1
|
Okcay Y, Aykaç Ö, Arslan R, Bektas N. Aripiprazole: The antiallodynic and antihyperalgesic effects in chronic constriction injury-induced neuropathic pain and reserpine-induced fibromyalgia with possible mechanisms. Neuropharmacology 2025; 273:110454. [PMID: 40187638 DOI: 10.1016/j.neuropharm.2025.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Neuropathic pain, caused by peripheral or central nerve damage, and fibromyalgia, a chronic musculoskeletal disorder, require complex treatment approaches. This study evaluated the antiallodynic and antihyperalgesic effects of aripiprazole (1, 5, and 10 mg/kg, i. p.) in rats with chronic constriction injury-induced neuropathic pain and reserpine-induced fibromyalgia in female Sprague-Dawley rats, using electronic von Frey and Hargreaves tests. Dopaminergic, serotonergic, and opioidergic systems' roles were assessed through pre-treatment with sulpiride (50 mg/kg), WAY 100635 (1 mg/kg), and naloxone (1 mg/kg), respectively. The effect of aripiprazole was compared with 30 mg/kg pregabalin in the neuropathic pain model and 30 mg/kg duloxetine in the fibromyalgia model. Aripiprazole demonstrated significant antiallodynic and antihyperalgesic activity in both models. It did not change locomotor activity at a dose of 1 mg/kg but caused a decrease at a dose of 5 mg/kg. Dopamine D2, serotonin 5-HT1A, and opioidergic receptors contributed to aripiprazole's effects at varying levels. This study highlights the potential use of aripiprazole for managing neuropathic pain and fibromyalgia by targeting multiple receptor systems. The findings demonstrate the potential use of aripiprazole alone or as an adjuvant in the treatments of neuropathic pain and fibromyalgia.
Collapse
Affiliation(s)
- Yagmur Okcay
- Department of Pharmacology, University of Health Sciences Gülhane Faculty of Pharmacy, Ankara, Türkiye.
| | - Özlem Aykaç
- Department of Neurology, Eskisehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye.
| | - Rana Arslan
- Department of Pharmacology, Anadolu University Faculty of Pharmacy, Eskişehir, Türkiye.
| | - Nurcan Bektas
- Department of Pharmacology, Anadolu University Faculty of Pharmacy, Eskişehir, Türkiye.
| |
Collapse
|
2
|
Abolghasemi H, Shahani P, Mozafari R, Barikrow N, Yekta BG, Haghparast A. The dopaminergic and opioidergic interactions in the nucleus accumbens in the suppression of pain affect: Exploring their impact on formalin-induced pain in rats. Physiol Behav 2025; 295:114894. [PMID: 40157441 DOI: 10.1016/j.physbeh.2025.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Recent studies suggest that the nucleus accumbens (NAc) may influence the brain's response to pain signals, indicating a role beyond motivation and reward. The study delved into how the D1-like dopamine receptors (D1Rs) and μ-opioid receptors (MOR) interact in the NAc region in the context of formalin-induced pain. Rats received intra-accumbal various doses of morphine as an MOR agonist (5, 10, 25, and 50 mmol/0.5μl) and different doses of SKF38393 as a selective D1Rs agonist (1.5, 3, 6, and 12 mmol/0.5μl) in separate experimental groups, respectively. In the second stage, animals received different doses of SCH23390 as a selective D1Rs antagonist (1.5, 3, 6, and 12 mmol) before an effective dose of SKF38393 (6 mmol) and morphine (10 mmol). The rats were then given naloxone as an MOR antagonist (1.5, 5, and 15 mmol) before being given an effective dose of SKF38393 (6 mmol). In the formalin test, 50 µl formalin (2.5 %) was subcutaneously injected into the rat's hind paw to induce pain behavioral responses. The main findings indicated that the opioidergic and dopaminergic systems in the NAc region interact to create analgesic effects. The injection of morphine and SKF38393 into the NAc resulted in pain-relieving impacts. However, SCH23390 decreased the antinociceptive impacts of SKF38393 and morphine. Similarly, naloxone reduced the analgesic effects of SKF38393. The interactions between D1Rs and MOR can lead to synergistic effects. Therefore, using D1Rs agonists along with morphine can enhance the antinociceptive effect of morphine while reducing its side effects.
Collapse
MESH Headings
- Animals
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Male
- Morphine/pharmacology
- Formaldehyde/toxicity
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Benzazepines/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Dopamine Antagonists/pharmacology
- Analgesics, Opioid/pharmacology
- Pain/drug therapy
- Pain/chemically induced
- Pain/metabolism
- Narcotic Antagonists/pharmacology
- Rats
- Dose-Response Relationship, Drug
- Naloxone/pharmacology
- Dopamine Agonists/pharmacology
- Pain Measurement
- Rats, Wistar
- Disease Models, Animal
Collapse
Affiliation(s)
- Hedie Abolghasemi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Shahani
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nooshin Barikrow
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen Y, Li R, Wei W, Hua K, Zhou Z, Xia B, Chen Z, Liang M, Li J, Wu Y. Effect of Uterine Artery Embolization Therapy on ReHo Values in Brain Regions Related to Pain Perception and Emotion Regulation in Adenomyosis Patients Accompanied by Dysmenorrhea. THE JOURNAL OF PAIN 2025:105445. [PMID: 40393570 DOI: 10.1016/j.jpain.2025.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/20/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
This study investigates changes in regional homogeneity (ReHo) of the brain in patients with adenomyosis accompanied by dysmenorrhea (AMD) before and after uterine artery embolization (UAE) surgery. ReHo is a resting-state functional magnetic resonance imaging (fMRI)-based analysis for assessing the temporal synchronization of local neuronal activity in the brain. This study involved 32 patients with AMD who underwent UAE surgery. Resting-state functional magnetic resonance imaging (fMRI) scans were performed before and after the procedure. A paired t-test analyzed ReHo images to identify significant changes across various brain regions. Each participant underwent relevant laboratory tests and was evaluated using pain and emotional scales. Correlation analyses were subsequently conducted to examine relationships between these clinical features and pre-treatment ReHo values in the identified brain regions. This study found that compared with pre-treatment, ReHo values decreased in the left hippocampus, left caudate nucleus, and left putamen, while increasing in the right paracentral lobule and right cuneus. Particularly, pre-treatment ReHo values in the left hippocampus were positively correlated with scores on the Visual Analog Scale (VAS), Hamilton Anxiety Rating Scale (HAMA), and Hamilton Depression Rating Scale (HAMD), suggesting that the left hippocampus plays an important role in the processing of pain and adverse emotions in AMD. These findings provide evidence for reversible central plasticity following pain relief in AMD, offering new insights into the neurobiological mechanisms of AMD, and may assist in developing more effective treatment strategies. PERSPECTIVE: This study identified significant changes in ReHo in several brain regions of AMD patients before and after treatment with UAE, especially the hippocampus was associated with preoperative pain level and related emotions, demonstrating that reversible central plasticity can occur after dysmenorrhea relief, which may help clinicians to formulate therapeutic strategies.
Collapse
Affiliation(s)
- Yanying Chen
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China
| | - Rujin Li
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Wenjiang Wei
- Department of Interventional Vascular Department, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China
| | - Kelei Hua
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China
| | - Zhihua Zhou
- Department of Neurology, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Bin Xia
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China; Guangdong Medical University, Zhanjiang S24023, PR China
| | - Zichao Chen
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China
| | - Man Liang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China
| | - Jiejing Li
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Yunfan Wu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Shiliugang Rd, Haizhu District, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
4
|
Yoo JJ, Serafin EK, Baccei ML. Effects of perinatal iron deficiency on spinal dorsal horn circuits. THE JOURNAL OF PAIN 2025; 32:105434. [PMID: 40379071 DOI: 10.1016/j.jpain.2025.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Clinical association studies have identified early life iron deficiency (ID) as a risk factor for the development of chronic pain. ID during the perinatal period has long-term consequences for the developing nervous system. Mounting evidence from both clinical and preclinical studies suggests that ID alters pain perception. However, nothing is yet known about how perinatal ID impacts nociceptive circuitry. The present study sought to characterize the effects of ID on the spinal superficial dorsal horn (SDH). Using ex vivo patch clamp electrophysiology in a mouse model of perinatal ID, the excitability of inhibitory and putative excitatory interneurons in the SDH was measured. It was found that early life ID did not significantly change the intrinsic excitability of either interneuron cell type in adolescence or adulthood. The investigation of synaptic inputs onto these two populations revealed that ID modulates spontaneous glutamatergic transmission within the SDH, but did not affect the excitatory drive or balance of synaptic excitation and inhibition. Interestingly, while ID altered the pattern of primary afferent inputs onto presumed glutamatergic interneurons in the mature SDH, the overall efficacy of these synapses was not affected by ID. Collectively, these results suggest that spinal nociceptive circuits are resilient to change following perinatal ID. PERSPECTIVE: This study demonstrates that perinatal iron deficiency (ID) elicits few changes to the intrinsic membrane excitability of superficial dorsal horn neurons or the efficacy of their synaptic inputs. These findings represent a critical first step towards elucidating the effects of ID on nociceptive processing in the central nervous system.
Collapse
Affiliation(s)
- Judy J Yoo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Elizabeth K Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Jas R, Bauer M, Grodner B, Kończak W, Frączek K, Laskowska AK, Milczarek M, Kamysz W, Kleczkowska P. Exploring Nepicastat Activity: Beyond DβH. Int J Mol Sci 2025; 26:4356. [PMID: 40362592 PMCID: PMC12072699 DOI: 10.3390/ijms26094356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Recently, an old drug, disulfiram, has been shown to reduce cocaine intake by inhibiting dopamine beta (β)-hydroxylase. Its effectiveness was also reported in opioid treatment, as disulfiram attenuated morphine-induced tolerance and dependence. A similar mechanism of action was evident in a selective inhibitor of DβH, nepicastat, particularly in the aspect of cocaine-seeking behavior. Hence, the objective of this study was to verify whether or not nepicastat reproduces disulfiram activity in pain reduction. Moreover, determination of its likely biological effects resulting from interactions with targets other than DβH has been given, in particular acetylcholinesterase. As was found, nepicastat was characterized by the absence of desired antinociceptive activity, though its co-administration with morphine resulted in a dose- and time-dependent enhancement of morphine-induced analgesic effect and attenuation of tolerance. Similarly, nepicastat was found to manifest antimicrobial potency against selected bacterial strains, although the effect was found to be weak. Intriguingly, this compound interacted with acetylcholinesterase through inhibition of its activity. These results clearly indicate nepicastat as a potent molecule that exhibits various biological effects. This, in turn, suggests its possible application in pathological conditions that still require effective treatment.
Collapse
Affiliation(s)
- Rafal Jas
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland;
| | - Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Błażej Grodner
- Chair and Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (B.G.); (W.K.)
| | - Weronika Kończak
- Chair and Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (B.G.); (W.K.)
| | - Karolina Frączek
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Anna K. Laskowska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-106 Warsaw, Poland;
| | - Małgorzata Milczarek
- Department of Biomedical Research, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | | |
Collapse
|
6
|
Grignoli N, Livoti S, Greco A, Pironi M, Noseda R, Ceschi A, Garo ML, Gabutti L. The impact of opioid analgesics with concomitant antipsychotic use on pain modulation and management in internal medicine: a cross-sequential study protocol. FRONTIERS IN PAIN RESEARCH 2025; 6:1500422. [PMID: 40264947 PMCID: PMC12011843 DOI: 10.3389/fpain.2025.1500422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Background Acute and chronic pain represents an escalating public health concern, necessitating safer and more effective in-hospital management approaches, including mental health. New treatment combinations involving psycholeptics are rising, but real-world evidence is lacking. Objectives The study's primary objective is to evaluate the impact of combined opioid analgesics and antipsychotics in-hospital medication on pain modulation. The secondary objective is to evaluate pain management. Methods The cross-sequential study designed by this protocol will analyze retrospective data on 5,000 hospital admissions over four years (2019-2023) gathered from Electronic Health Records (EHR) of a multisite hospital in southern Switzerland. Eligible patients are aged 18 or older and hospitalized in an Internal Medicine ward. All patients with documented pain intensity assessment through a Visual Analogue Scale (VAS ≥ 1) will be included. Cross-sectional data on demographic and clinical variables and type of medication (opioid analgesics, antipsychotics, and selected other drugs according to the Anatomical Therapeutic Chemical classification system) will be screened at hospital admission (T1) and discharge (T2). Pain modulation will be assessed by gravity (VAS mean), intensity (VAS peak/extreme value), and pain treatment effectiveness (ΔT2-T1 VAS). Hospitalization paths (short- and long-term readmissions and total length of hospital stays) will be scrutinized as additional longitudinal indices for pain management and excluded from the cross-sectional analysis. A mixed model approach will assess VAS changes from T1 to T2. Logistic regression and regression models for count data will be used for short- and long-term readmission, respectively. Propensity score matching will be used to mitigate selection bias. Discussion This methodological approach combines cross-sectional and longitudinal EHR data gathering in a cross-sequential design. This integration allows for a comprehensive examination of pain modulation and management among internal medicine recipients of concomitant opioids and antipsychotic treatment, spanning both hospitalization and post-discharge periods. By leveraging EHR data, the study protocol ensures reliability and standardization while minimizing missing information. Additionally, the protocol addresses the potential limitations of observational designs. Conclusions This method offers a comprehensive and rigorous approach to investigating pain modulation and management in internal medicine patients receiving combined opioid analgesics and antipsychotics, with potential implications for enhancing clinical practice and healthcare resource utilization.
Collapse
Affiliation(s)
- Nicola Grignoli
- Cantonal Sociopsychiatric Organisation, Public Health Division, Department of Health and Social Care, Repubblica e Cantone Ticino, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Family Medicine Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Simone Livoti
- Cantonal Sociopsychiatric Organisation, Public Health Division, Department of Health and Social Care, Repubblica e Cantone Ticino, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Angela Greco
- Quality and Patient Safety Service, Ente Ospedaliero Cantonale, Locarno, Switzerland
- Faculty of Economics, University of Tor Vergata, Rome, Italy
| | - Michela Pironi
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Roberta Noseda
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessandro Ceschi
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | - Luca Gabutti
- Department of Internal Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Family Medicine Institute, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
7
|
Prakash S, Vadodaria V, Chawda N, Shah CS, Prakash A. Restless head syndrome: A retrospective study. World J Methodol 2025; 15:97171. [PMID: 40115407 PMCID: PMC11525892 DOI: 10.5662/wjm.v15.i1.97171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Restless legs syndrome (RLS) is characterized by an urge to move with an unpleasant sensation in the lower limbs. RLS typically affects the legs. However, it can also affect several other body regions, such as the arms, abdomen, face, neck, head, and genital area. There are only a few reports of the RLS variant affecting the head. AIM To assess the epidemiological, clinical, and other aspects of the RLS variant affecting the head. METHODS We conducted a retrospective study of 17 adult patients (> 18 years) who met the RLS criteria and simultaneously experienced RLS-like symptoms in the head. RESULTS The median age at which symptoms appeared was 41.6 years. Males and females were equally affected (1.1:1). All 17 patients had uncomfortable sensations in the lower legs. Insomnia or disturbed sleep was the most common comorbidity (n = 16, 88.2%). However, headache was the most common presenting or primary symptom (n = 10, 70.5%). Dizziness or an abnormal sensation in the head was the second most common presenting symptom (5 patients, 29.4%). Other presenting features were leg pain, backache, and generalized body pain. All patients responded favorably to dopaminergic medications. CONCLUSION If RLS-related unpleasant sensations and pain are felt in the head, they may be misinterpreted as headache, dizziness, or psychosomatic symptoms. RLS and headaches in a subset of patients may be two phenotypic manifestations of the same disorder.
Collapse
Affiliation(s)
- Sanjay Prakash
- Department of Neurology, Smt. B. K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Varoon Vadodaria
- Department of Neurology, Smt. B. K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Niraj Chawda
- Department of Medicine, Smt. B. K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Chetsi S Shah
- Department of Neurology, Smt. B. K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Anurag Prakash
- Department of Medicine, Parul Institute of Medical Sciences and Research Centre, Parul University Waghodia, Vadodara 391760, India
| |
Collapse
|
8
|
Hao S, Lin S, Tao W, Zhuo M. Cortical Potentiation in Chronic Neuropathic Pain and the Future Treatment. Pharmaceuticals (Basel) 2025; 18:363. [PMID: 40143140 PMCID: PMC11944705 DOI: 10.3390/ph18030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Pain, or the ability to feel pain and express the unpleasantness caused by peripheral injuries, are functions of the central nervous system. From peripheral sensory nerve terminals to certain cortical regions of the brain, activation of related neural networks underlies the sensory process. Recently, our knowledge of pain has been increasing dramatically, due to the advancement of scientific approaches. We no longer see the brain as a random matrix for pain but, rather, we are able to identify the step-by-step selective signaling proteins, neurons, and networks that preferentially contribute to the process of chronic pain and its related negative emotions, like anxiety and fear. However, there is still lacking the selective and effective drugs and methods for the treatment of chronic pain clinically. While first-line drugs for acute pain and mental diseases are also applied for the clinical management of chronic pain, their prolonged usage always causes serious side effects. In this short review, we will update and summarize the recent progress in this field and mainly focus on the roles of neural networks and synaptic mechanisms in chronic neuropathic pain. Furthermore, potential drug targets (such as plasticity-related signaling molecules, ionic channels, cytokines, and neuropeptides) and methods for the management of chronic neuropathic pain will be discussed as well. We hope this review can provide new, valuable insight into the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Shun Hao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; (S.H.); (W.T.)
| | - Shen Lin
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China;
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; (S.H.); (W.T.)
| | - Min Zhuo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; (S.H.); (W.T.)
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Chen Y, Bajpai AK, Li N, Xiang J, Wang A, Gu Q, Ruan J, Zhang R, Chen G, Lu L. Discovery of Novel Pain Regulators Through Integration of Cross-Species High-Throughput Data. CNS Neurosci Ther 2025; 31:e70255. [PMID: 39924344 PMCID: PMC11807727 DOI: 10.1111/cns.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
AIMS Chronic pain is an impeding condition that affects day-to-day life and poses a substantial economic burden, surpassing many other health conditions. This study employs a cross-species integrated approach to uncover novel pain mediators/regulators. METHODS We used weighted gene coexpression network analysis to identify pain-enriched gene module. Functional analysis and protein-protein interaction (PPI) network analysis of the module genes were conducted. RNA sequencing compared pain model and control mice. PheWAS was performed to link genes to pain-related GWAS traits. Finally, candidates were prioritized based on node degree, differential expression, GWAS associations, and phenotype correlations. RESULTS A gene module significantly over-enriched with the pain reference set was identified (referred to as "pain module"). Analysis revealed 141 pain module genes interacting with 46 pain reference genes in the PPI network, which included 88 differentially expressed genes. PheWAS analysis linked 53 of these genes to pain-related GWAS traits. Expression correlation analysis identified Vdac1, Add2, Syt2, and Syt4 as significantly correlated with pain phenotypes across eight brain regions. NCAM1, VAMP2, SYT2, ADD2, and KCND3 were identified as top pain response/regulator genes. CONCLUSION The identified genes and molecular mechanisms may enhance understanding of pain pathways and contribute to better drug target identification.
Collapse
Affiliation(s)
- Ying Chen
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Nan Li
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Jiahui Xiang
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Angelina Wang
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Qingqing Gu
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of CardiologyAffiliated Hospital of Nantong UniversityJiangsuChina
| | - Junpu Ruan
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Ran Zhang
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Gang Chen
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityJiangsu ProvinceChina
| | - Lu Lu
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
10
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
11
|
Hamdan A, Yammine Y, Ghzayel L, Hosri J, Semaan ZM, Mourad M. The impact of music on patient tolerance during office-based laryngeal surgery. Laryngoscope Investig Otolaryngol 2025; 10:e70064. [PMID: 39780863 PMCID: PMC11705437 DOI: 10.1002/lio2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Objective To investigate the impact of music on patient tolerance during office-based laryngeal surgery (OBLS). Methods All patients undergoing OBLS between February 2024 to June 2024 were invited to participate in this study. They were divided into two subgroups, those with music in the background during surgery and those without. Following surgery, all patients were asked to fill IOWA tolerance score and the VAS for discomfort ranging from 0 to 10, with 0 indicating no discomfort and 10 indicating maximum discomfort. Results A total of 87 patients undergoing 95 office-based laryngeal surgeries (OBLS) were included, with a mean age of 54.7 years and a male-to-female ratio of 1.5. The most common procedure was blue laser therapy (45.3%), followed by vocal fold injection (29.5%). The mean IOWA tolerance score was 2.02. Patients who listened to music during OBLS showed a significantly higher mean IOWA tolerance score compared to those without music (2.48 vs. 1.55; p < .001). Significant differences persisted when stratified by procedure type. Additionally, the mean VAS score for discomfort was lower with music (2.27 vs. 4.21; p = .001), with a significant difference noted for laser therapy (p = .004). Conclusion The results of this investigation indicate that music has a positive effect on procedural tolerance in OBLS. Participants who underwent OBLS with music in the background had significantly higher tolerance score and less discomfort than those who had no music in the background. Music can be used as a safe nonpharmacologic modality to reduce stress and improve patient tolerance in awake OBLS. Level of Evidence 2.
Collapse
Affiliation(s)
- Abdul‐Latif Hamdan
- Department of Otolaryngology‐Head and Neck SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Yara Yammine
- Department of Otolaryngology‐Head and Neck SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Lana Ghzayel
- Department of Otolaryngology‐Head and Neck SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Jad Hosri
- Department of Otolaryngology‐Head and Neck SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Zeina Maria Semaan
- Department of Otolaryngology‐Head and Neck SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Marc Mourad
- Department of Otolaryngology‐Head and Neck SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| |
Collapse
|
12
|
Raghuraman N, Akintola T, Rassu FS, O'Connor TD, Chen S, Gruber-Baldini A, Colloca L. The effects of socioeconomic position on endogenous pain modulation: A quasi-experimental approach. THE JOURNAL OF PAIN 2025:104778. [PMID: 39800249 DOI: 10.1016/j.jpain.2025.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Socioeconomic Position (SEP) is a multidimensional construct encompassing education, income, occupation, and neighborhood distress, influencing chronic pain severity, interference, and duration. However, its impact on placebo analgesia, where reduced pain perception occurs due to treatment belief, remains understudied. Using a quasi-experimental approach, we investigated SEP's influence on placebo analgesia in 401 participants with temporomandibular disorder (TMD) and 400 pain-free individuals. Using latent class analysis, we grouped participants into two SEP groups based on self-reported education, income, occupation, and neighborhood distress indices, including the area deprivation and distressed community indexes. Ancestry Informative Markers (AIMs) and self-reported race were included to account for genetic and demographic influences. Placebo analgesia was elicited using verbal suggestion and classical conditioning. Linear mixed models were employed to analyze SEP's impact, while multiple regression and ANCOVA assessed AIMs' and race's effects. Comparable placebo effects were observed between participants with TMD and pain-free individuals (F(1,4765.73) = 0.49, p = 0.48). A trend was noted in the main effect of SEP (F(1,4764.5) = 3.64, p = 0.056). Among TMD participants, those with distressed SEP exhibited lower placebo analgesia (F(1,4765.73) = 7.9, p = 0.005), while placebo response did not differ by SEP in pain-free participants (F(1,4765.73) = 0.27, p = 0.59). East Asian ancestry (β = 5.71, 95% CI [1.50, 9.92]) and self-reported Asian (mean = 24.20, sem = 1.52, p = 0.020) were associated with greater placebo analgesia. This study highlights the interplay of SEP, AIMs, and race in placebo analgesia and calls for tailored pain management interventions. PERSPECTIVE: SEP significantly contributes to pain disparities. This quasi-experimental study demonstrates analogous placebo analgesia between chronic pain and pain-free individuals but finds lower placebo analgesia only among individuals with chronic pain and distressed SEP. This highlights a link between chronic pain, SEP, and impaired placebo effects, suggesting new avenues for research.
Collapse
Affiliation(s)
- Nandini Raghuraman
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Graduate Program in Life Sciences, Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, Baltimore, USA; Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
| | - Titilola Akintola
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA; Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
| | - Fenan S Rassu
- Department of Physical Medicine and Rehabilitation, School of Medicine, The Johns Hopkins University, Baltimore, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, USA; Program in Health Equity and Population Health, School of Medicine, University of Baltimore, USA; Program in Personalized and Genomic Medicine, School of Medicine, University of Maryland, Baltimore, USA
| | - Shuo Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Ann Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA; Department of Anesthesiology and Psychiatry, University of Maryland School of Medicine, Baltimore, USA; Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA.
| |
Collapse
|
13
|
Adamo D, Canfora F, Pecoraro G, Leuci S, Coppola N, Marenzi G, Ottaviani G, Rupel K, Pellegrini L, Aria M, D’Aniello L, Mignogna MD, Albert U. Vortioxetine versus SSRI/SNRI with Pregabalin Augmentation in Treatment-Resistant Burning Mouth Syndrome: A Prospective Clinical Trial. Curr Neuropharmacol 2025; 23:800-819. [PMID: 40016875 PMCID: PMC12163466 DOI: 10.2174/1570159x22999240729103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVES The treatment of Burning Mouth Syndrome (BMS) represents a challenge in tailoring appropriate medication for individual patients. The augmentation of pregabalin to conventional treatment has shown promising outcomes in relieving pain and improving the quality of life in chronic pain conditions. This study aimed to compare the efficacy of vortioxetine with other antidepressants (SSRIs/SNRIs) in combination with pregabalin in a cohort of unresponsive BMS patients and to predict treatment response by using clinical data. METHODS A 52-week randomized, open-label, comparative clinical study was conducted, enrolling 203 BMS patients previously treated with one antidepressant for 12 weeks and non-responders to the treatment (clinical trial registration: NCT06025474). The study sample included two groups: Group A (136) received vortioxetine, while Group B (67) received SSRIs/SNRIs. Pregabalin (75 mg/day) was added to both groups, with a potential dosage increase to 150 mg/day for inadequate responders after 12 weeks. Treatment response was assessed with VAS and SF-MPQ, HAM-A, and HAM-D scores at 12, 24, 36, and 52 weeks. Stepwise logistic regression analysis was used to predict treatment response. RESULTS A total of 84 (61.8%) BMS patients in Group A and 39 (58.2%) in Group B showed treatment response. Group A reported a faster onset of action compared to Group B (44.8% versus 22.4% at time 1; p:0.002**) and lower adverse event rates (8.8% versus 20.8%; p:0.001). CONCLUSION The addition of pregabalin to vortioxetine may be considered a potential treatment option for BMS. Further research is required to corroborate these findings and optimize personalized treatment approaches for BMS patients. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT06025474).
Collapse
Affiliation(s)
- Daniela Adamo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Giuseppe Pecoraro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Stefania Leuci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Noemi Coppola
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149, Trieste, Italy
| | - Katia Rupel
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149, Trieste, Italy
| | - Luca Pellegrini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli, 5, 40123, Bologna (BO), Italy; Highly Specialized Service for OCD and BDD, Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Hatfield, United Kingdom
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, 21 Via Cintia, 80126, Naples, Italy
| | - Luca D’Aniello
- Department of Social Sciences, University of Naples Federico II, 1 Vico Monte della Pietà, 80138, Naples, Italy
| | - Michele Davide Mignogna
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131, Naples, Italy
| | - Umberto Albert
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149, Trieste, Italy
| |
Collapse
|
14
|
Marchesini M, Topi G, Bonezzi C, Demartini L. Amitriptyline-perphenazine therapy for persistent idiopathic facial pain: translational perspectives from a retrospective study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:83. [PMID: 39695777 DOI: 10.1186/s44158-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Persistent idiopathic facial pain (PIFP) can be challenging, both in its diagnosis, which appears to be purely exclusionary, and in its treatment, which currently lacks a gold standard. Amitriptyline is considered a first-line therapy, although not always effective. Recent insights into the role of dopamine in facial pain suggest that a novel therapeutic approach could target the dopamine system. METHODS This study aimed to retrospectively evaluate the efficacy of treatment with amitriptyline-perphenazine association in patients with severe PIFP. Thirty-one patients were given a regimen dose of amitriptyline-perphenazine at dosages ranging between 10/2 and 20/4 mg and were then retrospectively analyzed. We evaluated the following outcomes, referred to the last week prior to follow-up visits: NRS score for pain intensity (minimum, maximum, and average), the number of attacks, and SF-36 questionnaire for quality of life. Comparisons were made between pre- and post-treatment. RESULTS Thirty-one patients over 35 were screened. At baseline, average NRS was 5 ± 0.93 (CI 95%: 4.6-5.3), and the median number of breakthrough episodes over last week was 5 ± 1.57 (CI 95%: 4-6) with a maximum NRS = 9 ± 0.89 (CI 95%: 8-9). After treatment, average NRS was 4.1 ± 0.93 (CI 95%: 3.8-4.5; p < 0.001), maximum NRS was 6.1 ± 1.60 (CI 95%: 5.5-6.6), and the median number of attacks was 4 ± 0.99 (IC 95%: 3-4) (p < 0.001). Regarding SF-36 questionnaire, the most improved parameters were quality of life related to pain (25.89 ± 12.48 vs 31.19 ± 13.44; p < 0.001) and physical function (69.56 ± 17.84 vs 84.17 ± 20.99; p < 0.001). CONCLUSION Despite limitations, the pain scores, the frequency of the attacks, and quality of life were found to be significantly improved after treatment. Although results are not broad based given the small sample size, the combination of amitriptyline and perphenazine may be an effective and well-tolerated treatment in patients with PIFP. It is abundantly clear that dopaminergic pathways play a key role in pain modulation, yet the underlying mechanisms have not been fully understood, requiring further investigation.
Collapse
Affiliation(s)
- Maurizio Marchesini
- Department of Anesthesia and Pain Medicine, Mater Olbia Hospital, Olbia, Italy
| | - Giulia Topi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Anesthesia, Resuscitation, Intensive Care and Pain Therapy, University of Pavia, Pavia, PV, 27100, Italy.
| | - Cesare Bonezzi
- Pain Medicine Unit, Department of Mini-Invasive Surgery, IRCCS Maugeri, Pavia, Italy
| | - Laura Demartini
- Pain Medicine Unit, Department of Mini-Invasive Surgery, IRCCS Maugeri, Pavia, Italy
| |
Collapse
|
15
|
Gerra MC, Dallabona C, Manfredini M, Giordano R, Capriotti C, González-Villar A, Triñanes Y, Arendt-Nielsen L, Carrillo-de-la-Peña MT. The polymorphism Val158Met in the COMT gene: disrupted dopamine system in fibromyalgia patients? Pain 2024; 165:e184-e189. [PMID: 38916531 PMCID: PMC11562751 DOI: 10.1097/j.pain.0000000000003313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 05/18/2024] [Indexed: 06/26/2024]
Abstract
ABSTRACT The single-nucleotide polymorphism (SNP) rs4680 in the catechol-O-methyltransferase gene ( COMT ) is a missense variant (Val158Met) associated with altered activity of the COMT enzyme and suggested as a predictive feature for developing some chronic pain conditions. However, there are controversial results on its role in fibromyalgia (FM). Here, the SNP Val158Met was analyzed in 294 FM patients (without comorbidities) and 209 healthy controls (without chronic pain). The concurrent impact of Val158Met genotypes and FM comorbid disorders (depression and sleep impairment) on FM risk were tested. In addition, the genotypic distribution of FM patients in relation to pain intensity was evaluated. The G allele (Val) resulted in being more represented in the FM group (57.8%) compared with the control group (48.8%; P = 0.037). Logistic regression highlighted that having the G/G (Val/Val) homozygous genotype was associated with 2 times higher risk of having FM compared with the A/A (Met/Met) carriers ( P = 0.038), whereas depression and sleep impairment increased FM risk by 12 and 8 times, respectively ( P < 0.001). However, considering only the FM patient group, the A/A homozygous genotype was significantly associated with severe pain intensity ( P = 0.007). This study highlighted associations between the SNP Val158Met and both FM and pain intensity, suggesting a link between dopaminergic dysfunction and vulnerability to chronic pain. Further studies should explore this SNP in FM patients in conjunction with COMT enzymatic activity and other symptoms connected with the dopaminergic system such as depression or sleep impairment.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Camilla Capriotti
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alberto González-Villar
- Psychological Neuroscience Lab, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
| | - Yolanda Triñanes
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
16
|
Dehghan B, Abolhasanzadeh N, Shademan B, Nourazarian A. Deciphering pain: molecular mechanisms and neurochemical pathways-challenges and future opportunities. Front Mol Biosci 2024; 11:1382555. [PMID: 39629040 PMCID: PMC11613041 DOI: 10.3389/fmolb.2024.1382555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
This review delves into the intricate biological underpinnings of pain perception. It encompasses nociceptive signaling pathways, the molecular mechanisms involved, and the subjective experience of discomfort in humans. The initial focus is on nociceptor transduction, where specialized neurons transform noxious stimuli into electrical impulses. Subsequently, the review explores the central nervous system, elucidating how these signals are processed and modulated by critical elements such as ion channels, receptors, and neurotransmitters (e.g., substance P, glutamate, GABA). Shifting gears toward chronic pain, the review examines the concept of neuroplasticity, highlighting its potential to induce maladaptive responses through alterations in neural networks. The burgeoning field of pain genomics, alongside established genetic research, offers valuable insights that could pave the way for a framework of personalized pain management strategies. Finally, the review emphasizes the significance of these molecular insights in facilitating accurate therapeutic interventions. The overarching objective is to establish an integrative framework for precision medicine in pain management by incorporating this information alongside biopsychosocial models. This framework serves to translate the heterogeneous landscape of pain mechanisms into a coherent roadmap for the development of effective therapies.
Collapse
Affiliation(s)
- Bahar Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Narges Abolhasanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Medical Journalism, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
17
|
Tsao SC, Chang KH, Fu Y, Tai HH, Lin TH, Wu MC, Wang JC. Heterogeneous Integration of Memristive and Piezoresistive MDMO-PPV-Based Copolymers in Nociceptive Transmission with Fast and Slow Pain for an Artificial Pain-Perceptual System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311040. [PMID: 38864224 DOI: 10.1002/smll.202311040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Nociceptive pain perception is a remarkable capability of organisms to be aware of environmental changes and avoid injury, which can be accomplished by specialized pain receptors known as nociceptors with 4 vital properties including threshold, no adaptation, relaxation, and sensitization. Bioinspired systems designed using artificial devices are investigated to imitate the efficacy and functionality of nociceptive transmission. Here, an artificial pain-perceptual system (APPS) with a homogeneous material and heterogeneous integration is proposed to emulate the behavior of fast and slow pain in nociceptive transmission. Retention-differentiated poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4-phenylenevinylene] (MDMO-PPV) memristors with film thicknesses of 160 and 80 nm are manufactured and adopted as A-δ and C nerve fibers of nociceptor conduits, respectively. Additionally, a nociceptor mimic, the ruthenium nanoparticles (Ru-NPs)-doped MDMO-PPV piezoresistive pressure sensor, is fabricated with a noxiously stimulated threshold of 150 kPa. Under the application of pricking and dull noxious stimuli, the current flows predominantly through the memristor to mimic the behavior of fast and slow pain, respectively, in nociceptive transmission with postsynaptic potentiation properties, which is analogous to biological pain perception. The proposed APPS can provide potential advancements in establishing the nervous system, thus enabling the successful development of next-generation neurorobotics, neuroprosthetics, and precision medicine.
Collapse
Affiliation(s)
- Shih-Cheng Tsao
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
| | - Yi Fu
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
| | - Han-Hsiang Tai
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
| | - Ting-Han Lin
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan, 33305, Taiwan
| | - Jer-Chyi Wang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist., Taoyuan, 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan, 33305, Taiwan
- Department of Electronic Engineering, Ming Chi University of Technology, Taishan Dist., New Taipei City, 243303, Taiwan
| |
Collapse
|
18
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Zhang B, Guo M, Dong T, Yang H, Zhang Q, Yang Q, Zhou X, Mao C, Zhang M. Disrupted Resting-State Functional Connectivity and Effective Connectivity of the Nucleus Accumbens in Chronic Low Back Pain: A Cross-Sectional Study. J Pain Res 2024; 17:2133-2146. [PMID: 38915479 PMCID: PMC11194467 DOI: 10.2147/jpr.s455239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Chronic low back pain (cLBP) is a recurring and intractable disease that is often accompanied by emotional and cognitive disorders such as depression and anxiety. The nucleus accumbens (NAc) plays an important role in mediating emotional and cognitive processes and analgesia. This study investigated the resting-state functional connectivity (rsFC) and effective connectivity (EC) of NAc and its subregions in cLBP. Methods Thirty-four cLBP patients and 34 age- and sex-matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based rsFC and Dynamic Causal Modelling (DCM) were used to examine the alteration of the rsFC and EC of the NAc. Results Our results showed that the cLBP group had increased rsFC of the bilateral NAc-left superior frontal cortex (SFC), orbital frontal cortex (OFC), left angular gyrus, the left NAc-bilateral middle temporal gyrus, as well as decreased rsFC of left NAc-left supramarginal gyrus, right precentral gyrus, left cerebellum, brainstem (medulla oblongata), and right insula pathways compared with the HC; the results of the subregions were largely consistent with the whole NAc. In addition, the rsFC of the left NAc-left SFC was negatively correlated with Hamilton's Depression Scale (HAMD) scores (r = -0.402, p = 0.018), and the rsFC of left NAc-OFC was positively correlated with present pain intensity scores (r = 0.406, p = 0.017) in the cLBP group. DCM showed that the cLBP group showed significantly increased EC from the left cerebellum to the right NAc (p = 0.012) as compared with HC. Conclusion Overall, our findings demonstrate aberrant rsFC and EC between NAc and regions that are associated with emotional regulation and cognitive processing in individuals with cLBP, underscoring the pivotal roles of emotion and cognition in cLBP.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Minmin Guo
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Ting Dong
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Huajuan Yang
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qiujuan Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Quanxin Yang
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Xiaoqian Zhou
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Cuiping Mao
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
20
|
Arnold CA, Bagg MK, Harvey AR. The psychophysiology of music-based interventions and the experience of pain. Front Psychol 2024; 15:1361857. [PMID: 38800683 PMCID: PMC11122921 DOI: 10.3389/fpsyg.2024.1361857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
In modern times there is increasing acceptance that music-based interventions are useful aids in the clinical treatment of a range of neurological and psychiatric conditions, including helping to reduce the perception of pain. Indeed, the belief that music, whether listening or performing, can alter human pain experiences has a long history, dating back to the ancient Greeks, and its potential healing properties have long been appreciated by indigenous cultures around the world. The subjective experience of acute or chronic pain is complex, influenced by many intersecting physiological and psychological factors, and it is therefore to be expected that the impact of music therapy on the pain experience may vary from one situation to another, and from one person to another. Where pain persists and becomes chronic, aberrant central processing is a key feature associated with the ongoing pain experience. Nonetheless, beneficial effects of exposure to music on pain relief have been reported across a wide range of acute and chronic conditions, and it has been shown to be effective in neonates, children and adults. In this comprehensive review we examine the various neurochemical, physiological and psychological factors that underpin the impact of music on the pain experience, factors that potentially operate at many levels - the periphery, spinal cord, brainstem, limbic system and multiple areas of cerebral cortex. We discuss the extent to which these factors, individually or in combination, influence how music affects both the quality and intensity of pain, noting that there remains controversy about the respective roles that diverse central and peripheral processes play in this experience. Better understanding of the mechanisms that underlie music's impact on pain perception together with insights into central processing of pain should aid in developing more effective synergistic approaches when music therapy is combined with clinical treatments. The ubiquitous nature of music also facilitates application from the therapeutic environment into daily life, for ongoing individual and social benefit.
Collapse
Affiliation(s)
- Carolyn A. Arnold
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne, VIC, Australia
- Caulfield Pain Management and Research Centre, Alfred Health, Melbourne, VIC, Australia
| | - Matthew K. Bagg
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Pain IMPACT, Neuroscience Research Institute, Sydney, NSW, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences and Conservatorium of Music, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
Boujenoui F, Nkambeu B, Salem JB, Castano Uruena JD, Beaudry F. Cannabidiol and Tetrahydrocannabinol Antinociceptive Activity is Mediated by Distinct Receptors in Caenorhabditis elegans. Neurochem Res 2024; 49:935-948. [PMID: 38141130 DOI: 10.1007/s11064-023-04069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.
Collapse
Affiliation(s)
- Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus David Castano Uruena
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Zhou MY, Yao CH, Yang YJ, Li X, Yang J, Liu JH, Yu BY, Dai WL. Based on spinal central sensitization creating analgesic screening approach to excavate anti-neuropathic pain ingredients of Corydalis yanhusuo W.T.Wang. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117084. [PMID: 37666376 DOI: 10.1016/j.jep.2023.117084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis Rhizome (RC) as a traditional analgesic Chinese medicine is the dried tuber of Corydalis yanhusuo W.T.Wang. Many efforts have revealed that RC could effectively alleviate neuropathic pain, while its active ingredients in neuropathic pain are still not clear. AIM OF THE STUDY Spinal central sensitization contributes greatly to neuropathic pain, and neuron, astrocyte and microglia play important roles in spinal central sensitization. The aim of the present study is to excavate active compounds in RC regulating spinal central sensitization to inhibit neuropathic pain. MATERIALS AND METHODS Immunofluorescence and western blotting were used to determine protein expression levels. Gene expression levels were detected by RT-PCR. PC12 neuronal cells, C6 astrocyte cells, and BV2 microglia cells were cultured for in vitro studies. Targeting multi types of cells extraction combined with HPLC-Q-TOF-MS/MS was established to identify components binding to above cells. Animal studies were used to verify the analgesic activities of components. RESULTS Total alkaloids of RC (RC-TA) significantly relieved neuropathic pain in chronic constriction injury (CCI) rats and repressed spinal central sensitization. Eight components of RC-TA were found to bind to PC12, C6, or BV2 cells. They could respectively suppress the activation of cells in vitro and alleviate CCI-induced neuropathic pain, among which glaucine and dehydrocorydaline induced antinociception was stronger than l-THP. Meanwhile, glaucine had no effect on acute or chronic inflammatory pain, and its antinociception in neuropathic pain could be abolished by dopamine D1 receptor agonist. CONCLUSIONS Employing multi types of cells based on spinal central sensitization rather than single cell may allow for more thorough excavation of active substances. Glaucine was firstly found could attenuate neuropathic pain but not other types of pain which indicated that different alkaloids in RC exert distinct analgesic effects on different pain models, and gluacine has the potential to be developed as an analgesic drug specifically for neuropathic pain relieving.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yu-Jie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
23
|
Yasoda-Mohan A, Vanneste S. Development, Insults and Predisposing Factors of the Brain's Predictive Coding System to Chronic Perceptual Disorders-A Life-Course Examination. Brain Sci 2024; 14:86. [PMID: 38248301 PMCID: PMC10813926 DOI: 10.3390/brainsci14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The predictive coding theory is currently widely accepted as the theoretical basis of perception and chronic perceptual disorders are explained as the maladaptive compensation of the brain to a prediction error. Although this gives us a general framework to work with, it is still not clear who may be more susceptible and/or vulnerable to aberrations in this system. In this paper, we study changes in predictive coding through the lens of tinnitus and pain. We take a step back to understand how the predictive coding system develops from infancy, what are the different neural and bio markers that characterise this system in the acute, transition and chronic phases and what may be the factors that pose a risk to the aberration of this system. Through this paper, we aim to identify people who may be at a higher risk of developing chronic perceptual disorders as a reflection of aberrant predictive coding, thereby giving future studies more facets to incorporate in their investigation of early markers of tinnitus, pain and other disorders of predictive coding. We therefore view this paper to encourage the thinking behind the development of preclinical biomarkers to maladaptive predictive coding.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Global Brain Health Institute, Trinity College Dublin, D02 R123 Dublin, Ireland;
- Trinity College Institute for Neuroscience, Trinity College Dublin, D02 R123 Dublin, Ireland
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, D02 R123 Dublin, Ireland
| | - Sven Vanneste
- Global Brain Health Institute, Trinity College Dublin, D02 R123 Dublin, Ireland;
- Trinity College Institute for Neuroscience, Trinity College Dublin, D02 R123 Dublin, Ireland
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, D02 R123 Dublin, Ireland
| |
Collapse
|
24
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
25
|
Udal ABH, Stray LL, Stray T, Bertelsen TB, Pripp AH, Egeland J. ADHD-pain: Characteristics of chronic pain and association with muscular dysregulation in adults with ADHD. Scand J Pain 2024; 24:sjpain-2024-0015. [PMID: 39253953 DOI: 10.1515/sjpain-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES A high incidence of attention-deficit hyperactivity disorder (ADHD) has been reported in chronic pain (ChP) patients. Furthermore, an association between ChP and muscular dysregulation has been reported in adults with ADHD. The present study investigated whether ADHD was more prevalent among psychiatric outpatients with ChP than those without ChP, and if there was an association between ChP, muscular dysregulation and characteristics of pain in patients with ADHD. METHODS One-hundred and twenty-one individuals remitted to an outpatient psychiatry unit took part in this naturalistic epidemiological cross-sectional study. They were assessed with a pain self-report form (localization, intensity, and onset) and a test of muscle dysregulation (the Motor Function Neurological Assessment). Prevalence of ADHD among patients with ChP, as well as the qualitative characteristics of ChP within the ADHDgroup are reported. Both ChP and pain intensity correlated with muscular dysregulation through Spearman's rho analysis. Additionally, the relationship between various diagnostic categories (ADHD, affective disorders, anxiety, or personality disorders) and incidence of axial pain was evaluated in logistic regression. RESULTS ADHD was significantly more prevalent in patients with ChP, than in patients without ChP. In the ADHD group, ChP and pain intensity was associated with muscular dysregulation, particularly with high muscle tone. ChP was more axial and widespread, than for the patients without ADHD, and started at an early age. ADHD diagnosis predicted axial pain, whereas affective-, anxiety-, or personality disorders did not. CONCLUSIONS The study suggests that ChP in ADHD is associated with muscular dysregulation and is qualitatively different from ChP in psychiatric patients without ADHD. These findings may lead to further understanding of potential mechanisms involved in ADHD and ChP, and in turn to new treatment strategies for both disorders.
Collapse
Affiliation(s)
| | - Liv Larsen Stray
- Department of Mental Health, Sorlandet Hospital Trust, Kristiansand, Norway
| | - Torstein Stray
- Department of Mental Health, Sorlandet Hospital Trust, Kristiansand, Norway
| | | | - Are Hugo Pripp
- Department of Biostatistics, Oslo University Hospital, Oslo, Norway
| | - Jens Egeland
- Department of Psychology, Vestfold Hospital Trust, Norway OUS University of Oslo, Tønsberg, Norway
| |
Collapse
|
26
|
Cansiz D, Unal I, Beler M, Ustundag UV, Ak E, Emekli-Alturfan E, Alturfan AA. The effect of acetic acid-induced pain in Parkinson's disease model in zebrafish. Neurotoxicology 2023; 99:14-23. [PMID: 37683694 DOI: 10.1016/j.neuro.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the degeneration of dopaminergic neurons and the accumulation of Lewy bodies. Pain is one of the most common non-motor symptoms in PD, but the molecular mechanism of pain in PD is not fully understood, which prevents early diagnosis of PD. We aimed to determine the changes in opioidergic pathways when external pain is inflicted by inducing pain intraperitoneally in zebrafish, for which we generated a rotenone-induced PD model. After behavioural analyses in control(C), acetic acid (AA), rotenone (ROT), and rotenone+ acetic acid (ROT+AA) groups, catecholamine levels in brain tissue were determined by LC-MS/MS, expression of opioid peptides and their receptors by RT-PCR, expression of tyrosine hydroxylase by immunohistochemical method, and analyses of oxidant-antioxidant parameters by spectrophotometric methods. In the ROT group, distance travelled, average speed, and brain dopamine levels decreased, while LPO (lipid peroxidation) and NO (nitric oxide) increased as indicators of oxidative damage, and the SOD activity decreased. The mRNA expression of lrrk, pink1, and park7 genes associated with PD increased, while the mRNA expression of park2 decreased. This indicates that rotenone exposure is a suitable means to induce PD in zebrafish. The fact that body curvature was higher in the AA group than in the ROT and ROT+AA groups, as well as the decreased expression of penka, pdyn, and ion channels associated with the perception of peripheral pain in the ROT+AA group, suggest that mechanisms associated with pain are impaired in the rotenone-induced PD model in zebrafish.
Collapse
Affiliation(s)
- Derya Cansiz
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey; Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Ismail Unal
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Unsal Veli Ustundag
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - Esin Ak
- Department of Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ahmet Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
27
|
Qamar MA, Tall P, van Wamelen D, Wan YM, Rukavina K, Fieldwalker A, Matthew D, Leta V, Bannister K, Chaudhuri KR. Setting the clinical context to non-motor symptoms reflected by Park-pain, Park-sleep, and Park-autonomic subtypes of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:1-58. [PMID: 38341227 DOI: 10.1016/bs.irn.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Non-motor symptoms (NMS) of Parkinson's disease (PD) are well described in both clinical practice and the literature, enabling their management and enhancing our understanding of PD. NMS can dominate the clinical pictures and NMS subtypes have recently been proposed, initially based on clinical observations, and later confirmed in data driven analyses of large datasets and in biomarker-based studies. In this chapter, we provide an update on what is known about three common subtypes of NMS in PD. The pain (Park-pain), sleep dysfunction (Park-sleep), and autonomic dysfunction (Park-autonomic), providing an overview of their individual classification, clinical manifestation, pathophysiology, diagnosis, and potential treatments.
Collapse
Affiliation(s)
- Mubasher A Qamar
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom.
| | - Phoebe Tall
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| | - Daniel van Wamelen
- Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Yi Min Wan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom; Department of Psychiatry, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Katarina Rukavina
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| | - Anna Fieldwalker
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Central Modulation of Pain Lab, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Donna Matthew
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| | - Valentina Leta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom; Department of Clinical Neurosciences, Parkinson, and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Kirsty Bannister
- Central Modulation of Pain Lab, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
28
|
Kogo Y, Koebis M, Kobayashi Y, Ishida T, Maeda T. Analgesic effect of safinamide mesylate in a rat model of neuropathic pain. Behav Brain Res 2023; 452:114555. [PMID: 37355233 DOI: 10.1016/j.bbr.2023.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Pain is one of the most frequent non-motor symptoms of Parkinson's disease (PD). Neuropathic pain is highly prevalent in PD and negatively affects the quality of life of patients with PD. However, there is currently no evidence-based treatment for its control. Safinamide, a monoamine oxidase (MAO)-B inhibitor with a sodium channel inhibitory effect, showed improvement in PD-related pain in several clinical trials. However, it is unclear for which of the various types of pain in PD safinamide is effective. The aim of the present study was to examine the effect of safinamide on neuropathic pain in a rat model of chronic constriction injury (CCI). Pain was evaluated on postoperative days 14 and 21 using von Frey or weight-bearing tests. Male CCI model rats showed a decreased paw withdrawal threshold and a weight-bearing deficit on postoperative days 14 and 21. Single oral administration of safinamide (15, 30, 45 or 70 mg/kg) dose-dependently improved neuropathic pain in both pain assessments on day 14. Subsequently, the 15 and 45 mg/kg dose groups were administered safinamide orally once daily until day 21. With repeated administration, the effect of safinamide on pain was enhanced. The present findings show that safinamide improves neuropathic pain in male CCI model rats. Further animal model research and pathological and molecular pharmacological investigations are warranted.
Collapse
Affiliation(s)
- Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Michinori Koebis
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Yoshihisa Kobayashi
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-Cho, Shiwa-Gun, Iwate 028-3694, Japan.
| |
Collapse
|
29
|
De Rosa F, Giannatiempo B, Charlier B, Coglianese A, Mensitieri F, Gaudino G, Cozzolino A, Filippelli A, Piazza O, Dal Piaz F, Izzo V. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023; 15:2088. [PMID: 37631302 PMCID: PMC10457775 DOI: 10.3390/pharmaceutics15082088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is an unpleasant sensory and emotional experience that affects every aspect of a patient's life and which may be treated through different pharmacological and non-pharmacological approaches. Analgesics are the drugs most commonly used to treat pain, and in specific situations, the use of opioids may be considered with caution. These drugs, in fact, do not always induce optimal analgesia in patients, and several problems are associated with their use. The purpose of this narrative review is to describe the pharmacological approaches currently used for the management of chronic pain. We review several aspects, from the pain-scale-based methods currently available to assess the type and intensity of pain, to the most frequently administered drugs (non-narcotic analgesics and narcotic analgesics), whose pharmacological characteristics are briefly reported. Overall, we attempt to provide an overview of different pharmacological treatments while also illustrating the relevant guidelines and indications. We then report the strategies that may be used to reduce problems related to opioid use. Specifically, we focus our attention on therapeutic drug monitoring (TDM), a tool that could help clinicians select the most suitable drug and dose to be used for each patient. The actual potential of using TDM to optimize and personalize opioid-based pain treatments is finally discussed based on recent scientific reports.
Collapse
Affiliation(s)
- Federica De Rosa
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Bruno Giannatiempo
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Albino Coglianese
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pathology and Clinical Biochemistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Giulia Gaudino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Armando Cozzolino
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Ornella Piazza
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Fabrizio Dal Piaz
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Viviana Izzo
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| |
Collapse
|
30
|
Tanaka K, Kuzumaki N, Hamada Y, Suda Y, Mori T, Nagumo Y, Narita M. Elucidation of the mechanisms of exercise-induced hypoalgesia and pain prolongation due to physical stress and the restriction of movement. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100133. [PMID: 37274841 PMCID: PMC10239008 DOI: 10.1016/j.ynpai.2023.100133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
31
|
Yoo JJ, Hayes M, Serafin EK, Baccei ML. Early-Life Iron Deficiency Persistently Alters Nociception in Developing Mice. THE JOURNAL OF PAIN 2023; 24:1321-1336. [PMID: 37019165 PMCID: PMC10523944 DOI: 10.1016/j.jpain.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Clinical association studies have identified early-life iron deficiency (ID) as a risk factor for the development of chronic pain. While preclinical studies have shown that early-life ID persistently alters neuronal function in the central nervous system, a causal relationship between early-life ID and chronic pain has yet to be established. We sought to address this gap in knowledge by characterizing pain sensitivity in developing male and female C57Bl/6 mice that were exposed to dietary ID during early life. Dietary iron was reduced by ∼90% in dams between gestational day 14 and postnatal day (P)10, with dams fed an ingredient-matched, iron-sufficient diet serving as controls. While cutaneous mechanical and thermal withdrawal thresholds were not altered during the acute ID state at P10 and P21, ID mice were more sensitive to mechanical pressure at P21 independent of sex. During adulthood, when signs of ID had resolved, mechanical and thermal thresholds were similar between early-life ID and control groups, although male and female ID mice displayed increased thermal tolerance at an aversive (45 °C) temperature. Interestingly, while adult ID mice showed decreased formalin-induced nocifensive behaviors, they showed exacerbated mechanical hypersensitivity and increased paw guarding in response to hindpaw incision in both sexes. Collectively, these results suggest that early-life ID elicits persistent changes in nociceptive processing and appears capable of priming developing pain pathways. PERSPECTIVE: This study provides novel evidence that early-life ID evokes sex-independent effects on nociception in developing mice, including an exacerbation of postsurgical pain during adulthood. These findings represent a critical first step towards the long-term goal of improving health outcomes for pain patients with a prior history of ID.
Collapse
Affiliation(s)
- Judy J. Yoo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Madailein Hayes
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Elizabeth K. Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L. Baccei
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
32
|
Zhu M, Huang H. The Underlying Mechanisms of Sleep Deprivation Exacerbating Neuropathic Pain. Nat Sci Sleep 2023; 15:579-591. [PMID: 37533626 PMCID: PMC10392808 DOI: 10.2147/nss.s414174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Pain disrupts sleep, and sleep deprivation or interference can alter pain perception in animals and humans, for example by increasing sensitivity to pain. However, the mechanism by which sleep affects neuropathic pain remains unclear. In this review, we discuss the available evidence from the epidemiologic, clinical, and human, as well as laboratory studies. In previous studies, we have found that sleep deprivation affects various injurious systems, including opioids, dopaminergic, immune, orexins, hypothalamic-pituitary-adrenal axis, and adenosine. At the same time, these systems play a crucial role in neuropathic pain regulation. In the complex interactions between these neurobiological systems, there may be potential regulatory pathways through which sleep deprivation amplifies neuropathic pain. Because of the impact sleep problems and neuropathic pain can have on the patients' quality of life, studying the link between sleep and neuropathic pain is important for neuropathic pain prevention and public health.
Collapse
Affiliation(s)
- Manmin Zhu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, People’s Republic of China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, People’s Republic of China
| |
Collapse
|
33
|
O G, Balasubramaniam R, Klasser GD. Burning mouth disorder and Parkinson's disease: A scoping review of the literature. J Oral Rehabil 2023; 50:488-500. [PMID: 36855821 DOI: 10.1111/joor.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Burning mouth disorder (BMD) is a complex medical condition characterized by a burning sensation in the mouth of fluctuating intensity. BMD is considered a diagnosis of exclusion, as oral burning can occur secondary to local or systemic conditions. Parkinson's disease (PD) is one such condition. OBJECTIVE To provide a scoping review of the literature by assessing all articles written in English that investigated the relationship between BMD and PD. MATERIALS AND METHODS Various databases (PubMed, Ovid, Web of Science, Science Direct and Scopus) and a search platform (EBSCOhost) were searched following similar investigative approaches. Duplicates were removed and reference lists of original studies were scrutinized for additional articles. Any decision about the inclusion/exclusion in the review was by consensus among the co-authors. RESULTS Twenty-five original articles and one supplemental article were included in the final review, of which 13 met the inclusion criteria. These were further divided into five categories based on the study design/article, which included Prevalence studies (n = 6), Letter to the editor (n = 1), Incidence study (n = 1), Case reports (n = 2) and Experimental studies (n = 3). Strongest data was provided by epidemiological studies, which suggest BMD and PD are poorly associated. CONCLUSIONS A scoping review of the existing literature does not suggest that PD patients are any more at risk of developing BMD compared to the general population. While there may be a link through the dopaminergic system as determined by imaging studies, it is unlikely that the pathogenesis of PD disease shares significant commonality with BMD.
Collapse
Affiliation(s)
- Guru O
- UWA Dental School, University of Western Australia, Crawley, Western Australia, Australia
| | - Ramesh Balasubramaniam
- UWA Dental School, University of Western Australia, Crawley, Western Australia, Australia
| | - Gary D Klasser
- Department of Diagnostic Sciences, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
34
|
Dezfouli RA, Mazaheri S, Mousavi Z, Haghparast A. Restraint stress induced the antinociceptive responses via the dopamine receptors within the hippocampal CA1 area in animal model of persistent inflammatory pain. Behav Brain Res 2023; 443:114307. [PMID: 36764008 DOI: 10.1016/j.bbr.2023.114307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
It has been declared that dopamine receptors within the hippocampal formation are involved in emotion, memory, and pain processing. Remarkably, both CA1 and dentate gyrus (DG) areas of the hippocampal formation are involved in persistent peripheral nociceptive perception. A prior study showed that dopamine receptors within the hippocampal DG have a critical role in antinociception induced by forced swim stress (FSS), as a physical stressor, in the presence of formalin irritation. The present experiments were designed to assess whether dopaminergic receptors within the CA1 have any role in antinociceptive responses induced by restraint stress (RS) as a psychological stressor after applying the formalin test as an animal model of persistent inflammatory pain. The D1- and D2-like dopamine receptor antagonists, SCH23390 and Sulpiride (0.25, 1, and 4 μg/0.5 μl), were injected into the CA1 areas of ninety-six male albino Wistar rats 5 min before a 3-h period of restraint stress. Ten min after stress termination, a 50-μl formalin 2.5 % was subcutaneously injected into the plantar surface of the rat's hind paw to induce persistent inflammatory pain. Nociceptive behaviors in both phases of the formalin test were analyzed in the 5-min blocks for a 60-min period. The obtained results demonstrate that although RS could induce an antinociceptive response in both phases of the formalin test, microinjection of D1- and D2-like dopamine receptors, antagonists attenuated RS-induced analgesia. These results support the hypothesis that acute restraint stress could induce analgesia via dopaminergic projection to the CA1 region of the hippocampal formation.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sajad Mazaheri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Zain E, Sugimoto A, Egawa J, Someya T. Case report: Methylphenidate improved chronic pain in an adult patient with attention deficit hyperactivity disorder. Front Psychiatry 2023; 14:1091399. [PMID: 36970292 PMCID: PMC10038200 DOI: 10.3389/fpsyt.2023.1091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionChronic pain remains a health problem that is difficult to treat adequately. Its unknown cause and complex comorbidity with other illnesses, including mental disorders, amplify the severity of symptoms, which consequently decreases the quality of life of patients long term. In our clinical practice, we coincidentally found evidence that methylphenidate (MPH) effectively managed chronic pain in an adult patient with attention deficit hyperactivity disorder (ADHD). The effectiveness of MPH in the treatment of ADHD is well-established; however, its utility in treating pain remains unclear.Case presentationWe present a rare case of a 43-year-old male patient with 15 years of chronic idiopathic pain symptoms that did not adequately respond to standard pain management, such as acetaminophen, non-opioid analgesics, and muscle relaxers. Pain also persisted after treatments with antidepressants and an epidural block. Furthermore, symptoms worsened following several sessions of modified electroconvulsive therapy. After a thorough assessment at our child and adolescent psychiatric outpatient clinic, we confirmed a diagnosis of adult ADHD with a predominantly inattentive type. Considering this newly established diagnosis, we prescribed osmotic-release oral system (OROS) methylphenidate. Within 1 month of treatment at a dose of 18 mg/day of OROS-MPH, the patient’s chronic pain unexpectedly improved dramatically, and the patient no longer experienced pain symptoms. The dosage of OROS-MPH was titrated monthly, reaching 72 mg/day as a maintenance dose, and ADHD symptoms improved after 4 months of treatment. The patient was followed up regularly for 7 years during his OROS-MPH treatment. No adverse effects were reported, including stimulant addiction. He was stable overall and functioned well in his daily activities. His pain never recurred.ConclusionThis case report suggests that MPH may be potentially effective in treating chronic pain. Further studies are needed to confirm whether MPH improved chronic pain simultaneously with or separately from the improvement in ADHD. Moreover, elucidating the anatomical sites and molecular pharmacological mechanisms related to the action of MPH in pain modulation and perception is essential. Such sites include the descending dopaminergic pain pathway and higher cortical areas. Furthering our understanding may reinforce the justification for treating chronic pain using MPH.
Collapse
Affiliation(s)
- Ekachaeryanti Zain
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Psychiatry, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
| | - Atsunori Sugimoto
- Department of Community Psychiatric Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Psychiatry, Niigata Psychiatric Center, Nagaoka, Japan
- *Correspondence: Atsunori Sugimoto,
| | - Jun Egawa
- Department of Psychiatry, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
36
|
Rayala R, Tiller A, Majumder SA, Stacy HM, Eans SO, Nedovic A, McLaughlin JP, Cudic P. Solid-Phase Synthesis of the Bicyclic Peptide OL-CTOP Containing Two Disulfide Bridges, and an Assessment of Its In Vivo μ-Opioid Receptor Antagonism after Nasal Administration. Molecules 2023; 28:1822. [PMID: 36838810 PMCID: PMC9963138 DOI: 10.3390/molecules28041822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
New strategies facilitate the design of cyclic peptides which can penetrate the brain. We have designed a bicyclic peptide, OL-CTOP, composed of the sequences of a selective μ-opioid receptor antagonist, CTOP (f-cyclo(CYwOTX)T) (X = penicillamine, Pen; O = ornithine) and odorranalectin, OL (YASPK-cyclo(CFRYPNGVLAC)T), optimized its solid-phase synthesis and demonstrated its ability for nose-to-brain delivery and in vivo activity. The differences in reactivity of Cys and Pen thiol groups protected with trityl and/or acetamidomethyl protecting groups toward I2 in different solvents were exploited for selective disulfide bond formation on the solid phase. Both the single step and the sequential strategy applied to macrocyclization reactions generated the desired OL-CTOP, with the sequential strategy yielding a large quantity and better purity of crude OL-CTOP. Importantly, intranasally (i.n.s.) administered OL-CTOP dose-dependently antagonized the analgesic effect of morphine administered to mice through the intracerebroventricular route and prevented morphine-induced respiratory depression. In summary, the results demonstrate the feasibility of our solid-phase synthetic strategy for the preparation of the OL-CTOP bicyclic peptide containing two disulfide bonds and reveal the potential of odorranalectin for further modifications and the targeted delivery to the brain.
Collapse
Affiliation(s)
- Ramanjaneyulu Rayala
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Annika Tiller
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Shahayra A. Majumder
- Department of Pharmacodynamics, School of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Heather M. Stacy
- Department of Pharmacodynamics, School of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Shainnel O. Eans
- Department of Pharmacodynamics, School of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Aleksandra Nedovic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, School of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Predrag Cudic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
37
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
38
|
Pavlyshyn H, Sarapuk I. Skin-to-skin contact-An effective intervention on pain and stress reduction in preterm infants. Front Pediatr 2023; 11:1148946. [PMID: 37033163 PMCID: PMC10073438 DOI: 10.3389/fped.2023.1148946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The outcomes of pain and stress in preterm infants in the neonatal intensive care units (NICUs) compel the continued search for pain- and stress-reducing interventions. The objective of the study To investigate how skin-to-skin contact (SSC) influences chronic pain and stress in preterm infants in the NICU. Materials and methods The study included 140 preterm infants in the NICU with gestational age less than 34 weeks. The overall design was a baseline-response design. Urine and saliva were collected before (baseline) and after SSC to measure pain and stress markers by enzyme immunoassay method. The behavioral indicators of chronic pain were assessed using the EDIN (Échelle Douleur Inconfort Nouveau-Né-neonatal pain and discomfort). Results There was a significant decrease in the dopamine level in preterm infants after SSC in comparison with baseline values (85.99 [69.35; 112.20] pg/ml vs. 132.20 [104.80; 183.70] pg/ml), p < 0.001. The β-endorphin and serotonin levels increased after SSC (40.09 [26.81; 70.63] pg/ml vs. 29.87 [20.61; 46.94] pg/ml, p = 0.009 and 25.49 [20.45; 40.08] ng/ml vs. 22.30 [15.13; 31.65] ng/ml, p = 0.011, respectively). A significant decrease in cortisol levels in saliva and urine after SSC in comparison with baseline values (0.125 [0.079; 0.225] μg/dl vs. 0.371 [0.188; 1.002] μg/dl, p = 0.000 and 27.06 [14.59; 35.35] ng/ml vs. 35.25 [19.78; 61.94] ng/ml, p = 0.001, with a simultaneous increase of oxytocin level (57.00 [36.55; 88.49] pg/ml vs. 38.20 [28.78; 56.04] pg/ml, p = 0.009 were revealed. The total pain EDIN score in infants after SSC was below 6 points, significantly decreasing compared to the baseline (p < 0.05). Conclusion Preterm infants in the NICU experience stress and pain, which were confirmed by the EDIN pain scale and laboratory markers. The level of dopamine and cortisol as pain and stress hormones were reliably high, and normalized after regular SSC. Simultaneously, pain-relieving and anti-stress markers of oxytocin, β-endorphin and serotonin reliably increased in preterm infants in response to the SSC.
Collapse
|
39
|
Seki M, Kurihara K, Konno T, Fujioka S, Tsuboi Y. [Characteristics and treatment of pain in Parkinson's disease]. Rinsho Shinkeigaku 2022; 62:763-772. [PMID: 36184418 DOI: 10.5692/clinicalneurol.cn-001733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pain is a representative non-motor symptom in patients with Parkinson's disease (PD). Pain is one of the most common symptoms that plague patients with PD regardless of the stage of the disease, also it can exacerbate other symptoms, such as depression, anxiety or sleep disturbance, and lead to impaired quality of life. However, pain is often not adequately evaluated and treated. PD patients complain of a wide variety of pain, including both PD-related pain which caused by PD-specific symptoms, for example, rigidity, bradykinesia or motor fluctuation, and PD-unrelated pain, and it can be divided into central and peripheral depending on the site of the disorder. In the medical care of the pain, it is important to evaluate the type and severity of the pain using PD-specific assessment scales such as King's PD pain scale and to consider the evidence-based treatment methods according to the pathophysiology of the pain.
Collapse
Affiliation(s)
- Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Japan
| | - Kanako Kurihara
- Department of Neurology, Faculty of Medicine, Fukuoka University, Japan
| | - Takuya Konno
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Shinsuke Fujioka
- Department of Neurology, Faculty of Medicine, Fukuoka University, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Japan
| |
Collapse
|
40
|
Piña-Leyva C, Lara-Lozano M, Rodríguez-Sánchez M, Vidal-Cantú GC, Barrientos Zavalza E, Jiménez-Estrada I, Delgado-Lezama R, Rodríguez-Sosa L, Granados-Soto V, González-Barrios JA, Florán-Garduño B. Hypothalamic A11 Nuclei Regulate the Circadian Rhythm of Spinal Mechanonociception through Dopamine Receptors and Clock Gene Expression. Life (Basel) 2022; 12:life12091411. [PMID: 36143447 PMCID: PMC9506518 DOI: 10.3390/life12091411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night–day interphase and peaking at 14.63 h. Similarly, DA and DOPAC’s spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.
Collapse
Affiliation(s)
- Celia Piña-Leyva
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Manuel Lara-Lozano
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
| | - Marina Rodríguez-Sánchez
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Guadalupe C. Vidal-Cantú
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Ericka Barrientos Zavalza
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Ismael Jiménez-Estrada
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Rodolfo Delgado-Lezama
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Leonardo Rodríguez-Sosa
- Department of Physiology, Medicine Faculty, National Autonomous University of Mexico, University City, Mexico City 04510, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Juan Antonio González-Barrios
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| | - Benjamín Florán-Garduño
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| |
Collapse
|
41
|
Fu Y, Chan YT, Jiang YP, Chang KH, Wu HC, Lai CS, Wang JC. Polarity-Differentiated Dielectric Materials in Monolayer Graphene Charge-Regulated Field-Effect Transistors for an Artificial Reflex Arc and Pain-Modulation System of the Spinal Cord. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202059. [PMID: 35619163 DOI: 10.1002/adma.202202059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The nervous system is a vital part of organisms to survive and it endows them with remarkable abilities, such as perception, recognition, regulation, learning, and decision-making, by intertwining myriad neurons. To realize such outstanding efficacies and functions, many artificial devices and systems have been investigated to emulate the operating principles of the nervous system. Here, an artificial reflex arc (ARA) and artificial pain modulation system (APMS) are proposed to imitate the unconscious behaviors of the spinal cord. Gdx Oy - and Alx Oy -based charge-regulated field-effect transistors (CRFETs) with a monolayer graphene channel are fabricated and adopted as inhibitory and excitatory synapses, respectively, under the same pulse signals to mimic the biological reflex arc through a connection with a poly(vinylidene fluoride-co-trifluoroethylene)-based actuator. Additionally, a memristor is integrated with a CRFET as the interneuron to regulate the Dirac point by controlling the voltage drop on the graphene channel, analogous to the descending pain-inhibition system in the spinal cord, to prevent excessive pain perception. The proposed ARA and APMS provide a significant step forward to realizing the functions of the nervous system, giving promising potential for developing future intelligent alarm systems, neuroprosthetics, and neurorobotics.
Collapse
Affiliation(s)
- Yi Fu
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Ya-Ting Chan
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Yi-Pei Jiang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Green Technology Research Center, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Taishan Dist, New Taipei City, 243303, Taiwan
| | - Jer-Chyi Wang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Green Technology Research Center, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- Department of Electronic Engineering, Ming Chi University of Technology, Taishan Dist, New Taipei City, 243303, Taiwan
| |
Collapse
|
42
|
Syvertsen Mykland M, Uglem M, Petter Neverdahl J, Rystad Øie L, Wergeland Meisingset T, Dodick DW, Tronvik E, Engstrøm M, Sand T, Moe Omland P. Sleep restriction alters cortical inhibition in migraine: A transcranial magnetic stimulation study. Clin Neurophysiol 2022; 139:28-42. [DOI: 10.1016/j.clinph.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
43
|
Yennurajalingam S, Bruera E. Do Patients Benefit from a Trial of Corticosteroids at the End of Life? Curr Treat Options Oncol 2022; 23:796-805. [PMID: 35362799 DOI: 10.1007/s11864-022-00977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT Patients with advanced cancer in the last 6 months of their lives have a higher frequency of distressing and debilitating physical and psychosocial symptoms such as cancer pain, cancer-related fatigue (CRF), anorexia, shortness of breath, poor sleep, anxiety, and depression. Often these symptoms significantly impact the patients' quality of life, and therefore require prompt assessment and effective treatment. There are specific treatments for certain distressing cancer-related symptoms (e.g., opioids for pain), but for the other symptoms such as CRF, anorexia-cachexia, and shortness of breath, there are limited or no evidence-based treatments. Also, in the management of cancer pain in this population, many patients are refractory to opioids. Hence, corticosteroids are one of the most common adjuvant medications prescribed for the management of this distressing symptom. However, there is limited evidence in regard to the effectiveness of corticosteroids in the improvement of the symptoms, side-effect profile, most optimal duration of use, dose, type of steroid, and most recently, the use with immunotherapy in advanced cancer patients at the end of life. These factors significantly limit the use of this important medication in terminally ill cancer patients. Further research is therefore critical to provide the optimal prescription of corticosteroids in this highly distressed population.
Collapse
Affiliation(s)
- Sriram Yennurajalingam
- Department of Palliative Care Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. #1414, Houston, TX, 77030, USA.
| | - Eduardo Bruera
- Department of Palliative Care Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. #1414, Houston, TX, 77030, USA
| |
Collapse
|
44
|
Goodin BR, Overstreet DS, Penn TM, Bakshi R, Quinn TL, Sims A, Ptacek T, Jackson P, Long DL, Aroke EN. Epigenome-wide DNA methylation profiling of conditioned pain modulation in individuals with non-specific chronic low back pain. Clin Epigenetics 2022; 14:45. [PMID: 35346352 PMCID: PMC8962463 DOI: 10.1186/s13148-022-01265-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathoanatomic cause of chronic low back pain (cLBP) cannot be identified for up to 90% of individuals. However, dysfunctional processing of endogenous nociceptive input, measured as conditioned pain modulation (CPM), has been associated with cLBP and may involve changes in neuronal gene expression. Epigenetic-induced changes such as DNA methylation (DNAm) have been associated with cLBP. METHODS In the present study, the relationship between CPM and DNAm changes in a sample of community-dwelling adults with nonspecific cLBP (n = 48) and pain-free controls (PFC; n = 50) was examined using reduced representation bisulfite sequencing. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to identify key pathways involved in efficient versus deficient CPM. RESULTS Based on CPM efficiency, we identified 6006 and 18,305 differentially methylated CpG sites (DMCs) with q values < 0.01 among individuals with cLBP and PFCs, respectively. Most of the DMCs were hypomethylated and annotated to genes of relevance to pain, including OPRM1, ADRB2, CACNA2D3, GNA12, LPL, NAXD, and ASPHD1. In both cLBP and PFC groups, the DMCs annotated genes enriched many GO terms relevant to pain processing, including transcription regulation by RNA polymerase II, nervous system development, generation of neurons, neuron differentiation, and neurogenesis. Both groups also enriched the pathways involved in Rap1-signaling, cancer, and dopaminergic neurogenesis. However, MAPK-Ras signaling pathways were enriched in the cLBP, not the PFC group. CONCLUSIONS This is the first study to investigate the genome-scale DNA methylation profiles of CPM phenotype in adults with cLBP and PFCs. Based on CPM efficiency, fewer DMC enrichment pathways were unique to the cLBP than the PFCs group. Our results suggest that epigenetically induced modification of neuronal development/differentiation pathways may affect CPM efficiency, suggesting novel potential therapeutic targets for central sensitization. However, CPM efficiency and the experience of nonspecific cLBP may be independent. Further mechanistic studies are required to confirm the relationship between CPM, central sensitization, and nonspecific cLBP.
Collapse
Affiliation(s)
- Burel R Goodin
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Addiction and Pain Prevention and Intervention (CAPPI), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Demario S Overstreet
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Terence M Penn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rahm Bakshi
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Sims
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Ptacek
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Acute, Chronic and Continuing Care, School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, 35294, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edwin N Aroke
- Department of Acute, Chronic and Continuing Care, School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
45
|
Li J, Zhu BF, Gu ZQ, Zhang H, Mei SS, Ji SZ, Liu SY, Han C, Chen HZ, Chan P. Musculoskeletal Pain in Parkinson's Disease. Front Neurol 2022; 12:756538. [PMID: 35126283 PMCID: PMC8813739 DOI: 10.3389/fneur.2021.756538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musculoskeletal pain is commonly experienced in patients with Parkinson's disease (PD). Few studies have investigated the clinical characteristics and risk factors associated with musculoskeletal pain. OBJECTIVES To investigate the distribution, clinical characteristics, and factors associated with musculoskeletal pain in a large sample of patients with PD. METHODS We enrolled 452 patients from two clinics and used a standardized questionnaire to collect demographic and clinical information. Musculoskeletal pain was diagnosed based on the Ford Classification System, and pain severity was assessed with the numeric rating scale (NRS). Multivariate regression models explored the association between clinical features of PD and quality of life and pain. RESULTS Two hundred and six patients (45.58%) reported musculoskeletal pain, typically in their lower limbs and backs. Levodopa resulted in a ≥30% reduction in pain intensity scores in 170 subjects. Female sex (odds ratio [OR], 1.57; 95% CI, 1.07-2.29) and Levodopa-equivalent daily doses (LEDDs; OR, 3.35; 95% CI, 1.63-6.59) were associated with an increased risk for musculoskeletal pain. Pain duration (p = 0.017), motor symptoms (p < 0.001), and depression (p < 0.001) were significantly associated with quality of life. CONCLUSIONS The lower limbs and back are common sites of musculoskeletal pain in patients with PD, and up to 82.52% of patients were responsive to Levodopa. Female sex and LEDDs are associated with musculoskeletal pain, suggesting that dopamine deficiencies, and not the motor and non-motor impairment, might be the most critical baseline risk factor of musculoskeletal pain.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China.,Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ben-Fan Zhu
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhu-Qin Gu
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Hui Zhang
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shan-Shan Mei
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shao-Zhen Ji
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Chao Han
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Huai-Zhen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Piu Chan
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Clinical and Research Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Morgese MG, Bove M, Di Cesare Mannelli L, Schiavone S, Colia AL, Dimonte S, Mhillaj E, Sikora V, Tucci P, Ghelardini C, Trabace L. Precision Medicine in Alzheimer's Disease: Investigating Comorbid Common Biological Substrates in the Rat Model of Amyloid Beta-Induced Toxicity. Front Pharmacol 2022; 12:799561. [PMID: 35046821 PMCID: PMC8763383 DOI: 10.3389/fphar.2021.799561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD), one of the most widespread neurodegenerative disorder, is a fatal global burden for the elder population. Although many efforts have been made, the search of a curative therapy is still ongoing. Individuating phenotypic traits that might help in investigating treatment response is of growing interest in AD research. AD is a complex pathology characterized by many comorbidities, such as depression and increased susceptibility to pain perception, leading to postulate that these conditions may rely on common biological substrates yet to be determined. In order to investigate those biological determinants to be associable with phenotypic traits, we used the rat model of amyloid beta-induced toxicity. This established model of early phase of AD is obtained by the intracerebroventricular injection of soluble amyloid beta1-42 (Aβ) peptide 7 days before performing experiments. In this model, we have previously reported increased immobility in the forced swimming test, reduced cortical serotonin levels and subtle alterations in the cognitive domain a depressive-like phenotype associated with subtle alteration in memory processes. In light of evaluating pain perception in this animal model, we performed two different behavioral tests commonly used, such as the paw pressure test and the cold plate test, to analyze mechanical hyperalgesia and thermal allodynia, respectively. Behavioural outcomes confirmed the memory impairment in the social recognition test and, compared to sham, Aβ-injected rats showed an increased selective susceptibility to mechanical but not to thermal stimulus. Behavioural data were then corroborated by neurochemical and biochemical biomarker analyses either at central or peripheral level. Data showed that the peptide injection evoked a significant increase in hypothalamic glutamate, kynurenine and dopamine content, while serotonin levels were reduced. Plasma Cystatin-C, a cysteine protease, was increased while serotonin and melatonin levels were decreased in Aβ-injected rats. Urinary levels paralleled plasma quantifications, indicating that Aβ-induced deficits in pain perception, mood and cognitive domain may also depend on these biomarkers. In conclusion, in the present study, we demonstrated that this animal model can mimic several comorbid conditions typical of the early phase of AD. Therefore, in the perspective of generating novel therapeutic strategies relevant to precision medicine in AD, this animal model and the biomarkers evaluated herein may represent an advantageous approach.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Mhillaj
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Pathology, Sumy State University, Sumy, Ukraine
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
47
|
Martins CP, Paes RS, Baldasso GM, Ferrarini EG, Scussel R, Zaccaron RP, Machado-de-Ávila RA, Lock Silveira PC, Dutra RC. Pramipexole, a dopamine D3/D2 receptor-preferring agonist, attenuates reserpine-induced fibromyalgia-like model in mice. Neural Regen Res 2022; 17:450-458. [PMID: 34269222 PMCID: PMC8463993 DOI: 10.4103/1673-5374.317984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibromyalgia (FM) is a complex pathology described as persistent hyperalgesia including somatic and mood dysfunctions, depression and anxiety. Although the etiology of FM is still unknown, a significant decrease in biogenic amines is a common characteristic in its pathogenesis. Here, our main objective was to investigate the role of dopamine D3/D2 receptor during the reserpine-induced pain in mice. Our results showed that pramipexole (PPX) - a dopaminergic D3/D2 receptor agonist - inhibited mechanical allodynia and thermal sensitivity induced by reserpine. Relevantly, PPX treatment decreased immobility time and increased the number of grooming in the forced swimming test and splash test, respectively. Animals that received PPX remained longer in the open arms than the reserpine group using elevated plus-maze apparatus. The repeated PPX administration, given daily for 4 days, significantly blocked the mechanical and thermal allodynia during FM model, similarly to pregabalin, although it failed to affect the reserpine-induced thermal nociception. Reserpine administration induced significant downregulation of dopamine concentration in the central nervous system, and repeated treatment with PPX restored dopamine levels in the frontal cortex and spinal cord tissues. Moreover, PPX treatment inhibited oxidants production such as DCFH (2',7'-dichlorodihydrofluorescein) and nitrite, also decreased oxidative damage (carbonyl), and upregulated the activity of superoxide dismutase in the spinal cord. Together, our findings demonstrated the ability of dopamine D3/D2 receptor-preferring agonist in reducing pain and mood dysfunction allied to FM in mice. All experimental protocols were approved by the Universidade Federal de Santa Catarina (UFSC) Ethics Committee (approval No. 2572210218) on May 10, 2018.
Collapse
Affiliation(s)
- Carlos Pereira Martins
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo Sebben Paes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Gabriela Mantovani Baldasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
48
|
Martins D, Veronese M, Turkheimer FE, Howard MA, Williams SCR, Dipasquale O. A candidate neuroimaging biomarker for detection of neurotransmission-related functional alterations and prediction of pharmacological analgesic response in chronic pain. Brain Commun 2021; 4:fcab302. [PMID: 35169702 PMCID: PMC8833258 DOI: 10.1093/braincomms/fcab302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic pain is a world-wide clinical challenge. Response to analgesic treatment is limited and difficult to predict. Functional MRI has been suggested as a potential solution. However, while most analgesics target specific neurotransmission pathways, functional MRI-based biomarkers are not specific for any neurotransmitter system, limiting our understanding of how they might contribute to predict treatment response. Here, we sought to bridge this gap by applying Receptor-Enriched Analysis of Functional Connectivity by Targets to investigate whether neurotransmission-enriched functional connectivity mapping can provide insights into the brain mechanisms underlying chronic pain and inter-individual differences in analgesic response after a placebo or duloxetine. We performed secondary analyses of two openly available resting-state functional MRI data sets of 56 patients with chronic knee osteoarthritis pain who underwent pre-treatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-week single-blinded placebo pill trial. Study 2 (n = 39) was a 3-month double-blinded randomized trial comparing placebo to duloxetine, a dual serotonin–noradrenaline reuptake inhibitor. Across two independent studies, we found that patients with chronic pain present alterations in the functional circuit related to the serotonin transporter, when compared with age-matched healthy controls. Placebo responders in Study 1 presented with higher pre-treatment functional connectivity enriched by the dopamine transporter compared to non-responders. Duloxetine responders presented with higher pre-treatment functional connectivity enriched by the serotonin and noradrenaline transporters when compared with non-responders. Neurotransmission-enriched functional connectivity mapping might hold promise as a new mechanistic-informed biomarker for functional brain alterations and prediction of response to pharmacological analgesia in chronic pain.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Steve C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
49
|
Coronado B, Dunn J, Veronin MA, Reinert JP. Efficacy and Safety Considerations With Second-Generation Antipsychotics as Adjunctive Analgesics: A Review of Literature. J Pharm Technol 2021; 37:202-208. [PMID: 34752579 DOI: 10.1177/87551225211004145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To determine the efficacy and safety of second-generation antipsychotics (SGAs) as adjunctive analgesics. Data Sources: A comprehensive literature review was conducted between August 2020 and January 2021 on PubMed, Scopus, and ProQuest Central. Study Selection and Data Extraction: Keyword and Boolean phrase searches using the following terminology were conducted: "Quetiapine" OR "Risperidone" OR "Olanzapine" OR "Ziprasidone" AND "Analgesia" NOT "Psychosis" NOT "Psych." Articles that involved human adult patients who received any of the SGAs mentioned in the searching filter with an opioid were included. Articles that described pediatrics, pregnant women, patients who received any of these agents for treatment of psychosis and articles that were not in English, or readily translatable to English, were excluded. Data Synthesis: Three articles were selected for inclusion in this review, with 2 articles detailing reports with olanzapine and 1 article describing a randomized, controlled trial with extended-release quetiapine. Both olanzapine and quetiapine were able to decrease pain scores on the numeric rating scale, indicating a reduction pain experienced, and additionally reduced opioid craving behavior in patients. Depression scores and quality-of-life indicators improved with quetiapine, though those metrics were not studied with olanzapine. Conclusions: Select SGAs, specifically extended-release quetiapine and olanzapine, may serve as an appropriate adjunctive analgesic choice in select patients. Further research is required in a clinical setting to determine the exact role of this drug class in pain management.
Collapse
Affiliation(s)
| | - Jacob Dunn
- The University of Texas at Tyler, TX, USA
| | | | - Justin P Reinert
- The University of Texas at Tyler, TX, USA.,Bon Secours Mercy Health St. Vincent Medical Center, Toledo, OH, USA
| |
Collapse
|
50
|
Li T, Wang L, Zhang L, Li B, Wang D, Zhang L, Wang T, Fu F. Rotigotine-loaded microspheres exerts the antinociceptive effect via central dopaminergic system. Eur J Pharmacol 2021; 910:174443. [PMID: 34464604 DOI: 10.1016/j.ejphar.2021.174443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Rotigotine-loaded microspheres (RoMS), a sustained-release formulation with a continuous release of rotigotine for more than 7 days in vivo, have been conducted a clinical trial for the treatment of Parkinson's disease (PD). Previous work from our laboratory showed that RoMS exerted an antinociceptive effect in rat models of inflammatory pain. The purpose of this study was to investigate the mechanisms of action underlying the antinociceptive effect of RoMS. A rat model of inflammatory pain was prepared by an intraplantar injection of carrageenan. The hot plate test and the Randall-Selitto test were used to evaluate the effect of domperidone (selective D2 receptor antagonist), D2D3 shRNA, and naloxone (nonselective opioid receptor antagonist) on RoMS-mediated antinociceptive efficacy. The expressions of D2 and D3 receptors in the striatum and periaqueductal gray were measured by Western blotting. Intracerebroventricular injection of domperidone abated the antinociceptive effect of RoMS. However, intraperitoneal injection of domperidone had no significant effect on the antinociceptive action of RoMS. Intracerebroventricular injection with D2D3 shRNA significantly attenuated the expressions of D2 and D3 receptors in the striatum and the periaqueductal gray. D2 and D3 receptors silence significantly weakened RoMS-mediated antinociceptive effect. Intracerebroventricular injection of naloxone also alleviated the antinociceptive effect of RoMS. The results suggest that RoMS-mediated antinociceptive efficacy is associated with activating central dopamine D2 and D3 receptors. Opioid receptors play a role in the antinociceptive effect of RoMS.
Collapse
Affiliation(s)
- Ting Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Linlin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Linjie Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Baoxia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Daohui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China; State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Luye Pharma Group Ltd., Yantai, Shandong, 264003, PR China.
| |
Collapse
|