1
|
Gao S, Zeng W, Liu Z, Zhang F, Zhang Y, Liu X, Wu D, Wang Y. Dual-Function Hydrogel Coating on Silicone Urinary Catheters with Durable Antibacterial Property and Lubricity. Gels 2025; 11:128. [PMID: 39996671 PMCID: PMC11854451 DOI: 10.3390/gels11020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter's surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. Thus, the development of a silicone urinary catheter with antibacterial properties and lubricity is in strong demand. We hereby developed a poly(vinyl acetate) carrier coating to load chlorhexidine acetate and applied a hydrogel coating primarily composed of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) diacrylate (PEGDA), which was then coated onto the silicone urinary catheters and cured through a thermal curing process and could provide lubricity. Subsequently, we analyzed its surface characteristics and assessed the antibacterial property, lubricity, cytotoxicity, and potential for vaginal irritation. The findings from the Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), water contact angle (WCA), inhibition zone measurements, and friction coefficient analysis confirmed the successful modification of the silicone urinary catheter. Additionally, the outcomes from the cytotoxicity and vaginal irritation assessments demonstrated that the dual-function hydrogel coating-coated silicone urinary catheters exhibit outstanding biocompatibility. This study illustrates that the prepared silicone urinary catheters possess durable antibacterial properties and lubricity, which thus gives them broad clinical application prospects.
Collapse
Affiliation(s)
- Shuai Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.); (X.L.)
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (W.Z.); (Z.L.); (Y.Z.)
| | - Wei Zeng
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (W.Z.); (Z.L.); (Y.Z.)
| | - Zheng Liu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (W.Z.); (Z.L.); (Y.Z.)
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.); (X.L.)
| | - Yunfeng Zhang
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (W.Z.); (Z.L.); (Y.Z.)
| | - Xi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.); (X.L.)
| | - Dimeng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.); (X.L.)
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.); (X.L.)
| |
Collapse
|
2
|
Gao Y, Wang J, Deng Z, Wang Y, Zhang D, Xu X, Yu X, Wei X. Targeted Delivery of 2D Composite Minerals for Biofilm Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52814-52823. [PMID: 39358894 DOI: 10.1021/acsami.4c10998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Microbiologically influenced corrosion (MIC) poses considerable challenges in various industries, prompting the exploration of advanced materials to mitigate microbial threats. This study successfully synthesized nanoscale vermiculite (VMT) from natural seawater and utilized it as a foundation to integrate magnetic nanoparticles (Fe3O4) and chlorhexidine acetate (CA) for inhibiting MIC. A comprehensive investigation encompassing the synthesis, characterization, and application of these VMT/Fe3O4/CA composites was conducted to evaluate their antimicrobial effectiveness against Escherichia coli, Staphylococcus aureus, and sulfate-reducing bacteria (SRB), demonstrating an efficacy exceeding 99.5%. Moreover, the composite material demonstrated the capability to align with a magnetic field, enabling precise drug targeting and release, thereby facilitating biofilm removal. This research makes a significant contribution to the advancement of intelligent, efficient, and eco-friendly corrosion protection solutions.
Collapse
Affiliation(s)
- Yaohua Gao
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhuo Deng
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dun Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaohan Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaojiao Yu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xile Wei
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Kang X, Zhao T, Song Y, Zhang J, Yuan T, Han Q. Evaluation of the activity of antimicrobial peptides against bacterial vaginosis. Open Life Sci 2024; 19:20220927. [PMID: 39091626 PMCID: PMC11292031 DOI: 10.1515/biol-2022-0927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
New drugs for the treatment of bacterial vaginosis (BV) are yet to be developed due to concerns that they may contribute to the increase in antibiotic resistance in BV. Antimicrobial peptides (AMPs) are one of the most promising options for next-generation antibiotics. In this study, we investigated the bacteriostatic activity of the AMPs Pexiganan, plectasin, melittin, and cathelicidin-DM against Gram-negative and Gram-positive bacteria both in vitro and in a mouse model of BV infection. The results showed that Pexiganan, melittin, and cathelicidin-DM had significant antibacterial activity against both Gram-negative and Gram-positive bacteria. AMPs have great potential for clinical application in the treatment of vaginitis, and this study provides an experimental basis for their use in the active immunoprophylaxis of BV.
Collapse
Affiliation(s)
- Xuning Kang
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ting Zhao
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuzhu Song
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinyang Zhang
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Tao Yuan
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qinqin Han
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
4
|
Deng R, Wu J, Zhu B, Song G, Zhou T, Yang M, Pan L, Wang J, Zou X, Lv Z, Jin X, Xu Y, Lu X, Gui S. Engineered exosomes loaded with M1–8 peptide for targeted therapy of hepatocellular carcinoma. APPLIED MATERIALS TODAY 2024; 37:102071. [DOI: 10.1016/j.apmt.2024.102071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Espinal P, Fusté E, Sierra JM, Jiménez-Galisteo G, Vinuesa T, Viñas M. Progress towards the clinical use of antimicrobial peptides: challenges and opportunities. Expert Opin Biol Ther 2023:1-10. [PMID: 37366927 DOI: 10.1080/14712598.2023.2226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION To overcome the challenge of multidrug resistance, natural and synthetic peptides are candidates to become the basis of innovative therapeutics, featuring diverse mechanisms of action. Traditionally, the time elapsed from medical discoveries to their application is long. The urgency derived from the emergence of antibiotic resistance recommends an acceleration of research to put the new weapons in the hands of clinicians. AREAS COVERED This narrative review introduces ideas and suggestions of new strategies that may be used as a basis upon which to recommend reduced development times and to facilitate the arrival of new molecules in the fight against microbes. EXPERT OPINION Although studies on new innovative antimicrobial treatments are being conducted, sooner rather than later, more clinical trials, preclinical and translational research are needed to promote the development of innovative antimicrobial treatments for multidrug resistant infections. The situation is worrying, no less than that generated by pandemics such as the ones we have just experienced and conflicts such as world wars. Although from the point of view of human perception, resistance to antibiotics may not seem as serious as these other situations, it is possibly the hidden pandemic that most jeopardizes the future of medicine.
Collapse
Affiliation(s)
- Paula Espinal
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Fusté
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Public Health, Mental Health, And Maternal and Child Health Nursing, University of Barcelona and IDIBELL, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Sierra
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Guadalupe Jiménez-Galisteo
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Vinuesa
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
6
|
Shirmohammadi A, Maleki Dizaj S, Sharifi S, Fattahi S, Negahdari R, Ghavimi MA, Memar MY. Promising Antimicrobial Action of Sustained Released Curcumin-Loaded Silica Nanoparticles against Clinically Isolated Porphyromonas gingivalis. Diseases 2023; 11:diseases11010048. [PMID: 36975597 PMCID: PMC10047251 DOI: 10.3390/diseases11010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) has always been one of the leading causes of periodontal disease, and antibiotics are commonly used to control it. Numerous side effects of synthetic drugs, as well as the spread of drug resistance, have led to a tendency toward using natural antimicrobials, such as curcumin. The present study aimed to prepare and physicochemically characterize curcumin-loaded silica nanoparticles and to detect their antimicrobial effects on P. gingivalis. METHODS Curcumin-loaded silica nanoparticles were prepared using the chemical precipitation method and then were characterized using conventional methods (properties such as the particle size, drug loading percentage, and release pattern). P. gingivalis was isolated from one patient with chronic periodontal diseases. The patient's gingival crevice fluid was sampled using sterile filter paper and was transferred to the microbiology laboratory in less than 30 min. The disk diffusion method was used to determine the sensitivity of clinically isolated P. gingivalis to curcumin-loaded silica nanoparticles. SPSS software, version 20, was used to compare the data between groups with a p value of <0.05 as the level of significance. Then, one-way ANOVA testing was utilized to compare the groups. RESULTS The curcumin-loaded silica nanoparticles showed a nanometric size and a drug loading percentage of 68% for curcumin. The nanoparticles had a mesoporous structure and rod-shaped morphology. They showed a relatively rapid release pattern in the first 5 days. The release of the drug from the nanoparticles continued slowly until the 45th day. The results of in vitro antimicrobial tests showed that P. gingivalis was sensitive to the curcumin-loaded silica nanoparticles at concentrations of 50, 25, 12.5, and 6.25 µg/mL. One-way ANOVA showed that there was a significant difference between the mean growth inhibition zone, and the concentration of 50 µg/mL showed the highest inhibition zone (p ≤ 0.05). CONCLUSION Based on the obtained results, it can be concluded that the local nanocurcumin application for periodontal disease and implant-related infections can be considered a promising method for the near future in dentistry.
Collapse
Affiliation(s)
- Adileh Shirmohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Shirin Fattahi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz 5166, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| |
Collapse
|
7
|
Ruan YR, Li WZ, Ye YY, Luo J, Xu SY, Xiao J, Lin XW, Liu S, Wang XQ, Wang W. Supramolecularly assisted chlorhexidine-bacterial membrane interaction with enhanced antibacterial activity and reduced side effects. J Colloid Interface Sci 2023; 641:146-154. [PMID: 36931213 DOI: 10.1016/j.jcis.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Bacterial infection has emerged as a grievous threat to public health, and lots of antibacterial agents were developed to solve this issue. However, enhancing the antibacterial activity of antibacterial agents while reducing their side effects remains a challenge. Herein, a supramolecular antibacterial agent based on the host-guest interaction between cucurbit[7]uril (CB[7]) and chlorhexidine (CHX) was designed. CHX can be encapsulated in the cavity of CB[7] to form a 1:3 host-guest complex (CHX-3CB[7]). It was amazingly found that this supramolecular complex could display higher antibacterial activity than CHX alone. Electrospray mass spectrometry and UV-vis spectra revealed that the introduction of CB[7] promoted the protonation of N-atoms on CHX, resulting in stronger ion interaction with phospholipids and thus enhancing the destruction of the bacterial membrane. Scanning electron microscopy (SEM), surface ζ-potentials and outer/inner membrane integrity assays also reveal that the introduction of CB[7] aggravates the rupture of membrane. What is more, the cytotoxicity and irritation of CHX were decreased by forming the host-guest complex with CB[7]. This work provides a paradigm for enhancing antibacterial activity and reducing side effects of drugs through supramolecular chemistry.
Collapse
Affiliation(s)
- Yi-Ru Ruan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Wen-Zhen Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yu-Yuan Ye
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jie Luo
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shi-Yuan Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ju Xiao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xiao-Wei Lin
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xiao-Qiang Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Wenjing Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
8
|
Zhao Z, Wu J, Sun Z, Fan J, Liu F, Zhao W, Liu WH, Zhang M, Hung WL. Postbiotics Derived from L. paracasei ET-22 Inhibit the Formation of S. mutans Biofilms and Bioactive Substances: An Analysis. Molecules 2023; 28:molecules28031236. [PMID: 36770903 PMCID: PMC9919839 DOI: 10.3390/molecules28031236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Globally, dental caries is one of the most common non-communicable diseases for patients of all ages; Streptococcus mutans (S. mutans) is its principal pathogen. Lactobacillus paracasei (L. paracasei) shows excellent anti-pathogens and immune-regulation functions in the host. The aim of this study is to evaluate the effects of L. paracasei ET-22 on the formation of S. mutans biofilms. The living bacteria, heat-killed bacteria, and secretions of L. paracasei ET-22 were prepared using the same number of bacteria. In vitro, they were added into artificial-saliva medium, and used to coculture with the S. mutans. Results showed that the living bacteria and secretions of L. paracasei ET-22 inhibited biofilm-growth, the synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, and virulence-gene-expression levels related to the formation of S. mutans biofilms. Surprisingly, the heat-killed L. paracasei ET-22, which is a postbiotic, also showed a similar regulation function. Non-targeted metabonomics technology was used to identify multiple potential active-substances in the postbiotics of L. paracasei ET-22 that inhibit the formation of S. mutans biofilms, including phenyllactic acid, zidovudine monophosphate, and citrulline. In conclusion, live bacteria and its postbiotics of L. paracasei ET-22 all have inhibitory effects on the formation of S. mutans biofilm. The postbiotics of L. paracasei ET-22 may be a promising biological anticariogenic-agent.
Collapse
Affiliation(s)
- Zhi Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Jianmin Wu
- China Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
| | - Jinbo Fan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
- Correspondence: (M.Z.); (W.-L.H.)
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Correspondence: (M.Z.); (W.-L.H.)
| |
Collapse
|
9
|
Santos VCED, Maquera-Huacho PM, Imbriani MJM, Minhaco VMTR, Spolidorio DMP. Effects of BlueM® against Streptococcus mutans biofilm and its virulence gene expression. Braz Dent J 2023; 34:19-28. [PMID: 36888841 PMCID: PMC10027103 DOI: 10.1590/0103-6440202305133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 03/08/2023] Open
Abstract
This study evaluated the antimicrobial capacity of BlueM® mouthwash against the bacterium Streptococcus mutans and its influence on gbpA gene expression as well as its cytotoxic effect on fibroblast cells. BlueM® showed antimicrobial activity, with MIC and MBC values of 0.005% and 0.01%, respectively. The MBIC was 6.25% for S. mutans. CFU count and confocal microscopy revealed significant effect of BlueM® on S. mutans biofilm pre-formed on dentin surfaces. Interestingly, the analysis of gbpA gene expression indicated a decrease in gene expression after 15 min of treatment with BlueM® at a concentration of 25%. Moreover, BlueM® exhibited low levels of cytotoxicity. In conclusion, our results showed the antimicrobial effectiveness of BlueM® against S. mutans, its ability to modulate the expression of the gbpA gene and its low cytotoxicity. This study supports the therapeutic potential of BlueM® as an alternative agent for the control of oral biofilm.
Collapse
Affiliation(s)
| | | | - Maria Júlia Mancim Imbriani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University(Unesp), Araraquara, SP, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vivian M Tellaroli Rodrigues Minhaco
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University(Unesp), Araraquara, SP, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Denise M Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University(Unesp), Araraquara, SP, Brazil
| |
Collapse
|
10
|
Hu J, Feng K, Cong Y, Li X, Jiang Y, Jiao X, Li Y, Zhang Y, Dong X, Lu W, Ding Z, Hong H. Nanosized Shikonin-Fe(III) Coordination Material for Synergistic Wound Treatment: An Initial Explorative Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56510-56524. [PMID: 36516041 DOI: 10.1021/acsami.2c16011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shikonin (Shik), a natural pigment, has received growing interest in various biomedical fields due to its anti-inflammatory, antitumor, antimicrobial, and antioxidant ability. However, some inherent characteristics of Shik, such as its virulence, low bioavailability, and poor solubility, have limited its biomedical applicability. Here, we reported a facile synthetic method to produce the Shik-iron (III) nanoparticles (Shik-Fe NPs), which could overcome these limitations of Shik. The synthesized Shik-Fe NPs possessed a uniform size range of 110 ± 10 nm, negative surface charges, good water dispersity, and high safety. Iron distributed uniformly inside Shik-Fe NPs, and iron constituted 20% of total mass in PEGylated Shik-Fe NPs. When interacting with activated macrophages, Shik-Fe NPs significantly reduced the level of cellular inflammatory factors, for example, iNOS, IL-1β, and TNF-α. Furthermore, the Shik-Fe NPs demonstrated synergistic anti-inflammation and anti-bacterial properties in vivo, since they could release Fe3+ and Shik to eradicate bacteria (Staphylococcus aureus and P. aeruginosa were used as model microbes here) during wound infections and provide full recovery for scald wounds. Collectively, the study established a dual-functional Shik-derived nanoplatform, which could be useful for the treatment of various inflammation-involved diseases.
Collapse
Affiliation(s)
- Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093 China
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yanjun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaodan Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yurong Li
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093 China
| | - Yuqin Zhang
- Key Laboratory of Animal Growth and Development of Henan Province, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, P.R. China, College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Xinying Dong
- Key Laboratory of Animal Growth and Development of Henan Province, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, P.R. China, College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Weifei Lu
- Key Laboratory of Animal Growth and Development of Henan Province, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, P.R. China, College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093 China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
11
|
Comparative Fungicidal Activities of N-Chlorotaurine and Conventional Antiseptics against Candida spp. Isolated from Vulvovaginal Candidiasis. J Fungi (Basel) 2022; 8:jof8070682. [PMID: 35887439 PMCID: PMC9322802 DOI: 10.3390/jof8070682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
N-chlorotaurine (NCT), the N-chloro derivative of the amino acid taurine, is a long-lived oxidant produced by stimulated human leucocytes. NCT has antimicrobial activities which are generally enhanced in the presence of organic material. The aim of this study was to investigate fungicidal effects of NCT and conventional antiseptics against Candida isolated from vulvovaginal candidiasis (VVC). Chlorhexidine (CHX, 1.6%), octenidine dihydrochloride (OCT, 0.08%), povidone iodine (PVP-I, 8%), boric acid (8%), and NCT (0.1% (5.5 mM)) were evaluated against forty-four Candida isolates, according to European Standard methods, at 30, 60, 90, and 120 min and 24 h in the presence of skim milk as an organic material. CHX, OCT, and PVP-I showed rapid fungicidal activity against all Candida isolates with 5–6 log10 reduction of viable counts after 30 min, whereas boric acid and NCT needed 1 h against Candida albicans and 2 h against non-albicans Candida for a significant 3 log10 reduction. NCT showed fungicidal activity (defined as ≥4 log10 reduction) against C. albicans within 90 min and C. non–albicans within 24 h. Based upon all presently available data, including our results, NCT could be used as a new agent for treatment of local fungal infections such as VVC.
Collapse
|
12
|
Liu H, Wu J, Su Y, Li Y, Zuo D, Liu H, Liu Y, Mei X, Huang H, Yang M, Zhu S. Allyl Isothiocyanate in the Volatiles of Brassica juncea Inhibits the Growth of Root Rot Pathogens of Panax notoginseng by Inducing the Accumulation of ROS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13713-13723. [PMID: 34780155 DOI: 10.1021/acs.jafc.1c05225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cultivation of Panax notoginseng is often seriously hindered by root rot disease caused by the accumulation of soil-borne pathogens. Here, the inhibitory activity of Brassica juncea volatiles on P. notoginseng root rot pathogens was assessed and compounds in volatiles were identified. Furthermore, the antimicrobial activity and mechanism of allyl isothiocyanate (AITC) were deciphered by integrated transcriptome and metabolome analyses. The volatiles of B. juncea showed dose-dependent antimicrobial activity against root rot pathogens. AITC, identified as the main volatile compound, not only significantly inhibited pathogen growth in vitro but also suppressed root rot disease in the field. Integrated transcriptomic and metabolomics analysis revealed that AITC inhibited Fusarium solani by interfering with energy production and induced the accumulation of ROS by decreasing the content of glutathione (GSH). In summary, B. juncea releases AITC to inhibit soil-borne pathogens and could be used as a rotation crop or soil fumigant to alleviate root rot disease.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yingwei Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yingbin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Denghong Zuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Hongbin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
13
|
Zeng XY, Li M. Looking into key bacterial proteins involved in gut dysbiosis. World J Methodol 2021; 11:130-143. [PMID: 34322365 PMCID: PMC8299906 DOI: 10.5662/wjm.v11.i4.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Collapse
Affiliation(s)
- Xin-Yu Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumors, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
14
|
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021; 14:471. [PMID: 34067510 PMCID: PMC8156082 DOI: 10.3390/ph14050471] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (B.V.); (M.G.); (G.M.)
| | | | | | | |
Collapse
|
15
|
Zhu N, Zhong C, Liu T, Zhu Y, Gou S, Bao H, Yao J, Ni J. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in Gram-negative bacteria. Eur J Pharm Sci 2021; 158:105665. [DOI: 10.1016/j.ejps.2020.105665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
|
16
|
Yaghoubi A, Khazaei M, Ghazvini K, Movaqar A, Avan A, Hasanian SM, Soleimanpour S. Peptides with Dual Antimicrobial-Anticancer Activity Derived from the N-terminal Region of H. pylori Ribosomal Protein L1 (RpL1). Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10150-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Therapeutic Potential of Antimicrobial Peptides in Polymicrobial Biofilm-Associated Infections. Int J Mol Sci 2021; 22:ijms22020482. [PMID: 33418930 PMCID: PMC7825036 DOI: 10.3390/ijms22020482] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is widely recognized that many chronic infections of the human body have a polymicrobial etiology. These include diabetic foot ulcer infections, lung infections in cystic fibrosis patients, periodontitis, otitis, urinary tract infections and even a proportion of systemic infections. The treatment of mixed infections poses serious challenges in the clinic. First, polymicrobial communities of microorganisms often organize themselves as biofilms that are notoriously recalcitrant to antimicrobial therapy and clearance by the host immune system. Secondly, a plethora of interactions among community members may affect the expression of virulence factors and the susceptibility to antimicrobials of individual species in the community. Therefore, new strategies able to target multiple pathogens in mixed populations need to be urgently developed and evaluated. In this regard, antimicrobial or host defense peptides (AMPs) deserve particular attention as they are endowed with many favorable features that may serve to this end. The aim of the present review is to offer a comprehensive and updated overview of studies addressing the therapeutic potential of AMPs in mixed infections, highlighting the opportunities offered by this class of antimicrobials in the fight against polymicrobial infections, but also the limits that may arise in their use for this type of application.
Collapse
|
18
|
Horstmann Risso N, Ottonelli Stopiglia CD, Oliveira MT, Haas SE, Ramos Maciel T, Reginatto Lazzari N, Kelmer EL, Pinto Vilela JA, Beckmann DV. Chlorhexidine Nanoemulsion: A New Antiseptic Formulation. Int J Nanomedicine 2020; 15:6935-6944. [PMID: 33061360 PMCID: PMC7519836 DOI: 10.2147/ijn.s228280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Nanoparticle solutions have been studied to improve antimicrobial effect. The aim of this study was to develop, characterize, and evaluate the in vitro and in vivo antiseptic efficacy of 0.25% aqueous-based chlorhexidine nanoemulsion (NM-Cl 0.25% w/v). Methods The NM-Cl 0.25% w/v (2.5mg/mL) and free chlorhexidine nanoemulsion (FCN; same composition of NM-Cl without the molecule of chlorhexidine) were synthetized by the spontaneous emulsification method. Characterization analyses of physical and chemical properties were performed. The NM-Cl 0.25% w/v was compared with chlorhexidine 0.5% alcohol base (CS-Cl 0.5%) in vitro studies (microdilution study and kill curve study), and in vivo study (antisepsis of rats dorsum). Kruskal–Wallis test was used between groups and inside the same group, at different sample times and the Mann–Whitney test was performed when difference was detected. Results The NM-Cl 0.25% w/v presented adequate physicochemical characteristics for a nanoemulsion, revealing a more basic pH than FCN and difference between zeta potential of NM-Cl 0.25% w/v and FCN. The NM-Cl 0.25% w/v and CS-Cl 0.5% solutions were more effective on Gram-positive than on Gram-negative bacteria (p≤0.05). NM-Cl 0.25% w/v presented upper antiseptic effect in the microdilution study and residual antiseptic effect was maintained for a longer time when compared to CS-Cl 0.5% (kill curve study). The four-fold (minimal inhibitory concentration) of NM-Cl 0.25% were the formulations with most durable effect within those tested, presenting residual effect until T6 for both bacteria. In the in vivo study, both formulations (NM-Cl 0.25% w/v and CS-Cl 0.5%) had a reduction of the microorganisms in the skin of the rats (p<0.0001) not revealing any difference between the formulations at different times, showing the antiseptic effect of NM-Cl (p≤0.05). Conclusion Both in vitro and in vivo experiments demonstrated that NM-Cl showed promising future as an antiseptic for cutaneous microbiota.
Collapse
Affiliation(s)
- Natalia Horstmann Risso
- Postgraduate Program in Animal Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | | | - Marília Teresa Oliveira
- Postgraduate Program in Animal Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Tamara Ramos Maciel
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | | | - Edilson Luis Kelmer
- Veterinary Medicine Course, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | | | - Diego Vilibaldo Beckmann
- Postgraduate Program in Animal Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| |
Collapse
|
19
|
Zhu J, Huang Y, Hu C, Huang Y, Chen M, He X, Zhang Y, Wang Y, Chen Y. Inhibitory Effects and Mechanism of the Combined Use of α-Helical Peptides HPRP-A1/HPRP-A2 and Chlorhexidine Acetate Against Bacterial and Fungal Biofilms. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|