1
|
Mundluru VK, Naidu MJ, Mundluru RT, Jeyaraman N, Muthu S, Ramasubramanian S, Jeyaraman M. Non-enzymatic methods for isolation of stromal vascular fraction and adipose-derived stem cells: A systematic review. World J Methodol 2024; 14:94562. [PMID: 38983657 PMCID: PMC11229868 DOI: 10.5662/wjm.v14.i2.94562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) and the stromal vascular fraction (SVF) have garnered substantial interest in regenerative medicine due to their potential to treat a wide range of conditions. Traditional enzymatic methods for isolating these cells face challenges such as high costs, lengthy processing time, and regu-latory complexities. AIM This systematic review aimed to assess the efficacy and practicality of non-enzymatic, mechanical methods for isolating SVF and ADSCs, comparing these to conventional enzymatic approaches. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a comprehensive literature search was conducted across multiple databases. Studies were selected based on inclusion criteria focused on non-enzymatic isolation methods for SVF and ADSCs from adipose tissue. The risk of bias was assessed, and a qualitative synthesis of findings was performed due to the methodological heterogeneity of the included studies. RESULTS Nineteen studies met the inclusion criteria, highlighting various mechanical techniques such as centrifugation, vortexing, and ultrasonic cavitation. The review identified significant variability in cell yield and viability, and the integrity of isolated cells across different non-enzymatic methods compared to enzymatic procedures. Despite some advantages of mechanical methods, including reduced processing time and avoidance of enzymatic reagents, the evidence suggests a need for optimization to match the cell quality and therapeutic efficacy achievable with enzymatic isolation. CONCLUSION Non-enzymatic, mechanical methods offer a promising alternative to enzymatic isolation of SVF and ADSCs, potentially simplifying the isolation process and reducing regulatory hurdles. However, further research is necessary to standardize these techniques and ensure consistent, high-quality cell yields for clinical applications. The development of efficient, safe, and reproducible non-enzymatic isolation methods could significantly advance the field of regenerative medicine.
Collapse
Affiliation(s)
- Vamsi Krishna Mundluru
- Department of Orthopaedics, MJ Naidu Super Speciality Hospital, Vijayawada 520002, Andhra Pradesh, India
- Department of Regenerative Medicine, StemC Clinics, Vijayawada 520002, Andhra Pradesh, India
| | - MJ Naidu
- Department of Orthopaedics, MJ Naidu Super Speciality Hospital, Vijayawada 520002, Andhra Pradesh, India
- Department of Regenerative Medicine, StemC Clinics, Vijayawada 520002, Andhra Pradesh, India
| | - Ravi Teja Mundluru
- Department of Orthopaedics, MJ Naidu Super Speciality Hospital, Vijayawada 520002, Andhra Pradesh, India
- Department of Regenerative Medicine, StemC Clinics, Vijayawada 520002, Andhra Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, StemC Clinics, Vijayawada 520002, Andhra Pradesh, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College and Hospital, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, StemC Clinics, Vijayawada 520002, Andhra Pradesh, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| |
Collapse
|
2
|
van Dongen JA, Tuin AJ, Spiekman M, Jansma J, van der Lei B, Harmsen MC. Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. J Tissue Eng Regen Med 2017; 12:e261-e274. [PMID: 28084666 DOI: 10.1002/term.2407] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Intraoperative application of the stromal vascular fraction (SVF) of adipose tissue requires a fast and efficient isolation procedure of adipose tissue. This review was performed to systematically assess and compare procedures currently used for the intraoperative isolation of cellular SVF (cSVF) and tissue SVF (tSVF) that still contain the extracellular matrix. Pubmed, EMBASE and the Cochrane central register of controlled trials databases were searched for studies that compare procedures for intraoperative isolation of SVF (searched 28 September 2016). Outcomes of interest were cell yield, viability of cells, composition of SVF, duration, cost and procedure characteristics. Procedures were subdivided into procedures resulting in a cSVF or tSVF. Thirteen out of 3038 studies, evaluating 18 intraoperative isolation procedures, were considered eligible. In general, cSVF and tSVF intraoperative isolation procedures had similar cell yield, cell viability and SVF composition compared to a nonintraoperative (i.e. culture laboratory-based collagenase protocol) control group within the same studies. The majority of intraoperative isolation procedures are less time consuming than nonintraoperative control groups, however. Intraoperative isolation procedures are less time-consuming than nonintraoperative control groups with similar cell yield, viability of cells and composition of SVF, and therefore more suitable for use in the clinic. Nevertheless, none of the intraoperative isolation procedures could be designated as the preferred procedure to isolate SVF. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joris A van Dongen
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.,Department of Plastic Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - A Jorien Tuin
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maroesjka Spiekman
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Johan Jansma
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.,Bergman Clinics, locations Heerenveen, Zwolle and Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|