Published online Jul 20, 2021. doi: 10.5662/wjm.v11.i4.130
Peer-review started: January 29, 2021
First decision: May 6, 2021
Revised: May 11, 2021
Accepted: June 16, 2021
Article in press: June 16, 2021
Published online: July 20, 2021
Processing time: 170 Days and 23.5 Hours
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Core Tip: Revealing the causal-effect relationship between specific dysbiosis features and diseases requires understanding the roles of key bacterial proteins that are involved in dysbiosis. Some bacterial proteins may affect the microbiome by their inherent functions. Others shape the microbiome mainly by eliciting host immune responses. These key proteins warrant attention in future bioinformatic analyses and mechanistic studies.