1
|
Chen W, Zhang Q, Zhang Z, Ding Y, Zhang F, Chen G. Exploration of Hub Genes and Immune Cell Infiltration Characteristics Associated With Spinal Cord Injury in Mice. J Inflamm Res 2025; 18:2613-2628. [PMID: 39995825 PMCID: PMC11849547 DOI: 10.2147/jir.s499402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
Background Spinal cord injury (SCI) is a major disabling disease. However, the complex secondary injury mechanisms make the results of treatment unsatisfactory. This study aimed to screen for key biomarkers of SCI and explore immune cell infiltration to identify novel therapeutic targets for improving neurological recovery after the injury. Methods The SCI-associated gene microarray dataset was downloaded from GEO. The differential genes (DEGs) were first screened and analyzed according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for DEGs biological functions and pathways, while the protein-protein interaction (PPI) network was established using STRING. Then, the Hub genes of SCI were mined by WGCNA and LASSO regression analysis. Finally, the level of infiltration of 24 immune cells was analyzed using the CIBERSORT method. Results A total of 522 DEGs were filtered. Enrichment analysis of their biological functions and pathways yielded the most closely related results for inflammatory response, regulation of cytokine production, neutrophil chemotaxis and degranulation, angiogenesis, cell death, TNF signaling pathway, and osteoclast differentiation. Four co-expression modules were obtained using WGCNA. Four Hub genes (2010004M13Rik, Cdkn1c, Nox4, and Gpr101) were obtained by analysis using the LASSO algorithm and validated by qRT-PCR. Finally, the infiltration of M0 and M2 macrophages, T Cells CD4 Follicular, and DC activated was assessed by immune infiltration analysis and was found to be associated with SCI. Conclusion 2010004M13Rik, Cdkn1c, Nox4, and Gpr101 are Hub genes in SCI. Infiltration of M0, M2 macrophages, T Cells CD4 Follicular, and DC activated may also be associated with inflammation and neurological recovery after SCI.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Orthopedics, Chengdu Integrated TCM & Western Medicine Hospital / Chengdu First People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhiwei Zhang
- Department of Orthopedics, Chengdu Integrated TCM & Western Medicine Hospital / Chengdu First People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Yaping Ding
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Guo Chen
- Department of Orthopedics, Chengdu Integrated TCM & Western Medicine Hospital / Chengdu First People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Yadav S, Madhumita RC, Gupta N, Chauhan S, Kusmakar S, Balakrishnan P, Jana M, Puri RD, Phadke SR, Kabra M. Isolated Lateralized Overgrowth - Phenotypic Spectrum and Molecular Alterations. Indian J Pediatr 2024:10.1007/s12098-024-05273-0. [PMID: 39425824 DOI: 10.1007/s12098-024-05273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES To evaluate the molecular aberrations at 11p15.5 locus in thirty-two patients with isolated lateralized overgrowth (ILO). METHODS Among selected 32 cases of ILO, methylation-sensitive multiplex ligation-dependent probe amplification (MS-MLPA) was performed initially followed by short tandem repeats (STR) marker analysis to confirm uniparental disomy (UPD). In those patients with normal MLPA reports, cyclin dependent kinase inhibitor 1C (CDKN1C) gene and whole exome sequencing was performed. RESULTS Molecular analysis by MS-MLPA showed methylation aberrations in 28% (9/32) of patients. Gain of methylation at IC1 imprinting center (H4, H7) and loss of methylation at IC2 (H6, H9) was observed in 2 patients each. Uniparental disomy was observed in 9% cases. Except one, all patients with methylation aberration had more than one limb hypertrophy. Two patients (H22/H29) also had loss of methylation at IC1. Though this molecular alteration is specifically associated with Silver Russel syndrome (SRS), but the affected children did not completely fulfill the diagnostic criteria for SRS. In a recent study, a discrepancy was reported between the diagnosis of Beckwith-Wiedemann syndrome (BWS)/SRS and the molecular findings in the patients. Many times, it is very difficult to differentiate between hemi hypertrophy/hemi hypotrophy. Patients, in whom no aberrations were detected on MS-MLPA, whole exome sequencing (WES) was performed and no pathogenic variant was identified. CONCLUSIONS Thus, ILO may be considered as a mild presentation on the extreme edge of BWS spectrum with methylation aberration and UPD in one third of cases which has implications in follow up.
Collapse
Affiliation(s)
- Sakshi Yadav
- Faith Diagnostic and Fetal Centre, Mohali, India
| | - R C Madhumita
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeepa Chauhan
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Shweta Kusmakar
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna D Puri
- Institute of Genetics & Genomics, Sir Gangaram Hospital, New Delhi, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Stampone E, Bencivenga D, Dassi L, Sarnelli S, Campagnolo L, Lacconi V, Della Ragione F, Borriello A. p57 Kip2 Phosphorylation Modulates Its Localization, Stability, and Interactions. Int J Mol Sci 2024; 25:11176. [PMID: 39456957 PMCID: PMC11508627 DOI: 10.3390/ijms252011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
p57Kip2 is a member of the cyclin-dependent kinase (CDK) Interacting Protein/Kinase Inhibitory Protein (CIP/Kip) family that also includes p21Cip1/WAF1 and p27Kip1. Different from its siblings, few data are available about the p57Kip2 protein, especially in humans. Structurally, p57Kip2 is an intrinsically unstructured protein, a characteristic that confers functional flexibility with multiple transient interactions influencing the metabolism and roles of the protein. Being an IUP, its localization, stability, and binding to functional partners might be strongly modulated by post-translational modifications, especially phosphorylation. In this work, we investigated by two-dimensional analysis the phosphorylation pattern of p57Kip2 in different cellular models, revealing how the human protein appears to be extensively phosphorylated, compared to p21Cip1/WAF1 and p27Kip1. We further observed clear differences in the phosphoisoforms distributed in the cytosolic and nuclear compartments in asynchronous and synchronized cells. Particularly, the unmodified form is detectable only in the nucleus, while the more acidic forms are present in the cytoplasm. Most importantly, we found that the phosphorylation state of p57Kip2 influences the binding with some p57Kip2 partners, such as CDKs, LIMK1 and CRM1. Thus, it is necessary to completely identify the phosphorylated residues of the protein to fully unravel the roles of this CIP/Kip protein, which are still partially identified.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Dassi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Sara Sarnelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| |
Collapse
|
4
|
George AM, Viswanathan A, Best LG, Monahan C, Limmina M, Ganguly A, Kalish JM. Expanded phenotype and cancer risk in patients with Beckwith-Wiedemann spectrum caused by CDKN1C variants. Am J Med Genet A 2024; 194:e63777. [PMID: 38822599 DOI: 10.1002/ajmg.a.63777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
Beckwith-Wiedemann spectrum (BWSp) is caused by genetic and epigenetic alterations on chromosome 11 that regulate cell growth and division. Considering the diverse phenotypic landscape in BWSp, the characterization of the CDKN1C molecular subtype remains relatively limited. Here, we investigate the role of CDKN1C in the broader BWSp phenotype. Notably, patients with CDKN1C variants appear to exhibit a different tumor risk than other BWSp molecular subtypes. We performed a comprehensive literature review using the search term "CDKN1C Beckwith" to identify 113 cases of patients with molecularly confirmed CDKN1C-BWSp. We then assessed the genotype and phenotype in a novel cohort of patients with CDKN1C-BWSp enrolled in the BWS Research Registry. Cardinal and suggestive features were evaluated for all patients reported, and tumor risk was established based on available reports. The most common phenotypes included macroglossia, omphalocele, and ear creases/pits. Tumor types reported from the literature included neuroblastoma, acute lymphocytic leukemia, superficial spreading melanoma, and intratubular germ cell neoplasia. Overall, this study identifies unique features associated with CDKN1C variants in BWSp, enabling more accurate clinical management. The absence of Wilms tumor and hepatoblastoma suggests that screening for these tumors may not be necessary, while the neuroblastoma risk warrants appropriate screening recommendations.
Collapse
Affiliation(s)
- Andrew M George
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Aravind Viswanathan
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lyle G Best
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Caitlin Monahan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Limmina
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Choleva L, Wang P, Liu H, Wood O, Lambertini L, Scott DK, Karakose E, Stewart AF. Structure-Function Analysis of p57KIP2 in the Human Pancreatic Beta Cell Reveals a Bipartite Nuclear Localization Signal. Endocrinology 2023; 165:bqad197. [PMID: 38151968 PMCID: PMC11491829 DOI: 10.1210/endocr/bqad197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Mutations in CDKN1C, encoding p57KIP2, a canonical cell cycle inhibitor, underlie multiple pediatric endocrine syndromes. Despite this central role in disease, little is known about the structure and function of p57KIP2 in the human pancreatic beta cell. Since p57KIP2 is predominantly nuclear in human beta cells, we hypothesized that disease-causing mutations in its nuclear localization sequence (NLS) may correlate with abnormal phenotypes. We prepared RIP1 insulin promoter-driven adenoviruses encoding deletions of multiple disease-associated but unexplored regions of p57KIP2 and performed a comprehensive structure-function analysis of CDKN1C/p57KIP2. Real-time polymerase chain reaction and immunoblot analyses confirmed p57KIP2 overexpression, construct size, and beta cell specificity. By immunocytochemistry, wild-type (WT) p57KIP2 displayed nuclear localization. In contrast, deletion of a putative NLS at amino acids 278-281 failed to access the nucleus. Unexpectedly, we identified a second downstream NLS at amino acids 312-316. Further analysis showed that each individual NLS is required for nuclear localization, but neither alone is sufficient. In summary, p57KIP2 contains a classical bipartite NLS characterized by 2 clusters of positively charged amino acids separated by a proline-rich linker region. Variants in the sequences encoding these 2 NLS sequences account for functional p57KIP2 loss and beta cell expansion seen in human disease.
Collapse
Affiliation(s)
- Lauryn Choleva
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongtao Liu
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olivia Wood
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Li J, Chen LN, He HL. CDKN1C gene mutation causing familial Silver–Russell syndrome: A case report and review of literature. World J Clin Cases 2023; 11:4655-4663. [PMID: 37469742 PMCID: PMC10353515 DOI: 10.12998/wjcc.v11.i19.4655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 1C (CDKN1C) is a cell proliferation inhibitor that regulates the cell cycle and cell growth through G1 cell cycle arrest. CDKN1C mutations can lead to IMAGe syndrome (CDKN1C allele gain-of-function mutations lead to intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenital, and genitourinary malformations). We present a Silver-Russell syndrome (SRS) pedigree that was due to a missense mutation affecting the same amino acid position, 279, in the CDKN1C gene, resulting in the amino acid substitution p.Arg279His (c.836G>A). The affected family members had an SRS phenotype but did not have limb asymmetry or adrenal insufficiency. The amino acid changes in this specific region were located in a narrow functional region that contained mutations previously associated with IMAGe syndrome. In familial SRS patients, the PCNA region of CDKN1C should be analysed. Adrenal insufficiency should be excluded in all patients with functional CDKN1C variants.
CASE SUMMARY We describe the case of an 8-year-old girl who initially presented with short stature. Her height was 91.6 cm, and her weight was 10.2 kg. Physical examination revealed that she had a relatively large head, an inverted triangular face, a protruding forehead, a low ear position, sunken eye sockets, and irregular cracked teeth but no limb asymmetry. Family history: The girl’s mother, great-grandmother, and grandmother’s brother also had a prominent forehead, triangular face, and severely proportional dwarfism but no limb asymmetry or adrenal insufficiency. Exome sequencing of the girl revealed a new heterozygous CDKN1C (NM_000076. 2) c.836G>A mutation, resulting in a variant with a predicted evolutionarily highly conserved arginine substituted by histidine (p.Arg279His). The same causative mutation was found in both the proband’s mother, great-grandmother, and grandmother’s brother, who had similar phenotypes. Thus far, we found an SRS pedigree, which was due to a missense mutation affecting the same amino acid position, 279, in the CDKN1C gene, resulting in the amino acid substitution p.Arg279His (c.836G>A). Although the SRS-related CDKN1C mutation is in the IMAGe-related mutation hotspot region [the proliferating cell nuclear antigen (PCNA) domain], no adrenal insufficiency was reported in this SRS pedigree. The reason may be that the location of the genomic mutation and the type of missense mutation determines the phenotype. The proband was treated with recombinant human growth hormone (rhGH). After 1 year of rhGH treatment, the height standard deviation score of the proband increased by 0.93 standard deviation score, and her growth rate was 8.1 cm/year. No adverse reactions, such as abnormal blood glucose, were found.
CONCLUSION Functional mutations in CDKN1C can lead to familial SRS without limb asymmetry, and some patients may have glucose abnormalities. In familial SRS patients, the PCNA region of CDKN1C should be analysed. Adrenal insufficiency should be excluded in all patients with functional CDKN1C variants.
Collapse
Affiliation(s)
- Jie Li
- Department of Paediatrics, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Li-Na Chen
- Department of Paediatrics, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Hai-Lan He
- Department of Paediatrics, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
7
|
Best LG, Duffy KA, George AM, Ganguly A, Kalish JM. Familial Beckwith-Wiedemann syndrome in a multigenerational family: Forty years of careful phenotyping. Am J Med Genet A 2023; 191:348-356. [PMID: 36322462 DOI: 10.1002/ajmg.a.63026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 01/11/2023]
Abstract
Beckwith-Wiedemann Spectrum (BWSp) is an overgrowth and cancer predisposition disorder characterized by a wide spectrum of phenotypic manifestations including macroglossia, abdominal wall defects, neonatal hypoglycemia, and predisposition to embryonal tumors. In 1981, Best and Hoekstra reported four patients with BWSp in a single family which suggested autosomal dominant inheritance, but standard clinical testing for BWSp was not available during this time. Meticulous phenotyping of this family has occurred over the past 40 years of follow-up with additional family members being identified and samples collected for genetic testing. Genetic testing revealed a pathogenic mutation in CDKN1C, consistent with the most common cause of familial BWSp. CDKN1C mutations account for just 5% of sporadic cases of BWSp. Here, we report the variable presentation of BWSp across the individuals affected by the CDKN1C mutation and other extended family members spanning multiple generations, all examined by the same physician. Additional phenotypes thought to be atypical in patients with BWSp were reported which included cardiac abnormalities. The incidence of tumors was documented in extended family members and included rhabdomyosarcoma, astrocytoma, and thyroid carcinoma, which have previously been reported in patients with BWSp. These observations suggest that in addition to the inheritance of the CDKN1C variant, there are modifying factors in this family driving the phenotypic spectrum observed. Alternative theories are suggested to explain the etiology of clinical variability including diffused mosaicism, anticipation, and the presence of additional variants tracking in the family. This study highlights the necessity of long-term follow-up in patients with BWSp and consideration of individual familial characteristics in the context of phenotype and/or (epi)genotype associations.
Collapse
Affiliation(s)
- Lyle G Best
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrew M George
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Cardoso LCDA, Parra A, Gil CR, Arias P, Gallego N, Romanelli V, Kantaputra PN, Lima L, Llerena Júnior JC, Arberas C, Guillén-Navarro E, Nevado J, Spanish OverGrowth Registry Initiative, Tenorio-Castano J, Lapunzina P. Clinical Spectrum and Tumour Risk Analysis in Patients with Beckwith-Wiedemann Syndrome Due to CDKN1C Pathogenic Variants. Cancers (Basel) 2022; 14:cancers14153807. [PMID: 35954470 PMCID: PMC9367242 DOI: 10.3390/cancers14153807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Beckwith-Wiedemann syndrome spectrum (BWSp) is an overgrowth disorder caused by imprinting or genetic alterations at the 11p15.5 locus. Clinical features include overgrowth, macroglossia, neonatal hypoglycaemia, omphalocele, hemihyperplasia, cleft palate, and increased neoplasm incidence. The most common molecular defect observed is hypomethylation at the imprinting centre 2 (KCNQ1OT1:TSS DMR) in the maternal allele, which accounts for approximately 60% of cases, although CDKN1C pathogenic variants have been reported in 5-10% of patients, with a higher incidence in familial cases. In this study, we examined the clinical and molecular features of all cases of BWSp identified by the Spanish Overgrowth Registry Initiative with pathogenic or likely pathogenic CDKN1C variants, ascertained by Sanger sequencing or next-generation sequencing, with special focus on the neoplasm incidence, given that there is scarce knowledge of this feature in CDKN1C-associated BWSp. In total, we evaluated 21 cases of BWSp with CDKN1C variants; 19 were classified as classical BWS according to the BWSp scoring classification by Brioude et al. One of our patients developed a mediastinal ganglioneuroma. Our study adds evidence that tumour development in patients with BWSp and CDKN1C variants is infrequent, but it is extremely relevant to the patient's follow-up and supports the high heterogeneity of BWSp clinical features associated with CDKN1C variants.
Collapse
Affiliation(s)
- Leila Cabral de Almeida Cardoso
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Parra
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Cristina Ríos Gil
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Pedro Arias
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Natalia Gallego
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | | | - Piranit Nik Kantaputra
- Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Leonardo Lima
- Instituto Fernandes Figueira IFF/FIOCRUZ, Rio de Janeiro 22250-020, Brazil
| | | | - Claudia Arberas
- Hospital de Niños Dr. Ricardo Gutiérrez, Sección Genética Médica Gallo 1330, C1425EFD CABA, Argentina
| | - Encarna Guillén-Navarro
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain
| | - Julián Nevado
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | | | - Jair Tenorio-Castano
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Pablo Lapunzina
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-727-72-17; Fax: +34-91-207-10-40
| |
Collapse
|
9
|
Shin CH, Lim C, Kim HY, Yoo WJ, Cho TJ, Choi IH, Ko JM. Prospective study of epigenetic alterations responsible for isolated hemihyperplasia/hemihypoplasia and their association with leg length discrepancy. Orphanet J Rare Dis 2021; 16:418. [PMID: 34627330 PMCID: PMC8501601 DOI: 10.1186/s13023-021-02042-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Hemihyperplasia and hemihypoplasia result in leg length discrepancy (LLD) by causing skeletal asymmetry. Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS) are opposite growth-affecting disorders caused by opposite epigenetic alterations at the same chromosomal locus, 11p15, to induce hemihyperplasia and hemihypoplasia, respectively. Because of their somatic mosaicism, BWS and SRS show a wide spectrum of clinical phenotypes. We evaluated the underlying epigenetic alterations and potential epigenotype-phenotype correlations, focusing on LLD, in a group of individuals with isolated hemihyperplasia/hemihypoplasia. Results We prospectively collected paired blood-tissue samples from 30 patients with isolated hemihyperplasia/hemihypoplasia who underwent surgery for LLD. Methylation-specific multiplex-ligation-dependent probe amplification assay (MS-MLPA) and bisulfite pyrosequencing for differentially methylated regions 1 and 2 (DMR1 and DMR2) on chromosome 11p15 were performed using the patient samples. Samples from patients showing no abnormalities in MS-MLPA or bisulfite pyrosequencing were analyzed by single nucleotide polymorphism (SNP) microarray and CDKN1C Sanger sequencing. We introduced a metric named as the methylation difference, defined as the difference in DNA methylation levels between DMR1 and DMR2. The correlation between the methylation difference and the predicted LLD at skeletal maturity, calculated using a multiplier method, was evaluated. Predicted LLD was standardized for stature. Ten patients (33%) showed epigenetic alterations in MS-MLPA and bisulfite pyrosequencing. Of these, six and four patients had epigenetic alterations related to BWS and SRS, respectively. The clinical diagnosis of hemihyperplasia/hemihypoplasia was not compatible with the epigenetic alterations in four of these ten patients. No patients showed abnormalities in SNP array or their CDKN1C sequences. The standardized predicted LLD was moderately correlated with the methylation difference using fat tissue (r = 0.53; p = 0.002) and skin tissue (r = 0.50; p = 0.005) in all patients. Conclusions Isolated hemihyperplasia and hemihypoplasia can occur as a spectrum of BWS and SRS. Although the accurate differentiation between isolated hemihyperplasia and isolated hemihypoplasia is important in tumor surveillance planning, it is often difficult to clinically differentiate these two diseases without epigenetic tests. Epigenetic tests may play a role in the prediction of LLD, which would aid in treatment planning. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02042-6.
Collapse
Affiliation(s)
- Chang Ho Shin
- Division of Paediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chaemoon Lim
- Department of Orthopaedic Surgery, Jeju National University Hospital, 15 Aran 13-gil, Jeju, 63241, Republic of Korea
| | - Hwa Young Kim
- Division of Clinical Genetics, Department of Paediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Won Joon Yoo
- Division of Paediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Joon Cho
- Division of Paediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - In Ho Choi
- Division of Paediatric Orthopaedics, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Min Ko
- Division of Clinical Genetics, Department of Paediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
Traisrisilp K, Chankhunaphas W, Sirilert S, Kuwutiyakorn V, Tongsong T. New genetic and clinical evidence associated with fetal Beckwith-Wiedemann syndrome. Prenat Diagn 2021; 41:823-827. [PMID: 33939854 DOI: 10.1002/pd.5956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
Early detection of Beckwith-Wiedemann syndrome (BWS) is very important since it is very useful regarding counseling of parents concerning the risk of developing embryonic tumors, selection of the mode of delivery due to potential adrenal cysts that might bleed during labor, prevention of neonatal hypoglycemia and even options of pregnancy termination in non-viable fetuses. This report describes the prenatal classic sonographic triad of fetal BWS (omphalocele, macrosomia, macroglossia) and other supporting findings (hepatomegaly, adrenal enlargement) as well as additional postnatal evidence. Also, it demonstrates new molecular genetic evidence potentially associated with the disease (the presence of a novel heterozygous c.358G>T variant of the CDKN1C gene). Importantly, we provide new evidence indicating that elevated levels of the four serum biomarkers (alpha-fetoprotein, beta-human gonadotropin, unconjugated estriol, and inhibin-A) in late first or early second trimester might be strongly suggestive of BWS which may facilitate early detection especially in cases of no obvious anomaly. In conclusion, this study emphasizes on early detection of BWS as early as at 14 weeks of gestation, based on the abnormal rise of the four serum biomarkers together with omphalocele. To the best of our knowledge, this is the earliest prenatal detection of BWS ever reported. Finally, we provide new molecular genetic evidence that is, potentially associated with BWS.
Collapse
Affiliation(s)
- Kuntharee Traisrisilp
- Department of Obstetrics and Gynecology, Faculty of Medicine Chiang Mai University, Meaung, Chiang Mai, Thailand
| | - Wisit Chankhunaphas
- Department of Obstetrics and Gynecology, Faculty of Medicine Chiang Mai University, Meaung, Chiang Mai, Thailand
| | - Sirinart Sirilert
- Department of Obstetrics and Gynecology, Faculty of Medicine Chiang Mai University, Meaung, Chiang Mai, Thailand
| | - Varangtip Kuwutiyakorn
- Department of Pediatrics, Faculty of Medicine Chiang Mai University, Meaung, Chiang Mai, Thailand
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine Chiang Mai University, Meaung, Chiang Mai, Thailand
| |
Collapse
|
11
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
12
|
Yasin H, Stowe R, Wong CK, Jithesh PV, Zahir FR. First Whole Transcriptome RNAseq on CHD8 Haploinsufficient Patient and Meta-Analyses Across Cellular Models Uncovers Likely Key Pathophysiological Target Genes. Cureus 2020; 12:e11571. [PMID: 33282601 PMCID: PMC7710346 DOI: 10.7759/cureus.11571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In 2019, we confirmed that the haploinsufficiency of CHD8 does indeed cause the novel syndromic neurodevelopmental disease we first discovered a dozen years before. Here, we report the first whole transcriptome RNAseq gene expression profiling for a patient with this new syndrome, as a preliminary exploration of potential pathophysiological mechanisms. We compared our patient transcriptome profile with that of all publicly available RNAseq datasets from human cellular models including neuronal progenitor cells, neurons and organoids. We compared differential gene expression profiles overall and conducted phenotype-informed data filtration based on the characteristic syndrome presentation. We found that concordance among differential gene expression profiles was poor across all datasets. Nevertheless, remarkably, we show that the patient blood differential gene expression profile most resembled that of the neuronal cell model, a finding that encourages further transcriptome profiling using patient blood samples. In addition, our custom phenotype-informed analyses yielded important, differentially expressed syndrome pathophysiology target genes. Finally, we note that genes dysregulated due to CHD8 heterozygous deletion are linked to known neurological as well as oncological pathways.
Collapse
Affiliation(s)
- Heba Yasin
- Life Science, Hamad Bin Khalifa University, Doha, QAT
| | - Robert Stowe
- Psychiatry and Neurology, University of British Columbia, Vancouver, CAN
| | - Chi Kin Wong
- Medical Genetics, University of British Columbia, Vancouver, CAN
| | | | - Farah R Zahir
- Medical Genetics, University of British Columbia, Vancouver, CAN
| |
Collapse
|
13
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Yao Q, Wang L, Mittal R, Yan D, Richmond MT, Denyer S, Requena T, Liu K, Varshney GK, Lu Z, Liu XZ. Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish. Anat Rec (Hoboken) 2019; 303:527-543. [PMID: 31883312 DOI: 10.1002/ar.24331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Analysis of gene expression has the potential to assist in the understanding of multiple cellular processes including proliferation, cell-fate specification, senesence, and activity in both healthy and disease states. Zebrafish model has been increasingly used to understand the process of hearing and the development of the vertebrate auditory system. Within the zebrafish inner ear, there are three otolith organs, each containing a sensory macula of hair cells. The saccular macula is primarily involved in hearing, the utricular macula is primarily involved in balance and the function of the lagenar macula is not completely understood. The goal of this study is to understand the transcriptional differences in the sensory macula associated with different otolith organs with the intention of understanding the genetic mechanisms responsible for the distinct role each organ plays in sensory perception. The sensory maculae of the saccule, utricle, and lagena were dissected out of adult Et(krt4:GFP)sqet4 zebrafish expressing green fluorescent protein in hair cells for transcriptional analysis. The total RNAs of the maculae were isolated and analyzed by RNA GeneChip microarray. Several of the differentially expressed genes are known to be involved in deafness, otolith development and balance. Gene expression among these otolith organs was very well conserved with less than 10% of genes showing differential expression. Data from this study will help to elucidate which genes are involved in hearing and balance. Furthermore, the findings of this study will assist in the development of the zebrafish model for human hearing and balance disorders. Anat Rec, 303:527-543, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Qi Yao
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Biology, University of Miami, Miami, Florida
| | - Lingyu Wang
- Department of Biology, University of Miami, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Steven Denyer
- Department of Biology, University of Miami, Miami, Florida
| | - Teresa Requena
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kaili Liu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Havrilla JM, Pedersen BS, Layer RM, Quinlan AR. A map of constrained coding regions in the human genome. Nat Genet 2018; 51:88-95. [PMID: 30531870 DOI: 10.1038/s41588-018-0294-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Deep catalogs of genetic variation from thousands of humans enable the detection of intraspecies constraint by identifying coding regions with a scarcity of variation. While existing techniques summarize constraint for entire genes, single gene-wide metrics conceal regional constraint variability within each gene. Therefore, we have created a detailed map of constrained coding regions (CCRs) by leveraging variation observed among 123,136 humans from the Genome Aggregation Database. The most constrained CCRs are enriched for pathogenic variants in ClinVar and mutations underlying developmental disorders. CCRs highlight protein domain families under high constraint and suggest unannotated or incomplete protein domains. The highest-percentile CCRs complement existing variant prioritization methods when evaluating de novo mutations in studies of autosomal dominant disease. Finally, we identify highly constrained CCRs within genes lacking known disease associations. This observation suggests that CCRs may identify regions under strong purifying selection that, when mutated, cause severe developmental phenotypes or embryonic lethality.
Collapse
Affiliation(s)
- James M Havrilla
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA. .,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
18
|
MacFarland SP, Duffy KA, Bhatti TR, Bagatell R, Balamuth NJ, Brodeur GM, Ganguly A, Mattei PA, Surrey LF, Balis FM, Kalish JM. Diagnosis of Beckwith-Wiedemann syndrome in children presenting with Wilms tumor. Pediatr Blood Cancer 2018; 65:e27296. [PMID: 29932284 PMCID: PMC6107414 DOI: 10.1002/pbc.27296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a genetic syndrome associated with overgrowth and cancer predisposition, including predisposition to Wilms tumor (WT). Patients with BWS and BWS spectrum are screened from birth to age 7 years for BWS-associated cancers. However, in some cases a BWS-associated cancer may be the first recognized manifestation of the syndrome. We describe 12 patients diagnosed with BWS after presenting with a WT. We discuss the features of BWS in these patients and hypothesize that earlier detection of BWS by attention to its subtler manifestations could lead to earlier detection of children at risk for associated malignancies.
Collapse
Affiliation(s)
| | - Kelly A. Duffy
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, PA 19104
| | - Tricia R. Bhatti
- Department of Pathology and Laboratory Medicine, The Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Rochelle Bagatell
- Division of Oncology, Children’s Hospital of Philadelphia,
Philadelphia, PA 19104,Department of Pediatrics, The Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, 19104
| | - Naomi J. Balamuth
- Division of Oncology, Children’s Hospital of Philadelphia,
Philadelphia, PA 19104,Department of Pediatrics, The Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, 19104
| | - Garrett M. Brodeur
- Division of Oncology, Children’s Hospital of Philadelphia,
Philadelphia, PA 19104,Department of Pediatrics, The Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, 19104
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, 19104
| | - Peter A. Mattei
- Department of Surgery, Children’s Hospital of Philadelphia,
Philadelphia, PA 19104
| | - Lea F. Surrey
- Department of Pathology and Laboratory Medicine, The Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Frank M. Balis
- Division of Oncology, Children’s Hospital of Philadelphia,
Philadelphia, PA 19104,Department of Pediatrics, The Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, 19104
| | - Jennifer M. Kalish
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, PA 19104,Department of Pediatrics, The Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
19
|
Urh K, Kolenc Ž, Hrovat M, Svet L, Dovč P, Kunej T. Molecular Mechanisms of Syndromic Cryptorchidism: Data Synthesis of 50 Studies and Visualization of Gene-Disease Network. Front Endocrinol (Lausanne) 2018; 9:425. [PMID: 30093884 PMCID: PMC6070605 DOI: 10.3389/fendo.2018.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Cryptorchidism is one of the most frequent congenital birth defects in male children and is present in 2-4% of full-term male births. It has several possible health effects including reduced fertility, increased risk for testicular neoplasia, testicular torsion, and psychological consequences. Cryptorchidism is often diagnosed as comorbid; copresent with other diseases. It is also present in clinical picture of several syndromes. However, this field has not been systematically studied. The aim of the present study was to catalog published cases of syndromes which include cryptorchidism in the clinical picture and associated genomic information. Methods: The literature was extracted from Public/Publisher MEDLINE and Web of Science databases, using the keywords including: syndrome, cryptorchidism, undescended testes, loci, and gene. The obtained data was organized in a table according to the previously proposed standardized data format. The results of the study were visually represented using Gephi and karyotype view. Results: Fifty publications had sufficient data for analysis. Literature analysis resulted in 60 genomic loci, associated with 44 syndromes that have cryptorchidism in clinical picture. Genomic loci included 38 protein-coding genes and 22 structural variations containing microdeletions and microduplications. Loci, associated with syndromic cryptorchidism are located on 16 chromosomes. Visualization of retrieved data is presented in a gene-disease network. Conclusions: The study is ongoing and further studies will be needed to develop a complete catalog with the data from upcoming publications. Additional studies will also be needed for revealing of molecular mechanisms associated with syndromic cryptorchidism and revealing complete diseasome network.
Collapse
Affiliation(s)
| | | | | | | | | | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Bedeschi MF, Calvello M, Paganini L, Pezzani L, Baccarin M, Fontana L, Sirchia SM, Guerneri S, Canazza L, Leva E, Colombo L, Lalatta F, Mosca F, Tabano S, Miozzo M. Sequence variants identification at the KCNQ1OT1:TSS differentially Methylated region in isolated omphalocele cases. BMC MEDICAL GENETICS 2017; 18:115. [PMID: 29047350 PMCID: PMC5648441 DOI: 10.1186/s12881-017-0470-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/27/2017] [Indexed: 01/07/2023]
Abstract
Background Omphalocele is a congenital midline ventral body wall defect that can exist as isolated malformation or as part of a syndrome. It can be considered one of the major and most frequent clinical manifestation of Beckwith-Wiedemann Syndrome (BWS) in case of loss of methylation at KCNQ1OT1: Transcription Star Site-Differentially Methylated Region (TSS-DMR) or in presence of CDKN1C mutations. The isolated form of the omphalocele accounts approximately for about the 14% of the total cases and its molecular etiology has never been fully elucidated. Methods Given the tight relationship with BWS, we hypothesized that the isolated form of the omphalocele could belong to the heterogeneous spectrum of the BWS associated features, representing an endophenotype with a clear genetic connection. We therefore investigated genetic and epigenetic changes affecting BWS imprinted locus at 11p15.5 imprinted region, focusing in particular on the KCNQ1OT1:TSS DMR. Results We studied 21 cases of isolated omphalocele detected during pregnancy or at birth and identified the following rare maternally inherited variants: i) the non-coding variant G > A at nucleotide 687 (NR_002728.3) at KCNQ1OT1:TSS-DMR, which alters the methylation pattern of the imprinted allele, in one patient; ii) the deletion c.624-629delGGCCCC at exon 1 of CDKN1C, with unknown clinical significance, in two unrelated cases. Conclusions Taken together, these findings suggest that KCNQ1OT1:TSS-DMR could be a susceptibility locus for the isolated omphalocele. Electronic supplementary material The online version of this article (10.1186/s12881-017-0470-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Mariarosaria Calvello
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Leda Paganini
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Lidia Pezzani
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marco Baccarin
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Silvia M Sirchia
- Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Silvana Guerneri
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorena Canazza
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ernesto Leva
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Colombo
- Neonatal Intensive Care Unit, Department of Clinical Science and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Faustina Lalatta
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Department of Clinical Science and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Tabano
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Corda H, Kummer S, Welters A, Teig N, Klee D, Mayatepek E, Meissner T. Treatment with long-acting lanreotide autogel in early infancy in patients with severe neonatal hyperinsulinism. Orphanet J Rare Dis 2017; 12:108. [PMID: 28576129 PMCID: PMC5455078 DOI: 10.1186/s13023-017-0653-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/12/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Treatment of severe diffuse congenital hyperinsulinism (CHI) without sufficient response to diazoxide is complicated by the lack of approved drugs. Therefore, patients are often hospitalized long-term or have to undergo pancreatic surgery if episodes of severe hypoglycaemia cannot be prevented. A long-acting somatostatin analogue, octreotide, has been reported to be an effective treatment option that prevents severe hypoglycaemia in children with CHI, and its off-label use is common in CHI. However, octreotide requires continuous i.v. or s.c. infusion or multiple daily injections. Here, we report our experiences with the use of a monthly application of a long-acting somatostatin analogue, lanreotide autogel® (LAN-ATG), in early infancy. RESULTS The mean blood glucose concentration within 7 days before the first LAN-ATG administration were compared to 7 days after the first LAN-ATG administration and increased by 0.75 mmol/L (range 0.39-1.19 mmol/L). In the following weeks intravenous glucose infusions, octreotide, and glucagon treatment could be successfully stopped in all patients 3-20 days after the first LAN-ATG injection without substantial worsening of the hypoglycaemia rate. Increased carbohydrate requirements could be normalized with an average reduction in the carbohydrate-intake of 7 g/kg body weight/d (range 1.75-12.8 g/kg body weight/d). Over a total of 52 treatment months, no serious adverse effects occurred. CONCLUSION Long-term LAN-ATG treatment improved blood glucose concentrations, lowered the frequency of hypoglycaemia or allowed for normalization of oral carbohydrate intake in infants with CHI younger than 6 months of age. No severe side effects were observed. LAN-ATG might be an alternative treatment option in infants with severe CHI who lack risk factors for necrotizing enterocolitis and are not responding to current treatment regimens as an alternative to surgery after careful individual evaluation.
Collapse
Affiliation(s)
- Heike Corda
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Alena Welters
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Norbert Teig
- University Children's Hospital, Katholisches Klinikum, Ruhr-Universität Bochum, Bochum, Germany
| | - Dirk Klee
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany
| |
Collapse
|
22
|
Piersigilli F, Auriti C, Mondì V, Francalanci P, Salvatori G, Danhaive O. Decreased CDKN1C Expression in Congenital Alveolar Rhabdomyosarcoma Associated with Beckwith-Wiedemann Syndrome. Indian J Pediatr 2016; 83:1476-1478. [PMID: 27345568 DOI: 10.1007/s12098-016-2187-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
Abstract
The Beckwith-Wiedemann syndrome (BWS) is a genetic disorder characterized by somatic overgrowth and predisposition to embryonal tumors, such as Wilm's tumor, hepatoblastoma, neuroblastoma and rhabdomyosarcoma (RMS). BWS is associated with various genetic alterations: a variety of molecular lesions are described on the chromosome 11p15, affecting gene expression for IGF2, H19, CDKN1C and KCNQ1OT1. Alveolar RMS also recognises characteristic genetic alterations: two types of translocations, t(2,13) or t(1,13), that generate the PAX3-FKHR or PAX7-FKHR fusion proteins. It has been postulated however, that in BWS this kind of tumor occurs without this characteristic chromosomal rearrangement. The authors describe case of a neonate with BWS that presented at birth with cutaneous metastasis due to alveolar RMS. Genetic analysis showed lack of the two characteristic translocations in the tumor tissue, supporting a different oncogenic pathway of alveolar RMS in children with BWS.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Cinzia Auriti
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Vito Mondì
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Guglielmo Salvatori
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Olivier Danhaive
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy.,Department of Pediatrics, University of California, Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
23
|
Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genet 2016; 12:e1006167. [PMID: 27415617 PMCID: PMC4944932 DOI: 10.1371/journal.pgen.1006167] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO) mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs) exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs), in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2. How muscle homeostasis is maintained is not completely elucidated yet. Epigenetic disorders such as Beckwith-Wiedemann syndrome, which causes hypergrowth of skeletal muscles and rhabdomyosarcoma, indicate that epigenetic regulations such as DNA methylation, contribute to this homeostasis control. DNA methylation is mediated by DNA methyltransferases, such as Dnmt3a and Dnmt3b, which are de novo DNA methyltransferases. The role of DNA methylation in somatic stem cells is not completely understood, although it has been shown to be indispensable in differentiation of primordial germ cells and embryonic stem cells. In this report, we investigated the role of Dnmt3a in muscle satellite cells by analyzing Dnmt3a-conditional knockout (cKO) mice in which Dnmt3a loci are deleted utilizing Cre-recombinase driven by Pax7 or Pax3 promoters that are specifically activated in the muscle precursor lineage. The loss of Dnmt3a in cKO mice causes decreased muscle mass and significantly impaired muscle regeneration. Moreover, Dnmt3a loss also results in a striking loss of proliferation of SCs, which is caused by mis-expression of a cyclin-dependent kinase inhibitor, p57Kip2. Therefore, our findings suggest that DNA methylation plays an essential role in muscle homeostasis.
Collapse
|
24
|
Eggermann T, Brioude F, Russo S, Lombardi MP, Bliek J, Maher ER, Larizza L, Prawitt D, Netchine I, Gonzales M, Grønskov K, Tümer Z, Monk D, Mannens M, Chrzanowska K, Walasek MK, Begemann M, Soellner L, Eggermann K, Tenorio J, Nevado J, Moore GE, Mackay DJG, Temple K, Gillessen-Kaesbach G, Ogata T, Weksberg R, Algar E, Lapunzina P. Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes: a challenge for molecular analysis and genetic counseling. Eur J Hum Genet 2016; 24:784-93. [PMID: 26508573 PMCID: PMC4867462 DOI: 10.1038/ejhg.2015.224] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann and Silver-Russell syndromes (BWS/SRS) are two imprinting disorders (IDs) associated with disturbances of the 11p15.5 chromosomal region. In BWS, epimutations and genomic alterations within 11p15.5 are observed in >70% of patients, whereas in SRS they are observed in about 60% of the cases. In addition, 10% of the SRS patients carry a maternal uniparental disomy of chromosome 7 11p15.5. There is an increasing demand for prenatal testing of these disorders owing to family history, indicative prenatal ultrasound findings or aberrations involving chromosomes 7 and 11. The complex molecular findings underlying these disorders are a challenge not only for laboratories offering these tests but also for geneticists counseling affected families. The scope of counseling must consider the range of detectable disturbances and their origin, the lack of precise quantitative knowledge concerning the inheritance and recurrence risks for the epigenetic abnormalities, which are hallmarks of these developmental disorders. In this paper, experts in the field of BWS and SRS, including members of the European network of congenital IDs (EUCID.net; www.imprinting-disorders.eu), put together their experience and work in the field of 11p15.5-associated IDs with a focus on prenatal testing. Altogether, prenatal tests of 160 fetuses (122 referred for BWS, 38 for SRS testing) from 5 centers were analyzed and reviewed. We summarize the current knowledge on BWS and SRS with respect to diagnostic testing, the consequences for prenatal genetic testing and counseling and our cumulative experience in dealing with these disorders.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institut für Humangenetik, RWTH University Aachen, Aachen, Germany
| | - Frédéric Brioude
- INSERM, UMR_S 938, Paris, France
- Sorbonne Universities, UPMC Univ Paris 06, Paris, France
- Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | - Silvia Russo
- Laboratory of Cytogenetics and Molecular Genetics Istituto Auxologico Italiano IRCCS, Milano, Italy
| | - Maria P Lombardi
- Department of Clinical Genetics, Academic Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet Bliek
- Department of Clinical Genetics, Academic Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Lidia Larizza
- Laboratory of Cytogenetics and Molecular Genetics Istituto Auxologico Italiano IRCCS, Milano, Italy
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Irène Netchine
- INSERM, UMR_S 938, Paris, France
- Sorbonne Universities, UPMC Univ Paris 06, Paris, France
- Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | - Marie Gonzales
- Department of Medical Genetics, Armand Trousseau Hospital, AP-HP, Paris, France
- Sorbonne Universitie, UPMC Univ Paris 06, Paris, France
| | - Karen Grønskov
- Clinical Genetic Unit, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Zeynep Tümer
- Clinical Genetic Unit, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Marcel Mannens
- Department of Clinical Genetics, Academic Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Insitute, Warsaw, Poland
| | - Malgorzata K Walasek
- Department of Medical Genetics, The Children's Memorial Health Insitute, Warsaw, Poland
| | | | - Lukas Soellner
- Institut für Humangenetik, RWTH University Aachen, Aachen, Germany
| | - Katja Eggermann
- Institut für Humangenetik, RWTH University Aachen, Aachen, Germany
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Gudrun E Moore
- Fetal Growth and Developmental group, Genetics and Genomic Medicine Programme, UCL-ICH, London, UK
| | - Deborah JG Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampto; Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampto; Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | | | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamastu, Japan
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Algar
- Genetics and Molecular Pathology Laboratory, Monash Health and Hudson Institute, Clayton, Victoria, Australia
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
25
|
Haig D. Maternal-fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0178. [PMID: 26056362 DOI: 10.1098/rstb.2014.0178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antagonistic coevolution between maternal and fetal genes, and between maternally and paternally derived genes may have increased mammalian vulnerability to cancer. Placental trophoblast has evolved to invade maternal tissues and evade structural and immunological constraints on its invasion. These adaptations can be co-opted by cancer in intrasomatic selection. Imprinted genes of maternal and paternal origin favour different degrees of proliferation of particular cell types in which they reside. As a result, the set of genes favouring greater proliferation will be selected to evade controls on cell-cycle progression imposed by the set of genes favouring lesser proliferation. The dynamics of stem cell populations will be a particular focus of this intragenomic conflict. Gene networks that are battlegrounds of intragenomic conflict are expected to be less robust than networks that evolve in the absence of conflict. By these processes, maternal-fetal and intragenomic conflicts may undermine evolved defences against cancer.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Cesario JM, Landin Malt A, Deacon LJ, Sandberg M, Vogt D, Tang Z, Zhao Y, Brown S, Rubenstein JL, Jeong J. Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2. Hum Mol Genet 2015; 24:5024-39. [PMID: 26071365 DOI: 10.1093/hmg/ddv223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57(Kip2) (Cdkn1c), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6(-/-);Lhx8(-/-) mutants. p57(Kip2) has been linked to Beckwith-Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57(Kip2) by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57(Kip2) via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57(Kip2) expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development.
Collapse
Affiliation(s)
- Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Andre Landin Malt
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Lindsay J Deacon
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Magnus Sandberg
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Zuojian Tang
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA and
| | - Yangu Zhao
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA and
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA,
| |
Collapse
|
27
|
Malikova J, Flück CE. Novel insight into etiology, diagnosis and management of primary adrenal insufficiency. Horm Res Paediatr 2015; 82:145-57. [PMID: 25096886 DOI: 10.1159/000363107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
Primary adrenal insufficiency (PAI) is a rare condition in childhood which is either inherited (mostly) or acquired. It is characterized by glucocorticoid and maybe mineralocorticoid deficiency. The most common form in children is 21-hydroxylase deficiency, which belongs to the steroid biosynthetic defects causing PAI. Newer forms of complex defects of steroid biosynthesis are P450 oxidoreductase deficiency and (apparent) cortisone reductase deficiency. Other forms of PAI include metabolic disorders, autoimmune disorders and adrenal dysgenesis, e.g. the IMAGe syndrome, for which the underlying genetic defect has been recently identified. Newer work has also expanded the genetic causes underlying isolated, familial glucocorticoid deficiency (FGD). Mild mutations of CYP11A1 or StAR have been identified in patients with FGD. MCM4 mutations were found in a variant of FGD in an Irish travelling community manifesting with PAI, short stature, microcephaly and recurrent infections. Finally, mutations in genes involved in the detoxification of reactive oxygen species were identified in patients with unsolved FGD. Most mutations were found in the enzyme nicotinamide nucleotide transhydrogenase, which uses the mitochondrial proton pump gradient to produce NADPH. NADPH is essential in maintaining high levels of reduced forms of antioxidant enzymes for the reduction of hydrogen peroxide. Similarly, mutations in the gene for TXNRD2 involved in this system were found in FGD patients, suggesting that the adrenal cortex is particularly susceptible to oxidative stress.
Collapse
Affiliation(s)
- Jana Malikova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
28
|
(Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2015; 24:183-90. [PMID: 25898929 DOI: 10.1038/ejhg.2015.88] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is characterized by cancer predisposition, overgrowth and highly variable association of macroglossia, abdominal wall defects, nephrourological anomalies, nevus flammeus, ear malformations, hypoglycemia, hemihyperplasia, and organomegaly. BWS molecular defects, causing alteration of expression or activity of the genes regulated by two imprinting centres (IC) in the 11p15 chromosomal region, are also heterogeneous. In this paper we define (epi)genotype-phenotype correlations in molecularly confirmed BWS patients. The characteristics of 318 BWS patients with proven molecular defect were compared among the main four molecular subclasses: IC2 loss of methylation (IC2-LoM, n=190), IC1 gain of methylation (IC1-GoM, n=31), chromosome 11p15 paternal uniparental disomy (UPD, n=87), and cyclin-dependent kinase inhibitor 1C gene (CDKN1C) variants (n=10). A characteristic growth pattern was found in each group; neonatal macrosomia was almost constant in IC1-GoM, postnatal overgrowth in IC2-LoM, and hemihyperplasia more common in UPD (P<0.001). Exomphalos was more common in IC2/CDKN1C patients (P<0.001). Renal defects were typical of UPD/IC1 patients, uretheral malformations of IC1-GoM cases (P<0.001). Ear anomalies and nevus flammeus were associated with IC2/CDKN1C genotype (P<0.001). Macroglossia was less common among UPD patients (P<0.001). Wilms' tumor was associated with IC1-GoM or UPD and never observed in IC2-LoM patients (P<0.001). Hepatoblastoma occurred only in UPD cases. Cancer risk was lower in IC2/CDKN1C, intermediate in UPD, and very high in IC1 cases (P=0.009). In conclusion, (epi)genotype-phenotype correlations define four different phenotypic BWS profiles with some degree of clinical overlap. These observations impact clinical care allowing to move toward (epi) genotype-based follow-up and cancer screening.
Collapse
|
29
|
Borges KS, Arboleda VA, Vilain E. Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase. Cell Div 2015; 10:2. [PMID: 25861374 PMCID: PMC4389716 DOI: 10.1186/s13008-015-0008-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
CDKN1C (also known as P57 (kip2) ) is a cyclin-dependent kinase inhibitor that functions as a negative regulator of cell proliferation through G1 phase cell cycle arrest. Recently, our group described gain-of-function mutations in the PCNA-binding site of CDKN1C that result in an undergrowth syndrome called IMAGe Syndrome (Intrauterine Growth Restriction, Metaphyseal dysplasia, Adrenal hypoplasia, and Genital anomalies), with life-threatening consequences. Loss-of-function mutations in CDKN1C have been identified in 5-10% of individuals with Beckwith-Wiedemann syndrome (BWS), an overgrowth disorder with features that are the opposite of IMAGe syndrome. Here, we investigate the effects of IMAGe-associated mutations on protein stability, cell cycle progression and cell proliferation. Mutations in the PCNA-binding site of CDKN1C significantly increase CDKN1C protein stability and prevent cell cycle progression into the S phase. Overexpression of either wild-type or BWS-mutant CDKN1C inhibited cell proliferation. However, the IMAGe-mutant CDKN1C protein decreased cell growth significantly more than both the wild-type or BWS protein. These findings bring new insights into the molecular events underlying IMAGe syndrome.
Collapse
Affiliation(s)
- Kleiton S Borges
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 695 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Genetics, Ribeirão Preto Medical School, University of São, Ribeirão Preto, Av. Bandeirantes 3900, CEP 14049-900 Ribeirão Preto, SP Brazil
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 695 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 695 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, USA ; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
30
|
Milani D, Pezzani L, Tabano S, Miozzo M. Beckwith-Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene. APPLICATION OF CLINICAL GENETICS 2014; 7:169-75. [PMID: 25258553 PMCID: PMC4173641 DOI: 10.2147/tacg.s35474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic imprinting is an epigenetically regulated mechanism leading to parental-origin allele-specific expression. Beckwith-Wiedemann syndrome (BWS) is an imprinting disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codifies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability of the protein, which probably results in a functional gain of growth inhibition properties. In contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with opposite syndromes.
Collapse
Affiliation(s)
- Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - Lidia Pezzani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - Silvia Tabano
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy
| | - Monica Miozzo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy ; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
31
|
let-7 and miR-140 microRNAs coordinately regulate skeletal development. Proc Natl Acad Sci U S A 2013; 110:E3291-300. [PMID: 23940373 DOI: 10.1073/pnas.1302797110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in multiple processes of skeletal development. A global reduction of miRNAs in growth plate chondrocytes results in defects in both proliferation and differentiation; however, specific microRNAs responsible for these defects have not been identified. In this study, we provide evidence that let-7 miRNAs and microRNA-140 (miR-140), among other miRNAs expressed in chondrocytes, play major roles in endochondral bone development. We overexpressed lin-28 homolog A (Lin28a) to inhibit let-7 miRNA biogenesis in growth plate chondrocytes. Lin28a overexpression efficiently and specifically reduced let-7 miRNAs and up-regulated let-7 target genes. However, unlike the previous notion that let-7 miRNAs inhibit proliferation and growth, suppression of let-7 miRNAs via Lin28a overexpression decreased proliferation in growth plate chondrocytes, likely through up-regulation of the let-7 target cell cycle regulators cell division cycle 34 (Cdc34) and E2F transcription factor 5 (E2F5). Deficiency of the chondrocyte-specific miRNA, miR-140, causes a differentiation defect in growth plate chondrocytes. Although either Lin28a overexpression or miR-140 deficiency alone caused only mild growth impairment, mice with both miR-140 deficiency and Lin28a overexpression in chondrocytes showed a dramatic growth defect. Deregulation of distinct processes in the absence of these miRNAs synergistically decreased the proliferating chondrocyte mass; miR-140 deficiency reduced differentiation into proliferating chondrocytes, whereas Lin28a overexpression decreased proliferation per se.
Collapse
|
32
|
Eggermann T, Algar E, Lapunzina P, Mackay D, Maher ER, Mannens M, Netchine I, Prawitt D, Riccio A, Temple IK, Weksberg R. Clinical utility gene card for: Beckwith-Wiedemann Syndrome. Eur J Hum Genet 2013; 22:ejhg2013132. [PMID: 23820480 DOI: 10.1038/ejhg.2013.132] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Thomas Eggermann
- Department of Human Genetics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Elizabeth Algar
- Department of Genetics and Molecular Pathology, Monash Medical Centre, Clayton, Australia
| | - Pablo Lapunzina
- INGEMM, Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCII, Madrid, Spain
| | - Deborah Mackay
- Department of Epigenetics, Faculty of Medicine, University of Southampton, Wessex Regional Genetics Laboratory, Salisbury Health Care Trust, Salisbury, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge Clinical School, Addenbrooke's Hospital Treatment Centre, Cambridge, UK
| | - Marcel Mannens
- Department of Clinical Genetics, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Irène Netchine
- Hôpital Trousseau, INSERM U938, UPMC, Paris 6, Explorations fonctionnelles endocriniennes, Paris, France
| | - Dirk Prawitt
- Centre for Paediatric and Adolescent Medicine, University Medical Centre Mainz, Germany
| | - Andrea Riccio
- Seconda Università degli Studi di Napoli, Institute of Genetics and Biophysics - ABT, Napoli, Italy
| | - I Karen Temple
- Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Rosanna Weksberg
- Department of Paediatrics and Genome Biology Program, Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, Délot EC, Rodriguez-Fernandez IA, Braslavsky D, Bergadá I, Dell’Angelica EC, Nelson SF, Martinez-Agosto JA, Achermann JC, Vilain E. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet 2012; 44:788-92. [PMID: 22634751 PMCID: PMC3386373 DOI: 10.1038/ng.2275] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/17/2012] [Indexed: 12/25/2022]
Abstract
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.
Collapse
Affiliation(s)
- Valerie A. Arboleda
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Rahul Parnaik
- Developmental Endocrinology Research Group, Clinical & Molecular Genetics Unit, University College London, Institute of Child Health, London UK
| | - Alice Fleming
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Abhik Banerjee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Bruno Ferraz-de-Souza
- Developmental Endocrinology Research Group, Clinical & Molecular Genetics Unit, University College London, Institute of Child Health, London UK
- Department of Endocrinology/LIM-18, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Emmanuèle C. Délot
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | | | - Debora Braslavsky
- Division of Endocrinology, Hospital de Niños “Ricardo Gutierrez”, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Division of Endocrinology, Hospital de Niños “Ricardo Gutierrez”, Buenos Aires, Argentina
| | - Esteban C. Dell’Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Julian A. Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - John C. Achermann
- Developmental Endocrinology Research Group, Clinical & Molecular Genetics Unit, University College London, Institute of Child Health, London UK
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
34
|
Mussa A, Peruzzi L, Chiesa N, De Crescenzo A, Russo S, Melis D, Tarani L, Baldassarre G, Larizza L, Riccio A, Silengo M, Ferrero GB. Nephrological findings and genotype-phenotype correlation in Beckwith-Wiedemann syndrome. Pediatr Nephrol 2012; 27:397-406. [PMID: 22015620 DOI: 10.1007/s00467-011-2009-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 01/16/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS), an overgrowth disorder with several congenital abnormalities, encompasses nephrourological anomalies. The objective of the report is to analyze the latter and related genotype-phenotype correlations. The study was a retrospective review of nephrourological investigations and genotype in 67 BWS patients. Imaging and laboratory studies have been correlated with the molecular anomalies typical of BWS. Thirty-eight (56.7%) patients had a total of 61 nonmalignant nephrourological findings, including nephromegaly (n = 24), collecting system abnormalities (n = 14), cryptorchidism (n = 11), nephrolithiasis (n = 5), cysts (n = 5), and dysplasia (n = 1). Four patients had Wilms' tumor, all associated with renal hyperplasia. Renal findings were almost consistent in the BWS(IC1) group, with nephromegaly in all patients and collecting system abnormalities in half of them. BWS(UPD) and negative patients also had frequent anomalies (63.6% and 61.9% respectively), whereas only 36.0% of BWS(IC2) had renal findings (p = 0.003). Cryptorchidism was associated with abdominal wall defects (p < 0.001) appearing more frequently in BWS(IC2) (p = 0.028). Urinary tract infections were observed in 17.9% of patients, with two resulting in life-threatening sepsis. Hypercalciuria was present in 10% of cases. 55.5% of BWS patients have renal findings. Although variegate, these anomalies disclose a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, Mussa A, Sparago A, Cerrato F, Russo S, Lapi E, Cubellis MV, Kanduri C, Cirillo Silengo M, Riccio A, Ferrero GB. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet 2011; 21:10-25. [PMID: 21920939 PMCID: PMC3235007 DOI: 10.1093/hmg/ddr419] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.
Collapse
Affiliation(s)
- Nicoletta Chiesa
- Dipartimento di Scienze Pediatriche e dell’Adolescenza, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Romanelli V, Meneses HNM, Fernández L, Martínez-Glez V, Gracia-Bouthelier R, F Fraga M, Guillén E, Nevado J, Gean E, Martorell L, Marfil VE, García-Miñaur S, Lapunzina P. Beckwith-Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques. Eur J Hum Genet 2011; 19:416-21. [PMID: 21248736 DOI: 10.1038/ejhg.2010.236] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a phenotypically and genotypically heterogeneous overgrowth syndrome characterized by somatic overgrowth, macroglossia and abdominal wall defects. Other usual findings are hemihyperplasia, embryonal tumours, adrenocortical cytomegaly, ear anomalies, visceromegaly, renal abnormalities, neonatal hypoglycaemia, cleft palate, polydactyly and a positive family history. BWS is a complex, multigenic disorder associated, in up to 90% of patients, with alteration in the expression or function of one or more genes in the 11p15.5 imprinted gene cluster. There are several molecular anomalies associated with BWS and the large proportion of cases, about 85%, is sporadic and karyotypically normal. One of the major categories of BWS molecular alteration (10-20% of cases) is represented by mosaic paternal uniparental disomy (pUPD), namely patients with two paternally derived copies of chromosome 11p15 and no maternal contribution for that. In these patients, in addition to the effects of IGF2 overexpression, a decreased level of the maternally expressed gene CDKN1C may contribute to the BWS phenotype. In this paper, we reviewed a series of nine patients with BWS because of pUPD using several methods with the aim to evaluate the percentage of mosaicism, the methylation status at both loci, the extension of the pUPD at the short arm and the breakpoints of recombination. Fine mapping of mitotic recombination breakpoints by single-nucleotide polymorphism-array in individuals with UPD and fine estimation of epigenetic defects will provide a basis for understanding the aetiology of BWS, allowing more accurate prognostic predictions and facilitating management and surveillance of individuals with this disorder.
Collapse
Affiliation(s)
- Valeria Romanelli
- INGEMM, Instituto de Genética Médica y Molecular, IDIPaz, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|