1
|
Li H, Huang J, Zhao D, Zhu L, Zhang Z, Yi M, Peng W. Longitudinal assessment of peripheral organ metabolism and the gut microbiota in an APP/PS1 transgenic mouse model of Alzheimer's disease. Neural Regen Res 2025; 20:2982-2997. [PMID: 39610107 PMCID: PMC11826447 DOI: 10.4103/nrr.nrr-d-23-01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00028/figure1/v/2024-11-26T163120Z/r/image-tiff Alzheimer's disease not only affects the brain, but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota. The aim of this study was to investigate systemic changes that occur in Alzheimer's disease, in particular the association between changes in peripheral organ metabolism, changes in gut microbial composition, and Alzheimer's disease development. To do this, we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1 (APP/PS1) transgenic and control mice at 3, 6, 9, and 12 months of age. Twelve-month-old APP/PS1 mice exhibited cognitive impairment, Alzheimer's disease-related brain changes, distinctive metabolic disturbances in peripheral organs and fecal samples (as detected by untargeted metabolomics sequencing), and substantial changes in gut microbial composition compared with younger APP/PS1 mice. Notably, a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice. These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer's disease development, indicating potential new directions for therapeutic strategies.
Collapse
Affiliation(s)
- Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Shin SJ, Park YH, Nam Y, Chung H, Kim S, Moon M. Localization and Pathological Implications of Lipopolysaccharide in the Brains of 5XFAD Mice. Mol Neurobiol 2025:10.1007/s12035-025-05107-w. [PMID: 40490661 DOI: 10.1007/s12035-025-05107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025]
Abstract
Alzheimer's disease (AD) is an irreversible disease characterized by a complex pathophysiology. Recent evidence consistently identifies inflammation as one of the contributing factors, along with the pathological aggregation and accumulation of amyloid-β (Aβ) peptides and hyperphosphorylated tau protein. Inflammation is suggested to have specific causative agents, of which lipopolysaccharide (LPS) may be important in AD. Interestingly, elevated LPS levels are found in patients with AD, and these elevated levels cause cognitive dysfunction in AD patients. Moreover, LPS contributes to neuroinflammation and Aβ and tau pathology in AD. However, questions remain about LPS presence/distribution in AD brains and its relationship with AD pathology. This study investigated (1) the changes in LPS presence/distribution in wild-type (WT) and 5XFAD mice, (2) the pathological role of LPS on Aβ and tau aggregation, and (3) the effect of LPS on neuroinflammatory response in vitro and in vivo. LPS accumulations were significantly increased in the 5XFAD brains compared to WT brains. Particularly, LPS distribution is increasing in the 5XFAD brains in an AD progression-dependent manner. Furthermore, LPS significantly increased aggregation of Aβ and tau and deteriorated neuroinflammatory response in vitro and in vivo. Thus, our results suggest that LPS contributes to AD pathology and modulation of LPS levels could be an effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, 05278, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Sciencee, Konyang University, Daejeon, 35365, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Sciencee, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
3
|
Seira Curto J, Dominguez Martinez A, Perez Collell G, Barniol Simon E, Romero Ruiz M, Franco Bordés B, Sotillo Sotillo P, Villegas Hernandez S, Fernandez MR, Sanchez de Groot N. Exogenous prion-like proteins and their potential to trigger cognitive dysfunction. Mol Syst Biol 2025:10.1038/s44320-025-00114-4. [PMID: 40425815 DOI: 10.1038/s44320-025-00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 04/16/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
The gut is exposed to a wide range of proteins, including ingested proteins and those produced by the resident microbiota. While ingested prion-like proteins can propagate across species, their implications for disease development remain largely unknown. Here, we apply a multidisciplinary approach to examine the relationship between the biophysical properties of exogenous prion-like proteins and the phenotypic consequences of ingesting them. Through computational analysis of gut bacterial proteins, we identified an enrichment of prion-like sequences in Helicobacter pylori. Based on these findings, we rationally designed a set of synthetic prion-like sequences that form amyloid fibrils, interfere with amyloid-beta-peptide aggregation, and trigger prion propagation when introduced in the yeast Sup35 model. When C. elegans were fed bacteria expressing these prion-like proteins, they lost associative memory and exhibited increased lipid oxidation. These data suggest a link between memory impairment, the conformational state of aggregates, and oxidative stress. Overall, this work supports gut microbiota as a reservoir of exogenous prion-like sequences, especially H. pylori, and the gut as an entry point for molecules capable of triggering cognitive dysfunction.
Collapse
Affiliation(s)
- Jofre Seira Curto
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adan Dominguez Martinez
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Genis Perez Collell
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Estrella Barniol Simon
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Romero Ruiz
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Franco Bordés
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Sotillo Sotillo
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Villegas Hernandez
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Rosario Fernandez
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Natalia Sanchez de Groot
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Liu S, Wang M, Meng X, Pan J, Fang J, Cheng W, Zhang X, Cheng K. Flavonoids from Shiliangcha ( Chimonanthus salicifolius) Alleviate Brain Aging in d-Galactose-Induced Senescent Mice through Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40388484 DOI: 10.1021/acs.jafc.5c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The leaves of Shiliangcha (an alternative tea, Chimonanthus salicifolius), a perennial bush cultivated in Lishui, Zhejiang, have been used for thousands of years by the She ethnic group as an herb and tea. Chimonanthus salicifolius flavonoids (CsFE) have exhibited remarkable antiaging properties. Therefore, we established a d-galactose (d_Gal)-induced aging mouse model to investigate the effect of CsFE on the central nervous system (CNS) of aging hosts. Supplementation with CsFE effectively alleviated symptoms of aging in mice, including weight loss, declining learning and memory capacity, blood-brain barrier (BBB) integrity, release of pro-inflammatory cytokines, oxidative stress, neuroinflammation, and microglia activation. Additionally, CsFE alleviated cognitive deficits by interfering with synaptic plasticity-associated protein levels, altering neuronal excitability, and affecting intracellular neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA) release. Furthermore, CsFE supplementation modulated gut microbiota composition by enriching probiotics Akkermansia, Muribaculaceae, Lactobacillus, and Lachnospiraceae, promoting the production of short-chain fatty acids (SCFAs). Therefore, this study suggested that CsFE has the potential to resist brain aging through intervention of the microbiota-gut-brain axis (GBA), which provides a theoretical basis for the development of natural drugs and dietary supplements for antiaging.
Collapse
Affiliation(s)
- Siyu Liu
- School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, P. R. China
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Miaomiao Wang
- School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, P. R. China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, P. R. China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P. R. China
| | - Jie Fang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P. R. China
| | - Wenliang Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Kejun Cheng
- School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, P. R. China
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P. R. China
| |
Collapse
|
5
|
Bauch A, Baur J, Honold I, Willmann M, Weber GL, Müller S, Sodenkamp S, Peter S, Schoppmeier U, Laske C. Prognostic Value of a Multivariate Gut Microbiome Model for Progression from Normal Cognition to Mild Cognitive Impairment Within 4 Years. Int J Mol Sci 2025; 26:4735. [PMID: 40429881 PMCID: PMC12112180 DOI: 10.3390/ijms26104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Little is known about the dysbiosis of the gut microbiome in patients with mild cognitive impairment (MCI) potentially at risk for the development of Alzheimer's disease (AD). So far, only cross-sectional differences and not longitudinal changes and their prognostic significance have been in the scope of research in MCI. Therefore, we investigated the ability of longitudinal taxonomic and functional gut microbiome data from 100 healthy controls (HC) to predict the progression from normal cognition to MCI over a 4-year follow-up period (4yFU). Logistic regression models were built with baseline features that best discriminated between the two groups using an ANOVA-type statistical analysis. The best model for the discrimination of MCI converters was based on functional data using Gene Ontology (GO), which included 14 features. This model achieved an area under the receiver operating characteristic curve (AUROC) of 0.84 at baseline, 0.78 at the 1-year follow-up (1yFU), and 0.75 at 4yFU. This functional model outperformed the taxonomic model, which included 38 genera features, in terms of descriptive performance and showed comparable efficacy to combined analyses integrating functional, taxonomic, and clinical characteristics. Thus, gut microbiome algorithms have the potential to predict MCI conversion in HCs over a 4-year period, offering a promising innovative supplement for early AD identification.
Collapse
Affiliation(s)
- Anne Bauch
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
| | - Julia Baur
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
| | - Iris Honold
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
| | - Matthias Willmann
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Labor Dr. Bayer, 70771 Leinfelden-Echterdingen, Germany;
| | - Greta Louise Weber
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
| | - Stephan Müller
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
| | - Sebastian Sodenkamp
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany; (S.P.); (U.S.)
| | - Ulrich Schoppmeier
- Institute of Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany; (S.P.); (U.S.)
| | - Christoph Laske
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; (I.H.); (G.L.W.); (S.M.); (S.S.); (C.L.)
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Shao B, Nong Y, Lin Y, Meng Y, Zhou Y, Huang M, Huang F, Wang J. Study on the Influence and Mechanism of Resveratrol on Cognitive Impairment in Chronic Kidney Disease Rats Through Regulating Gut Microbiota and the TLR4/NFκB Pathway. J Inflamm Res 2025; 18:6049-6060. [PMID: 40357381 PMCID: PMC12068408 DOI: 10.2147/jir.s510867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Objective To investigate the mechanism by which resveratrol (Res) ameliorates cognitive impairment (CI) in chronic kidney disease (CKD) rats through modulation of gut microbiota and suppression of inflammation. Methods A CKD model was established in rats via two intravenous injections of doxorubicin (4 mg/kg, 2 weeks apart). After 8 weeks, renal function and histopathological assessments were performed to confirm the establishment of the CKD model.Rats were divided into control, CKD, and CKD+Res groups. The CKD+Res group received intragastric Res for 6 weeks. Cognitive function was assessed using the Morris water maze. Serum Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Lipopolysaccharide (LPS) levels were measured via ELISA. Histopathology evaluated kidney, colon, and hippocampal damage. Gut microbiota composition was analyzed by 16S rRNA sequencing, and hippocampal Toll-Like Receptor 4 (TLR4)/ the Nuclear Factor-κB (NFκB) pathway proteins were quantified via Western blot. Results CKD groups exhibited elevated 24-hour urinary albumin, serum urea nitrogen, and creatinine (P < 0.01), with glomerular atrophy. During water maze navigation (days 3-4), CKD groups showed prolonged escape latency and increased swimming distance versus controls (P < 0.05), which Res intervention alleviated (P < 0.05). In the spatial probe test, CKD rats had fewer platform crossings and shorter target quadrant occupancy (P < 0.01; P < 0.05), both improved by Res (P < 0.05). Hippocampal neuronal damage and elevated serum IL-6, TNF-α, and LPS levels (P < 0.01) were observed in CKD rats, while Res reduced IL-6 and LPS (P < 0.05). Western blot revealed upregulated TLR4/NFκB pathway activation in the CKD group (P < 0.01), suppressed by Res (P < 0.05). Gut microbiota analysis showed increased Gram-negative bacteria in CKD rats and higher Gram-positive bacteria abundance in the Res group. LPS biosynthesis was enhanced in CKD rats (P < 0.05) but attenuated by Res.
Collapse
Affiliation(s)
- Binbin Shao
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Yanfei Nong
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Yongshuang Lin
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530000, People’s Republic of China
| | - Yan Meng
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Yi Zhou
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Meiying Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Feifan Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Jie Wang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| |
Collapse
|
7
|
Mafe AN, Büsselberg D. Could a Mediterranean Diet Modulate Alzheimer's Disease Progression? The Role of Gut Microbiota and Metabolite Signatures in Neurodegeneration. Foods 2025; 14:1559. [PMID: 40361641 PMCID: PMC12071848 DOI: 10.3390/foods14091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), the most common form of dementia, represent a growing global health crisis, yet current treatment strategies remain primarily palliative. Recent studies have shown that neurodegeneration through complex interactions within the gut-brain axis largely depends on the gut microbiota and its metabolites. This review explores the intricate molecular mechanisms linking gut microbiota dysbiosis to cognitive decline, emphasizing the impact of microbial metabolites, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites, on neuroinflammation, blood-brain barrier (BBB) integrity, and amyloid-β and tau pathology. The paper highlights major microbiome signatures associated with Alzheimer's disease, detailing their metabolic pathways and inflammatory crosstalk. Dietary interventions have shown promise in modulating gut microbiota composition, potentially mitigating neurodegenerative processes. This review critically examines the influence of dietary patterns, such as the Mediterranean and Western diets, on microbiota-mediated neuroprotection. Bioactive compounds like prebiotics, omega-3 fatty acids, and polyphenols exhibit neuroprotective effects by modulating gut microbiota and reducing neuroinflammation. Furthermore, it discusses emerging microbiome-based therapeutic strategies, including probiotics, prebiotics, postbiotics, and fecal microbiota transplantation (FMT), as potential interventions for slowing Alzheimer's progression. Despite these advances, several knowledge gaps remain, including interindividual variability in microbiome responses to dietary interventions and the need for large-scale, longitudinal studies. The study proposes an integrative, precision medicine approach, incorporating microbiome science into Alzheimer's treatment paradigms. Ultimately, cognizance of the gut-brain axis at a mechanistic level could unlock novel therapeutic avenues, offering a non-invasive, diet-based strategy for managing neurodegeneration and improving cognitive health.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Ar-Rayyan P.O. Box 22104, Qatar
| |
Collapse
|
8
|
Eladawy RM, Ahmed LA, Salem MB, El-Sayed RM, Salem HA, Mohamed AF. Probiotics reverse gut dysbiosis and memory impairment associated with esomeprazole use in chronically stressed rats: A significant neuroprotective role for cholecystokinin. Int Immunopharmacol 2025; 150:114227. [PMID: 39952008 DOI: 10.1016/j.intimp.2025.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Recent studies propose an association between the prolonged usage of gastric acid suppressants (GAS) and the incidence of dementia in stressed patients. This association was confirmed in our investigation recently published with a significant role for gut dysbiosis using different GAS, especially PPI esomeprazole (Esom). Hence, this work explored the influence of different probiotics on gut dysbiosis associated with Esom use in unpredictable chronic mild stress (UCMS)-induced cognitive impairment. Rats were given Esom (3.7 mg/kg/day orally) with exposure to UCMS for 7 weeks and treated with Lactobacillus delbrukii and Lactobacillus fermentum (LB) (1 × 1010 CFU/day orally) or Bacillus clausii (BC) (1 × 109 CFU/day orally) in the last 3 weeks of the experiment. LB and BC attenuated the cognitive impairment associated with Esom use in the presence of UCMS, where BC showed more remarkable results. These results were correlated with improvement of dysbiosis and gut membrane integrity by reducing colonic inflammation via hampering the NLRP3 inflammasome pathway. The improvement of gut dysbiosis was further interrelated with decrease in systemic inflammation and improvement of cholecystokinin (CCK) level. The neuroprotective effects in LB and BC groups were achieved via enhancement of brain-derived neurotrophic factor (BDNF) by 2.7 and 3.4-folds, respectively, through CCK activation with decline of hippocampal amyloid β accumulation by 67.29 % and 97.9 %, respectively, compared to UCMS with Esom group. Our study supports the neuroprotective effect of probiotics on cognitive impairment attributed to long-term use of GAS in the presence of stress, with a significant role for gut microbiota modulation.
Collapse
Affiliation(s)
- Reem M Eladawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch 45511 Arish, Egypt.
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rehab M El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch 45511 Arish, Egypt
| | - Hesham A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| |
Collapse
|
9
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
10
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
11
|
Shawkatova I, Durmanova V, Javor J. Alzheimer's Disease and Porphyromonas gingivalis: Exploring the Links. Life (Basel) 2025; 15:96. [PMID: 39860036 PMCID: PMC11766648 DOI: 10.3390/life15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly Porphyromonas gingivalis, has garnered significant attention. P. gingivalis, a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis. This review examines evidence connecting P. gingivalis to hallmark AD features, such as amyloid β accumulation, tau hyperphosphorylation, neuroinflammation, and other neuropathological features consistent with AD. Virulence factors, such as gingipains and lipopolysaccharides, were shown to be implicated in blood-brain barrier disruption, neuroinflammation, and neuronal damage. P. gingivalis-derived outer membrane vesicles may serve to disseminate virulence factors to brain tissues. Indirect mechanisms, including systemic inflammation triggered by chronic periodontal infections, are also supposed to exacerbate neurodegenerative processes. While the exact pathways remain uncertain, studies detecting P. gingivalis virulence factors and its other components in AD-affected brains support their possible role in disease pathogenesis. This review underscores the need for further investigation into P. gingivalis-mediated mechanisms and their interplay with host responses. Understanding these interactions could provide critical insights into novel strategies for reducing AD risk through periodontal disease management.
Collapse
Affiliation(s)
- Ivana Shawkatova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske nam. 14, 811 08 Bratislava, Slovakia; (V.D.); (J.J.)
| | | | | |
Collapse
|
12
|
Zhou Y, Yang Y, Tian R, Cheang WS. Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro. Sci Rep 2025; 15:1542. [PMID: 39789118 PMCID: PMC11718003 DOI: 10.1038/s41598-025-85144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yifan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rui Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
13
|
Kuziak A, Heczko P, Pietrzyk A, Strus M. Iron Homeostasis Dysregulation, Oro-Gastrointestinal Microbial Inflammatory Factors, and Alzheimer's Disease: A Narrative Review. Microorganisms 2025; 13:122. [PMID: 39858890 PMCID: PMC11767265 DOI: 10.3390/microorganisms13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage. Additionally, inflammatory agents produced by pathogenic bacteria may enter the body via two primary pathways: directly through the gut or indirectly via the oral cavity, entering the bloodstream and reaching the brain. This infiltration disrupts cellular homeostasis, induces neuroinflammation, and exacerbates AD-related pathology. Addressing these mechanisms through personalized treatment strategies that target the underlying causes of AD could play a critical role in preventing its onset and progression.
Collapse
Affiliation(s)
- Agata Kuziak
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 Street, 31-008 Cracow, Poland;
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Piotr Heczko
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| |
Collapse
|
14
|
Shin JW, Shin YJ, Lee DY, Kim DH. Alleviation of Helicobacter pylori- or aspirin-induced gastritis and neuroinflammation in mice by Lactococcus lactis and Bifidobacterium longum. Lett Appl Microbiol 2024; 77:ovae128. [PMID: 39668634 DOI: 10.1093/lambio/ovae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Helicobacter pylori (HP) causes gastritis and peptic ulcer. Therefore, we examined whether probiotics Lactococcus lactis P135 and Bifidobacterium longum P142, which inhibited HP growth by 37.9% and 35.3%, respectively, and HP-induced IL-8 expression in KATO III cells by 68.6% and 63.1%, respectively, compared to those of normal controls, could mitigate HP-induced gastritis and psychiatric disorder in mice. Oral administration of P135 and/or P142 alleviated HP- or aspirin-induced gastritis, colitis, neuroinflammation, and depression/cognitive impairment-like behavior. They also suppressed HP infection, neutrophil infiltration, and NF-κB activation in the stomach and TNF-α expression and NF-κB activation in the colon and hippocampus. of P135 and/or P142 alleviated HP- or aspirin-induced gut dysbiosis: they decreased Lachnospiracease, Helicobacteriaceae, and Akkermansiaceae populations and increased Bacteroidaceae and Muribaculaceae populations. These findings suggest that HP growth/inflammation-inhibitory P135 and/or P142 may alleviate gut inflammation (gastritis and colitis) and neuroinflammation through the suppression of neutrophil infiltration, NF-κB activation, and HP growth, thereby leading to the attenuation of systemic inflammation and psychiatric disorder.
Collapse
Affiliation(s)
- Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Wu S, Hu L, Fu Y, Chen Y, Hu Z, Li H, Liu Z. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol 2024; 61:10006-10022. [PMID: 38066398 DOI: 10.1007/s12035-023-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2024]
Abstract
Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer's patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer's disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiwei Fu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
16
|
Cheng W, Zhao M, Zhang X, Zhou X, Yan J, Li R, Shen H. Schizophrenia and antipsychotic medications present distinct and shared gut microbial composition: A meta-analysis. Schizophr Res 2024; 274:257-268. [PMID: 39388810 DOI: 10.1016/j.schres.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 10/12/2024]
Abstract
There are some conflicting results regarding alterations of gut microbial composition in schizophrenia (SZ), even a few meta-analysis studies have addressed this field. Ignoring of antipsychotic medication effects may cause the large heterogeneity and impact on study results. This study is a meta-analysis to systematically evaluate composition of gut microbiota in patients with SZ, to elucidate the impact of antipsychotic use and reveal distinct and shared gut bacteria in SZ and antipsychotic medications. We re-analyzed the publicly available 16S rRNA-gene amplicon datasets by a standardized pipeline in QIIME2, used the natural log of response ratios as an effect index to directly and quantitatively compare composition of gut microbiota by random-effects meta-analysis with resampling tests in Metawin, ultimately to evaluate distinct abundance of gut bacteria. A total of 19 studies with 1968 participants (1067 patients with SZ and 901 healthy controls (HCs)) were included in this meta-analysis. The alterations of alpha diversity indices occurred in SZ on antipsychotics but not in drug-naïve or -free patients, while variation of beta diversity metrics appeared in SZ regardless of antipsychotic use. After antipsychotic treatment, reversed Simpson index, decreased observed species index and significant difference of Bray-Curtis distance were observed in patients. Especially, risperidone treatment increased the Shannon and Simpson indices. Noteworthy, three differed genera, including Lactobacillus, Roseburia and Dialister, were identified in both states of antipsychotic use. This meta-analysis is to provide a novel insight that SZ and antipsychotic medications present distinct and shared gut microbial composition.
Collapse
Affiliation(s)
- Weirong Cheng
- Department of psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China
| | - Mengjie Zhao
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China
| | - Xinyun Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, No. 48, Xinxi Road, Beijing, China.
| | - Xia Zhou
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| | - Jun Yan
- Department of Geriatrics, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, No. 101, Longmian Avenue, Nanjing, China.
| | - Hong Shen
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| |
Collapse
|
17
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Dastan M, Rajaei Z, Sharifi M, Salehi H. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Metab Brain Dis 2024; 40:12. [PMID: 39556267 DOI: 10.1007/s11011-024-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
Neuroinflammation and apoptosis play critical roles in the pathogenesis of Alzheimer's disease (AD), which is responsible for most cases of dementia in the elderly people. Gallic acid is a phenolic compound with radical scavenging, anti-inflammatory and anti-apoptotic activities. This study aimed to explore the protective effects of gallic acid on LPS-induced spatial memory impairment and find the underlying mechanisms. Gallic acid was orally administered (100 mg/kg) to male Wistar rats for 12 days. LPS was injected intraperitoneally at a dose of 1 mg/kg on days 8-12. Morris water maze paradigm was used to evaluate spatial learning and memory. The mRNA level of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and Caspase 3, lipid peroxidation and total thiol level was assessed in the rat hippocampus. Neuronal loss and histological changes were also evaluated in the brain. LPS treatment resulted in spatial learning and memory impairment, upregulation of NF-κB, TNF-α, and Caspase 3 mRNA expression, increased lipid peroxidation, decreased total thiol level, and neuronal loss in the hippocampus. Moreover, treatment with gallic acid at a dosage of 100 mg/kg ameliorated memory decline, reduced the mRNA level of NF-κB, TNF-α, and Caspase 3, decreased lipid peroxidation and increased total thiol level in the hippocampus. Gallic acid also prevented LPS-induced neuronal loss and histological changes in the brain. Conclusively, our study demonstrated that gallic acid exerts neuroprotective effect against LPS-induced memory decline in rats. This outcome could be due to anti-inflammatory, antioxidant, and anti-apoptotic activities of gallic acid.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Qiao L, Yang G, Wang P, Xu C. The potential role of mitochondria in the microbiota-gut-brain axis: Implications for brain health. Pharmacol Res 2024; 209:107434. [PMID: 39332752 DOI: 10.1016/j.phrs.2024.107434] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mitochondria are crucial organelles that regulate cellular energy metabolism, calcium homeostasis, and oxidative stress responses, playing pivotal roles in brain development and neurodegeneration. Concurrently, the gut microbiota has emerged as a key modulator of brain physiology and pathology through the microbiota-gut-brain axis. Recent evidence suggests an intricate crosstalk between the gut microbiota and mitochondrial function, mediated by microbial metabolites that can influence mitochondrial activities in the brain. This review aims to provide a comprehensive overview of the emerging role of mitochondria as critical mediators in the microbiota-gut-brain axis, shaping brain health and neurological disease pathogenesis. We discuss how gut microbial metabolites such as short-chain fatty acids, secondary bile acids, tryptophan metabolites, and trimethylamine N-oxide can traverse the blood-brain barrier and modulate mitochondrial processes including energy production, calcium regulation, mitophagy, and oxidative stress in neurons and glial cells. Additionally, we proposed targeting the mitochondria through diet, prebiotics, probiotics, or microbial metabolites as a promising potential therapeutic approach to maintain brain health by optimizing mitochondrial fitness. Overall, further investigations into how the gut microbiota and its metabolites regulate mitochondrial bioenergetics, dynamics, and stress responses will provide valuable insights into the microbiota-gut-brain axis in both health and disease states.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Department of Psychiatry, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
20
|
Du X, Zhang M, Wang R, Zeng Z, Zhao W, Fang B, Lan H, Hung W, Gao H. Bifidobacterium lactis-Derived Vesicles Attenuate Hippocampal Neuroinflammation by Targeting IL-33 to Regulate FoxO6/P53 Signaling. Nutrients 2024; 16:3586. [PMID: 39519420 PMCID: PMC11547434 DOI: 10.3390/nu16213586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hippocampal Neuroinflammation (HNF) is a critical driver of cognitive impairment. The lipopolysaccharide (LPS) accumulate amyloid beta (Aβ) and lead to HNF. The Bifidobacterium lactis (BL) 99 have anti-inflammatory ability. However, whether BL99-derived microbiota-derived vesicles (MV) could alleviate LPS-induced HNF remains unclear. METHODS To investigate, we used ultrafiltration with ultracentrifuge to extract BL99-derived-MV (BL99-MV). We used hippocampal neuronal HT22 cells (HT22) to establish the LPS-induced HNF model, and explored whether BL99-MV alleviate LPS-induced HNF. RESULTS The confocal microscopy showed that BL99-MV were taken up by HT22 and reduced the oxidative stress (ROS) level. The PCR showed that BL99-MV up-regulate IL-10 level, and down-regulate TNF-α, IL-1β, and IL-6. Transcriptomic analysis revealed 4127 differentially expressed genes, with 2549 genes upregulated and 1578 genes downregulated in the BL99-MV group compared to the LPS group. Compared to the LPS group, BL99-MV decreased FoxO6, IL-33, P53, and NFκB expression, but increased FoxO1 and Bcl2 expression. The WB showed that BL99-MV modulated NFκB, FoxO6, P53, Caspase9, and Caspase3 protein expression by reducing IL-33 expression in HT22. The findings demonstrated IL-33 as a regulator for FoxO6/P53 signaling. CONCLUSIONS Here, we hypothesized that BL99-MV alleviated LPS-induced HNF to promote HT22 survival and synaptic development by regulating FoxO6/P53 signaling by targeting IL-33.
Collapse
Affiliation(s)
- Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Zhaozhong Zeng
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| |
Collapse
|
21
|
Chandra S, Vassar RJ. Gut microbiome-derived metabolites in Alzheimer's disease: Regulation of immunity and potential for therapeutics. Immunol Rev 2024; 327:33-42. [PMID: 39440834 DOI: 10.1111/imr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut-brain axis field in order to create effective therapies for AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert J Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Xue D, Guo X, Liu J, Li Y, Liu L, Liao G, Zhang M, Cao J, Liu Y, Lou J, Li H, Mi W, Wang L, Fu Q. Tryptophan-rich diet and its effects on Htr7 + Tregs in alleviating neuroinflammation and cognitive impairment induced by lipopolysaccharide. J Neuroinflammation 2024; 21:241. [PMID: 39334486 PMCID: PMC11437714 DOI: 10.1186/s12974-024-03239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Neuroinflammation is a vital pathogenic mechanism for neurodegenerative diseases such as Alzheimer's, schizophrenia, and age-related cognitive decline. Regulatory T cells (Tregs) exhibit potent anti-inflammatory properties and can modulate neurodegenerative diseases arising from central nervous system inflammatory responses. However, the role of Tregs in neuroinflammation-related cognitive dysfunction remains unclear. It is highly plausible that Htr7+ Tregs expressing unique genes associated with the nervous system, including the Htr7 gene encoding the serotonin receptor 5-HT7, play a pivotal role. METHODS Mice were given a tryptophan-rich diet (with a tryptophan content of 0.6%) or a normal diet (with a tryptophan content of 0.16%). The neuroinflammation-mediated cognitive dysfunction model was established by intracerebroventricular injection of lipopolysaccharide (LPS) in 8-week-old C57BL/6J mice. The activation and infiltration of Tregs were measured using flow cytometry. Primary Tregs were cocultured separately with primary CD8+ T cells and primary microglia for in vitro validation of the impact of 5-HT and 5-HT7 receptor on Tregs. Prior to their transfer into recombination activating gene 1 (Rag1-/-) mice, Tregs were ex vivo transfected with lentivirus to knock down the expression of Htr7. RESULTS In this study, the tryptophan-rich diet was found to reverse LPS-induced cognitive impairment and reduce the levels of 5-HT in peripheral blood. The tryptophan-rich diet led to increased levels of 5-HT in peripheral blood, which in turn promoted the proliferation and activation of Htr7+ Tregs. Additionally, the tryptophan-rich diet was also shown to attenuate LPS-mediated neuroinflammation by activating Htr7+ Tregs. Furthermore, 5-HT and 5-HT7 receptor were found to enhance the immunosuppressive effect of Tregs on CD8+ T cells and microglia. In Rag1-/- mice, Htr7+ Tregs were shown to alleviate LPS-induced neuroinflammation and cognitive impairment. CONCLUSIONS Our research revealed the ability of Htr7+ Tregs to mitigate neuroinflammation and prevent neuronal damage by suppressing the infiltration of CD8+ T cells into the brain and excessive activation of microglia, thereby ameliorating LPS-induced cognitive impairment. These insights may offer novel therapeutic targets involving Tregs for neuroinflammation and cognitive impairment.
Collapse
Affiliation(s)
- Dinghao Xue
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xu Guo
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingjing Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Anesthesiology, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100027, China
| | - Yanxiang Li
- Department of Anesthesiology, The 71st Group Army Hospital of CPLA Army, Xuzhou, 221004, China
| | - Luyu Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guosong Liao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingru Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
23
|
Zhao J, Ke Z, Huang R, Wen X, Liu W, Wang S, Zhang X, Zhuang X, Pan L, Liao L. Physical activity and the risk of developing 8 age-related diseases: epidemiological and Mendelian randomization studies. Eur Rev Aging Phys Act 2024; 21:24. [PMID: 39294593 PMCID: PMC11412029 DOI: 10.1186/s11556-024-00359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND We aimed to characterize the associations between physical activity levels and the risk of developing age-related diseases in the Coronary Artery Risk Development in Young Adults (CARDIA) study and used Mendelian randomization (MR) to assess whether there are causal relationships between physical activity levels and the risk of developing 8 age-related diseases (coronary atherosclerosis, ischemic heart disease, angina, Alzheimer's disease, hypertension, type 2 diabetes, hyperlipidemia, and venous thromboembolism). METHODS Based on the data available in the CARDIA, we obtained data related to five disease states: coronary heart disease, hypertension, diabetes, hyperlipidemia, and venous thromboembolism. Binary logistic regression analysis estimated the multivariable-adjusted associations between different physical activity statuses and diseases. For the MR study, we used summary-level data from a recently published genome-wide association study on physical activity (including vigorous physical activity and accelerometer-based physical activity) conducted with participants from the UK Biobank study. We selected the above 8 age-related diseases as our outcomes. RESULTS In the CARDIA-based analysis, the risk of developing coronary heart disease [OR (95% CI): 0.562 (0.397-0.795)], hypertension [OR (95% CI): 0.703 (0.601-0.821)], diabetes [OR (95% CI): 0.783 (0.620-0.988)], and hyperlipidemia [OR (95% CI): 0.792 (0.662-0.949)] was negatively related to physical activity status when participants achieved the physical activity target. Our MR results support a negative causal association between genetically determined vigorous physical activity levels and the risk of developing 3 age-related diseases, namely, angina, hypertension and type 2 diabetes. Moreover, our results also support a negative causal association between genetically determined accelerometer-based physical activity levels and the risk of developing angina. CONCLUSIONS Promotion of physical activity is likely to prevent specific age-related diseases.
Collapse
Affiliation(s)
- Jie Zhao
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zezhi Ke
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Rihua Huang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, P. R. China
| | - Xiuyun Wen
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenbin Liu
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Suisui Wang
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, Guangdong, 510317, P. R. China
| | - Xu Zhang
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xiaodong Zhuang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, P. R. China
| | - Litao Pan
- Department of Acupuncture and Massage, Shenzhen Second People 's Hospital, Shenzhen, 518025, P. R. China.
| | - Lizhen Liao
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
24
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Ma X, Park HS, Shin YJ, Kim JK, Hong JK, Han SW, Yoon IY, Kim DH. The extracellular vesicle of depressive patient-derived Escherichia fergusonii induces vagus nerve-mediated neuroinflammation in mice. J Neuroinflammation 2024; 21:224. [PMID: 39277768 PMCID: PMC11402204 DOI: 10.1186/s12974-024-03211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Gut microbiota dysbiosis is closely associated with psychiatric disorders such as depression and anxiety (DA). In our preliminary study, fecal microbiota transplantation from volunteers with psychological stress and subclinical symptoms of depression (Vsd) induced DA-like behaviors in mice. Escherichia fergusonii (Esf) was found to be more abundant in the feces of Vsd compared to healthy volunteers. Therefore, we investigated the effect of Esf on DA-like behavior and neuroinflammation in mice with and without celiac vagotomy. METHODS AND RESULTS Orally gavaged Esf increased DA-like behaviors, tumor necrosis factor (TNF)-α, and toll-like receptor-4 (TLR4) expression, and NF-κB+Iba1+ and lipopolysaccharide (LPS)+Iba1+ cell populations, while decreasing serotonin, 5-HT1A receptor, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus and prefrontal cortex. However, celiac vagotomy attenuated Esf-induced DA-like behavior and neuroinflammation. Orally gavaged extracellular vesicle (EV) from Vsd feces (vfEV) or Esf culture (esEV) induced DA-like behavior and inflammation in hippocampus, prefrontal cortex and colon. However, celiac vagotomy attenuated vfEV- or esEV-induced DA-like behaviors and inflammation in the brain alone, while vfEV- or esEV-induced blood LPS and TNF-α levels, colonic TNF-α expression and NF-κB-positive cell number, and fecal LPS level were not. Although orally gavaged fluorescence isothiocyanate-labeled esEV was translocated into the blood and hippocampus, celiac vagotomy decreased its translocation into the hippocampus alone. CONCLUSIONS esEVs may be translocated into the brain via the vagus nerve and bloodstream, subsequently inducing TNF-α expression and suppressing serotonin, its receptor, and BDNF expression through the activation of TLR4-mediated NF-κB signaling, thereby contributing to DA pathogenesis.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Korea
| | - Jung Kyung Hong
- Department of Psychiatry, Bundang Hospital, Seoul National University, Seongnam, 13620, Korea
| | - Seung-Won Han
- PB Department, NVP-Healthcare Inc., Suwon, 16209, Korea
| | - In-Young Yoon
- Department of Psychiatry, Bundang Hospital, Seoul National University, Seongnam, 13620, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea.
- PB Department, NVP-Healthcare Inc., Suwon, 16209, Korea.
| |
Collapse
|
26
|
Cui Y, Zhang M, Wang H, Yu T, Zhang A, Lin G, Guo Y, Wu Y. Organic Trace Minerals Enhance the Gut Health of British Shorthair Cats by Regulating the Structure of Intestinal Microbiota. Metabolites 2024; 14:494. [PMID: 39330501 PMCID: PMC11434296 DOI: 10.3390/metabo14090494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Trace minerals are essential for biological processes, including enzyme function, immune response, and hormone synthesis. The study assessed the effects of different dietary trace minerals on the gut health, microbiota composition, and immune function of cats. Eighteen adult British Shorthair cats were divided into three groups receiving inorganic trace minerals (ITM), a 50/50 mix of inorganic and organic trace minerals (ITM + OTM), or organic trace minerals (OTM) for 28 days. The OTM showed enhanced immune capacities, reduced intestinal barrier function, and lower inflammation condition. The OTM altered gut microbiota diversity, with a lower Simpson index and higher Shannon index (p < 0.05). Specifically, the abundance of Bacteroidota, Lachnospiraceae, and Prevotella in the OTM group were higher than the ITM group (p < 0.05). Metabolomic analysis identified 504 differential metabolites between the OTM and ITM groups (p < 0.05, VIP-pred-OPLS-DA > 1), affecting pathways related to steroid hormone biosynthesis and glycerophospholipid metabolism (p < 0.05, VIP-pred-OPLS-DA > 2). Additionally, there was a significant correlation between intestinal microbiota and differential metabolites. To conclude, dietary OTM can modulate the gut metabolite and microbiota composition, enhance immune and intestinal barrier function, and mitigate inflammation in cats, highlighting the benefit of using OTM in feline diet to promote the intestinal and overall health.
Collapse
Affiliation(s)
- Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Tong Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Anxuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (G.L.); (Y.G.)
| | - Yuhan Guo
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (G.L.); (Y.G.)
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| |
Collapse
|
27
|
Shi J, Hao XY, Tong Y, Qian WB, Sun Y. SIRT6 alleviates senescence induced by Porphyromonas gingivalis in human gingival fibroblasts. Mol Biol Rep 2024; 51:976. [PMID: 39259343 DOI: 10.1007/s11033-024-09913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Bidirectional influences between senescence and inflammation are newly discovered. This study aimed to clarify the roles and mechanism of Porphyromonas gingivalis (P. gingivalis) in exacerbating senescence in human gingival fibroblasts (HGFs). DESIGN Subgingival plaque and gingivae were collected from twenty-four periodontitis patients and eighteen periodontally healthy subjects. Quantities of P. gingivalis in subgingival plaque were explored using real-time PCR and the expressions of p53, p21 and SIRT6 in gingivae were detected by IHC. Moreover, senescence in HGFs was induced by P. gingivalis lipopolysaccharide (LPS) and the expressions of senescence-related β-galactosidase (SA-β-gal), p53, p21 and senescence-associated secretory phenotype (IL-6 and IL-8) with or without treatment by SIRT6 activator UBCS039 were explored by IHC, western blot and ELISA, respectively. In addition, the levels of SIRT6, Nrf2, HO-1 and reactive oxygen species (ROS) were examined by western blot and flow cytometry. RESULTS Quantities of P. gingivalis in subgingival plaque and semi-quantitative scores of p53 and p21 in gingivae of periodontitis patients were increased compared with healthy controls (p < 0.05), while SIRT6 score in periodontitis patients was decreased (p < 0.001). Quantities of P. gingivalis were positively correlated with p53 and p21 scores (0.6 < r < 0.9, p < 0.01), and negatively correlated with SIRT6 score (-0.9 < r<-0.6, p < 0.01). Moreover, P. gingivalis LPS increased the levels of SA-β-gal, p53, p21, IL-6, IL-8 and ROS and decreased the levels of SIRT6, Nrf2 and HO-1 in HGFs, which was rescued by UBCS039 (p < 0.05). CONCLUSIONS P. gingivalis LPS could induce senescence of HGFs, which could be reversed by SIRT6 via Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jia Shi
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xin-Yu Hao
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Tong
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen-Bo Qian
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Sun
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Nanjing, 210029, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
28
|
Aldegheri L, Kharrat F, Conti A, Monica F, Busa F, Campisciano G, Zanotta N, Cason C, Comar M. Impact of Human Milk Oligosaccharides and Probiotics on Gut Microbiome and Mood in Autism: A Case Report. Microorganisms 2024; 12:1625. [PMID: 39203467 PMCID: PMC11356532 DOI: 10.3390/microorganisms12081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Recent evidence has highlighted the role of the gut-brain axis in the progression of autism spectrum disorder (ASD), with significant changes in the gut microbiome of individuals with this condition. This report investigates the effects of probiotics and human milk oligosaccharide (HMO) supplements on the gut microbiome, inflammatory cytokine profile, and clinical outcomes in an ASD adolescent with chronic gastrointestinal dysfunction and cognitive impairment. Following treatment, we observed a decrease in proinflammatory cytokines' concentration alongside Sutterella relative abundance, a bacterium reported to be linked with gastrointestinal diseases. Also, we reported a notable increase in mood stability. The study aims to evaluate the use of gut microbiome-based therapy in selected ASD patients, highlighting its potential to improve related clinical symptoms.
Collapse
Affiliation(s)
- Luana Aldegheri
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Feras Kharrat
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Andrea Conti
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Fabio Monica
- Department of Gastroenterology and Endoscopy, Trieste University Hospital, Strada di Fiume 447, 34149 Trieste, Italy;
| | | | - Giuseppina Campisciano
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Nunzia Zanotta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Carolina Cason
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
29
|
Chuang WC, Yang CN, Wang HW, Lin SK, Yu CC, Syu JH, Chiang CP, Shiao YJ, Chen YW. The mechanisms of Porphyromonas gingivalis-derived outer membrane vesicles-induced neurotoxicity and microglia activation. J Dent Sci 2024; 19:1434-1442. [PMID: 39035337 PMCID: PMC11259672 DOI: 10.1016/j.jds.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Periodontitis is associated with various systemic diseases, potentially facilitated by the passage of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs). Several recent studies have suggested a connection between Pg-OMVs and neuroinflammation and neurodegeneration, but the precise causal relationship remains unclear. This study aimed to investigate the mechanisms underlying these associations using in vitro models. Materials and methods Isolated Pg-OMVs were characterized by morphology, size, and gingipain activity. We exposed SH-SY5Y neuroblastoma cells and BV-2 microglial cells to various concentrations of Pg-OMVs. Cell morphology, a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, an enzyme-linked immunosorbent assay, and Western blot analysis were used to evaluate the cellular mechanism underlying Pg-OMV-induced neurotoxicity in neuronal cells and inflammatory responses in microglial cells. Results Exposure to Pg-OMVs induced neurotoxicity in SH-SY5Y cells, as evidenced by cellular shrinkage, reduced viability, activation of apoptotic pathways, and diminished neuronal differentiation markers. Gingipain inhibition mitigated these effects, suggesting that gingipain mediates Pg-OMVs-induced neurotoxicity in SH-SY5Y cells. Our research on neuroinflammation suggests that upon endocytosis of Pg-OMVs by BV-2 cells, lipopolysaccharide (LPS) can modulate the production of inducible nitric oxide synthase and tumor necrosis factor-alpha by activating pathways that involve phosphorylated AKT and the phosphorylated JNK pathway. Conclusion Our study demonstrated that following the endocytosis of Pg-OMVs, gingipain can induce neurotoxicity in SH-SY5Y cells. Furthermore, the Pg-OMVs-associated LPS can trigger neuroinflammation via AKT and JNK signaling pathways in BV-2 cells.
Collapse
Affiliation(s)
- Wei-Chun Chuang
- Department of Dentistry, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chu Yu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jhe-Hao Syu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Chen P, Guo Z, Lei J, Wang Y. Pomegranate polyphenol punicalin ameliorates lipopolysaccharide-induced memory impairment, behavioral disorders, oxidative stress, and neuroinflammation via inhibition of TLR4-NF-кB pathway. Phytother Res 2024; 38:3489-3508. [PMID: 38695373 DOI: 10.1002/ptr.8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 07/12/2024]
Abstract
Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1β, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aβ1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-β, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhilei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
31
|
Krothapalli M, Buddendorff L, Yadav H, Schilaty ND, Jain S. From Gut Microbiota to Brain Waves: The Potential of the Microbiome and EEG as Biomarkers for Cognitive Impairment. Int J Mol Sci 2024; 25:6678. [PMID: 38928383 PMCID: PMC11203453 DOI: 10.3390/ijms25126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and a leading cause of dementia. Aging is a significant risk factor for AD, emphasizing the importance of early detection since symptoms cannot be reversed once the advanced stage is reached. Currently, there is no established method for early AD diagnosis. However, emerging evidence suggests that the microbiome has an impact on cognitive function. The gut microbiome and the brain communicate bidirectionally through the gut-brain axis, with systemic inflammation identified as a key connection that may contribute to AD. Gut dysbiosis is more prevalent in individuals with AD compared to their cognitively healthy counterparts, leading to increased gut permeability and subsequent systemic inflammation, potentially causing neuroinflammation. Detecting brain activity traditionally involves invasive and expensive methods, but electroencephalography (EEG) poses as a non-invasive alternative. EEG measures brain activity and multiple studies indicate distinct patterns in individuals with AD. Furthermore, EEG patterns in individuals with mild cognitive impairment differ from those in the advanced stage of AD, suggesting its potential as a method for early indication of AD. This review aims to consolidate existing knowledge on the microbiome and EEG as potential biomarkers for early-stage AD, highlighting the current state of research and suggesting avenues for further investigation.
Collapse
Affiliation(s)
- Mahathi Krothapalli
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren Buddendorff
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Nathan D. Schilaty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
32
|
Ayten Ş, Bilici S. Modulation of Gut Microbiota Through Dietary Intervention in Neuroinflammation and Alzheimer's and Parkinson's Diseases. Curr Nutr Rep 2024; 13:82-96. [PMID: 38652236 PMCID: PMC11133127 DOI: 10.1007/s13668-024-00539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The gut microbiota plays a crucial role in the pathogenesis of neuroinflammation and Alzheimer's and Parkinson's diseases. One of the main modulators of the gut microbiota is the diet, which directly influences host homeostasis and biological processes. Some dietary patterns can affect neurodegenerative diseases' progression through gut microbiota composition, gut permeability, and the synthesis and secretion of microbial-derived neurotrophic factors and neurotransmitters. This comprehensive review critically assesses existing studies investigating the impact of dietary interventions on the modulation of the microbiota in relation to neurodegenerative diseases and neuroinflammation. RECENT FINDINGS There are limited studies on the effects of specific diets, such as the ketogenic diet, Mediterranean diet, vegetarian diet, and Western diet, on the progression of neuroinflammation and Alzheimer's and Parkinson's diseases through the gut-brain axis. The ketogenic diet displays promising potential in ameliorating the clinical trajectory of mild cognitive impairment and Alzheimer's disease. However, conflicting outcomes were observed among various studies, highlighting the need to consider diverse types of ketogenic diets and their respective effects on clinical outcomes and gut microbiota composition. Vegetarian and Mediterranean diets, known for their anti-inflammatory properties, can be effective against Parkinson's disease, which is related to inflammation in the gut environment. On the other hand, the westernization of dietary patterns was associated with reduced gut microbial diversity and metabolites, which ultimately contributed to the development of neuroinflammation and cognitive impairment. Various studies examining the impact of dietary interventions on the gut-brain axis with regard to neuroinflammation and Alzheimer's and Parkinson's diseases are thoroughly reviewed in this article. A strong mechanistic explanation is required to fully understand the complex interactions between various dietary patterns, gut microbiota, and microbial metabolites and the effects these interactions have on cognitive function and the progression of these diseases.
Collapse
Affiliation(s)
- Şerife Ayten
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
33
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
34
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Kim HS, Jung H, Park YH, Heo SH, Kim S, Moon M. Skin-brain axis in Alzheimer's disease - Pathologic, diagnostic, and therapeutic implications: A Hypothetical Review. Aging Dis 2024; 16:901-916. [PMID: 38739932 PMCID: PMC11964427 DOI: 10.14336/ad.2024.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
The dynamic interaction between the brain and the skin is termed the 'skin-brain axis.' Changes in the skin not only reflect conditions in the brain but also exert direct and indirect effects on the brain. Interestingly, the connection between the skin and brain is crucial for understanding aging and neurodegenerative diseases. Several studies have shown an association between Alzheimer's disease (AD) and various skin disorders, such as psoriasis, bullous pemphigoid, and skin cancer. Previous studies have shown a significantly increased risk of new-onset AD in patients with psoriasis. In contrast, skin cancer may reduce the risk of developing AD. Accumulating evidence suggests an interaction between skin disease and AD; however, AD-associated pathological changes mediated by the skin-brain axis are not yet clearly defined. While some studies have reported on the diagnostic implications of the skin-brain axis in AD, few have discussed its potential therapeutic applications. In this review, we address the pathological changes mediated by the skin-brain axis in AD. Furthermore, we summarize (1) the diagnostic implications elucidated through the role of the skin-brain axis in AD and (2) the therapeutic implications for AD based on the skin-brain axis. Our review suggests that a potential therapeutic approach targeting the skin-brain axis will enable significant advances in the treatment of AD.
Collapse
Affiliation(s)
- Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Su-Hak Heo
- Department of Medicinal Bioscience, Konkuk University (Glocal Campus), Chungcheongbuk-do 27478, Korea.
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
36
|
Shen H, Jiang Y, Qiu C, Xie X, Zhang H, He Z, Song Z, Zhou W. Abnormal amyloid precursor protein processing in periodontal tissue in a murine model of periodontitis induced by Porphyromonas gingivalis. J Periodontal Res 2024; 59:395-407. [PMID: 38311599 DOI: 10.1111/jre.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid β (Aβ) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND Aβ is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aβ production and clearance. METHODS A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aβ1-40 and Aβ1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aβ1-40 and Aβ1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aβ production and clearance in peripheral tissues, which may trigger an abnormal Aβ metabolite in the brain, resulting in the occurrence and development of AD.
Collapse
Affiliation(s)
- Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiting Jiang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinyi Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Koutromanos I, Legaki E, Gazouli M, Vasilopoulos E, Kouzoupis A, Tzavellas E. Gut microbiome in alcohol use disorder: Implications for health outcomes and therapeutic strategies-a literature review. World J Methodol 2024; 14:88519. [PMID: 38577203 PMCID: PMC10989405 DOI: 10.5662/wjm.v14.i1.88519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Alcohol use disorder (AUD) represents a major public health issue which affects millions of people globally and consist a chronic relapsing condition associated with substantial morbidity and mortality. The gut microbiome plays a crucial role in maintaining overall health and has emerged as a significant contributor to the pathophysiology of various psychiatric disorders. Recent evidence suggests that the gut microbiome is intimately linked to the development and progression of AUD, with alcohol consumption directly impacting its composition and function. This review article aims to explore the intricate relationship between the gut microbiome and AUD, focusing on the implications for mental health outcomes and potential therapeutic strategies. We discuss the bidirectional communication between the gut microbiome and the brain, highlighting the role of microbiota-derived metabolites in neuroinflammation, neurotransmission, and mood regulation. Furthermore, we examine the influence of AUD-related factors, such as alcohol-induced gut dysbiosis and increased intestinal permeability, on mental health outcomes. Finally, we explore emerging therapeutic avenues targeting the gut microbiome in the management of AUD, including prebiotics, probiotics, and fecal microbiota transplantation. Understanding the complex interplay between the gut microbiome and AUD holds promise for developing novel interventions that could improve mental health outcomes in individuals with AUD.
Collapse
Affiliation(s)
- Ilias Koutromanos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Evangelia Legaki
- Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Anastasios Kouzoupis
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
38
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
39
|
Bolshakov AP, Gerasimov K, Dobryakova YV. Alzheimer's Disease: An Attempt of Total Recall. J Alzheimers Dis 2024; 101:1043-1061. [PMID: 39269841 DOI: 10.3233/jad-240620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This review is an attempt to compile existing hypotheses on the mechanisms underlying the initiation and progression of Alzheimer's disease (AD), starting from sensory impairments observed in AD and concluding with molecular events that are typically associated with the disease. These events include spreading of amyloid plaques and tangles of hyperphosphorylated tau and formation of Hirano and Biondi bodies as well as the development of oxidative stress. We have detailed the degenerative changes that occur in several neuronal populations, including the cholinergic neurons in the nucleus basalis of Meynert, the histaminergic neurons in the tuberomammillary nucleus, the serotonergic neurons in the raphe nuclei, and the noradrenergic neurons in the locus coeruleus. Furthermore, we discuss the potential role of iron accumulation in the brains of subjects with AD in the disease progression which served as a basis for the idea that iron chelation in the brain may mitigate oxidative stress and decelerate disease development. We also draw attention to possible role of sympathetic system and, more specifically, noradrenergic neurons of the superior cervical ganglion in triggering of the disease. We also explore the alternative possibility of compensatory protective changes that may occur in these neurons to support cholinergic function in the forebrain of subjects with AD.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Gerasimov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Russian National Research Medical University, Moscow, Russia
| | - Yulia V Dobryakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Wang J, Zhang G, Lai H, Li Z, Shen M, Li C, Kwan P, O'Brien TJ, Wu T, Yang S, Zhang X, Zhang L. Characterizing Gut Microbiota in Older Chinese Adults with Cognitive Impairment: A Cross-Sectional Study. J Alzheimers Dis 2024; 101:761-771. [PMID: 39213074 DOI: 10.3233/jad-240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.
Collapse
Affiliation(s)
- Jing Wang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Gong Zhang
- MOE Key Laboratory of Tumour Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Lai
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Zengbin Li
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Mingwang Shen
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Patrick Kwan
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Yang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| |
Collapse
|
41
|
Ma X, Shin YJ, Yoo JW, Park HS, Kim DH. Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment. J Adv Res 2023; 54:293-303. [PMID: 36796586 DOI: 10.1016/j.jare.2023.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Porphyromonas gingivalis (PG)-infected periodontitis is in close connection with the development of Alzheimer's disease (AD). PG-derived extracellular vesicles (pEVs) contain inflammation-inducing virulence factors, including gingipains (GPs) and lipopolysaccharide (LPS). OBJECTIVES To understand how PG could cause cognitive decline, we investigated the effects of PG and pEVs on the etiology of periodontitis and cognitive impairment in mice. METHODS Cognitive behaviors were measured in the Y-maze and novel object recognition tasks. Biomarkers were measured using ELISA, qPCR, immunofluorescence assay, and pyrosequencing. RESULTS pEVs contained neurotoxic GPs and inflammation-inducible fimbria protein and LPS. Gingivally exposed, but not orally gavaged, PG or pEVs caused periodontitis and induced memory impairment-like behaviors. Gingival exposure to PG or pEVs increased TNF-α expression in the periodontal and hippocampus tissues. They also increased hippocampal GP+Iba1+, LPS+Iba1+, and NF-κB+Iba1+ cell numbers. Gingivally exposed PG or pEVs decreased BDNF, claudin-5, and N-methyl-D-aspartate receptor expression and BDNF+NeuN+ cell number. Gingivally exposed fluorescein-5-isothiocyanate-labeled pEVs (F-pEVs) were detected in the trigeminal ganglia and hippocampus. However, right trigeminal neurectomy inhibited the translocation of gingivally injected F-EVs into the right trigeminal ganglia. Gingivally exposed PG or pEVs increased blood LPS and TNF-α levels. Furthermore, they caused colitis and gut dysbiosis. CONCLUSION Gingivally infected PG, particularly pEVs, may cause cognitive decline with periodontitis. PG products pEVs and LPS may be translocated into the brain through the trigeminal nerve and periodontal blood pathways, respectively, resulting in the cognitive decline, which may cause colitis and gut dysbiosis. Therefore, pEVs may be a remarkable risk factor for dementia.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Jong-Wook Yoo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| |
Collapse
|
42
|
Simão DO, Vieira VS, Tosatti JAG, Gomes KB. Lipids, Gut Microbiota, and the Complex Relationship with Alzheimer's Disease: A Narrative Review. Nutrients 2023; 15:4661. [PMID: 37960314 PMCID: PMC10649859 DOI: 10.3390/nu15214661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's Disease (AD) is a multifactorial, progressive, and chronic neurodegenerative disorder associated with the aging process. Memory deficits, cognitive impairment, and motor dysfunction are characteristics of AD. It is estimated that, by 2050, 131.5 million people will have AD. There is evidence that the gastrointestinal microbiome and diet may contribute to the development of AD or act preventively. Communication between the brain and the intestine occurs through immune cells in the mucosa and endocrine cells, or via the vagus nerve. Aging promotes intestinal dysbiosis, characterized by an increase in pro-inflammatory pathogenic bacteria and a reduction in anti-inflammatory response-mediating bacteria, thus contributing to neuroinflammation and neuronal damage, ultimately leading to cognitive decline. Therefore, the microbiota-gut-brain axis has a significant impact on neurodegenerative disorders. Lipids may play a preventive or contributory role in the development of AD. High consumption of saturated and trans fats can increase cortisol release and lead to other chronic diseases associated with AD. Conversely, low levels of omega-3 polyunsaturated fatty acids may be linked to neurodegenerative diseases. Unlike other studies, this review aims to describe, in an integrative way, the interaction between the gastrointestinal microbiome, lipids, and AD, providing valuable insights into how the relationship between these factors affects disease progression, contributing to prevention and treatment strategies.
Collapse
Affiliation(s)
- Daiane Oliveira Simão
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Vitoria Silva Vieira
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Jéssica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| | - Karina Braga Gomes
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
43
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
44
|
Bhowmik P, Modi B, Roy P, Chowdhury A. Strategies to combat Gram-negative bacterial resistance to conventional antibacterial drugs: a review. Osong Public Health Res Perspect 2023; 14:333-346. [PMID: 37920891 PMCID: PMC10626324 DOI: 10.24171/j.phrp.2022.0323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 11/04/2023] Open
Abstract
The emergence of antimicrobial resistance raises the fear of untreatable diseases. Antimicrobial resistance is a multifaceted and dynamic phenomenon that is the cumulative result of different factors. While Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus and Clostridium difficile, were previously the most concerning issues in the field of public health, Gram-negative pathogens are now of prime importance. The World Health Organization's priority list of pathogens mostly includes multidrug-resistant Gram-negative organisms particularly carbapenem-resistant Enterobacterales, carbapenem-resistant Pseudomonas aeruginosa, and extensively drug-resistant Acinetobacter baumannii. The spread of Gram-negative bacterial resistance is a global issue, involving a variety of mechanisms. Several strategies have been proposed to control resistant Gram-negative bacteria, such as the development of antimicrobial auxiliary agents and research into chemical compounds with new modes of action. Another emerging trend is the development of naturally derived antibacterial compounds that aim for targets novel areas, including engineered bacteriophages, probiotics, metal-based antibacterial agents, odilorhabdins, quorum sensing inhibitors, and microbiome-modifying agents. This review focuses on the current status of alternative treatment regimens against multidrug-resistant Gram-negative bacteria, aiming to provide a snapshot of the situation and some information on the broader context.
Collapse
Affiliation(s)
- Priyanka Bhowmik
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Barkha Modi
- Department of Microbiology, Techno India University, Kolkata, India
| | - Parijat Roy
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Antarika Chowdhury
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
45
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Tsujimura A, Uemura H, Nonomura N. Emerging Relationship between the Gut Microbiome and Prostate Cancer. World J Mens Health 2023; 41:759-768. [PMID: 36876743 PMCID: PMC10523130 DOI: 10.5534/wjmh.220202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 03/03/2023] Open
Abstract
The human gut microbiota changes under the influence of environmental and genetic factors, affecting human health. Extensive studies have revealed that the gut microbiome is closely associated with many non-intestinal diseases. Among these, the influence of the gut microbiome on cancer biology and the efficacy of cancer therapy has attracted much attention. Prostate cancer cells are affected by direct contact with the microbiota of local tissues and urine, and a relationship between prostate cancer cells and the gut microbiota has been suggested. In the human gut microbiota, bacterial composition differs depending on prostate cancer characteristics, such as histological grade and castration resistance. Moreover, the involvement of several intestinal bacteria in testosterone metabolism has been demonstrated, suggesting that they may affect prostate cancer progression and treatment through this mechanism. Basic research indicates that the gut microbiome also plays an important role in the underlying biology of prostate cancer through multiple mechanisms owing to the activity of microbial-derived metabolites and components. In this review, we describe the evidence surrounding the emerging relationship between the gut microbiome and prostate cancer, termed the "gut-prostate axis."
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan.
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Marco A De Velasco
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
46
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
47
|
Ma L, Jiang X, Huang Q, Chen W, Zhang H, Pei H, Cao Y, Wang H, Li H. Traditional Chinese medicine for the treatment of Alzheimer's disease: A focus on the microbiota-gut-brain axis. Biomed Pharmacother 2023; 165:115244. [PMID: 37516021 DOI: 10.1016/j.biopha.2023.115244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is a neurodegenerative disorder characterised by a progressive decline in cognitive function that is associated with the formation of amyloid beta plaques and neurofibrillary tangles. Gut microbiota comprises of a complex community of microorganisms residing in the gastrointestinal ecosystem. These microorganisms can participate in gut-brain axis activities, thereby affecting cognitive function and associated behaviours. Increasing evidence has indicated that gut dysbiosis can jeopardise host immune responses and promote inflammation, which may be an initiating factor for the onset and evolution of AD. Traditional Chinese medicine (TCM) is a promising resource which encompasses immense chemical diversity and multiple-target characteristics for the treatment of AD. Many TCMs regulate the gut microbiota during treatment of diseases, indicating that gut microbiota may be an important target for TCM efficacy. In this review, we summarised the role of the microbiota-gut-brain axis in the development of AD and the effects of TCM in treating AD by regulating the gut microbiota. We anticipate that this review will provide novel perspectives and strategies for future AD research and treatments.
Collapse
Affiliation(s)
- Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Xuefan Jiang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiaoyi Huang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huichan Wang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, PR China.
| |
Collapse
|
48
|
Ma X, Kim JK, Shin YJ, Son YH, Lee DY, Park HS, Kim DH. Alleviation of Cognitive Impairment-like Behaviors, Neuroinflammation, Colitis, and Gut Dysbiosis in 5xFAD Transgenic and Aged Mice by Lactobacillus mucosae and Bifidobacterium longum. Nutrients 2023; 15:3381. [PMID: 37571319 PMCID: PMC10421059 DOI: 10.3390/nu15153381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropsychiatric disorders including Alzheimer's disease (AD) may cause gut inflammation and dysbiosis. Gut inflammation-suppressing probiotics alleviate neuropsychiatric disorders. Herein, to understand whether anti-inflammatory probiotics Lactobacillus mucosae NK41 and Bifidobacterium longum NK46, which suppressed tumor necrosis factor (TNF)-α expression in lipopolysaccharide (LPS)-stimulated macrophages, could alleviate cognitive impairment, we first examined their effects on cognitive function, gut inflammation, and gut microbiota composition in 5xFAD-transgenic mice. Oral administration of NK41 or NK46 decreased cognitive impairment-like behaviors, hippocampal amyloid-β (Aβ), TNF-α and interleukin (IL)-1β expression, hippocampal NF-κB+Iba1+ cell population, and Aβ accumulation, while hippocampal brain-derived neurotropic factor (BDNF) and IL-10 expression and BDNF+NeuN+ cell population increased. They also decreased TNF-α and IL-1β expression and NF-κB+CD11c+ cell population in the colon. They also reduced fecal and blood LPS levels and gut Proteobacteria and Verrucomicrobia populations (including Akkkermansiaceae), which are positively associated with hippocampal TNF-α and fecal LPS levels and negatively correlated with hippocampal BDNF level. However, they increased Odoribactericeae, which positively correlated with BDNF expression level and TNF-α to IL-10 expression ratio. The combination of NK41 and NK46 (4:1, NKc), which potently inhibited TNF-α expression in LPS-stimulated macrophages, additively alleviated cognitive impairment-like behaviors in 5xFAD-transgenic or aged mice. NKc increased hippocampal BDNF+NeuN+ cell population and BDNF expression in 5xFAD-transgenic or aged mice, while hippocampal TNF-α and IL-1β expression decreased. NKc also decreased TNF-α and IL-1β expression in the colon and LPS levels in the blood and feces. These findings suggest that gut bacteria and its product LPS may be closely connected with occurrence of cognitive impairment and neuroinflammation and the combination of NK41 and NK46 can additively alleviate cognitive impairment and neuroinflammation by inducing NF-κB-suppressed BDNF expression and suppressing LPS-producing gut bacteria.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Hoo Son
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
49
|
Zheng H, Zhao Q, Chen J, Lu J, Li Y, Gao H. Gastrointestinal microbiome of ARDS patients induces neuroinflammation and cognitive impairment in mice. J Neuroinflammation 2023; 20:166. [PMID: 37454113 DOI: 10.1186/s12974-023-02825-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a respiratory failure syndrome that can cause many complications, impacting patients' quality of life. Behavioral and cognitive disorders have attracted increasing attention in patients with ARDS, but its potential mechanisms are still elusive. METHODS Herein we transferred the faecal microbiota from patients with ARDS caused by community-acquired pneumonia (CAP) to antibiotics-treated recipient male mice to explore the microbiota-gut-brain mechanisms. Behavioral functions of mice were evaluated by the open field test, Morris water maze and Y-maze test. The structure and composition of the gut microbiota were analyzed by using 16S rRNA sequencing analysis. Microglia, astrocyte and neuron in the cortex and hippocampus were examined via immunofluorescent staining. RESULTS We found that the major characteristic of the intestinal flora in ARDS/CAP patients was higher abundances of Gram-negative bacteria than normal controls. The gut microbiota derived from ARDS/CAP patients promoted neuroinflammation and behavioral dysfunctions in mice. Mice who underwent fecal transplant from ARDS/CAP patients had increased systemic lipopolysaccharide (LPS), systemic inflammation, and increased colonic barrier permeability. This may adversely impact blood barrier permeability and facilitate microglia activation, astrocyte proliferation, and loss of neurons. CONCLUSIONS Our study proposes the role of the microbiota-gut-brain crosstalk on ARDS/CAP-associated behavioral impairments and suggests the gut microbiota as a potential target for the protection of brain health in ARDS patients in clinical practice.
Collapse
Affiliation(s)
- Hong Zheng
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qihui Zhao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianuo Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jiahui Lu
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Hongchang Gao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
50
|
Liang X, Xue Z, Zheng Y, Li S, Zhou L, Cao L, Zou Y. Selenium supplementation enhanced the expression of selenoproteins in hippocampus and played a neuroprotective role in LPS-induced neuroinflammation. Int J Biol Macromol 2023; 234:123740. [PMID: 36806773 DOI: 10.1016/j.ijbiomac.2023.123740] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Selenium (Se) is obtained from organic and inorganic selenium food content, which mainly depends on the regional soil selenium content. Selenium deficiency and decreased selenoprotein functions have been shown to associate with the progression of cognitive decline and neurodegenerations including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Selenoproteins are well recognized for their anti-oxidative activities. Given the high oxygen consumption, mammalian brains preferent@ially supplied with Se. Here, we propose a beneficiary role for dietary supplementation of sodium selenite (300 ng per gram of body weight) in ameliorating neuroinflammation induced by bilateral intracerebroventricular injection of 1 μL LPS (1 μg/μL), evidenced by the significantly reduced oxidative stress, downregulated pro-inflammatory cytokines expression, improved integrity of blood-brain barrier, as well as suppressed glial activation and shifted microglial MI/M2 polarization in Se-sup mouse brain. Se intake also reduced neural cell death and significantly improved the cognition in Se-sup mice following LPS challenge. The neuroprotective role for supplementary Se is likely to be ascribed to the overall elevated expression of selenoproteins, especially Selenoprotein P (SELENOP) and Glutathione peroxidase 4 (GPX4), ranking on top of the change in selenoprotein expression hierarchy. The regional hierarchy of Se induced elevation of SELENOP expression was further characterized. The SELENOP expression in the mediodorsal thalamic nucleus, dendric gyrus (DG) and cornu ammonis 3 (CA3) of hippocampus and lateral habenular nucleus was highly sensitive to dietary Se intake.
Collapse
Affiliation(s)
- Xiaosheng Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Zhuming Xue
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangwu Zheng
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Shufang Li
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Lijun Zhou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.
| |
Collapse
|