and hsa_circ_0002130), pancreatic cancer (circ-IARS and circRHOBTB3), renal carcinoma (ciRS-7), bladder cancer (circUBE2K), prostate cancer (circMBOAT2 and circ-ITCH), ovarian cancer (circEEF2, circRAB11FIP1, circMYLK, and circTPCN), endometrial cancer (hsa_circ_0002577 and circWHSC1), lung cancer (circHIPK3, hsa_circ_0001666), thyroid cancer (hsa_circ_0007694 and hsa_circ_0008274), glioma (circGFRA1, circ-MAPK4, circPCMTD1, and hsa_circ_0037251), osteosarcoma (circTCF25), leukemia (circ-PRKDC), and breast cancer (hsa_circ_0000199, circUBAP2, and circWHSC1).
Collapse
Affiliation(s)
- Chunli Cao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- The Affiliated People's HospitalNingbo UniversityNingboChina
| | - Yao Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Xinxin Wu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Zhe Li
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
- Institute of Digestive Diseases of Ningbo UniversityNingboChina
| | - Weiliang Sun
- The Affiliated People's HospitalNingbo UniversityNingboChina
| |
Collapse
|
2
|
Xi SJ, Cai WQ, Wang QQ, Peng XC. Role of circular RNAs in gastrointestinal tumors and drug resistance. World J Clin Cases 2021; 9:10400-10417. [PMID: 35004973 PMCID: PMC8686142 DOI: 10.12998/wjcc.v9.i34.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally. Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes, their clinical success is limited by drug resistance, treatment failure and recurrence of metastatic disease. Therefore, there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies. Circular RNAs (circRNAs) exhibit a covalently closed structure, high stability and biological conservation, and their expression is associated with the occurrence and development of gastrointestinal tumors. Moreover, circRNAs may significantly influence drug resistance of gastrointestinal cancers. In this article, we review the role of circRNAs in the occurrence and development of gastrointestinal cancer, their association with drug resistance, and potential application for early diagnosis, treatment and prognosis in gastrointestinal malignancies. Furthermore, we summarize characteristics of circRNA, including mechanism of formation and biological effects via mRNA sponging, chromatin replication, gene regulation, translational modification, signal transduction, and damage repair. Finally, we discuss whether circRNA-related noninvasive testing may be clinically provided in the future. This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Shi-Jun Xi
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Qin-Qi Wang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
3
|
Liu O, Wang C, Wang S, Hu Y, Gou R, Dong H, Li S, Li X, Lin B. Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer. J Cancer 2021; 12:6835-6850. [PMID: 34659572 PMCID: PMC8517993 DOI: 10.7150/jca.64031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Keratin 80 (KRT80) is a type II epithelial keratin protein that plays an important role in cell differentiation and tumor progression. However, its role and mechanisms in ovarian cancer remain unclear. Methods: The effect of KRT80 on the survival and prognosis of patients with ovarian cancer was determined using immunohistochemistry. Cell lines overexpressing KRT80 and with KRT80 knockdown were established to study its effect on the malignant behavior of ovarian cancer cells. Western blotting was used to detect changes in related molecules, and in the MEK/ERK signal transduction pathway. ChIP assay was used to confirm that ETS1 regulates KRT80 at the transcriptional level. A double luciferase assay was used to confirm the target of miR-206. Results: The expression levels of KRT80 were high in ovarian cancer tissue, and were related to survival and prognosis. KRT80 expression is an independent prognostic factor in patients with ovarian cancer. KRT80 overexpression promotes the proliferation of ovarian cancer cells, the transition from G1 phase to S phase, invasion, and migration. KRT80 overexpression increased the expression of BCL2/BAX, CyclinD1, MMP2, MMP9, and N-cadherin, decreased the expression of E-cadherin, and increased the phosphorylation of MEK and ERK. ETS1 binds to the upstream promoter sequence of KRT80 and regulates KRT80 expression at the transcriptional level. ETS1 is a direct target of miR-206 in ovarian cancer cells. Conclusion: KRT80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer, and KRT80 may have applications as a screening biomarker and potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
4
|
Zhong J, Zhang G, Yao W. Clinicopathologic significance and prognostic value of circRNAs in osteosarcoma: a systematic review and meta-analysis. J Orthop Surg Res 2021; 16:578. [PMID: 34620208 PMCID: PMC8495992 DOI: 10.1186/s13018-021-02568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
Abstract Background Osteosarcoma is the most prevalent malignant osseous sarcoma in children and adolescents, whose prognosis is still relatively poor nowadays. Recent studies have shown the critical function and potential clinical applications of circular RNAs (circRNAs) in osteosarcoma. Our review aimed to perform an updated meta-analysis to explore their clinicopathologic significance and prognostic value. Methods The structured literature was conducted via eight electronic databases and four gray literature sources until 20 Feb 2021 to identify eligible studies. The data was extracted directly from the articles or reconstructed based on Kaplan-Meier curves. The Newcastle-Ottawa Scale (NOS) tool was used to assess study quality. The clinicopathologic significance of circRNAs was measured through odds ratios (ORs) and their 95% confidence intervals (CIs), while the prognostic value was evaluated through hazard ratios (HRs) and their 95% CIs of overall survival (OS) and disease-free survival (DFS). Heterogeneity and publication bias were assessed. Sensitivity analyses were conducted. Subgroup analyses were performed according to study characteristics. An additional analysis was performed to investigate the relation between circ_0002052 and osteosarcoma. Results Fifty-two studies were identified, in which 38 on clinicopathologic features and 36 on survival prognosis were included in quantitative analysis. The overall study quality was moderate with a median NOS score of 5.5 stars (range 3 to 8). For clinicopathologic features, dysregulated circRNAs were related to larger tumor size (OR 2.122, 95%CI 1.418–3.175), advanced clinical stage (OR 2.847, 95%CI 2.059–3.935), and present of metastasis (OR 2.630, 95%CI 1.583–4.371). For chemotherapy, dysregulated circRNAs suggest a better response (OR 0.443, 95%CI 0.231–0.849), but a higher probability of resistance (OR 9.343, 95%CI 5.352–16.309). For survival prognosis, dysregulated circRNAs were significantly correlated with poor OS (HR 2.437, 95%CI 2.224–2.670) and DFS (HR 2.125, 95%CI 1.621–2.786). The results did not show differences among subgroups. Higher circ_0002052 expression showed a relation with poor OS (HR 3.197, 95%CI 2.054–4.976). Conclusions Our review demonstrated that abnormally expressed circRNAs have a relation with advanced clinicopathologic features and better response, but a higher probability of resistance and poor survival prognosis in osteosarcoma patients. However, more studies are encouraged to provide more robust evidence to translate circRNAs into clinical practice. Trial registration PROSPERO ID: CRD42021235031 Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02568-2.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
5
|
Yi X, Liu C. Downregulation of microRNA-605 indicates poor prognosis and promotes the progression of osteosarcoma. Oncol Lett 2020; 20:370. [PMID: 33154768 PMCID: PMC7608056 DOI: 10.3892/ol.2020.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a type of primary bone tumor, which is one of the leading causes of cancer-related death. MicroRNA (miR)-605 has been demonstrated to act as a prognostic biomarker and therapeutic target in various cancers, such as breast cancer and non-small cell lung cancer, but its function in OS remains unclear. The aim of the present study was to investigate the prognostic value of miR-605 in patients with OS by evaluating its expression levels and to explore the biological function of miR-605 in OS progression. For this purpose, tumor tissues and adjacent normal tissues were collected from OS patients, and the expression of miR-605 in the collected tissues and OS MG63, U2OS, HOS, and SAOS-2 cell lines was detected by quantitative real-time PCR. The prognostic value of miR-605 was evaluated by Kaplan-Meier survival curves and Cox regression analysis. The effects of miR-605 on OS cell proliferation, migration and invasion were analyzed by the CCK-8 and transwell assays, respectively. The results of the present study revealed that miR-605 was significantly downregulated in OS tissues compared with adjacent normal tissues, which was associated with the clinical stage and distant metastasis of patients. Additionally, the downregulation of miR-605 predicted the poor prognosis of patients with OS and served as an independent prognostic indicator. The downregulation of miR-605 enhanced cell proliferation, migration, and invasion of OS cells, which suggested that miR-605 may be involved in the progression of OS. The findings of the present study provide a new therapeutic target for the treatment of patients with OS.
Collapse
Affiliation(s)
- Xiuling Yi
- Department of Spinal Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunlei Liu
- Department of Spinal Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
6
|
Liu J, Yang L, Fu Q, Liu S. Emerging Roles and Potential Biological Value of CircRNA in Osteosarcoma. Front Oncol 2020; 10:552236. [PMID: 33251132 PMCID: PMC7673402 DOI: 10.3389/fonc.2020.552236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs that are widely found in eukaryotic cells. They have been found to play a vital biological role in the development of human diseases. At present, circRNAs have been involved in the pathogenesis, diagnosis, and targeted treatment of multiple tumors. This article reviews the research progress of circRNAs in osteosarcoma (OSA) in recent years. The potential connection between circRNAs and OSA cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity or resistance, as well as clinical values, is described in this review. Their categories and functions are generally summarized to facilitate a better understanding of OSA pathogenesis, and findings suggest novel circRNA-based methods may be used to investigate OSA and provide an outlook for viable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV, Wu WKK. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif 2020; 54:e12936. [PMID: 33103338 PMCID: PMC7791175 DOI: 10.1111/cpr.12936] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common primary bone malignancy and is a neoplasm thought to be derived from the bone‐forming mesenchymal stem cells. Aberrant activation of oncogenes and inactivation of tumour suppressor genes by somatic mutations and epigenetic mechanisms play a pivotal pathogenic role in osteosarcoma. Aside from alterations in these protein‐coding genes, it has now been realized that dysregulation of non‐coding RNAs (ncRNAs), including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs) and the recently discovered circular RNAs (circRNAs), is crucial to the initiation and progression of osteosarcoma. CircRNAs are single‐stranded RNAs that form covalently closed loops and function as an important regulatory element of the genome through multiple machineries. Recently, an increasing number of studies suggested that circRNAs also played critical roles in osteosarcoma. This review summarizes recent development and progression in circRNA transcriptome analysis and their functions in the modulation of osteosarcoma progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
8
|
Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett 2020; 490:54-65. [PMID: 32682951 DOI: 10.1016/j.canlet.2020.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in young people. Recently, extracellular vesicles, especially exosomes, have been reported to play an increasingly important role in the development of many types of tumors. In this research, we found that overexpression of transformer 2β (TRA2B) was associated with tumor progression in osteosarcoma, and TRA2B was the target gene of miR-206, which was downregulated in osteosarcoma tissues. Furthermore, we observed that bone marrow mesenchymal stem cell (BMSC)-derived exosomes could carry and transport miR-206 to osteosarcoma cells. Both in vitro and in vivo results showed that BMSC-derived exosomal miR-206 could inhibit the proliferation, migration and invasion of osteosarcoma cells and induce their apoptosis. Taken together, our study demonstrates that BMSC-derived exosomal miR-206 can be transferred into osteosarcoma cells and inhibit tumor progression by targeting TRA2B, which provides new insight into the molecular mechanism of osteosarcoma and highlights the potential of miR-206 and TRA2B as new therapeutic targets.
Collapse
|
9
|
Zheng Q, Zhu Q, Li C, Hao S, Li J, Yu X, Qi D, Pan Y. microRNA-144 functions as a diagnostic and prognostic marker for retinoblastoma. Clinics (Sao Paulo) 2020; 75:e1804. [PMID: 32844953 PMCID: PMC7426600 DOI: 10.6061/clinics/2020/e1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Retinoblastoma (RB) is a highly malignant eye tumor with a low survival rate and a high metastatic rate. The current work was designed to investigate the potential roles of microRNA-144 (miR-144) in the diagnosis and prognosis of RB. METHODS miR-144 expression levels in RB tissues and adjacent normal tissues, as well as serum samples from RB patients and healthy controls were measured. The association between miR-144 expression levels and clinical features were analyzed. Moreover, diagnostic and prognostic values of miR-144 in RB were verified by receiver operating characteristic analysis and Kaplan-Meier survival assays. RESULTS The expression level of miR-144 was markedly decreased in tumor tissues of RB patients, and the expression level of miR-144 was positively associated with tumor size and metastasis in RB patients. Moreover, miR-144 can distinguish tumor tissues from normal tissues with high specificity and sensitivity, and RB patients with lower miR-144 expression have shorter overall and disease-free survival rates than those with higher miR-144 expression. Alternatively, miR-144 also decreased in the serum of RB patients in comparison with healthy subjects, and miR-144 expression levels in the tissue samples and serum were positively correlated. Furthermore, miR-144 levels in the serum of RB patients sensitively distinguished RB patients from healthy controls. CONCLUSIONS miR-144 expression was downregulated in serum and tissue samples of RB patients and may function as a diagnostic and prognostic marker for RB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Pan
- *Corresponding author. E-mail:
| |
Collapse
|